
Deep learning-based surro-gate modelling for 2D floodsimulation
T. Stolp

Hydraulic Engineering

Deep learning-based surrogatemodelling for 2D flood simulation
Thomas Stolp
to obtain the degree of Master of Science

at the Delft University of Technology,

Student number: 4377907
Project duration: September, 2020 – Augustus, 2021
Thesis committee: Dr. J.P. (Juan Pablo) Aguilar-López TU Delft (chair)

Prof. dr. ir. M. (Matthijs) Kok, TU Delft
Dr. ir. M. A. (Andres) Diaz Loaiza, TU Delft
Dr. ir. J. (Jesse) Krijthe, TU Delft
Ir. G. (Geerten) Horn HKV

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This MSc Thesis is the final part of the master Hydraulic Engineering at the faculty of Civil Engineering and
Geosciences and also an end of my time as a student TU Delft. This research has been conducted at HKV
Lijn in Water as a graduate intern and has been a valuable experience. I would like to express my gratitude to
everyone that supported me during the past months.

Firstly, I would like to thank my supervisors for their support and guidance. Juan Pablo, my daily supervisor
and chair, thank you for giving me guidance during this period, for the inspiring discussions and for keeping
me on the right track. Thanks for making me interested in deep learning applications and for providing the
motivational words that I sometimes needed to keep going. I would like to thank Geerten Horn, my supervi-
sor from HKV, for all the support during my time as graduate intern. Our weekly meetings were really helpful,
I learned a lot about flood simulations and how they are used in practice. I would like to thank Matthijs Kok
for his critical notes and asking the important questions. I want to thank Jesse Krijthe for the discussions and
advice in training deep learning architectures and Andres Diaz for his feedback during the meetings the time
spend into my thesis.

I want to thank the people at HKV for their help, especially Mattijn Hoek for his help in installing software
libraries that allowed me to use the GPU cluster.

I would like to thank my parents and my sister for their help during my time as a student in Delft. Finally, I
want to thank all my friends and my roommates Bram, Maarten and Tommy for the mental support and all
the great memories.

Thomas Stolp
Rotterdam, August 2021

iii

Abstract

Flood simulations can give insight into the consequences of flood scenario’s and can help to create hazard-
and risk maps to support decision-making in flood risk management and in crisis management. 2D hydrody-
namic simulations give accurate descriptions of the propagation of a flood and rely on advanced numerical
methods to solve a set of physics-based mathematical equations. A drawback of these models is that they can
be computationally expensive with run times in the order of hours or days depending on the time and spatial
resolutions.

In this study we explore the use of deep learning techniques in a surrogate model for 2D flood simulation.
We propose and test a deep learning-based surrogate modelling framework that can be used to train a deep
learning-based surrogate model. Once trained, the surrogate model can be used as a substitute for the hy-
drodynamic model with the advantage of being much more efficient in terms of run time and can be of great
value in for example crisis situations.

For training, a data set of expensive 2D hydrodynamic simulations was created using the SOBEK software
program. Such simulations require a lot of input data, such as input parameter maps specifying the terrain
over the computational grid and boundary conditions. To make training data-efficient, a sampling strategy
was used for the input of the flood simulations.

Three deep learning architectures were trained and tested. The first two architectures are feed-forward net-
works and the third architecture is of recurrent network type. These networks contain convolutional neural
network (CNN) architectures with an encoder-decoder structure to make patch-level predictions of the flood
characteristics in time. These patches contain a small section of the flood prone area and an encoder network
is used to extracts coarse feature maps from this data that is then refined by a decoder network to create a
prediction of the flood propagation. Using patches has the advantage of making a surrogate model able to
create flood simulations over prone areas without restrictions on size or shape by tiling the output patches
with flow predictions. Also it allows the surrogate to focus only on regions where the flood has reached and
not on the regions where no water has arrived.

It was found that with the recurrent architecture, the surrogate model was most capable of emulating the
ground truth flood simulations in the test simulation. This trained network architecture was used in a case
study where the surrogate was applied to create flood simulations in a small dike ring in the Netherlands.
This shows that the surrogate modelling framework can be used to train a deep learning-based surrogate
and, once trained, can be used to create flood simulations similar to hydrodynamic simulations. However,
two main challenges were identified in using such data-driven deep learning-based surrogates. Firstly, keep-
ing the predictions of the flood characteristics accurate enough to avoid large error propagation. Secondly,
accurately generating large amounts of data from relatively little information present in the boundary condi-
tion and terrain.

v

Executive summary

Inundation modelling is an important tool used in flood risk management. Flood simulations can give insight
into the consequences of flood scenario’s and can help to create hazard- and risk maps to support decision-
making in flood risk management and in crisis management. Two-dimensional (2D) hydrodynamic simula-
tions give accurate descriptions of the propagation of a flood. These computer simulations rely on advanced
numerical methods to solve a set of physics based mathematical equations called the shallow-water equa-
tions. A major drawback of these models is that they can be computationally expensive with run times in the
order of hours or days depending on the time and spatial resolutions. Climate change, land subsidence and
economic growth bring challenges for flood risk management, which may lead to a greater need for fast in-
undation modelling tools. This motivates research on more computationally efficient modelling approaches
and techniques.

