

Delft University of Technology

Success factors in managing legacy system evolution
A case study
Huijgens, Hennie; Van Deursen, Arie; Van Solingen, Rini

DOI
10.1145/2904354.2904363
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings - International Conference on Software and System Process, ICSSP 2016

Citation (APA)
Huijgens, H., Van Deursen, A., & Van Solingen, R. (2016). Success factors in managing legacy system
evolution: A case study. In Proceedings - International Conference on Software and System Process,
ICSSP 2016 (pp. 96-105). Article 2904363 ACM. https://doi.org/10.1145/2904354.2904363

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2904354.2904363
https://doi.org/10.1145/2904354.2904363

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Success Factors in Managing Legacy
System Evolution: A Case Study

Hennie Huijgens, Arie van Deursen and Rini van Solingen

Report TUD-SERG-2016-009

SERG

TUD-SERG-2016-009

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the proceedings of the International Conference on Software and System
Processes (ICSSP 2016), published by the ACM.

c© 2016 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

Success Factors in Managing Legacy
System Evolution: A Case Study

Hennie Huijgens
Delft University of Technology and

Goverdson, The Netherlands
h.k.m.huijgens@tudelft.nl

Arie van Deursen
Delft University of Technology

The Netherlands
Arie.vandeursen@tudelft.nl

Rini van Solingen
Delft University of Technology and

Prowareness, The Netherlands
d.m.vansolingen@tudelft.nl

ABSTRACT
In this paper, we attempt to understand what contributes to a
successful process for managing legacy system evolution. We
provide an analysis of a number of key performance indicators such
as cost, duration, and defects. By normalizing through function
points, we furthermore compare to a larger benchmark. To do so
we perform a mixed, retrospective case study on a series of nine
software releases and eight single once-only releases, all
performing on a single, legacy software system, in a West-
European telecom company. We interviewed eleven stakeholders
that were closely involved in the subject software releases. As a
result, we list a number of observations from the quantitative and
qualitative analysis. We found that a release process that performs
above average on cost and duration satisfies stakeholders through
fast response and direct value, even when the reliability and
availability of the actual system is weak.

CCS Concepts
• General and reference ➝ Cross-computing tools and
techniques ➝ Evaluation.

Keywords
Software Engineering Economics, Release-Based Software
Engineering, Scrum, Cost Duration Matrix.

1. INTRODUCTION
Managing legacy systems, and especially linking the building of
new software with evolution of legacy systems is a big challenge
for many companies [1] [2]. For this study we analyze a series of
nine software releases (the CECIL releases), performed in a West-
European telecom company (in the remaining of this paper
indicated as BELTEL), that is characterized by highly satisfied
stakeholders. This study aims at analyzing software releases to only
one system, that were conducted in different ways. The CECIL
releases are typically built from quick wins; fast and small
enhancements on a system by a single dedicated Scrum team. The
releases all were performed on one Customer Relationship
Management (CRM) system - named the DIVINE system, which is
a five-year-old legacy system that is planned to be replaced because
of ongoing reliability and availability problems.

While performing our case study, four things puzzled us. First,
stakeholders were largely satisfied with the deliveries of the CECIL

team. Second, the CECIL releases were assessed all to be ‘best-in-
class’ in terms of cost, duration, and defects found, when
benchmarked against other software deliveries in our research
repository. Third, besides the CECIL releases another eight releases
were performed on the DIVINE legacy system, outside of the scope
of the CECIL team. And these were all assessed as not being ‘best-
in-class’. And finally, the DIVINE system itself was performing very
badly in terms of reliability and availability.

The goal of this paper is to understand what contributes to a
successful process for managing legacy system evolution. To reach
this goal, we provide an analysis of a number of key performance
indicators such as cost, duration, and defects. By normalizing
through function points, we furthermore compare to a larger
benchmark. Furthermore, to understand in depth what contributed
to the success of the CECIL releases, we conduct in depth interviews
with eleven people close involved with CECIL.

The remainder of this paper is organized in the following way: In
Section 2 we outline the experimental setup for our case study. In
Section 3 the research approach that we apply is described. Section
4 and 5 are about the results of our study. In Section 6 we discuss
the results, compare them with state of the art and we discuss threats
to validity. In Section 7 we discuss related work. Finally, Section 8
includes conclusions.

2. EXPERIMENTAL SETUP
2.1 Context
We analyze the CECIL releases and non-CECIL releases, performed
over a period of one year on a single software system in BELTEL, a
West-European telecom company. We perform both quantitative
and qualitative analysis, the latter by performing open-ended, non-
structured interviews with stakeholders on the backgrounds of the
success of the releases. Regarding confidentiality of data, the names
of companies, systems, releases, and people are made anonymous
in this study. To improve the readability of this study, we provide
definitions of four used acronyms:

CECIL releases: a series of nine software releases. CECIL releases
are performed release-based, with a fixed team of six persons, with
a steady heartbeat (Go Live every six weeks), and a Scrum
approach. Within the CECIL releases only small enhancements are
included; also in former years identified as CRM Quick Wins.
These quick wins are primarily GUI-driven and meant to solve
process issues in the DIVINE system that’s mainly used by agents
(front-office employees of BELTEL that have contact with
customers through various channels (e.g. telephone, call centers,
email, and chat). Driven by an attempt to speed up the software
delivery process, in 2014 a decision was made to setup a fixed team

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICSSP'16, May 14-15, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4188-2/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2904354.2904363

SERG Success Factors in Managing Legacy System Evolution: A Case Study

TUD-SERG-2016-009 1

that was budgeted only once each year. This means that a budget
was approved for capacity of the team for a whole year.

