
Ellipse: Robust and imperceptible watermarking for tabular diffusion models

Toma Volentir1

Supervisor(s): Dr. Lydia Y. Chen1, Jeroen M. Galjaard1, Chaoyi Zhu1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Toma Volentir
Final project course: CSE3000 Research Project
Thesis committee: Rihan Hai, Dr. Lydia Y. Chen, Jeroen M. Galjaard, Chaoyi Zhu

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Data in the form of tables is commonly used in
the scientific and research industry, as it provides
a compact, easy-to-understand and logical way of
storing data. The advancement of diffusion models
has significantly improved the quality of generated
tabular data, but it also poses risks of misappropri-
ation and copyright concerns. Thus, there is a need
to control and monitor the data generated by diffu-
sion models, to enable harm mitigation and protect
intellectual property. This paper addresses the ne-
cessity for robust watermarking techniques specif-
ically designed for tabular data generated by diffu-
sion models. We propose Ellipse, a generaliza-
tion of the Tree-Ring watermarking method, origi-
nally developed for square-shaped images, to han-
dle rectangular shaped tables. We change the shape
of the watermark from a circle—fit for square-
shaped images—to an oval—fit for datasets of
rectangle shape. Through comprehensive experi-
ments on four real world datasets (Abalone, Adult,
Default, and Diabetes), we demonstrate that the
adapted watermarking technique has a negligible
drop of 3.5% in data quality, measured through
correlations between real and synthetic distribu-
tions, performance of downstream machine learn-
ing tasks, and discriminability between the real and
synthetic data. This is a better result than the
12.46% drop in data quality offered by having a
circle mask. Ellipse introduces a non-significant
average drop of 0.4% in detection efficiency com-
pared to having a circle mask. Our implemen-
tation also offers resilience against value skewing
and deletion attacks on the rows and columns of
the dataset. When exposed to attacks, Ellipse
has a higher Area Under the Curve (AUC) than
the circular mask of Tree-Ring by an average of
7.17%. The code for Ellipse is publicly available
at https://github.com/6toma/ellipse-watermark.

1 Introduction
Recent advancements in diffusion models, like Midjour-
ney [5], have led to an increase in the quality of data gen-
eration. This increased data fidelity, in turn, has led to
an increase in abusive generation of content with malicious
purposes, which motivates the development of watermarks
for the output of diffusion models. Watermarks have mul-
tiple purposes, such as protecting the intellectual property
of others. Another purpose is to mark content as being
machine-generated, enabling harm mitigation, by identifying
the source of the generated media—is it original/real, or is it
fake/generated?

Algorithms have been created that watermark the output of
diffusion models that generate images [15; 24; 26; 22; 30].
They are robust, imperceptible by humans and detectable by
machines. However, they have trade-offs such as not being
invariant to all types of post-editing attacks on the generated

data. The current diffusion model watermarking techniques
are intended for image-generating models, more specifically
square-shaped images.

However, the issue is that watermarking for diffusion based
tabular models has not yet been researched. For the same rea-
son we need watermarking for images created by diffusion
models (or models in general)—to mark content as artificially
generated, enable harm mitigation, and protect intellectual
property—we also need watermarking for tabular data gen-
erated by diffusion models. The aim is to reduce the risk of
distributing harmful data generated by diffusion models.

State-of-the-art diffusion models and watermarking meth-
ods for them are centred around image generation. Because
watermarking tabular diffusion models has not been done be-
fore, we aim to leverage existing image-based watermark-
ing methods for diffusion models and adapt them for tab-
ular data. For this purpose, we propose using the state-
of-the-art Tree-Ring [26] watermark to a tabular diffusion
model. However, Tree-Ring is not already fit for tabular
data, because it is meant for watermarking images. When
obtaining new images via diffusion, most common sizes
for the output are 32 × 32, 64 × 64, and 256 × 256 [14;
23]. Thus, Tree-Ring has to be adapted to fit tabular data,
which is commonly rectangular-shaped—the two dimensions
being the number of columns and number of rows. Table data
also has predominantly more rows than columns, making it
have a narrow and long rectangular shape. Thus, we cannot
simply add a bigger circular watermark on a dataset, as we
risk impacting data quality significantly, at the cost of having
strong detection. The main challenge is to adapt Tree-Ring
to a tabular diffusion model, to verify its effectiveness as a
watermarking algorithm for diffusion tabular synthesis.

We propose Ellipse, a watermarking algorithm, which
changes the shape of the Tree-Ring circle mask to an oval
mask, which better fits for tabular data. Ellipse addresses
the following research question: how to adapt the Tree-Ring
algorithm for the synthetic tables generated by tabular dif-
fusion models, that has a negligible impact on the synthetic
data quality, is imperceptible by humans but detectable by the
model owner, and has robust detection against post-editing of
tables? Ellipse first generates an oval shaped watermark
patch and embeds it in the Fourier space of the noise vector
needed for the diffusion pipeline. Afterwards, it samples a
new table using the noise vector. To detect the watermark, we
invert the sampling process to recover the initial noise vec-
tor, and check the L1 distance between our watermark patch
and the recovered noise vector. It requires no training or fine-
tuning, making it computationally inexpensive. It embeds the
watermark in the Fourier space, making it imperceptible to
humans. We bring the following contributions:
Negligible drop in data quality: Our proposed watermark
Ellipse shows a negligible drop of 3.5% to data quality in
terms of correlations between real and synthetic distributions,
performance of downstream machine learning tasks (machine
learning efficiency), and discriminability between real and
synthetic data. This is a better result than the 12.46% drop
in quality offered by a circle mask. Ellipse also has a lower
impact on machine learning efficiency than on other metrics.
Ellipse’s oval mask also outperforms Tree-Ring’s circle

https://github.com/6toma/ellipse-watermark

mask in machine learning efficiency on the bigger datasets,
namely Adult and Default, by an impressive 27%.