In this study we explore the use of deep learning techniques in a surrogate model for 2D flood simulation.
We propose and test a deep learning-based surrogate modelling framework that can be used to train a deep
learning-based surrogate model. Once trained, the surrogate model can be used as a substitute for the hydro-
dynamic model with the advantage of being much more efficient in terms of run time. Being able to create
fast surrogate flood simulations can be of great value in crisis situations and in cases where many simulations
are required, for example in assessing the uncertainty in the consequences of flood scenario’s. The surrogate
modelling framework has the following steps:

(1) Use input sampling to specify the inputs of a set of fictitious 2D flood scenario’s and use these to create
a number expensive flood simulations.

(2) Process the flood simulation output to create training examples consisting of inputs and outputs for a
deep learning architecture and train this architecture using these examples.

(3) Apply the surrogate model as a tool for rapid inundation modelling and as a substitution for expensive
2D hydrodynamic simulations.

The surrogate model used in this study contains convolutional neural network (CNN) architectures with an
encoder-decoder structure to make patch-level predictions of the flood characteristics in time. The surro-
gate model takes as input a small section of the flood prone area called an input patch. An encoder network
extracts coarse feature maps from this data and a decoder network is used to refine these images and create
a prediction of an output patch. The input patches contain the flood characteristics, water depths and flow
velocities, as well as the elevation and roughness. The output patches contain only the flood characteristics
at a next time step. A time shift is between present between the input and output of the network to predict
flood propagation in time. Input patches are chosen to be larger than output patches to create overlap regions
with neighbouring patches. This gives the surrogate spatio-temporal context and allows flood propagation
between patches. Using patches has the advantage of making a surrogate model able to create flood simula-
tions over prone areas without restrictions on size or shape by tiling the output patches with flow predictions.
Also it allows the surrogate to focus only on regions where the flood has reached and not on the regions where
no water has arrived.

vii

viii Preface

Three deep learning architectures were trained and tested. The first two architectures are feed-forward net-
works and the third architecture is of recurrent network type. For training, a data set of expensive 2D hy-
drodynamic simulations was created using the SOBEK software program. Such simulations require a lot of
input data, such as input parameter maps specifying the terrain over the computational grid and boundary
conditions. In surrogate modelling, these simulation inputs are free design choices. To make training data-
efficient, a sampling strategy was used for the input of the flood simulations. A square grid were chosen for
the simulations with fixed size. For the terrain, square tiles with matching size were extracted from the Digital
Terrain Models (DTM) of a number of dike rings in the Netherlands. Bottom friction of these tiles was mod-
elled with the spatial information of land-use and a conversion table. Simple triangular hydrographs were
created for the boundary condition of the simulations which are specified at breach locations approximately
in the center of the tiles. The output of these expensive flood simulations consists of large three-dimensional
arrays containing water depth and flow velocity information at each time step of the flood duration. A patch-
wise training strategy was used and different training runs were performed.

It was found that with the recurrent architecture, the surrogate model was most capable of emulating the
ground truth flood simulations in the test simulation. This architecture processes the past flood character-
istics and terrain maps with two separate encoder networks and predicts the discrepancies in flood charac-
teristics between the current and next time step. This trained network architecture was used in a case study
where the surrogate was applied to create a flood simulation in a small dike ring in the Netherlands. Two
main challenges were identified in using such data-driven deep learning-based surrogates. Firstly, keeping
the predictions of the flood characteristics accurate enough to avoid large error propagation. Flood are of-
ten large scale and have long duration while the time intervals of the simulations are kept small to correctly
predict flow between patches. Errors in predictions of the surrogate can quickly add up and cause the sim-
ulation to deviate from ground truth hydrodynamic simulations. The trained surrogate model was found to
give reasonable predictions up to 10 to 20 time steps. Secondly, large amounts of information have to be gen-
erated from the little information present in the boundary condition. This boundary condition is specified
as water depth variation in a single grid cell. Accurately generating this a lot of data from this small variation
was found to be difficult for the trained surrogate models.

Nomenclature

Acronyms

AE Autoencoder

CAE Convolutional Autoencoder

CNN Convolutional Neural Network

CPU Central Processing Unit

DTM Digital Terrain Model

GPU Graphical Processing Unit

LSTM Long-Short Term Memory

MSE Mean Squared error

RMSE Root Mean Squared error

RNN Recurrent Neural Network

SWE Shallow-water equations

Symbols

I Simulation input -

S Sampling plan -

ϕ Flood characteristics -

θ Angle of rotation deg

C Chézy coefficient m1/2/s

H Information entropy -

h Water depth m

Ii Simulation input variable -

kn Nikuradse equivalent roughness m

R Hydraulic radius m

u Flow velocity in x-direction m/s

v Flow velocity in y-direction m/s

ix

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Use of flood simulation . 1
1.2 Problem statement . 2
1.3 Research objective . 3
1.4 Thesis Outline . 3

2 Two-dimensional (2D) hydrodynamic flood simulations 5
2.1 Important factors in inundation modelling . 5
2.2 Types of inundation models. 5
2.3 2D hydrodynamic models. 6

2.3.1 Computational grid . 7
2.3.2 Numerical methods . 7
2.3.3 Simulation output data . 7
2.3.4 Terrain models . 8
2.3.5 Boundary conditions. 8
2.3.6 Inundation modelling software . 8
2.3.7 SOBEK . 9

3 Deep-learning architectures for the surrogate model 11
3.1 Introduction to deep learning . 11
3.2 Convolutional Neural Networks. 12
3.3 Recurrent neural networks . 13
3.4 Encoder-decoder network . 13
3.5 image-to-image regression . 14

3.5.1 Convolutional Encoder-decoder network . 14
3.5.2 U-net . 14
3.5.3 Convolutional LSTM . 15

4 Surrogate modelling framework 17
4.1 Introduction to surrogate modelling . 17
4.2 Framework overview . 18
4.3 Generate 2D flood simulation data . 18