The CECIL release team consists of six people that all work fulltime
for the team. From BELTEL itself these are a product owner and a
business analyst, from BELTEL’s main Indian supplier three
software developers, and one tester from the main supplier that is
responsible for user acceptance and regression testing. Besides that,
an enterprise architect is involved in design activities on an ad hoc
basis, and a release manager performs the integration once ready
for release.

Non-CECIL releases: eight software releases on the DIVINE system
that were performed once-only. Contrary to the CECIL releases
these releases are characterized by a new team setup for every
release, in advance governance and budget approval for each
release, plan-driven approach.

The eight non-CECIL releases were performed as once-only
releases, meaning that a team was setup preceding every single
release and closed down once the release was finalized. Only few
people within BELTEL were still to be found that joined in a non-
CECIL release; of the interview participants mentioned in Table 4
only P1, P5, P8, P9, and P11 were involved in any way in these
releases.

DIVINE system: The Customer Relationship Management (CRM)
software system on which both the CECIL releases and non-CECIL
releases are performed. A complicating factor in this study is the
fact that the DIVINE system is a legacy system (planned to be
replaced) that faces severe reliability and availability issues.

BELTEL: The West-European telecom company where CECIL
releases and non-CECIL releases are performed. A repository with
data of approximately 95 finalized software projects that is
collected over time in BELTEL is used in this study as a reference
for benchmarking purposes.

Within BELTEL a company standard allows for eight pre-planned
production releases per year; each includes a number of projects
and releases (from CECIL, DIVINE, or other teams), that jointly move
on to user acceptance testing and integration into the production
environment.

Following conventions in use at BELTEL, we use the term release
with two different meanings. Release is used to indicate a specific
software project that is performed in a release-based way. In this
paper we use the term release for those cases. Besides that, the term
release is used to indicate a combined set of projects and releases
for integration into the production environment. In this paper we
use the term production release if this is the case. Within the
BELTEL practice, these production releases are deployed into the
production environment in yearly eight subsequent production
releases; this applies for both CECIL releases and non-CECIL releases
too.

2.2 Research Questions
Based on this we define the following research questions:

RQ1: To what extent can a release-based iterative process be
successfully used to manage the evolution of a legacy system?

RQ2: To what extent play known success factors a role in this
success?

1 https://www.scrumwise.com

RQ3: What specific factors contributed to this successful way of
managing legacy system evolution?

The case study that we perform is a mixed study: we perform both
quantitative and qualitative research on the subject releases [3] [4].
The analysis falls apart in two parts. First, we quantitatively analyze
the CECIL and non-CECIL release data that we collected on a series
of releases over time and compare the outcomes with earlier
research on best-in-class software releases [5]. Second, we conduct
qualitative research by performing open-ended, non-structured
interviews with members of the release-teams, and internal
customers of BELTEL, that made use of the deliverables of the
CECIL team and the non-CECIL teams.

2.3 Data Collection Procedure
For our research we make use of two types of data: data that was
collected in the period before we started our study, as part of the
operational measurement practice within BELTEL, and data we
collect specifically for our research. The first consists of artifacts
collected over time on these software releases, supplemented with
data from two releases that finalized in the two previous years.
Among others the following artifacts were available for our
research:

• Quantitative data that was recorded in a measurement
repository on both the CECIL releases and the non-CECIL
releases, holding measurements such as size, cost, duration,
number of defects, and planning data on cost and duration.

• Performance Dashboards and Project Close Reports on the
finalized CECIL releases and non-CECIL releases.

• Logged data in the tool that was used for backlog management
(Scrumwise1), including User Stories, Story Points, an activity
log, attached documents, and comments on backlog items.

• Technical Design documents of the CECIL releases and non-
CECIL releases, usually prepared by members of the CECIL
team or members of the once-only non-CECIL releases teams

Besides collecting existing data within BELTEL we perform
interviews with key stakeholders within BELTEL that are involved
in the CECIL releases. The stakeholders are all involved in the
operational practice of the CECIL releases; the list of stakeholders is
setup in close cooperation with the business analyst and with the
product owner. See Table 4 for an overview of interviewed
stakeholders. All interviews are performed on a one-to-one basis
between the first author of this paper [interviewer] and one specific
stakeholder [interviewee], except for two interviews where two
interview participants are combined in one interview at request of
the participants. The interviews are based on the following
questions, where applicable sub questions are asked to reveal
backgrounds or to clarify misunderstandings or indistinctness:

1. Can you give some backgrounds on your role in the CECIL
releases and non-CECIL releases?

2. What top-5 aspects did influence the releases in a positive
way?

3. What top-5 issues need improvement?
4. In what way did the series of CECIL releases evolve over time

(e.g. process changes, changes in way of working, team
changes, changes in roles)?

Success Factors in Managing Legacy System Evolution: A Case Study SERG

2 TUD-SERG-2016-009

5. In what way did the DIVINE system evolve over time (e.g. new
functionality, enhancements, life cycle of the system)?

6. Are there any other important things to mention?

2.4 Quantitative analysis
In order to perform quantitative analysis on the collected data of
CECIL- and non-CECIL releases, we calculate three performance
indicators and compare the outcomes with those of our earlier
published research paper on best-in-class software releases [5]. We
calculate the following performance indicators:

1. Cost per FP; a weighted average of the summarized project cost
in Euros divided by the summarized project size in FPs
(weighting factor is project size).

2. Duration per FP; a weighted average of the summarized
project duration in calendar days divided by the summarized
project size in FPs (weighting factor is project size).

3. Defects per FP; a weighted average of the summarized number
of defects found during each release divided by the summarized
project size in FPs (weighting factor is project size).

In order to quantify the measure of success and failure we use a
Cost Duration Matrix, a model built in earlier research [6] that
compares the performance of finalized software projects in terms
of cost, duration, and number of defects found during development.
We compare the performance and characterizations of the CECIL
releases with a series of 26 best-in-class software releases that were

performed in another company and that we described in earlier
research [5].

