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ABSTRACT  

Capturing the spatial variability in soil is crucial for ground response analyses in the context of seismic hazard mitigation. 
The lateral variability in thickness and properties of the different soil layers is one of the main factors that determines the 
variability of the ground motion spectrum from one location to another. The absence of such lateral variability information 
in the subsoil in between the locations of Cone Penetration Tests (CPTs) may be compensated by the use of more densely 
sampled seismic data. In this research we aim to derive a shear-wave velocity field through seismic full-waveform 
inversion that yields a model resolution approaching that of high-resolution seismic CPT surveys. Following this, a data-
driven correlation between geophysical and geotechnical information is attempted through the application of new 
machine-learning-based approaches. 
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1. Introduction 

Integrating the knowledge from geophysical and 
geotechnical investigations is beneficial for a detailed 
understanding of the subsurface. Seismic methods have 
been widely used for earthquake seismic site response 
analysis. Multi-channel analysis of surface waves 
(MASW) is a popular method that has been used to obtain 
the shear-wave velocity (Vs) distribution in soil layers 
(Park, Xia and Miller 1999; Foti, Picozzi and Albarelle 
2011). Vs is a crucial parameter in site response analysis, 
together with soil properties that capture the nonlinear 
soil behavior under seismic loading, as obtained from 
dynamic tests in the laboratory. MASW essentially offers 
a one-dimensional Vs structure derived from the surface-
wave dispersion information. Besides being essentially 
one-dimensional, the reliability of the MASW-derived Vs 
rapidly decreases with depth.  

In recent years, seismic full-waveform inversion 
(FWI) has gained the attention of the near-surface 
geophysical community as a powerful tool for imaging 
soil variability. FWI using shear waves is especially 
attractive for geotechnical engineering applications. 
However, successful use of FWI using shear waves is 
generally challenging due to the high cost of forward 
modelling of shear waves propagating in soft, low- 
velocity soil layers. The very small wavelengths of shear 
waves in low-velocity soil layers do contribute to very 
high resolution (Ghose 2003; Ghose and Goudswaard 
2004), though modelling such wave propagation calls for 
a very fine spatial discretization, and therefore significant 
computational costs. Furthermore, factors such as the 
lack of a good starting model, cycle skipping due to the 
absence of very low frequencies in data, and attenuation 

of the high frequencies in soft soil, all make near-surface 
FWI a challenging task. To overcome these challenges, 
significant efforts have been made in recent years to 
improve FWI schemes. 

Additionally, for dynamic site response analyses, one 
needs – in addition to soil stratigraphy – several in-situ 
soil properties, which are typically obtained from cone 
penetration tests (CPTs). Cone-tip resistance (qc) is used 
to obtain the undrained shear strength of saturated 
cohesive soils and the friction angle of sands. CPTs 
provide very detailed soil variability information in the 
vertical direction, which is crucial in designing 
foundations, assessing the risk of soil liquefaction, and 
understanding the bearing capacity of the soil, among 
others (Kruiver et al. 2021). Many past studies have 
shown that Vs and qc exhibit correlation with each other 
in the near-surface soils. Using the available SCPT 
database for the Groningen region of the Netherlands, we 
have also found such a correlation, as illustrated in Fig. 
1. High qc generally corresponds to high Vs values. 

 

 
Figure 1. SCPTs from Groningen, the Netherlands 

(https://www.dinoloket.nl/). The blue lines denote the Vs 
values, and the red lines are the qc values at the same location. 
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The goal of the present study is to design FWI 
workflows in order to retrieve 2D and 3D high-resolution 
Vs fields, overcoming the above-mentioned challenges, 
and to subsequently derive site-specific correlations 
between Vs and qc through novel approaches utilizing 
machine learning (ML).  

2. FWI of shallow pseudo-observed 
seismic data 

FWI is a nonlinear inversion approach used in 
computational geophysics for subsurface imaging and 
elastic parameter estimation. FWI addresses an ill-posed 
problem, causing the inversion to fall into a local 
minimum in the solution space, which may differ 
significantly from the global minimum (Virieux and 
Operto 2009). Substantial research efforts have been 
directed toward mitigating this problem using new misfit 
functions and advanced optimization algorithms. 
Metivier et al. (2016) proposed optimal transport (OT) 
distance as the misfit function. The advantage of OT over 
traditional misfits, such as the Euclidean norm, is the 
convexity of the optimal transport distance with respect 
to the time shift between two oscillatory signals. It is 
known that the phase differences between the calculated 
and observed seismograms are one of the causes of the 
cycle-skipping problem. Performing the optimization 
process using OT generally yields a solution which is 
closer to the global minimum, though at extra 
computational cost.  