4.3.1 Flood modelling software . 18
4.3.2 Simulation inputs . 19
4.3.3 Sampling strategy . 21

4.4 Patch-wise prediction . 22
4.5 Patch-wise training . 23

4.5.1 Patch dimensions . 23
4.5.2 Patch extraction . 23
4.5.3 Pre-processing steps and data augmentation . 24

4.6 Deep learning architectures for the surrogate model . 24
4.6.1 Network in- and outputs . 25
4.6.2 Convolutional encoder-decoder network . 25
4.6.3 Modified U-Net . 25
4.6.4 Convolutional LSTM network . 26

xi

xii Contents

5 Network training 27
5.1 Training set . 27

5.1.1 Training scenarios . 27
5.1.2 Training runs. 28

5.2 Hyperparameter choice . 30
5.3 Training time . 30
5.4 Test simulation . 31

6 Feed-forward architecture 33
6.1 Convolutional encoder-decoder network . 33

6.1.1 Test set performance . 33
6.1.2 Error reduction with threshold filter . 33

6.2 Modified U-Net . 35
6.2.1 Test set performance . 36
6.2.2 Influence of time step . 36
6.2.3 Physics-informed loss . 37

6.3 Patch predictions . 39
6.4 Predicting flow discrepancies . 40
6.5 Comparing feed-forward architectures . 41

7 Recurrent architecture 43
7.1 test set performance . 43
7.2 Case study: flood simulation in Arcen. 44

7.2.1 Hydraulic boundary conditions . 45
7.2.2 Surrogate model setup . 46
7.2.3 Results . 47

7.3 Calculation time . 49

8 Discussion 51
8.1 Hydrodynamic simulations used in the training data set . 51
8.2 Deep learning architectures and training . 52

9 Conclusion and recommendations 55

Bibliography 57

A SOBEK simulations 61
A.1 Grid roughness . 61
A.2 Levee Systems. 62

B Architecture details 63
B.1 Convolutional encoder-decoder network . 63
B.2 Modified U-net . 63
B.3 Convolutional LSTM (ConvLSTM) . 65

List of Figures

2.1 Schematization of a dike breach and the factors that influence the flood propagation [8] . . . 6
2.2 Definition of water height ζ. The water height equals the height of the water above a certain

reference level and can be decomposed into the bed elevation zb and water depth h. 7

3.1 Concept of overfitting. During training of a deep neural network, the error on training data will
decrease. At some point in time the network will start overfitting on the training data examples,
which can be spotted by keeping an eye on the validation error. The error on validation data
will increase as the network starts to focus too much on the details of the training examples. . . 12

3.2 Edge detection in an image. Detection of vertical edges can be done using a convolution oper-
ation with a kernel of two elements. The same transformation can also be described by a matrix
multiplication, however, it is much less efficient in representing and computationally. It is a
transformation that involves applying the same transformation of a small region over the entire
input, which is done efficiently by convolution. [11] . 13

3.3 Autoencoder network for dimensionality reduction. In a self-supervised learning setting, the
encoder-decoder structure aims to encode the input to a lower dimensionality latent space vari-
able after which the information is decoded to reconstruct the original input. 14

3.4 Time-lagged autoencoder structure. This architecture consists of an encoder network that
forces the input into a lower dimensional latent space vector or matrix, and a decoder that con-
structs a target from this latent space. In this case the target is a time-lagged version of the input.
[39] . 14

3.5 Recurrent encoder-decoder structure. This type of architecture uses the encoder to extract
the most important features from a sequences of inputs and one or more recurrent layers to
account for the order of the data within the sequence. The recurrent layer keeps track of a cell
state as a type of memory. 15

4.1 Schematization of the steps of the proposed framework for surrogate modelling of 2D flood
simulation. These steps involve input sampling and creating flood simulations, processing this
data to create training examples for a deep learning architecture and applying the surrogate
model for rapid flood simulations. 18

4.2 Elevation maps of square tiles extracted from DTM data of major dike rings in the Nether-
lands. The dike rings are indicated with numbers, for the names we refer to Table A.2. His-
togram of elevation map of the minimum and maximum entropy tiles are presented. The lower
left plot shows the distribution of entropy of all elevation tiles used in this study. 20

4.3 Boundary condition of training simulations. A triangular hydrograph is defined by a peak and
duration as input variables. The breach location in the tile is defined by an x and y location in
the inner square as indicated on the left. 21

4.4 Proposed patch-based prediction method. By using patches, we force the surrogate model to
focus on regions where the flood has reached. Input patches have larger dimension and contain
part of the neighbouring output patches to give the surrogate spatio-temporal context. 22

4.5 Extraction of input- and output patches from a training simulation snapshots. (a) Extraction
of an input patch with water depths at time step t . (b) Extraction of an output patch with water
depths at time step t +∆t . (c) In- and output water depth patches at time step Nbound , when
water hits one of the domain boundaries. Input patches are indicated with a dotted line and are
larger than the output patches indicated with a solid line. 24

4.6 Data augmentation step. Input and output examples are randomly rotated with angle θ =
[0◦,90◦,180◦,270◦]. 24

4.7 Network layout of the convolutional autoencoder architecture. 25
4.8 Network layout of the the U-net architecture. 25

xiii

xiv List of Figures

4.9 Network layout of the ConvLSTM network. This architecture has a separate flow encoder and
terrain encoder that take as input a sequence of past flow frames and the patch terrain maps
respectively. 26