2.5 Qualitative Analysis
All interviews are recorded digitally and transcribed to text files.
The text files are analyzed by following a number of steps. First,
we read the transcripts, and make notes about first impressions.
Subsequently, we label relevant pieces of the transcripts (coding)
by labelling relevant words, phrases, sentences, or sections. We
might decide that something is relevant for us because the interview
participant explicitly states the importance, because it surprises us,
or because it is repeated in several places. Our aim is to look for
conceptualization and underlying patterns. Then we decide which
codes are the most important, and create categories by combining
codes to logical themes and drop less important ones. Finally,
categories are labeled, and we decide which are the most relevant
and how they are interconnected. We describe the connections
between them. Finally, we discuss the impact and implications of
our observations, based on the results of the quantitative and
qualitative analysis. We use triangulating evidence from multiple
sources to obtain our final findings.

3. QUANTITATIVE RESULTS
Between April 2014 and May 2015 nine CECIL releases are
performed (see Table 1). Minimum release size was 37 FPs,
maximum release size 128 FPs, medium size was 64 FPs. Cost of
the releases varied from 30K Euro to 110K Euro, with a median of

Table 1. Overview of the collected metrics for the CECIL releases.

Go Live Date
(mm-yyyy)

Release Size
(FPs)

Story Points
(Problem
Tickets)

User Stories
(Problem
Tickets)

Release Cost
(Euros)

Release
Duration
(Months) # Defects

CECIL 2014 R3 4-2014 111 na na 56,345 3.12 11

CECIL 2014 R4 5-2014 37 na na 45,769 2.76 5

CECIL 2014 R6 8-2014 64 31 (0) 16 (0) 30,367 4.60 2

CECIL 2014 R7 5-2014 80 64 (0) 17 (0) 73,134 5.49 8

CECIL 2014 R8 11-2014 40 37 (0) 6 (0) 58,154 7.56 7

CECIL 2015 R1 1-2015 46 62 (0) 12 (0) 84,464 6.11 19

CECIL 2015 R2 2-2015 109 87 (0) 18 (0) 62,768 7.43 7

CECIL 2015 R3 4-2015 128 73 (16) 23 (4) 62,964 8.81 16

CECIL 2015 R4 5-2015 63 44 (0) 8 (0) 110,000 6.11 10

Table 2. Overview of the collected metrics for the non-CECIL releases.

Go Live Date
(mm-yyyy)

Project Size
(FPs) Story Points # User Stories

Project Cost
(Euros)

Project
Duration
(Months) # Defects

DIVINE Quick Wins 2012 11-2012 81 na na 157,763 10.35 na

DIVINE Sales Orders 7-2013 110 na na 358,883 11.60 18

DIVINE Detailed Rep. 10-2013 80 na na 78,954 6.11 4

DIVINE Archival 12-2013 100 na na 364,549 6.97 18

DIVINE Quick Wins 2013 12-2013 32 na na 47,880 6.18 6

DIVINE Security 2-2014 61 na na 181,483 6.93 5

DIVINE SO Tracking Tool 7-2014 22 na na 69,761 9.20 7

DIVINE Stability Impr. 8-2014 8 na na 22,930 8.31 na

SERG Success Factors in Managing Legacy System Evolution: A Case Study

TUD-SERG-2016-009 3

63K Euro. Release duration took 2.76 to 8.81 months, with a
median of 6.11 months. Eight non-CECIL releases (see Table 2)
were deployed. Minimum release size was 8 FPs; maximum size
was 110 FPs. Cost varied from 23 to 365 K Euro. Duration took
between 6.11 and 11.6 months.

Table 3 gives an overview of a comparison between quantitative
data of collected within BELTEL on the finalized CECIL releases and
26 best-in-class software releases as analyzed in an earlier
published research paper [5].

In order to benchmark the performance of CECIL releases and non-
CECIL releases in terms of cost, duration and number of defects
against our research repository holding 95 software releases that
were performed within BELTEL, we use a model that we developed
in earlier research; the Cost Duration Matrix [6]. The model can be
used to compare a portfolio of releases to the benchmark, by means
of a Cost Duration Matrix, as shown in Figure. 1 for the 17 releases
in scope of this paper.

Each release is shown as a circle. The larger the circle, the larger
the release is (in FPs). The 'redder' the release is, the more defects
per FP it contains. The position of each release in the matrix
represents the cost and duration deviation of the release relative to
the benchmark, expressed as percentages. The horizontal and
vertical 0%-lines represent zero deviation, i.e. releases that are
exactly consistent with the benchmark. A release at (0%, 0%)
would be one that behaves exactly in accordance with the
benchmark; a release at (-100%, -100%) would cost nothing and be
ready immediately; and a release at (+100%, +100%) would be
twice as expensive and takes twice as long as expected from the

benchmark. The 0%-lines divide the Cost Duration Matrix into four
quadrants:

1. Time over Cost (top left); releases that score better than
average for duration, yet worse than average for cost.

2. Good Practice (top right); projects that score better than
average for both cost and duration.

3. Cost over Time (bottom right); projects that score better than
average for cost, yet worse than average for duration.

4. Bad Practice (bottom left); projects that score worse than
average for both cost and duration.

Overall, the quantitative analysis tells us that all CECIL releases fall
in the Good Practice category when mapped on a Cost Duration
Matrix, which means that all releases score better on Cost per FP
and Duration per FP than the average of BELTEL projects. When
compared with the 26 software releases that were performed within
another company (see Table 3), we observe that CECIL releases are
on average approximately two-and-a-half times bigger in size (FPs)
than the best-in-class releases from earlier research [5]. Because of
this and thanks to economies of scale the Cost per FP are
approximately 10% to 20% lower. Duration per FP on the contrary
is comparable to the average score of the best-in-class releases from
[5]; average durations are longer, but the bigger average size in FPs
compensates this.