Detection efficiency: Ellipse has an average Area Under
the Curve (AUC) of 0.9 out of 1.00 , showing effective detec-
tion. Our implementation shows a negligible average drop of
0.4% in detection efficiency, measured by AUC, compared to
the original circle mask . We showcase that Ellipserand and
Ellipsezeros work best on datasets with less columns, while
Ellipsering performs best on classification task datasets.

Robustness against post-editing attacks: We show that
Ellipserand is unaffected by value skewing attacks—e.g.,
adding random noise or replacing values—on the data, main-
taining an AUC of at worst 2.5% lower than the clean version,
and at best an AUC of 1.00. We also demonstrate that the wa-
termark is still detectable against row and column deletion at-
tacks. Ellipse has, on average, an AUC that is 7.17% higher
than Tree-Ring’s circular mask against four types of attacks.

Regarding the choice of tabular diffusion model, we have
chosen to adapt Tree-Ring to Tabsyn [29], a state-of-the-art
tabular data synthesizer with score-based diffusion in latent
space. Tabsyn offers generality towards data types, high-
quality synthetic data, and fast synthesis speed.

2 Related Works
Recent efforts in generative modeling of tabular data pre-
dominantly focus on the usage of foundational (transformer-
based), and diffusion-based modelling. These works show
the ability to synthesize realistic tabular data that exceed ear-
lier works such as CTGAN [27] and TVAE [16]. The suc-
cess of these models have prompted malicious use of syn-
thetic data—such as spreading generated data and claiming
it to be real—leading to misinformation. Thus, research on
watermarking has also been carried out, targeting generative
models due to their impressive quality in data synthesis.

Generative tabular models Deep generative models have
more notable success with computer vision and natural lan-
guage processing than tabular data. However, tabular mod-
els have seen impressive improvements through generative
adversarial network (GAN) [12] models. Up until recently,
GANs, such as CTGAN [27], were considered to be state-
of-the-art generative models, which were able to deal with
imbalanced categorical features. Still, more recent advance-
ments led to novel methods for synthetic tabular data genera-
tion. For example, diffusion models such as TabDDPM [20],
STaSy [17], or Tabsyn [29], which “describe the spread of in-
formation, behaviors, or phenomena through a population and
identify the factors influencing the diffusion process” [22],
are considered state-of-the-art in terms of quality of the sam-
pled data [11] and density estimation [18]. GOGGLE [21] is
a large language model (LLM) based model, being the first to
“model the dependency relationship between columns” [29].
Following the success of using LLM models to synthesize
tabular data, GReaT [9] transforms the rows of a table into
natural sentences, to then learn the sentence-level distribu-
tions with GPT2 [29]. Innovative sampling algorithms, such
as Denoising Diffusion Probabilistic Models (DDPM) [14],
use two Markov chains to progressively add, then remove

Gaussian noise to obtain higher quality data. Denoising Dif-
fusion Implicit Models (DDIM) [25] represents an improve-
ment to DDPM, producing qualitative data in fewer steps.
DDIM does not add additional noise like DDPM does, mak-
ing the sampling process deterministic and invertible.

Watermarking generative models Generative models
produce high-quality data and have state-of-the-art perfor-
mance in synthesis tasks, but they are not “secure by de-
sign” [22]. Thus, generative models can be used with mali-
cious purposes, such as spreading synthetic, model-generated
data and claiming it to be real. Watermarking algorithms
help relieve this problem by marking the data as machine-
generated. Most common state-of-the-art watermarking
methods are “green list” based [19; 13], or prompt based [22;
30]. The “green list” based watermarking normalizes the data
and divides the range into equal intervals, selecting a subset
to form a “green list” [13]. For each data point, the fractional
part is checked against the green list intervals, and if it does
not match, it is replaced with a value from the nearest green
list interval. This ensures watermark embedding while main-
taining data integrity. Detection is performed through statis-
tical hypothesis testing to confirm the watermark’s presence.

The prompt based procedure is common among diffusion
models. The prompt based watermarking involves injecting
a watermark into the model during the training or fine-tuning
phase—depending on the implementation. Afterwards, a
dataset with pairs of watermarked prompts (prompts that in-
clude the trigger word) and corresponding watermarked data,
as well as pairs of clean prompts with clean data is created.
This dataset will be used for training or fine-tuning, hereby in-
tegrating the watermark into the model’s parameters. The wa-
termark can later be detected by using a prompt that contains
the trigger word in any position or, for a more sophisticated
approach, a prompt with the trigger in a specific location.

Watermarking tabular diffusion models has not been stud-
ied previously, and the current available watermarking meth-
ods do not solve the issue of watermarking tabular diffusion
models. The green-list approach has been shown to have an
impact on the data quality, showing small degradations in fi-
delity [13]. It is also extremely vulnerable to random noise at-
tacks on the numerical columns. The prompt-based approach
is computationally expensive [22], prone to bias [22], and
also cannot be trivially adapted, as tabular diffusion models
do not take any prompt as input.