5.1 Loss during training and on the validation set for various training runs of the convolutional
encoder-decoder network. 29

5.2 Loss during training and on the validation set for various training runs of the modified U-Net
network. 29

5.3 Initial- boundary conditions of simulation 23 from the test set. (a) The elevation map of the
domain and the breach location, (b) the roughness map and (c) the triangular hydrograph spec-
ified in the breach location. 31

5.4 Initial conditions at different starting times t0. 32
5.5 Ground truth inundation maps for the test simulation. 32

6.1 Test simulation RMSE for convolutional encoder-decoder network. The error in water depth
h and flow velocity u =

p
u2 + v2 is presented for different begin times t0. 33

6.2 Water depth predictions for the convolutional encoder-decoder network. Here, snapshots of
the ground truth simulation (SOBEK) and the surrogate simulation are presented. 34

6.3 Test simulation RMSE for noise filters. For begin time t0 = 10 mi n with water depth threshold
θ = 0.01 m. 35

6.4 Test simulation RMSE for threshold values of water depth. 35
6.5 Test simulation performance of the CAE and U-Net architectures. 36
6.6 Test simulation error for U-Net architecture trained on different time resolutions. 37
6.7 Mask used in the wet-dry loss function. The ground truth Y at a certain time step t can be used

to extract a mask of wet- and dry regions. 37
6.8 Visualization of the water depth difference ht +1−ht between two time steps. Here, the water

depth ht over an input patch of dimension 232×232 is presented and the water depth ht+1 over
the output patch with dimension 128×128 pixels. 38

6.9 Test simulation error for U-Net architecture trained with MSE loss and PI-loss. 39
6.10 Patch 25 in test simulation. Solid line shows input patch and the dashed line shows the output

patch at time t = 50 minutes. 39
6.11 Water depth predictions for a flow patch in the test simulation. Here a begin time t0 = 50 mi n

is used and the 2 min, 14 min and 28 min forecast is presented. 40
6.12 Test simulation error for CAE network trained on flow discrepancy ∆ϕ prediction and influ-

ence of noise filter with different water depth threshold θ. 41
6.13 Test simulation performance of trained architectures. Here the CAE and U-Net are the ones

trained on 1 min timesteps with MSE loss. CAE ∆ϕ and U-net ∆ϕ indicate networks that predict
flow discrepancies. 42

6.14 Water depth predictions for a flow patch in the test simulation. Here a begin time t0 = 50 mi n
is used and the 4, 8 and 12 minute forecast is presented. 42

7.1 Test simulation RMSE for ConvLSTM network. The error in water depth h and flow velocity
u =

p
u2 + v2 is presented for different begin times t0. 43

7.2 Test simulation error for ConvLSTM network trained on flow discrepancy ∆ϕ prediction and
influence of noise filter with different water depth threshold θ. 44

7.3 Water depth predictions for a flow patch in the test simulation. Here a begin time t0 = 50 mi n
is used and the 2 min, 14 min and 28 min forecast is presented. 45

7.4 Topographic map of levee system 65 near Arcen and grid for the surrogate model. Three
breach locations are indicated that will be assessed in this case study. The river kilometers in-
dicate the distance from the Borgharen measuring station. The input and output patches are
shown in a grid that is used by the surrogate model. Here, output patches are presented with
black solid lines and input patches with dashed line. 46

7.5 Hydrograph boundary conditions specified at the three breach locations. These hydrographs
were constructed using water levels corresponding to a 1/300 year return period as determined
in [5]. 46

7.6 Results of maximum water depths in the Arcen area for the three flood scenarios. 47
7.7 Results of maximum flow velocities in the Arcen area for the three flood scenarios. 48

List of Figures xv

7.8 RMSE for three surrogate simulations. The error in water depth h and flow velocity u =
p

u2 + v2

is presented for begin times t0 = 100 mi n. 48
7.9 Flood extent in time for surrogate and SBOEK simulations. 49
7.10 Water depth predictions for a flow patch in sim 2. Here a begin time t0 = 5000 mi n is used and

the 8 min, 16 min and 24 min forecast is presented. 50

8.1 Extreme flow conditions present in training set. Maximum water depth and maximum flow
velocity maps for the training simulation with steepest hydrograph. Large flow velocities are
present near the breach location . 52

A.1 Levee system with topography and roughness information used in creating data set of fictitious
flood scenarios. 62

List of Tables

2.1 Different modelling approaches for flood simulation and their properties. Indicative overview
of how different inundation modelling approaches compare [8]. Here + indicates applicable,
+++ indicates very applicable and - indicates less applicable. 6

4.1 Description of the input vector I = (I1, ..., I5). This vector is used to create a flood simulation
that serves a training data. 22

5.1 Statistics of the training, validation sets. A partial training scenario and a full training scenario
are defined. 28

5.2 SOBEK simulation run times. Average values of 100 flood simulations on square tiles of 1000×
1000 grid cells. 28

5.3 Training runs performed for the convolutional encoder-decoder network. 28
5.4 Training runs performed for the modified U-Net architecture. 29
5.5 Specifications of the training run performed with the ConvLSTM architecture. 30
5.6 Hyperparameters used in training runs. For the learning rate, a plateau was used such that the

learning rate is decreased when validation loss starts to increased. 31
5.7 Training time of different network architectures. These are estimates for 10 epochs using the

partial data set. 31

7.1 Scenario specifications. Breach location and boundary conditions for three flood scenario’s in
Arcen. 45

A.1 Land type use and roughness conversion. For a more elaborate conversion table, the reader is
referred to [8]. 61