Finally, the comparison shows that the number of Defects per FP
of both CECIL releases and non-CECIL releases is higher than that of
the best-in-class releases in [5], indicating a lower process quality.
However, when benchmarked against our research repository

Figure. 1. Cost Duration Matrix of 95 finalized Beltel releases with the CECIL releases and non-CECIL releases mapped at it.

%
 D

ur
at

io
n

D
ev

ia
tio

n

Success Factors in Managing Legacy System Evolution: A Case Study SERG

4 TUD-SERG-2016-009

Defects per FP of all but one of both CECIL releases and non-CECIL
releases is better than the average score.

Observation 1: The performance of CECIL releases is, in
terms of Duration per FP equal to, and in terms of Cost per
FP 10 to 20% better than that of the earlier described best-

in-class releases.

When CECIL releases are compared with the performance of non-
CECIL releases within BELTEL that are performed on the same
DIVINE system, it shows that CECIL releases overall performed
significantly better on both Duration per FP and Cost per FP. As
possible explanations for this we assume that the additional startup
time and cost needed for once-only releases, the learning effort and
knowledge gap of non-CECIL once-only release teams, the extra
time and cost for the proposal phase of a one-only release, and the
overhead of once-only releases over a long-term, fixed, and
experienced CECIL team play an important role. Besides that, we
assume due to the type of requirements that a number of the non-
CECIL releases are more nonfunctional than CECIL releases, leading
to relatively less function points (non-functional requirements are
not in scope of function point analysis).

Observation 2: The performance of CECIL releases is in
terms of Cost per FP and Duration per FP, two to three

times better than that of non-CECIL releases.

The quality of CECIL (0.13) and non-CECIL releases (0.14) in terms
of Defects per FP is not as good as that of the best-in-class releases
[5], yet still within boundaries when compared to the overall score
of BELTEL as a whole (0.12). No indications are to be found in the
quantitative figures that indicate too many defects during the
development process.

Observation 3: Process quality in terms of Defects per FP
of CECIL releases and non-CECIL releases is not as good as

earlier described best-in-class releases from the full
benchmark, yet on average when compared with BELTEL

overall.

Besides the three performance indicators we also calculated two
metrics that give us an impression of the availability and reliability
of the DIVINE system, based on the tickets that were made on
failures in the production environment in the first two quarters of
2015. Based on 32 tickets the Mean Time To Repair (MTTR) was
6:35, and the Mean Time Between Failure (MTBF) was 107:12,
indicating that on average once every 4.5 day a failure occurs that
lasts for on average 6.5 hours. The most worrying signal is that
during repair the DIVINE system usually is not available for end-
users and only limited sales can be performed by all shops of
BELTEL.

Observation 4: The reliability and availability of the DIVINE
system is worryingly bad and holds big risks for BELTEL‘s

business continuity.

Concerning the success factors we identified in earlier research [5],
we observe that three of them also apply to CECIL: a steady
heartbeat, a fixed and experienced team, and release-based working
on a single application. However, the factor of Scrum software
delivery needs necessary differentiations.

The CECIL team certainly used a number of Scrum practices, such
as a product owner, product backlog prioritization, and a product

backlog management tool (Scrumwise) as a core instrument for its
communication. And one may argue that although a product owner
was distinguished, the availability and reliability of the DIVINE
system was not included in this role, turning it into an information
analyst with a Scrum label. Besides that, typical Scrum practices
such as the role of the Scrum master and the daily standup meeting
were not formalized within the team. Because of that we hesitate to
label the CECIL releases as typically Scrum.

Observation 5: Three success factors identified in earlier
research apply to CECIL too: a steady heartbeat, a fixed and
experienced team, and release-based working on a single

application. However, the CECIL releases cannot be defined
as typical Scrum.

For all non-CECIL releases we observe that only the factor release-
based working on a single application applies. There was no fixed
team, experience was not secured once releases were finalized, and
a plan-driven (waterfall) delivery approach was followed.

4. RESULTS OF THE INTERVIEWS
In order to answer research question RQ2, ‘what other factors can
be found that influence release-based software delivery in a positive
or negative way?’ we performed nine interviews with eleven
stakeholders. Table 4 gives an overview of the interview participants
and their backgrounds. All interviewees are in one way or another
involved in the CECIL releases, either as a user of the DIVINE system
(business), as a member of the CECIL team, as a stakeholder from IT
release management, or as enterprise architect responsible for the
application landscape.

Overall the interviewees are more or less satisfied with the CECIL
releases, as illustrated by a statement of interviewee P2 who
revealed that requirements in CECIL are cherished with a typical
nickname ‘cecillekes’ [Belgian colloquial for 'sweet Cecilia'].

In the following paragraphs we grouped aspects of observations
from the interviews in nine categories.

Table 3. Key Performance Indicator Comparison.

CECIL

Releases
non-CECIL

releases

Best-in-
Class

Releases
System A

[5]

Best-in-
Class

Releases
System B

[5]

Number of
Releases

9 8 13 13

Throughput (FPs) 678 494 415 349

Average Project
Size (FPs)

75 62 32 27

Average Project
Cost (Euros)

64,885 160,275 35,563 35,571

Average Project
Duration (Months)

5.78 8.21 2.49 2.49

Average Number
of Defects

9.44 9.67 na 1.23

Cost per FP
(Euros)

861 2,595 1,114 1,325

Duration per FP
(calendar days)

2.33 4.04 2.37 2.82

Defects per FP 0.13 0.14 na 0.05

SERG Success Factors in Managing Legacy System Evolution: A Case Study

TUD-SERG-2016-009 5

1) Product owner is praised by many participants
The role of the product owner, and more specifically the way this
role is fulfilled by the person in question, is in general highly
appreciated; for stakeholders from business and IT alike. Many
interview participants mention this as a first point when asked what
aspects influenced the CECIL releases in a positive way. Examples
are that the CECIL releases run very well (P2), and that the product
Owner sets priorities within the backlog and determines the impact
on the system (P1).