3 Preliminary
Diffusion models A diffusion model has three components,
an encoder, the diffusion pipeline, and a decoder. The en-
coder takes as input the clean data and encodes it into vec-
tors, called latents. The decoder takes as input the latents
and outputs the new, synthesized data The diffusion pipeline
works by simulating two Markov chains, namely a forward
and a backwards process [10]. The forward process takes a
clean data sample—in the form of latents—and sequentially
corrupts it with random Gaussian noise to, in an infinite-time
limit, transform it into pure noise [10]. The backward process
attempts to reconstruct new clean data by sequentially remov-
ing the noise from the latents using a neural network [10].

Tree-Ring watermarking Tree-Ring [26] proposes em-
bedding a pattern, also known as the key, into the Fourier
space of the latents used for sampling before applying the
diffusion process. The Fourier space is an abstract dimension
in which the values of the data are mapped to their frequen-
cies, making it invisible to human eyes. Thus, by adapting
Tree-Ring to table data, we already start with an impercepti-
ble watermark. A circular mask is applied on the latents, then
the key is put over the mask. The key is embedded into the
Fourier space, allowing the watermark to be robust, or even
invariant, to certain transformations, such as rotations, flips,
or crops. Tree-Ring allows three patterns for the key, each
with certain advantages:

• zeros—an array of zeros invariant to certain post-editing
attacks, but values dissimilar to Gaussian distribution

• rand—an array of values drawn from a Gaussian distri-
bution, but not invariant to most post-editing attacks

• ring—multiple concentric rings with constant values
drawn from a Gaussian distribution and invariant to cer-
tain post-editing attacks

The ring pattern shows promising robustness, allowing detec-
tion even after a series of post-editing attacks on the generated
content [26]. The key can later be detected through inverting
the diffusion process to retrieve the latents, then checking the
distance between this and the embedded pattern. Thus, Tree-
Ring requires a deterministic and invertible diffusion process,
which is provided by implementing DDIM as the diffusion
sampling process.

4 Ellipse: Elliptical Rings for Rectangular
Latents

We generalize the Tree-Ring watermark by introducing ellip-
tical rings which are compatible with any rectangular shaped
latents. We do this by changing the shape of the watermark
to an oval instead of a circle, introducing two radii instead of
one. The radii are based on the ‘height’ and ‘width’ of the
latents. Thus, when the two radii are equal—the latents are
square shaped—the resulting watermark is the original Tree-
Ring, in the same way a rectangle becomes a square when all
its sides are equal. The pipeline for watermarking the diffu-
sion latents is illustrated in Figure 1.

We want to benchmark the performance of Tree-Ring when
used on a tabular diffusion model, where the shape of the
data is rectangular. Tree-Ring is intended to be used for
square-shaped image synthesis tasks, and is thus not compat-
ible with tabular data, which has a rectangular shape. Con-
sequently, we first adapt Tree-Ring’s implementation [7] to
Tabsyn’s implementation [6]. Tabsyn uses score-based sam-
pling, but Tree-Ring requires a deterministic and invertible
sampling process to obtain the initial latents. Thus, we im-
plement DDIM sampling for Tabsyn. Still, Tree-Ring uses a
circle mask to watermark the intended input of square shaped
images. Thus, we have to adapt the circle mask to a more
suitable shape for the rectangular shaped tabular data, namely
an oval. Finally, we change the shape of the latents from
2-dimensional to 4-dimensional. Image-based latents are 4-
dimensional, having a batch size, the number of channels, the

width and the height, while table-based latents only have the
height and width as dimensions. After making the aforemen-
tioned modifications to make Tabsyn and Tree-Ring compat-
ible, we adapt the watermark injection and detection algo-
rithms to fit tabular data.

Watermarking pipeline We inject and detect a watermark
following a certain pipeline, which is shown in Figure 1. Due
to the properties of the diffusion model, insertion and detec-
tion of a watermark bear similarity, differing mainly in the
order in which the process is performed. First, we generate
a watermark key based on a given pattern (ring, rand, or ze-
ros). We use this key to watermark the latents in the Fourier
space. Afterwards, the latents go through the data sampling
process—in this case, DDIM—to obtain new, synthesized la-
tents, which are decoded back to CSV format. The detection
process is similar, but in reverse, starting with the encoding
of the CSV into latents. Consecutively, the DDIM inverse
process is applied on the synthetic latents to obtain the ini-
tial latents. In the Fourier space again, we look at where the
watermark key would be located on the latents and check the
L1 distance between this section of the latents and the prede-
fined key. If the L1 distance falls below an empirically chosen
threshold τ , the data is considered watermarked.

Adapting the shape of the Tree-Ring mask to fit tabular
data As previously mentioned, Tree-Ring was meant for
square shaped data, but tabular data has a long and narrow
rectangular shape with its height being much longer than its
width. In order to have an appropriate size for our watermark,
Ellipse modifies the shape of the mask from a circle to an
ellipse. Thus, we consider the following implementation
from Algorithm 1 for obtaining an elliptical mask. We first
extract the height and the width from the shape of the latents,
to determine the center of the shape. Afterwards, we use the
equation of an ellipse on line 7 to determine where the cir-
cumference is—i.e., where to place the ring.

Algorithm 1 Implementation of elliptical mask to fit any 2D
shape

1: function ELLIPTICALMASK(shape, x radius, y radius,
x offset, y offset)

2: height, width← shape
3: y, x ← grid of coordinates from 0 to height −

1, width− 1
4: y ← reverse order of y
5: x center ← width

2 + x offset

6: y center ← height
2 + y offset

7: return
(

(x−x center)2

x radius2 + (y−y center)2

y radius2

)
≤ 1

8: end function

Re-shaping watermarks requires additional steps, due to
the rectangular shape of the tabular latent, whereas image
based diffusion models commonly utilize square latents [14;
23]. Most common sizes for image based latents include
32× 32, 64× 64, and 256× 256 [14; 23].