A.2 Levee systems along the main rivers in the Netherlands used in this study for DEM and fric-
tion maps. For each system, this table indicates the norm frequency, that is the return period
for which the levee trajectories are designed for as well as the total area of the system. 62

B.1 Convolutional encoder-decoder architecture layout. f denotes the number of feature maps
and k denotes the kernel size. 64

B.2 U-net architecture layout. Merge layers are locations where the feature maps are copied via
skip connections. f denotes the number of feature maps and k denotes the kernel size. 64

B.3 Flow encoder network layout. Shared encoder that operates over a sequence of past flood char-
acteristics. f denotes the number of feature maps and k denotes the kernel size. 65

B.4 Terrain encoder network layout. Processes the elevation and roughness maps of a patch. f
denotes the number of feature maps and k denotes the kernel size. 65

B.5 Decoder network layout. Output of the flow encoder and terrain encoder is concatenated and
given as input to this decoder network. f denotes the number of feature maps and k denotes
the kernel size. 66

xvii

1
Introduction

Low-lying delta areas such as large parts of the Netherlands are at risk of flooding from rivers as well as from
the sea. Flood events can have catastrophic impact on society because they are often accompanied by many
fatalities and large economic consequences. In the Netherlands, flood prone areas are protected against flood
events by a system of defences such as river dikes and dunes. These system have been divided into several
dike rings that are managed using a risk approach. Flood risk is defined as the probability of occurrence of
flood events times the consequences of these events. This means that even though flood events may be rare,
flood risk can still be significant when the consequences are large such as the case for densely populated area
with high economic assets. Quantification of flood risk requires adequate estimating the consequences of
flood events for which we often rely on computer simulation.

1.1. Use of flood simulation
Consequences of flood events can be estimated with the use of inundation models and computers that solve
the complex numerical systems resulting in flood simulations. The numerical solutions predict the propaga-
tion of a flood over a prone area. Factors that influence the extent and its propagation are for example the
topography of the terrain and the bottom friction, the presence of dikes and other water retaining elements,
the location of the dike breach and the hydraulic load or the volume of water flowing through the breach.
With enough input data, flood simulations can be created that estimate characteristics such as the water
depth and flow velocities over the flood prone area and in time.

The output of the simulations of certain flood scenario’s can be used to create for example hazard maps to
show the spatial distribution of the intensity of a flood scenario [25]. These maps show for example the max-
imum water depths and maximum flow velocities that occur during the flood. This information can serve as
input to flood risk assessments. Large flow velocities for example lead to damage to buildings and infrastruc-
ture but may also result in more fatalities. Flood simulations may serve as input for damage estimations and
cost-benefit analysis to make better informed decisions on for example flood protection measures.

Inundation modelling is also used as an important tool in crisis management. Flood simulations may be used
in crisis situations with boundary conditions that apply at that moment in time. These simulations can give
an idea of the possible consequences of dike breaches and support decision making concerning application
of emergency measures. In addition, the course of the inundation over time can be valuable input for creating
more adequate evacuation plans that better apply to the circumstances. With more focused estimates of the
flood arrival times and safe areas, it becomes possible to set up more effective mitigation measures.

Another important use of flood simulation and generated flood maps is in spatial design and urban plan-
ning. Where conventional flood management strategies have primarily focused on flood prevention, aiming
at decreasing the probability of occurrence of flood events, more recent flood risk management strategy aim
also at reducing the consequences given a flood. Implementing flood resilience measures such as secondary
dikes (dry dikes) and evacuation roads often requires detailed knowledge of flood propagation and flood ex-

1

2 1. Introduction

tent. Flood resilience measures can sometimes be relatively simple to implement but may greatly reduce the
overall flood risk. In the Netherlands, the concept of flood resilience has been translated into the multi-layer
safety approach [20].

Climate change, expected sea level rise and ongoing land subsidence may result in hydraulic loads with larger
magnitude and frequency. Flood prevention may therefore become technically challenging in the future [12].
Spatial planning and flood resilience measures start to become a more embedded policy in flood manage-
ment strategies in the future. Such approaches however bring the need of assessing the combined effect of
these flood mitigation measures leading to a need for fast inundation modelling tools to simulate the effect
of these measures on the overall response of the system. As the flood protection system gets more complex,
inundation modelling approaches should be computationally efficient. This motivates the study for new
techniques that can be used in efficient inundation modelling approaches.

1.2. Problem statement
For accurate and realistic flood simulations, two-dimensional (2D) hydrodynamic models are often used. For
creating these simulations we rely on the use of advanced numerical methods to solve a set of physics-based
mathematical equations called the shallow water equations. Depending on the simulation size and grid res-
olution, these simulations can be very computationally expensive. The performance of numerical methods
have been improved over the years, for example with innovations in parallel computing and the use of graph-
ics processing units (GPUs) [34], however in practice the run time for simulation can still be in the order of
days to weeks depending on the time and spatial resolutions.

The long run time of flood simulations limits the number of flood scenario’s that can be taken into account in
flood risk assessments. This can make thorough quantification of flood risk challenging, especially for larger
flood prone areas. Breach locations often tend to have a large impact of the extend and propagation of a
flood and they are often defined based on either historical data or on hypothetical assumptions [37]. The
uncertainty of these conditions is often not assessed because of a limited computational budget. The large
computational cost of flood simulations also limits our ability to address uncertainties in for example the
stability of water retaining elements, breach locations and topography of the flood prone area. Often flood
defences are constructed with natural material such as clay or sand which result in large uncertainties about
the strength and stability of these structures. Because hydrodynamic simulations are computational inten-
sive, quantifying these uncertainties in for example a Monte Carlo framework is currently unfeasible. In crisis
situations, where time for decision makers is limited, rapid inundation modelling tools are of vital impor-
tance. The calculation time of accurate hydrodynamic flood simulations is currently too long to effectively
support decision making in these situations [22]. Even if computations are finished before the peak water
level arrive there may still not be enough time to analyse the results and to act adequately upon.