Observation 6: The role of the product owner and the
specific personal fulfillment of that role is appreciated

highly by stakeholders from both business and IT.

2) CECIL focuses on small but fast deliveries
Many stakeholders, especially those from business, mention as a
success aspect that the CECIL approach focusses on quick wins;
delivering high value for end-users (e.g. agents). Time-to-market is
mentioned as a success factor (P5). We assume that the focus on
delivering small enhancements in a fast and flexible way (P11, P1)
is connected with this. Besides that, added value for the end-users
(shops) is created by fast delivery with limited numbers of errors
(P2).

“The idea of the CECIL items comes from the users. They see a bug
in the system or a difficult process… I have to press this button
twice or something… It is really based on ideas from the users.
We discuss these ideas with [product owner] and see what can be
put on the list.” (P3)

Observation 7: CECIL is about quick wins: small, fast
deliveries of requirements based on end-user problems.

A remark her can be made on the fact that the CECIL releases are
applicable to one single application, the DIVINE system. One
interviewee (P1) mentioned this as a success factor; referring to the
fact that CECIL releases are independent from other teams. This
finding corresponds with an observation from earlier research on
two teams in a similar setting in another company [5].

3) Role of Scrum master is not formalized in practice
Contrary to that of the product owner, the role of the Scrum master
is not formalized in the CECIL team. Despite the fact that at the start
of the CECIL releases the team experimented with this role, it did not
last in practice. Instead, the business analyst performs as an
informal kind of coordinator in the team (P1).

“For me the most positive change was that [business analyst]
joined the team. She replaced the former business analyst and she
did a fantastic good job. She was just chasing [Indian supplier],
she was keen on getting feedback and followed-up what was
open.” (P4)

Observation 8: The role of the Scrum master is not
formalized in the team, yet no one seems to miss it.

4) Close cooperation within the CECIL team
Coordination within the CECIL team is an activity that is less
formalized (e.g. there is no one with the formal role of Scrum
master, coordinator, or project manager) yet the workflow seems to
go smoothly with satisfied team members (P1). The transparent
way of working together, and the open communication were
mentioned as success factors (P7) The team members knew each
other, lines were short, and the setting of the team was fixed and
relatively small (P4). One time per week, or in the beginning even
twice, a status meeting was organized (P1).

With regard to the fact that a part of the teamwork is done in India
some remarks were made, although we did not get the impression
that this was a big issue for the team itself. One Indian team member
that works onsite acts as the main contact for the onsite team and as
single point of contact for the offsite team members. Only small
effects were observed here; handovers went quite smoothly (P4).

“An improvement was the replacement of [former developer from
the Indian supplier] by [actual developer of the Indian supplier].
The former was most of the time in India and [actual developer of
the Indian supplier] is most of his time here onsite. So that was
more difficult. More conference calls, the sound was very bad, I
didn’t understand the language too good. Now we don’t have fixed
meetings anymore. We just walk by when needed and if it’s
convenient we setup a meeting.” (P4)

Observation 9: Coordination is less formalized. It is a team
activity; the CECIL team is a typical fixed and self-

organizing team, although an onsite lead developer that
coordinates offsite Indian team members helps a lot.

5) The Product Backlog management tool
A success aspect that is closely connected to the good cooperation
within the team is the tool that is used for product backlog
management: Scrumwise. Many interviewees mention it as very
satisfying (P4, P5, P7). Stakeholders from business departments
indicate that they use the tool for Kanban purposes in their own
departments too. The tool supports good communication and
bundles everything real-time together. People see right-away that
someone is doing something (P4). It improves interaction between
team-members and records all requirements and issues (5).

“Scrumwise is a good tool because it helps the team members to
align activities. Everybody was available via the tool. How do we
work? What are the agreements? It really had advantages for that
purpose I think.” (P7)

Table 4. Overview of Interview Participants.

 Role Business / IT

P1 Business analyst CECIL releases and (part of)
non-CECIL releases

IT-department

P2
P3

Team leader Billing & Rating Support
Billing & Rating support agent

Business
Business

P4 Product owner CECIL releases Business

P5 Release manager IT-department
P6
P7

Consumer Care Mobile team leader
Consumer Care Mobile team leader

Business
Business

P8 Tester CECIL releases IT-department

P9 Team leader Roadmap & Release Management IT-department

P10 Shop Support & Channel Communication team
leader

Business

P11 Enterprise architect – former team leader CRM
team (a.o. DIVINE system and CECIL releases)

IT-department

Participants are depicted in one row when a combined interview took
place (e.g. P2 and P3 were interviewed together).

Success Factors in Managing Legacy System Evolution: A Case Study SERG

6 TUD-SERG-2016-009

Observation 10: The product backlog management tool
Scrumwise positively affected communication.

On documentation some small remarks were made that indicate that
interviewees are satisfied with the level of technical design within
CECIL, but that things need to be improved. However, this was
experienced more as a general issue with regard to the Indian
supplier (P1). Remarks were mainly regarding improvements on
version control and technical design activities (P7).

6) Improvement: Budget and Estimating is fuzzy
The budgeting process with regard to the CECIL releases seems to
be a bit fuzzy. Team members lack knowledge on what the budget
is and how it is prepared. It is unclear how budgets are controlled
and who is responsible for this (P4, P7).

With regard to estimation of new releases the same remark seems
valid. The team does not use Story Points for estimating, but relies
on estimates made by the developers of the Indian supplier: during
the planning process they strongly advise on what requirements are
in or out of a release (P4).