We use the spectral element method to generate 
accurate synthetic seismograms employing the advanced 
python toolbox Salvus (Afanasiev et al. 2019). The 
model representing the shallow subsoil (Fig. 2) is derived 
from multiple high-quality SCPTs (depth sampling 25 
centimeter) that were performed earlier up to 30 meter 
depth at a test site (Ghose, 2007). This model is used in 
viscoelastic forward modeling to generate pseudo-
seismic data representing the field data. For the source 
time function, we use the first derivative of a Ricker 
wavelet with a dominant frequency of 40Hz. The 
frequency band in the data is 0-80 Hz, which is realistic 
for shear waves at soft-soil sites. We add random noise 
to the seismic data. For the initial VS model for FWI, we 
use a highly smooth version of an actual (field-measured) 
SCPT-derived VS profile from a central location at the 
test site.  We assume that this single SCPT is available a-
priori; our goal is to extract subsoil lateral variability 
away from this SCPT location. Initial models for density 
and compressional wave velocity (Vp) needed for elastic 
wave propagation simulation are obtained from the initial 
VS model using suitable empirical relations.  

We perform FWI in a multistep manner. We tune the 
FWI workflow to capture both lateral and vertical Vs 
variabilities. As an input hyperparameter, the OT misfit 
requires the maximum expected time shift between the 
modeled seismograms and the observed data. By 
reducing this time shift as the inversion progresses, we 
increase the resolution and accuracy of the inverted 
model. In Fig. 2 the positions of the actual SCPTs 
(separated by 25 meters from each other) are shown. Fig. 
3 shows the initial 1-D velocity model obtained by 
smoothing SCPT #3 (Fig. 2). Figs. 4, 5 and 6 show the 

inversion results in 2-D, the difference ΔVs between the 
true and inverted model, and the result in 1-D, 
respectively. 

The inverted Vs model (Fig. 6) shows that the Vs 
variability in the high-density SCPT data is resolved 
remarkably well by the specially tuned FWI; mainly, the 
low-velocity zones in the upper 20 meters are very well 
captured; these layers are absent in the initial velocity 
model. These low-velocity peat and clay layers would 
significantly influence the ground shaking due to an 
earthquake. At greater depths, the resolution of the 
inverted model decreases partly due to high seismic 
attenuation. Nevertheless, the main geological features at 
these depths are mostly retrieved by FWI. Because Vs is 
three times higher than that at the shallower depths, the 
wavelengths are relatively large at greater depths, which 
adds to the loss of resolution.  

Because the VS in soft soils can be very low and 
highly heterogeneous, fitting seismic waveforms from a 
poor starting model is generally challenging due to cycle-
skipping. Our results show that, with some extra 
computational time and proper tuning, the OT cost 
function in FWI is powerful in solving the cycle-skipping 
problem at the scale of near-surface seismic imaging. 
 

Figure 2. The “true” Vs model obtained by interpolating 
between 5 actual SCPTs. This model is used to derive the 
pseudo-observed seismic data. The horizontal separation 

between the SCPTs is 25 meters. 

Figure 3. Initial 1-D VS model derived by heavily smoothing 
VS profile from SCPT #3. This is the input model for FWI. 

Figure 4. Inverted 2-D velocity model by FWI. 

Figure 5. Difference between the true and inverted model. 
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Figure 6. Inverted 1-D Vs profiles to check the accuracy and 
resolution of FWI to capture the lateral variability in the soil: 
the black lines denote the true Vs values at the locations of the 

SCPTs, the green lines are the initial Vs values (same at all 
locations), and the red lines are the inverted Vs values, using 

the pseudo-observed seismic data. 

3. Deriving qc from Vs 

In the past, empirical correlations between Vs and qc 
were found in numerous field studies. Such correlations 
also considered the effect of factors such as soil density, 
soil type, overburden pressure, and effective stress. These 
earlier correlations were mostly derived through 
regression analysis. More recently, pattern recognition 
and machine learning techniques have been used in 
determining such correlation. 