To cope with expensive simulations, surrogate modelling or meta-modelling is sometimes utilized in which
a surrogate model is trained emulate the behaviour of the original simulations. Once trained, a surrogate
model can be used to create surrogate simulations while taking only fraction of the calculation time required
to make the original expensive simulation. Surrogate modelling has been applied to problems in water re-
sources extensively [28]. Large scale flood simulations require large amounts of input data which is a chal-
lenge for using surrogate modelling as the dimensionality of the input space of such simulations can be very
high. Also, hydrodynamic models are non-linear and depend on simulation input in a complex way.

Recently, deep learning techniques have been applied to problems and applications involving high dimen-
sional array data or image data. The application of trained deep learning models has been successful in
computer vision, which involves finding non-linear relations between in- and output. Such deep learning
architectures may also be applied inside a surrogate model for emulating 2D flood simulations. A few deep
learning-based surrogate models have been proposed in literature to predict fluvial and pluvial flood propa-
gation [6] [17] [42] [14] [13] [45]. However, the use of a deep learning-based surrogate as a full substitute for
2D hydrodynamic simulation resulting from a dike breach has not been addressed. Most studies focus on
emulating the propagation of water depths and do not include the flow velocities that occur during a flood.
Also, the choice for appropriate training data is still an open research question.

1.3. Research objective 3

1.3. Research objective
In this study we explore the use of deep learning techniques in a surrogate model for 2D hydrodynamic flood
simulation. The goal of this research is to create a surrogate modelling framework that can be used to train
a deep learning-based surrogate model to emulate expensive flood simulations. For constructing this frame-
work we have to give answer to the following research questions:

Q1 Which state-of-the-art deep learning techniques and what architectures can be used in a surrogate
model for 2D hydrodynamic flood simulations?

Q2 How can a deep learning-based surrogate model be used to create surrogate flood simulations in flood
prone areas such as dike rings.

Q3 How can such deep learning-based surrogate model be trained effectively on flood simulation data and
how should this data be processed?

Q4 How do are trained deep learning-based surrogate models perform in application?

We focus on surrogate modelling of large-scale flood simulations resulting from a levee breach. We aim to
identify the deep learning techniques that are most suitable for predicting flood propagation and that can
produce output that is similar to the output of 2D hydrodynamic simulations. In other words, predict water
depths and flow velocities over the flood prone are in a grid like structure. Also, we investigate what flood
simulation data can be used for effective training of deep learning architectures and how this data should
be processed. We will create 2D hydrodynamic simulations with the SOBEK software program and use this
data to create training examples for deep learning models. Different architectures will be trained and their
performance on a test simulation will be compared.

1.4. Thesis Outline
In this section we give an outline of the content of the remaining chapters this report. In Chapter 2, we begin
with an introduction to inundation modelling and 2D hydrodynamic models. We discuss the SOBEK soft-
ware program that can be used to create 2D flood simulations and which is used in this study for generating
training data. In addition, we explain what initial- and boundary conditions can be specified for these flood
simulations.

In Chapter 3, we give an introduction to deep learning and present state-of-the-art techniques and architec-
tures that are suited for use in the surrogate model. Convolutional neural networks (CNNs) are discussed
which have been used for image-to-image regression problems and recurrent neural network are discussed
which are suitable for problems involving an input sequence.

In Chapter 4 the surrogate model framework is proposed that can be used to train deep learning-based sur-
rogate models to emulate flood simulations. We explain how the surrogate model can be used to create sur-
rogate flood simulations in flood prone areas, we introduce a sampling strategy for sampling inputs of flood
simulations used for training data and we discuss how this simulation output can be processed to create
training examples suitable for deep learning architectures. Finally, two feed-forward architectures and one
recurrent architecture are discussed that will be trained and tested with the use of a test simulation.

In Chapter 5 the training process of the proposed deep learning architectures is discussed. We present two
training scenario’s and we explain the choice for hyperparameters of the networks. Also, a test simulation is
presented that will be used to test the performance of the surrogate model with the various trained architec-
tures.

In Chapter 6, we discuss the performance of the feed-forward network architectures on the test simulation
on the test simulation. We compare the results of various training runs and evaluate filters for error reduction.

In Chapter 7, we discuss the performance of the surrogate model that uses a trained recurrent architecture. In
addition, we present a small case study in which the surrogate model is used to create simulations for a dike
ring in the Netherlands. These surrogate simulations are compared to flood simulations created with SOBEK.
We also discuss the calculation time of the surrogate model and compare it to that of the flood simulations

4 1. Introduction

created with SOBEK.

Chapter 8 presents the discussion in which the results are interpreted and the relevance of this study for
practical use is evaluated. Finally, in Chapter 9 we present the conclusion and the recommendations for
future work.

2
Two-dimensional (2D) hydrodynamic flood

simulations

In this chapter, we give an introduction to inundation modelling and the types of modelling approaches. We
discuss two-dimensional (2D) hydrodynamic models, which is will be used to generate flood simulations in
this study. These simulations are what we aim to emulate with the proposed surrogate modelling framework.
The inputs of such simulations and other modelling choices are discussed. Finally, we discuss the SOBEK
modelling software which is used in this study to create flood simulations.