7) Improvement: Testing
Three parties are involved in testing. Build and integration testing
is performed by offshore testers of the main Indian supplier that is
responsible for development too. UAT and regression testing is
performed by a tester within the CECIL team from an external
supplier that is performing company-wide test activities for
BELTEL. And finally testers from a Billing and Rating Support team
perform a production test (P2).

Although all interviewees were unanimously satisfied with the
CECIL process, some mention that testing can be improved, varying
from smarter testing to follow-up of tickets recorded during the
testing activities. Improvements were to be made in the somewhat
informal, and laid-back approach on follow-up of test-tickets by the
Indian supplier (P4).

Yet, although some interviewees indicate that testing needs
improvement, some are quite satisfied about the quality as delivered
by the CECIL releases.

“If you compare Cecil with other projects then Cecil scores much
better in numbers of defects per test case. The pre-project period
as delivering requirements and test cases goes very smoothly. Also
the requirements are described very well.” (P5)

Observation 11: Interviewees indicate that testing could be
improved by smarter testing and better follow-up of test-

tickets by developers of the Indian supplier.

8) Evolution of the process over time
All interviewed stakeholders are positive to very positive on the
CECIL releases as they developed over time. Some interviewees
even indicate that in case the DIVINE system is replaced in future,
the process of enhancements as performed in the CECIL releases
should be kept operational.

The team and its process is experienced as very stable and people
know where to go with questions (P2), and it delivers small
enhancements, but with high impact for business stakeholders (P4).
A remark is made on whether the scope of the team should be
enlarged to also larger enhancements too (including requirements
that were in scope of once only projects that acted on the DIVINE
system too (P7).

“As far as we are concerned Cecil should go on like it is…” (P3)

Observation 12: All interviewed stakeholders are satisfied
about the CECIL way of working and want to have it

continued in future.

9) Bad performance issues of the DIVINE system
As described earlier in Section 3 the DIVINE system suffers from
severe problems with regard to availability and reliability. Many
interviewees relate to this by mentioning that the DIVINE system is
a legacy system, at the end of its lifecycle, mainly due to high costs
for system upgrades by its original supplier and due to the ongoing
availability and reliability issues.

“The serious stability problems of DIVINE are especially owing to
database administration and integration with the backend. Those
are the two things that need an architectural adjustment.” (P11)
“The source of the performance problems is the fact that things
are interwoven. If one application goes down most of the time
fifteen others go down. Just replacing systems with the same
functionality is only a good investment for the supplier and its
partners. It’s technical debt. But I call it also the blame game. We
do a lot of system thinking instead of client thinking.” (P7)
“The reason that DIVINE is at the end of its lifetime is that we
wanted to do an upgrade, but the costs from the supplier of the
system were very high. The system is also not that young anymore.
Together with the cost the decision was taken to go for another
system. In a way DIVINE is built as a CRM system. Yet BELTEL used
it as a sales system with many customizations. It was not originally
meant for that, and that’s why there are many performance
problems nowadays.” (P1)
“DIVINE is not very stable, we have big performance issues.
Loading problems, or error messages. I think that’s the biggest
reason to go to a new system. If you look at the high number of
problems in the shops… They are talking to a customer and press
a button and then they have to wait for two minutes… And all the
Apache errors… The white screens when you have to completely
log off and start again…” (P3)

Besides performance issues also the fact that the DIVINE system
functionally evolved in a difficult to maintain solution for the
business users is mentioned as a problem for the future.

“Functionally DIVINE works as it works… we made things wrong
ourselves. We rebuilt things and Cecil could stick some plasters
on some wounds. But there is no ‘wow’ to make out of it
anymore…” (P4)

A decision is taken to replace the DIVINE system by a new product
that will be a package off-the-shelf solution with minimal
customization and minimal integration with backend systems.

“In former times DIVINE went down every day. Things improved.
But do we have a proper CRM? No! That’s why the system is going
to be replaced in the coming six months. We are now looking at a
new package solution with as little connections to Provisioning
and Billing systems to make the dependencies as small as
possible.” (P11)

Yet, it is interesting to observe that stakeholders tend to judge the
CECIL releases and the DIVINE system as different things that are not
interrelated.

“Cecil stands loose from the system that does not work.
[Interviewer]: But why are there no performance improvement
issues on the Cecil backlog? [Interviewee]: Well they tried all kind

SERG Success Factors in Managing Legacy System Evolution: A Case Study

TUD-SERG-2016-009 7

of things to improve the performance. I don’t think that’s going to
be a quick win. A specialist came over from the USA to see how
he could solve things. If Cecil was planned to solve these
problems, then the management would already put performance
things on the backlog.” (P2)
“This morning we had a meeting were the operations manager
opened his heart on an issue last month, when DIVINE was down
for one day due to firewall issues, and because of that BELTEL did
not make any money for a whole day. It is interesting why these
non-functional aspects are not incorporated into Cecil.
Apparently nobody thinks about this” (P5)
“It is a classic problem within BELTEL that Operations asks to be
involved in a project… But effectively they only react per email on
questions. We look at DevOps, but we are not even agile yet. What
do you expect?” (P11)

Maybe the most striking finding of our analysis, is the fact that it is
possible to have stakeholders that are all quite satisfied with the
process of releasing a steady stream of enhancements over time, yet
on the other hand they have to struggle with a software system that
is lacking in reliability and availability.

Observation 13: A release process that performs better than
average on cost and duration, and on average on defects,
can satisfy stakeholders in managing changes on a badly

performing software system.