Ellipse injection and detection methods As with the
original implementation of Tree-Ring, we embed our water-

Figure 1: Pipeline for applying Tree-Ring Watermarking on diffusion latents. A diffusion model generation is watermarked and later detected
through ring-patterns in the Fourier space of the initial noise vector.

mark in the Fourier space. This is because injecting the wa-
termark directly in latent space might affect the correlations
of the data and introduce statistical deviations from the orig-
inal distribution. We start by generating our watermark key,
through Algorithm 2. This algorithm generates a random wa-
termark patch in the Fourier space through lines 2 and 3. De-
pending on the chosen pattern, further modifications are done
to the watermark patch. More notably, for the ‘ring’ pattern,
we create multiple concentrical ellipses. The watermark is
injected in the Fourier space of the latents by first creating a
binary elliptical mask. The latents undergo a 2D Fast Fourier
Transform (FFT) with the zero-frequency component shifted
at the center, on top of which the pattern is applied. After,
the inverse Fourier Tranform (IFFT) yields the watermarked
latents. After the sampling process, in Fourier space the
algorithms embed part of the latents with the secret, thereby
distributing the secret over the entire latents, ‘hiding in plain
sight’. The secret that overrides in Fourier Space is either an
elliptical ‘ring’ pattern, or binary mask. The former consist of
gradually smaller concentric ellipses (see Algorithm 1), cen-
tered around the origin in Fourier space. Whereas the latter
binary mask sets overrides values at pre-determined indices,
as shown in Algorithm 1. To inject the watermark, specific
elements in the FFT latents are replaced by corresponding
values from the watermark patch. More formally, given the
latents L, watermark patch P and mask M , the watermark is

applied on the Fourier transformed latent by:

Li,j =

{
Pi,j , if Mi,j = 1,

Li,j , if Mi,j = 0.
(1)

We detect the watermark by first reversing the sampling
process to recover the initial latents. Again, we create the
binary elliptical mask to see where precisely in the Fourier
space to look for the watermark patch. Afterwards, the re-
covered latents are mapped to Fourier space. Here, the values
at indices where the binary mask is present are considered to
calculate the L1 distance between the watermark patch and
the FFT recovered latents. The distance is then checked to be
under a threshold τ , which is chosen empirically based on the
dataset. Formally, given the recovered latents R, predefined
watermark patch P , and mask M , we define the distance as:

distance =
1

|M |
∑

i,j ; Mi,j=1

|Pi,j −Ri,j | (2)

Choosing an appropriate threshold τ We use a quanti-
tative study of the data to choose the appropriate threshold
for the detection of the watermark. All datasets and Ellipse
patterns have different properties that make them produce dif-
ferent distances between the recovered latents and the wa-
termark keys. Thus, we choose to have a unique threshold
on each pattern on each dataset—i.e., each dataset has three
thresholds, one for each of the three Ellipse patterns. We
run the pipeline described above 100 times on each pattern on
each dataset, for a total of 1200 runs. We obtain enough data

Algorithm 2 Pattern Generation Algorithm

1: function GENERATEPATCH(shape, pattern)
2: gt init← Random tensor of shape (shape)
3: gt patch← fftshift(fft2(gt init))
4: if pattern is ’zeros’ then
5: gt patch← gt patch · 0
6: else if pattern is ’ring’ then
7: height, width← shape
8: min dim← width÷ 2
9: max dim← height÷ 2

10: for i← min dim, 0,−1 do
11: x rad← i
12: y rad← max dim× x rad

min dim
13: tmp mask ←

elliptical mask(shape, x rad, y rad)
14: for j ← 0 to gt patch.shape[1]− 1 do
15: gt patch[:, j, tmp mask] ←

gt patch[0, j, 0, i]
16: end for
17: end for
18: end if
19: return gt patch
20: end function

to generate ROC curves, to find suitable thresholds for the
dataset-pattern combinations. The ROC curves can be seen
in Figure 2 of Appendix C. We then pick the best threshold
by limiting the false positive rate (FPR) at 1%, as is reported
in Tree-Ring [26].

5 Evaluating Ellipse
Datasets We use four real-world datasets—two larger, and
two smaller—which contain both numerical and categorical
data. We use these datasets to evaluate the impact of the wa-
termark on the quality of the synthetic data, the watermark’s
detection efficiency, and the watermark’s robustness against
post-editing attacks. We select as representative datasets the
following: Abalone [1], Adult [2], Default [3], and Dia-
betes [4]. The statistical details and descriptions of these
datasets can be found in Appendix A.

Evaluation metrics To benchmark the performance of
Ellipse, we evaluate the impact on the quality of the syn-
thetic data, the efficiency of the watermark detection, and the
robustness to four different types of perturbations.

We assess the quality of the synthetic data using three met-
rics. We use resemblance (↑) to measure the correlation be-
tween the real and synthetic data. Machine learning efficiency
(MLE) (↑) evaluates the performance of synthetic data on
downstream tasks. For MLE, we train a model on synthetic
data and test it on real data. Lastly, we use discriminability
(↑) to measure the difficulty of a trained binary classifier to
distinguish between real and synthetic data. In Appendix B
a more detailed description of these metrics is available. The
results of these scores can be seen in Table 1. An interesting,
but expected, result is that the rand pattern performs best for
the resemblance metric. This is expected as this pattern pro-
vides a patch of values sampled from a Gaussian distribution,

the same as the unmodified latents.
The detection efficiency is calculated using two metrics,

the results of which are available in Table 2. We use the
Area Under the Curve (AUC) (↑) score for a classification
task that distinguishes between non-watermarked and water-
marked data. We also use the value of the True Positive Rate
(TPR) (↑), when the False Positive Rate (FPR) is capped at
1%, as is done in Tree-Ring [26]. We note that Ellipserand
consistently has the highest TPR when the FPR is capped at
1%. The Ellipserand pattern also maintains a high AUC
score across all datasets, and an AUC score of 1.00 for three
of the four datasets. The Ellipsezeros pattern also shows
good performance—in terms of detection efficiency—across
each of the four datasets.