2.1. Important factors in inundation modelling
Inundation modelling requires a lot of input data to make the flood simulations realistic for the flood prone
area being assessed. Figure 2.1 shows a typical situation of a flood resulting from a dike or levee breach. Often
the consequences of the event are not the same for each location in the flood prone area. Secondary dikes,
sometimes called dry dikes, can be present in the area and potentially stopping the flood or delaying the ar-
rival of the flood. It is important to have accurate schematizations of these obstacles in the used inundation
modelling tool to get realistic and credible outcomes. The terrain of the flood prone area should thus ide-
ally be modelled with enough detail. A Digital Terrain Model (DTM) is often used to model the height of the
terrain and can be created using LiDAR surveys. Height differences guide the flood over the area, sometimes
through ditches or waterways which have relatively low friction and thus can transport water faster. Higher
areas will often not be affected severely by a flood, however then can still be reached if for example the flow
velocities are large. The boundary condition of a simulation, or the hydraulic load, has arguably the most
impact on the flood propagation. Often extreme boundary conditions are determined along a river for dif-
ferent return periods based on statistical extrapolation of a series of historic discharge measurements. In the
Netherlands, generated rainfall and discharge extremes are used to estimate extreme boundary conditions
for the river Meuse and Rhine (GRADE [41]). The breach location is also an important input of a flood simu-
lation. Often different breach locations are specified in different flood scenarios. Insight into the important
factors described above is important for selecting the right set of flood scenario’s for which to make expensive
flood simulations [8].

2.2. Types of inundation models
Different types of inundation models are available and can be used to create flood simulations and the physi-
cal complexity of these models differs. In general, more physical complexity gives more realistic and accurate
flood simulations but it comes at the cost of the calculation time. besides complex physical models, also in-
undation models exist that are not based on physical principles. These models are sometimes referred to as
simplified methods [34]. The main purpose of these models is to give a low-detail estimate of some of the
state variables, such as the overall extent of a flood event. An example of such method is the bathtub method.
These simplified modelling approaches are computational efficient and can thus be used to give insights for
large flood domains. Sometimes however, complex topographies are present in the flood prone area which
have effect on the flow dynamics making simplified conceptual models less applicable. In these cases inun-

5

6 2. Two-dimensional (2D) hydrodynamic flood simulations

Figure 2.1: Schematization of a dike breach and the factors that influence the flood propagation [8]

dation models that are based on physical principles are preferred which are called hydrodynamic models.

Inundation models can be classified based on their spatial dimensionality [38]. In some cases the assumption
of a dominant flow direction can be made and a 1D model is accurate enough the describing main features
of the flow. This is often the case for flow in waterways and rivers. For the simulation of overland flow, for
example in flood risk assessment studies, 2D models are mainly used. The 2D simulations give more reliable
results for overland flow than a 1D network, however there is a trade-off between accuracy and run time. A
combination of two-dimensional model with one-dimensional elements is also possible, sometimes referred
to as 1D2D models [9]. The main advantage of these models is that the 2D grid can be coarse since hydraulic
structures and small waterways are represented by the 1D elements, which is computationally efficient an
accurate at the same time. Table 2.1 gives an overview of different inundation modelling approaches and
how these roughly compare in terms of run time and accuracy [8].

Table 2.1: Different modelling ap-
proaches for flood simulation and
their properties. Indicative overview of
how different inundation modelling ap-
proaches compare [8]. Here + indicates
applicable, +++ indicates very applicable
and - indicates less applicable.

Model type run time Accuracy

Bathtub +++ –

1D ++ –

Quasi-2D ++ -

2D - ++

1D2D + ++

2.3. 2D hydrodynamic models
Two-dimensional (2D) hydrodynamic models are based on the shallow water equations (SWEs), which are
a set of coupled partial differential equations (PDEs) describing shallow-water flow. These equation arise
when making assumptions that the pressure distribution is hydrostatic, which means that there are no accel-
erations in the vertical [38]. It is used to model also dam break induced flow, even though some assumptions
are violated, it can still give a reliable average description of most important flow patterns.

∂ζ

∂t
+ ∂hu

∂x
+ ∂hv

∂y
= 0 (2.1)

∂u

∂t
+u

∂u

∂x
+ v

∂u

∂y
+ g

∂ζ

∂x
+ g

u

C 2h

√
u2 + v2 +au|u| = 0 (2.2)

∂v

∂t
+u

∂v

∂x
+ v

∂v

∂y
+ g

∂ζ

∂y
+ g

v

C 2h

√
u2 + v2 +av |v | = 0 (2.3)

2.3. 2D hydrodynamic models 7

The momentum equations include a term for the local acceleration, two convective terms, a term for the
horizontal pressure gradients and two friction terms for wall and bottom friction. u denotes the flow velocity
in x-direction, v denotes the flow velocity in y-direction and h is the total water depth. The water level above
plane of reference is denoted with ζ, C is the Chézy coefficient and α is the wall friction coefficient. Figure 2.2
shows the definition of the water depth and water height with respect to a certain reference level.

Figure 2.2: Definition of water height ζ.
The water height equals the height of the
water above a certain reference level and
can be decomposed into the bed eleva-
tion zb and water depth h.

2.3.1. Computational grid
The 2D shallow water equations are a set of coupled non-linear equations and in order to find solutions of
these equations one has to rely on numerical simulation as the system is to complex for analytical solutions.
In numerical simulation, the continuous space of the mathematical model is approximated with a discrete
space consisting of a finite number of grid points such that solutions can be stored in computer memory [44].