5. DISCUSSION
5.1 Threats of Validity
With regard to construct validity, the degree to which a test
measures what it claims to be measuring a remark is in place on
Function Point Analysis. Functional documentation is used to count
FPs, holding the consequence that low quality documentation could
have led to low quality FPA. To mitigate this risk, we thoroughly
reviewed all sets on completeness and correctness, we made use of
two certified FPA specialists, and assured that all involved FPA
specialists are trained and experienced. To prevent from using low
quality release data, we had all data reviewed by the product owner
and the business analyst and the financial controller of BELTEL.

By normalizing all project data with the functional size in FPs we
warranted internal validity, the extent to which a causal conclusion
is based on our study. By doing so we could more objectively
compare performances of all releases in order to minimize
systematic error. The effect of outliers is limited and the risk on
bias is mitigated responsibly based on the diversity of projects and
business domains within BELTEL, the number of software projects,
and the fact that we measured and analyzed software project
portfolios as a whole in an empirical way.

With regard to external validity, whether the study results can be
generalized to settings outside the study, we argue that due to the
limited scope of our study, one specific series of releases in one
company, it is too early to generalize the outcomes. Since we
looked at seventeen releases performed in one company; the
outcomes cannot be generalized to other environments without
precautions. A promising factor here is however, that we compare
the quantitative results of our study with results from existing
research that we performed on similar software releases in another
company, leading to a general expectation that the outcomes of our
study might generalize to similar release approaches and companies
too and that factors such as a steady heartbeat, release-based way
of working mapped on a single application, and a fixed and

experienced team are common success generators for software
engineering.

5.2 Scrum as a Distinguishing Factor
Our research did not indicate that Scrum in itself is a distinguishing
factor for the success of the software releases, but that some
specific elements of Scrum, namely, the role of the product owner,
a product backlog management tool, and short iterations based on
prioritized requirements that deliver high value to end-users, are
key elements that lead to release processes that outperform on cost
and duration. The role of the Scrum master, daily standup-
meetings, planning and estimations in Story Points, and the concept
of Sprint Reviews were not adopted. As such, this setting should
not be qualified as a Scrum setting, but as a local agile
implementation using some Scrum practices. Furthermore, the fact
that the CECIL team spends time on upfront tasks such as writing a
design document deviates from many agile approaches.

5.3 Impact / Implications
With regard to our first research question we conclude that the
CECIL releases corresponds to four of the five success factors
mentioned in earlier research [5], a steady heartbeat (taking into
account that the duration of releases varied, but the release dates
were preset upfront), release-based working on a single application,
and a fixed and experienced team. The success factor Scrum did not
fully correspond with the subject CECIL releases, but a number of
Scrum practices were in place. The non-CECIL releases only
correspond with one factor, namely release-based working on a
single application.

Analysis of the observations from the interviews, based on a
grouping of observations and connections in coherent categories,
reveals three categories with regard to the CECIL releases: the CECIL
team, the CECIL release performance, and the DIVINE system. Our
study indicates that these categories apparently can live together
without very close connections. The CECIL team itself performs
very well, stakeholders are quite satisfied, while the subject DIVINE
system performs poorly in terms of both reliability- and
availability.

For future use the model that we used to benchmark the
performance of releases against our research repository, the Cost
Duration Matrix, should be expanded with metrics on the
performance of software systems after deployment in a production
environment. In this way concepts such as Good Practice and Bad
Practice will reflect the performance of software releases in a more
realistic way.

6. RELATED WORK
Challenges with legacy systems as described in our case study are
examined in many related work. Boehm [1], for example, mentions
legacy evolution as one of the major future challenges for systems
and software dependability processes. Van Deursen et al. [2] see
“to try to bridge the gap between research aimed at building new
software and research aimed at maintaining or renovating old
software” as a large challenge.

A common idea of many research performed in the former
millennium is that success and failure are interconnected with
process-based activities [7]. Reel [8] mentions five critical success
factors in software projects, such as start on the right foot, maintain
momentum, track progress, make smart decisions, and
institutionalize post-mortem analyses. Dybå [9] [10] analyzed
success factors for software process improvement, such as business
orientation, leadership involvement, employee participation,

Success Factors in Managing Legacy System Evolution: A Case Study SERG

8 TUD-SERG-2016-009

concern for measurement, and exploitation of existing knowledge.
Niazi et al. [11] identifies a large number of success factors for
software process improvement implementation in existing
literature. Rainer and Hall [12] surveyed practitioners and found
factors such as reviews, standards and procedures, training and
mentoring, and experienced staff that practitioners generally
considered had a major impact on successfully implementing SPI.
Besides that, they found factors such as internal leadership,
inspections, executive support and internal process ownership that
the more mature companies considered had a major impact on
successfully implementing SPI. Stelzer and Mellis [13] mention ten
success factors of organizational change in software process
improvement, a.o. management commitment and support, staff
involvement, and providing enhanced understanding.

More recent work emphasizes the success and fail factors of shorter
iterations due to an agile way of working. Chow and Cao [14]
surveyed agile professionals on success in agile software projects,
and came up with factors such as delivery strategy, agile software
engineering techniques, and team capability. Misra et al. [15] found
factors such as customer satisfaction, customer collaboration,
customer commitment, decision time, corporate culture, control,
personal characteristics, societal culture, and training and learning.
Sutherland et al. [16] assessed hyper productivity in Scrum and
mentions success factors such as team formation, Scrum meetings,
sprints, product specification, testing, configuration management,
pair programming, and measuring progress as typical for success.

Meyer [17] identifies a number of contributions of the agile
approach: refactoring, short daily meetings that support good team
communication, identifying and removing impediments, and
identification of sources of waste. As “brilliant agile principles” he
mentions short iterations, continuous integration, the close window
rule (no functionality can be added during an iteration), time
boxing, the role of the product owner, an emphasis on delivering
working software, the notion of velocity, and associating a test with
every piece of functionality [17].