Having explored the potential of elastic FWI to 
capture reliably the fine-scale Vs variability in the near 
surface soil layers as discussed above, in the next step we 
make use of the SCPT database from Groningen, in order 
to investigate the feasibility of predicting qc from Vs 
through the special adaptation of machine learning (ML) 
approaches. The utilized database consists of 45 
irregularly distributed SCPTs in Groningen. Using this 
information, we create a new database containing high-
quality Vs profiles, spatial coordinates of the SCPTs, and 
relevant geological information. Geological information 
is obtained from TNO's 3-D GeoTOP model for the 
Dutch subsurface. The information is organized in 
vectors, each one containing the name of the SCPT, Vs, 
X and Y coordinates, the maximum depth to which 
measurements were conducted, and the geology 
expressed as a Boolean vector to indicate at each depth 
which lithology is more likely; e.g., clay, sandy-clay, 
gravel, etc. For each depth level, we define the feature 
vector 𝒗𝒗𝑓𝑓 as: 

 
𝒗𝒗𝑓𝑓 = [𝑉𝑉𝑠𝑠, 𝑋𝑋, 𝑌𝑌, ℎ, 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3, 𝐿𝐿4, 𝐿𝐿5, 𝐿𝐿6, 𝐿𝐿7, 𝐿𝐿8 ]𝑇𝑇 .   

 
In Equation (1), Vs is the shear-wave velocity at a 

specific depth level, X and Y are the spatial coordinates 
of the SCPT, h is the actual depth level, T denotes 
transpose, and the L features correspond to the most 
likely lithology at that depth level. These features are 
expressed as one-hot vectors. This means that from the 8 
possible values at each depth level, one element takes on 
the value of 1, and the others are set to 0. This applies for 
all the SCPTs at every depth level defined in the data. 

This new dataset serves as the training dataset for 
ML. The target of the prediction is qc. A common pre-
processing step before splitting the data for training, 
validation, and ML tests is to normalize the values so as 
to have the input vectors on a standard scale and to 
facilitate the training of a chosen ML algorithm. 
Moreover, we exclude some SCPTs that are judged as 
outliers. Fig. 7 illustrates the locations of the SCPTs in 

the province of Groningen. The average distance between 
the SCPTs exceeds 200 m.  

We adapt three different ML techniques: Support 
Vector Regressor or SVR (Boser, Guyon, and Vapnik 
1992), Random Forest Regressor or RFR (Breiman 
2001), Extreme Gradient Boosting or XG Boost (Chen 
and Guestrin 2016). These algorithms are tested using the 
Python toolbox Scikit Learn. GroupKfold cross-
validation was used to avoid overfitting in the training 
process. A total of 5 Kfolds were used during the 
validation stage, and 3 SCPTs were set aside for testing. 
We conduct a random search to determine the best 
hyperparameters leading to each technique's highest 
prediction accuracy. For this, we select a sufficiently 
large range of possible hyperparameters for each 
technique. Then we train the data and select the 
hyperparameters that yield the best possible predictions. 

Figs. 8, 9, and 10 show the results of the qc predictions 
at locations that are not used in the training. The label on 
top of each figure denotes the SCPT used for the 
prediction. The locations of the SCPTs used for training 
and prediction are shown in Fig 11. 
 

Figure 7. SCPT database from Groningen. Top: locations of 
SCPTs in the northern tip of the Netherlands. Bottom: 

zoomed-in area in Groningen, marked in the top figure. 
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Figure 8. True and predicted qc using XG Boost algorithm.  

Figure 9.  True and predicted qc using the RFR algorithm. 
  

Figure 10. True and predicted qc using the SVR algorithm. 

Figure 11. SCPT locations for training and prediction in the 
northern Netherlands. Blue dots - SCPTs used for training. 

Red dots - SCPTs used for prediction (Figs. 7-9). 
 
At the locations (red dots) shown in Fig. 10, we have 

successfully predicted qc with reasonable accuracy. The 
coefficient R2 is used as a measure of accuracy. We find 
that XG Boost offers the best results among the three 
tested ML methods. XG Boost requires less computation 

time than SVR. It is important to note that, in spite of the 
considerable distance between the SCPTs, the very large 
size of the region in which the SCPTs are located and the 
ML algorithms are trained, our adaptation of the ML 
techniques offers a good prediction of qc. If such a 
prediction is performed in a site-specific manner, we 
anticipate the accuracy to be higher. 

4. Conclusions 

In this research, we have investigated the possibility 
of adapting advanced FWI and ML approaches to capture 
lateral variability in the near-surface soil layers and in 
soil properties that affect local seismic site response. 
Shear-wave seismic data can be inverted to derive a Vs 
field with a resolution that approaches that of SCPTs. 
This high resolution and accuracy are necessary to 
translate, in the next step, Vs to qc. Special adaptations of 
FWI have addressed the computational and technical 
challenges. Moreover, appropriate ML techniques can be 
designed in order to achieve reasonable qc predictions 
from the Vs. In the next phase of this research, we will 
test the developed methodologies on field-seismic and 
CPT databases from Groningen, where induced 
seismicity is a major concern. 
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