Experimental setting The scores of the evaluation metrics
are presented in Table 1, while the detection efficiency is
showcased in Table 2. Tabular data has been sampled where
the diffusion latents—needed for sampling tabular data using
Tabsyn—have been watermarked in turn using the rand, ze-
ros, and ring patterns. This process was then carried out on
each dataset. We use 1000 inference steps for training and
sampling the data. For the ring pattern, we use an x radius
equal to a quarter of the width of the latents, and a y radius
equal to a quarter of the height of the latents. We run the data
quality tests 30 times on each pattern on each dataset, for a to-
tal of 720 trials. For the detection efficiency we run 100 trials
on each pattern on each dataset, for a total of 2,400 runs.

Our method offers only a 3.5% drop in data quality, com-
pared to Tree-Ring’s circle mask having a higher 12.46%
drop in quality. Interestingly, Ellipse outperforms Tree-
Ring in MLE score by an impressive 27% for Adult and De-
fault, which both have a large number of rows and columns
compared to Abalone and Diabetes. It is notable that
Ellipserand generally has the best performance in terms
of resemblance and detection efficiency. This pattern also
has a maximum AUC of 1.00 for three of four datasets.
Ellipsezeros also has an AUC of 1.00 for Abalone and Di-
abetes, which are smaller datasets, having less than 4.000
rows. We note that Ellipserand’s and Ellipsezeros’s de-
tection efficiency are smallest for the Default dataset, which
has the highest number of columns, most of which numerical.
Meanwhile, Ellipsering’s performs better on classification
datasets, having an AUC 27% higher on average than on the
regression dataset.

Robustness against post-editing attacks To assess the ro-
bustness of Ellipse against post-editing attacks we consider
four possible distortions of the data. The results of the robust-
ness to post-editing data perturbations can be seen in Table 3.
Ellipse has a better overall robustness than Tree-Ring’s cir-
cle mask, maintaining a high average AUC of 0.906 after each
of the four different attacks, which is 7.17% higher than the
circular mask. It is notable that the Ellipserand pattern is
immune to value skewing attacks, having a maximum AUC
of 1.000 for all attack strengths. Given an attack strength of
s, with s between 0 and 1, we consider the following attacks
on tabular data:

1. Numerical skewing For each numerical column, we add
random noise of strength s to all values in the column.

Table 1: Main results for the data quality, measured through resemblance, MLE, and discriminability. For each result, the means and
standard deviations of 30 trials are presented. Circle represents the original Tree-Ring implementation, the baseline. Ellipse represents
our implementation. The ↑ means that the aim is to maximize the score of the metrics. Bold Face represents the best score on each dataset,
excluding the ’No watermark’ baseline.

No watermark Tree−RingRand Tree−RingZeros Tree−RingRing

Circle Ellipse Circle Ellipse Circle Ellipse

Abalone
Resemblance ↑ 90±0.0 84±0.0 84±0.0 76±0.0 82±0.0 77±0.0 82±0.0

MLE ↑ 95±1.394 94.6±0.596 94±0.73 85.8±1.301 94.93±0.853 93.2±0.853 94.8±0.748

Discriminability ↑ 85±0.636 82.9±0.512 83.16±0.636 74.7±0.64 81.8±0.832 75±0.813 81.76±0.76

Adult
Resemblance ↑ 97±0.0 91±0.0 91±0.0 86±0.0 89±0.0 86±0.0 89±0.0

MLE ↑ 99±0.134 70.8±4.712 90.2±4.621 76.8±3.724 99.93±0.359 74.8±3.783 100±0.0
Discriminability ↑ 98±0.7 96±0.0 96±0.0 72.2±0.422 88.7±0.525 72.2±0.476 88.83±0.453

Default
Resemblance ↑ 90±0.0 91±0.0 91±0.0 82±0.0 87±0.0 82±0.0 87±0.0

MLE ↑ 64.26±4.829 46.4±1.384 63.83±4.2626 42.4±1.113 63.8±4.819 42.6±1.38 62.76±5.541

Discriminability ↑ 96±0.0 96±0.179 96±0.0 64.86±0.498 88.3±0.458 65.4±0.611 88.6±0.489

Diabetes
Resemblance ↑ 85±0.0 85±0.0 85±0.0 78±0.0 83±0.0 78±0.0 83±0.0

MLE ↑ 83.4±2.735 81.5±3.145 83.3±2.793 76.8±4.865 80.5±3.757 75.9±4.761 81.9±3.284

Discriminability ↑ 35.33±0.906 34.76±0.843 34.7±0.69 35.66±1.324 34.73±0.727 34.6±0.663 34.66±0.788

Table 2: Main results for the detection efficiency, measured through
the AUC, and the T1F, which stands for the TPR when FPR is
capped at 1%. Circle represents the original Tree-Ring implemen-
tation, the baseline. Ellipse represents our implementation. The
↑ means that the aim is to maximize the score of the metrics. Bold
Face represents the best score on each dataset.