Colares et al. [18] present an approach to the software release
planning problem, based on a mathematical formulation that is
based on the idea to maximize stakeholder satisfaction and to
minimize risks. Lehman and Ramil [19] define eight laws on
software evolution: continuing change, increasing complexity, self-
regulation, conservation of organizational stability, conservation of
familiarity, continuing growth, declining quality, and feedback
system.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we address the problem of different ways of working
for evolving legacy software, which by definition resist change.
The contributions of this paper are threefold. First, it gives a
description of a case in which a release-based, iterative process on
a legacy system worked well, satisfying key stakeholders despite
the poor quality of the system itself. Second, it confirmed three
success factors as identified in our earlier research as contributors
to this success [5]:

1. A steady heartbeat;
2. A fixed and experienced team
3. A release-based way or working, mapped on a single system.

Third, we identified four additional success factors:

4. The role of the product owner and the personal interpretation
of that role;

5. A focus on quick wins and small, fast deliveries of
requirements based on end-user problems;

6. The fact that the role of the Scrum master is not formalized,
leading to a self-organizing team with an onsite lead developer
that coordinates offsite Indian team members;

7. A specific product backlog management tool that positively
influences communication.

The research as presented opens prospects for future research. With
regard to our observation that the subject CECIL team applies less
formalized aspects of Scrum in its process, we conclude it is
important to examine whether the findings from this study are
applicable to teams that work according to more formalized settings
of Scrum too.

Finally, in interviews we heard stories about poor performance of
the DIVINE system. Since we considered this to be out-of-scope for
this study we checked this finding only quantitatively. For future
studies we will include qualitative analysis of the underlying legacy
system in our study too.

ACKNOWLEDGMENTS
We thank BELTEL for its generosity to allow us to use company
data for our research, and the members of the CECIL team, and other
interviewed stakeholders for their willingness and openness to
share their experiences with us.

REFERENCES

[1] B. Boehm, "Some future trends and implications for systems
and software engineering processes," Systems Engineering,
vol. 9, no. 1, pp. 1-19, 2006.

[2] A. v. Deursen, P. Klint and C. Verhoef, Research issues in
the renovation of legacy systems, Springer Berlin
Heidelberg, 1999.

[3] P. Runeson, M. Host, A. Rainer and B. Regnell, Case Study
Research in Software Engineering; Guidelines and
Examples, Hoboken, New Jersey. USA: John Wily & Sons,
2012.

[4] R. Yin, Case Study Research - Design and Methods, Los
Angelos, USA: Sage Publications, 2008.

[5] H. Huijgens and R. v. Solingen, "Measuring Best-in-Class
Software Releases," IWSM-MENSURA 2013 Joint
Conference of the 23rd International Workshop on Software
Measurement and the 2013 Eighth International Conference
on Software Process and Product Measurement, no. IEEE,
pp. 137-146, 2013.

[6] H. Huijgens, R. v. Solingen and A. v. Deursen, "How to build
a good practice software project portfolio?," in ACM
Companion Proceedings of the 36th International
Conference on Software Engineering (ICSE-SEIP), 2014.

[7] T. Hall, A. Rainer and N. Baddoo, "Implementing Software
Process Improvement: An Empirical Study," Software
Process Improvement and Practice, vol. 7, pp. 3-15, 2002.

[8] J. Reel, "Critical Success Factors in Software Projects," IEEE
Software, Vols. May-June, pp. 18-23, 1999.

[9] T. Dybå, "An Empirical Investigation of the Key Factors for
Success in Software Process Improvement," IEEE

SERG Success Factors in Managing Legacy System Evolution: A Case Study

TUD-SERG-2016-009 9

Transactions on Software Engineering, vol. 31, no. 5, pp.
410-424, 2005.

[10] T. Dybå, "Factors of Software Process Improvement Success
in Small and Large Organizations: an Emperical Study in the
Scandinavian Context," in ESEC/FSE, Helsinki, Finland,
2003.

[11] M. Niazi, D. Wilson and D. Zowgh, "Critical Success Factors
for Software Process Improvement Implementation: An
Empirical Study," Software Process Improvement and
Practice, vol. 11, pp. 193-211, 2006.

[12] A. Rainer and T. Hall, "Key success factors for implementing
software process improvement: a maturity-based analysis,"
Journal of Systems and Software, vol. 62, no. 2, pp. 71-84,
2002.

[13] D. Stelzer and W. Mellis, "Success Factors of Organizational
Change in Software Process Improvement," Software
Process Improvement and Practice, vol. 4, pp. 227-250,
1998.

[14] T. Chow and D.-B. Cao, "A survey study of critical success
factors in agile software projects," The Journal of Systems
and Software, vol. 81, pp. 961-971, 2008.

[15] S. C. Misra, V. Kumar and U. Kumar, "Identifying some
important success factors in adopting agile software
development practices," The Journal of Systems and
Software, vol. 82, pp. 1869-1890, 2009.

[16] J. Sutherland, A. Viktorov, J. Blount and N. Puntikov,
"Distributed Scrum: Agile Project Management with
Outsourced Development Teams," in 40th International
Conference on System Sciences, Hawaii, 2007.

[17] B. Meyer, Agile!: The Good, the Hype and the Ugly,
Springer Science & Business Media, 2014.

[18] F. Colares, J. Souza, R. Carmo, C. Pádua and G. Mateus, "A
new approach to the software release planning," in IEEE
XXIII Brazilian Symposium on Software Engineering
(SBES), 2009.

[19] M. M. Lehman and J. F. Ramil, "Rules and tools for software
evolution planning and management," Springer, Annals of
software engineering, vol. 11, no. 1, pp. 15-44, 2001.

Success Factors in Managing Legacy System Evolution: A Case Study SERG

10 TUD-SERG-2016-009

TUD-SERG-2016-009
ISSN 1872-5392 SERG