Tree−RingRand Tree−RingZeros Tree−RingRing

Circle Ellipse Circle Ellipse Circle Ellipse

Abalone AUC ↑ 1.00 1.00 1.00 1.00 0.60 0.59
T1F ↑ 1.00 1.00 1.00 1.00 0.09 0.02

Adult AUC ↑ 1.00 1.00 0.99 0.99 0.81 0.79
T1F ↑ 1.00 1.00 0.90 0.89 0.03 0.10

Default AUC ↑ 0.89 0.86 0.87 0.95 0.82 0.86
T1F ↑ 0.48 0.48 0.54 0.48 0.35 0.48

Diabetes AUC ↑ 1.00 1.00 1.00 1.00 0.81 0.80
T1F ↑ 1.00 1.00 1.00 1.00 0.09 0.11

The random noise follows a Gaussian distribution.

2. Categorical skewing For each categorical column, we
take s% of the values in the column and replace them
with s% other values from the same column

3. Row deletion We delete s% of all total rows

4. Column deletion We delete s% of all total columns

For the deletion attacks, we have to be careful as the diffu-
sion pipeline expects a certain shape of the latents. When
deleting rows or columns, we essentially change the latents’
shape, which will then become incompatible with the diffu-
sion. Thus, we need to ensure the latents maintain the same
shape. We add an extra step for the detection, where we
change the shape of the data to be the same as in the input. If
the data has undergone a deletion attack, we fill in the missing
data in the following way:

• Row deletion To return to the original shape, we sample
random rows from the current attacked data, essentially
duplicating rows. We sample as many rows from the
data as are missing from it after the attack.

Table 3: AUC under each of the four attacks, calculated as an aver-
age score of the AUC for each attack on the four individual datasets.
Higher values are better. Circle represents the original Tree-Ring
implementation, the baseline. Ellipse represents our implemen-
tation. s is the strength of the attack ’col’ refers to column, ’num’
refers to numerical, ’cat’ refers to categorical, and ’del’ stands for
deletion. Bold Face represents the best average AUC on the four
datasets.

s Tree−RingRand Tree−RingZeros Tree−RingRing

Circle Ellipse Circle Ellipse Circle Ellipse
Clean – 0.972 0.965 0.965 0.985 0.760 0.760

Num skew 10% 0.900 1.000 1.000 1.000 0.822 0.920
25% 0.940 1.000 0.902 0.960 0.827 0.927

Cat skew 10% 0.880 1.000 0.990 0.987 0.795 0.867
25% 0.872 1.000 0.990 0.987 0.795 0.867

Row del 10% 0.747 0.867 0.965 0.952 0.717 0.800
25% 0.742 0.815 0.917 0.900 0.805 0.725

Col del 10% 0.885 0.982 0.777 0.895 0.695 0.840
25% 0.735 0.905 0.772 0.762 0.722 0.792

• Column deletion When deleting columns, we cannot
sample other columns from the current attacked data.
Instead, we sample columns from a synthetic, non-
watermarked, non-attacked dataset. We copy the cor-
responding missing columns into our attacked table.

We run 100 trials on each of the six patterns on each dataset
for the given attacks and their strengths, for a total of 19,200
runs. The presented results from Table 3 show the average
AUC of the four datasets.
Impact of watermarking area on detection The size of
the watermark patch is an important factor in the detection
efficiency. If the size is too small, the patch becomes harder
to detect. The size of our watermark depends on the radius
scaling, the height and the width of the table. The radius scal-
ing dictates the size of the xradius and yradius based on the
height and width of the table. For example, when the radius
scaling is equal to 1/2, the xradius will be half the width, and
the yradius will be half the height. In Table 4 we aggregate

Table 4: Main results for the detection efficiency based on the radii
used in generation, measured through the AUC, and the T1F, which
stands for the TPR when FPR is capped at 1%. The results are av-
eraged over the four datasets. RS stands for Radius Scaling, and
represents the scaling used for the Ellipse’s oval mask radii—e.g.,
1/2 means radii equal to half the width and half the length of the
table were used. The ↑ means that the aim is to maximize the score
of the metrics.

RS Metric Ellipserand Ellipsezeros Ellipsering

1/2 AUC ↑ 0.96 0.98 0.76
T1F ↑ 0.80 0.73 0.30

1/4 AUC ↑ 0.96 0.98 0.76
T1F ↑ 0.87 0.84 0.17

1/8 AUC ↑ 0.90 0.88 0.74
T1F ↑ 0.78 0.64 0.08

1/16 AUC ↑ 0.94 0.80 0.70
T1F ↑ 0.76 0.27 0.21

1/32 AUC ↑ 0.89 0.68 0.68
T1F ↑ 0.30 0.22 0.17

1/64 AUC ↑ 0.74 0.52 0.55
T1F ↑ 0.11 0.03 0.06

the average detection scores of 100 runs with different radius
scalings on the four datasets. We note that when the radii
become smaller, the detection efficiency decreases, with the
TPR approaching zero, and the AUC approaching 0.5, which
makes the detection algorithm almost as unreliable as random
guessing. A higher radius scaling allows better detection effi-
ciency, but a radius scaling of 1/2 seems to decrease the TPR
when FPR is capped at 1%, being lower than for a radius scal-
ing of 1/4 for Ellipserand and Ellipsezeros.

6 Responsible Research
Reproducibility Our work has been made public and avail-
able on GitHub, being accessible through https://github.com/
6toma/ellipse-watermark. The process of adapting Tree-Ring
to Tabsyn is thoroughly explained in section 4. Tabsyn’s fine-
tuned weights are also available in our repository, along the
real, synthesized and perturbed datasets, ensuring the results
can be obtained by following the setup explained in section 5.
Although generative models make use of randomization, we
use manual seeding for our experiments, ensuring determinis-
tic results. The package and library requirements, along their
versions, for our implementation are all provided on GitHub.
We have made considerable efforts to ensure that our research
is fully transparent and reproducible in its entirety.

Ethical aspects Our implementation has been intensively
tested against four real-world datasets. The datasets—
Abalone [1], Adult [2], Default [3] and Diabetes [4]—are
publicly available and contain no personally identifiable in-
formation. We also limit False Positive Rates for our water-
mark to 1%, ensuring that the chance of false alarms is mini-
mized, while still maintaining significance of results. We ac-
knowledge the limitations of our watermark and do not falsely
claim performance that does not exist or cannot be proven.

Scientific integrity and use of LLM During our research,
we have limited our use of Large Language Models (LLMs)
to only rephrasing and enhancing our writing. We have not
used LLMs to obtain from scratch any result, idea or para-
graphs for the purpose of our research.

7 Limitations and Future Work
Our method has only been tested on Tabsyn, hence future
evaluation on other tabular diffusion models, such as TabD-
DPM [20] could yield more results. Ellipse requires the use
of DDIM during the sampling process, which leads to a drop
in data quality compared to the original Tabsyn score-based
sampling. Future work that uses exact diffusion inversion via
bi-directional integration approximation [28] (BDIA) could
improve the performance of Ellipse’s detection efficiency.
We also acknowledge that the watermark is by design verifi-
able only by the model owner, as the “model parameters are
needed to perform the inversion process” [26]. This can re-
strict third parties from detecting the watermark freely and
without the use of an API, but it offers protection against ad-
versaries checking whether their battery of attacks success-
fully removed the watermark. We also suggest the idea of
creating a tabular-specific pattern for Ellipse that leverages
the properties of tables—in the same way ring was created
for images.

8 Conclusion
We identify an absence of research in the area of water-
marking tabular diffusion models. Current generative model
watermarking techniques are computationally expensive and
prone to bias. Tree-Ring is a state-of-the-art, training-free
watermarking algorithm for image diffusion models, that
works for square shaped data. We pinpoint a major issue
in adapting Tree-Ring to a tabular diffusion model, namely
the shape of the data being incompatible, as tabular data
has a rectangular shape. We propose Ellipse, a gener-
alization of Tree-Ring that allows watermarking rectangu-
lar shaped data by changing the mask shape from circle to
oval. We showcase the performance of Ellipse by making
use of Tabsyn, a state-of-the-art score-based tabular diffusion
model, using four real-world datasets. Our oval mask has
a negligible drop of 3.5% in data quality—measured by re-
semblance, machine learning efficiency (MLE) and discrim-
inability metrics—which is lower than the 12.46% drop in
data quality offered by using a circular mask. We show
strong detection possibility with a high average Area Under
the Curve (AUC) of 0.9 out of 1, having a negligible average
drop of 0.4% in AUC compared to Tree-Ring’s circle mask.
For future work, we suggest implementing exact diffusion in-
version via bi-directional integration approximation (BDIA)
to improve the detection efficiency.

References
[1] Abalone dataset. https://www.kaggle.com/datasets/

rodolfomendes/abalone-dataset.
[2] Adult dataset. https://www.kaggle.com/datasets/

wenruliu/adult-income-dataset.

https://github.com/6toma/ellipse-watermark
https://github.com/6toma/ellipse-watermark
https://www.kaggle.com/datasets/rodolfomendes/abalone-dataset
https://www.kaggle.com/datasets/rodolfomendes/abalone-dataset
https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://www.kaggle.com/datasets/wenruliu/adult-income-dataset

[3] Default dataset. https://archive.ics.uci.edu/dataset/350/
default+of+credit+card+clients.

[4] Diabetes dataset. https://www.kaggle.com/datasets/
mathchi/diabetes-data-set.

[5] Midjourney. https://www.midjourney.com/home.
[6] Tabsyn implementation github repository. https://

github.com/amazon-science/tabsyn.
[7] Tree-ring implementation github repository. https://

github.com/YuxinWenRick/tree-ring-watermark.
[8] Xgboost classifier. https://xgboost.readthedocs.io/en/

stable/parameter.html.
[9] Vadim Borisov, Kathrin Seßler, Tobias Leemann, Mar-

tin Pawelczyk, and Gjergji Kasneci. Language models
are realistic tabular data generators. In The Eleventh
International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023.

[10] Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi
Wang. An overview of diffusion models: Applica-
tions, guided generation, statistical rates and optimiza-
tion. CoRR, abs/2404.07771, 2024.

[11] Prafulla Dhariwal and Alexander Quinn Nichol. Dif-
fusion models beat gans on image synthesis. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-
14, 2021, virtual, pages 8780–8794, 2021.

[12] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. Generative adversarial
networks. CoRR, abs/1406.2661, 2014.

[13] Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu,
and Guang Cheng. Watermarking generative tabular
data. CoRR, abs/2405.14018, 2024.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denois-
ing diffusion probabilistic models. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neu-
ral Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[15] Jeffrey Bloom Jessica Fridrich Ingemar Cox,
Matthew Miller and Ton Kalker. Digital Water-
marking and Steganography. Morgan Kaufmann
Publishers Inc., 2007.

[16] Haque Ishfaq, Assaf Hoogi, and Daniel Rubin. Tvae:
Triplet-based variational autoencoder using metric
learning. arXiv preprint arXiv:1802.04403, 2023.

[17] Jayoung Kim, Chaejeong Lee, and Noseong Park.
Stasy: Score-based tabular data synthesis. In The
Eleventh International Conference on Learning Repre-
sentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023.

[18] Diederik P. Kingma, Tim Salimans, Ben Poole, and
Jonathan Ho. Variational diffusion models. CoRR,
abs/2107.00630, 2021.

[19] John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. A wa-
termark for large language models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202
of Proceedings of Machine Learning Research, pages
17061–17084. PMLR, 2023.

[20] Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev,
and Artem Babenko. Tabddpm: Modelling tabular
data with diffusion models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Pro-
ceedings of Machine Learning Research, pages 17564–
17579. PMLR, 2023.

[21] Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mi-
haela van der Schaar. GOGGLE: generative modelling
for tabular data by learning relational structure. In The
Eleventh International Conference on Learning Repre-
sentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023.

[22] Yugeng Liu, Zheng Li, Michael Backes, Yun Shen, and
Yang Zhang. Watermarking diffusion model. arXiv
preprint arXiv:2305.12502, 2023.

[23] Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In Ma-
rina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139
of Proceedings of Machine Learning Research, pages
8162–8171. PMLR, 2021.

[24] Joseph Ó Ruanaidh and Thierry Pun. Rotation, transla-
tion and scale invariant digital image watermarking. In
Proceedings 1997 International Conference on Image
Processing, ICIP ’97, Santa Barbara, California, USA,
October 26-29, 1997, pages 536–539. IEEE Computer
Society, 1997.

[25] Jiaming Song, Chenlin Meng, and Stefano Ermon. De-
noising diffusion implicit models. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

[26] Yuxin Wen, John Kirchenbauer, Jonas Geiping, and
Tom Goldstein. Tree-ring watermarks: Fingerprints for
diffusion images that are invisible and robust. CoRR,
abs/2305.20030, 2023.

[27] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and
Kalyan Veeramachaneni. Modeling tabular data us-
ing conditional GAN. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,

https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.kaggle.com/datasets/mathchi/diabetes-data-set
https://www.midjourney.com/home
https://github.com/amazon-science/tabsyn
https://github.com/amazon-science/tabsyn
https://github.com/YuxinWenRick/tree-ring-watermark
https://github.com/YuxinWenRick/tree-ring-watermark
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html

Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 7333–7343, 2019.

[28] Guoqiang Zhang, John P. Lewis, and W. Bastiaan
Kleijn. Exact diffusion inversion via bi-directional inte-
gration approximation. CoRR, abs/2307.10829, 2023.

[29] Hengrui Zhang, Jiani Zhang, Balasubramaniam Srini-
vasan, Zhengyuan Shen, Xiao Qin, Christos Faloutsos,
Huzefa Rangwala, and George Karypis. Mixed-type
tabular data synthesis with score-based diffusion in la-
tent space. CoRR, abs/2310.09656, 2023.

[30] Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang,
Ngai-Man Cheung, and Min Lin. A recipe for wa-
termarking diffusion models. CoRR, abs/2303.10137,
2023.

A Datasets
Abalone [1] contains information about the physical features of abalone with the purpose of predicting their age. It has 4,177
samples, with 8 numerical columns and 1 categorical column. The Adult [2] dataset contains the demographic and employment
related features about individuals, with the purpose of predicting whether their income exceeds 50,000. The dataset is large with
48.842 samples and a mix of 6 numerical columns and 9 categorical. Default [3] has information about default payments, credit
data, and bill statements of credit card clients in Taiwan from April 2005 to September 2005, with the purpose of predicting
whether the client will default payment the following month. This dataset contains 30,000 samples, 14 numerical columns, and
11 categorical columns. The Diabetes [4] dataset contains information about the health 21 years old female patients of Pima
Indian heritage, with the purpose of predicting whether the patient has diabetes. This relatively small dataset has 768 rows, and
9 columns—8 numerical and 1 categorical.

B Evaluation metrics
The data quality metrics are:

• Resemblance (↑) The resemblance metric measures the correlations between the real and synthesized data and the simi-
larity between their distributions. Here, we use two metrics and average their scores. Specifically, we use

– Theil’s U between a real and synthetic column and average the score over all columns
– Jensen-Shannon divergence between the distributions of the real and synthetic data

• MLE (↑) Using MLE, we evaluate the performance of synthetic data in downstream machine learning tasks. Training
is done on synthetic data, then testing is performed on the real data. The score is represented by the AUC score for
classification tasks and RMSE for regression tasks.

• Discriminability (↑) The discriminability score measures the difficulty of a trained binary classifier to distinguish between
real and synthetic data. We first concatenate the two datasets, then split into training and testing sets with a test size of
20%. Then, we train an XGBClassifier [8] from XGBoost on the training set and evaluate it on the test set. The result
contains the F1 score of the predicted labels, the probability mean square error of the predicted values, and the ROC AUC
score.

C ROC curves with the distances between the latents and the key for the four datasets

Figure 2: ROC Curves for the distances between the latents and the watermark key for the Abalone, Adult, Default and Diabetes datasets

	Introduction
	Related Works
	Preliminary
	Ellipse: Elliptical Rings for Rectangular Latents
	Evaluating Ellipse
	Responsible Research
	Limitations and Future Work
	Conclusion
	Datasets
	Evaluation metrics
	ROC curves with the distances between the latents and the key for the four datasets