There are many ways in which a computational grid can be constructed. The most straight forward way is
perhaps to define a grid of rectangular cells with sizes ∆x and ∆y , sometimes called a Cartesian grid or uni-
form regular grid. Sometimes the terrain of a flood prone areas is relatively homogeneous. In for example
flat areas a very fine computational grid may not lead to significantly different flow patterns then a courser
grid. The use of a computational grid with a fine resolution does however lead to significantly longer cal-
culation times. Innovations in constructing numerical grids allow courser cells in these areas whereas they
use grid refinement in areas with a lot of height difference or obstacles, allowing faster computation. These
unstructured grids are referred to as flexible meshes.

2.3.2. Numerical methods
With a computational grid, the spatial derivatives in the shallow water equations can be approximated. There
are different ways to approximate these derivative terms, such as finite element and finite volume, but the
most common method is by approximating the spatial derivatives with finite differences [38]. This approxi-
mation of the spatial derivatives with finite differences is called the semi discretization step. The result of the
semi discretization step is a (often large) system of ordinary differential equations.

After the discretization in space follows a time integration where the time derivatives are approximated with
either explicit or implicit methods. This two-step process is sometimes called the Method Of Lines (MOL)
and this method results in a (large) system of algebraic equations, where the number of equations equal the
number of grid cells in the computational domain. The algorithmic way of computing the numerical solu-
tions is sometimes called the numerical scheme or numerical recipe. Important properties of schemes are
accuracy and stability. The stability of a numerical method often brings a restriction on the choice of time
step and grid size. Often the stability condition can be expressed using the Courant number σ.

|σ| = |u|∆t

∆x
≤ 1 (2.4)

2.3.3. Simulation output data
Because the shallow water equations are solved numerically, the solutions are provided on the computational
grid that has been provided as input. The numerical solutions have grid-like structure, for Cartesian grids it
is very similar to image data. Because floods propagate in time, the simulations have a temporal dimension
and often images are produced at regular time intervals. The simulation for a single time step is referred to as
a snapshot of the flood and denoted ϕt , which is a vector containing the flood characteristics defined on the
grid points of the computational domain. For 2D hydrodynamic models, ϕt = (ht ,ut , vt) consist of the water
depth ht and flow velocities ut and vt .

8 2. Two-dimensional (2D) hydrodynamic flood simulations

.

2.3.4. Terrain models
The reliability of 2D inundation models relies heavily on accurate description of the terrain of the flood prone
area. For large floods, the overall flood extent can sometimes be predicted reasonably well with coarse terrain
data because the water level tends to be larger than local terrain features. On the contrary, when topographic
features, such as secondary dikes and flood retaining structures have large effect on the flood propagation and
extend, relatively fine resolution terrain data is required [3]. There are different survey techniques available
for topographic data gathering. Airborne light detection and ranging (LiDAR) is a preferred survey method
because it allows to separate buildings, structures and vegetation from the land surface and because of the
horizontal resolution and vertical accuracy [31]. In some countries, accurate LiDAR elevation data is avail-
able. In the Netherlands elevation data from AHN (actual height data bank of the Netherlands) is often used,
which provides elevation data with horizontal resolution up to 0.5 m. The raw data from LiDAR surveys can
be processed for use in inundation models in various ways. Often the bare-earth elevation is extracted only,
neglecting the height of buildings and other structures.

In addition to the DTMs also the surface friction of the terrain can be modelled and given as input for flood
simulations. The bottom friction affects the flood propagation and flood arrival time of the inundation
throughout the flooded area [40]. A common way of determining the spatial-distributed friction coefficients
is by using land-cover or land use information in combination with a conversion table, such as given in [8]. In
this way, a friction grid can be constructed having the same resolution as the DTM used in a flood simulation.

2.3.5. Boundary conditions
The hydraulic load or boundary condition of a certain flood scenario is also an important input required to
make a flood simulation. In the context of floods resulting from a levee breach, the breach location in the
computational domain and a certain discharge or water level function can be specified. In reality the breach
location can be anywhere along the of the dike. Often the hydraulic boundary condition is specified by means
of a hydrograph which specifies the discharge or water level in the adjacent river as a function of time. To get
a realistic boundary condition, the adjacent river can be schematized with a 1D or 2D model such that water
water flows from the river through the breach. Water levels in the river will drop and the amount of water that
flows into the flood prone area will be reduced.

In the Netherlands, floods are due to breaches in the primary defence of levee systems. These breaches are
typically the most uncertain part of the inundation. The location of the breach is the first unknown and is very
difficult to predict as it depends among others on the soil properties of a section of dike. There are different
approaches that one can take in modelling the breach development, that is, the growth of the width of the
breach as well as the depth of it. In the Netherlands, the breach growth rate formula developed by Verheij and
der Knaap [35] is often used. This breach development formula describes the width an depth of the breach
over time. As a maximum width, 75 meter for clay is taken and 200 meter for sandy dikes. Often it is assumed
that the breach reaches a maximum depth in 10 minutes.

One way of defining a boundary condition in SOBEK is with by choosing a 2D boundary node where a time-
varying water level h(t) or a discharge Q(t) is specified. A 2D grid cell that contains a boundary can only
discharge into one of the four neighbouring cells. This is different from the grid cells that do not contain a
boundary node, which can discharge into any of the neighbouring cells. By default it discharges into the cell
directly right to it [15].

2.3.6. Inundation modelling software
There are numerous inundation modelling programs available for making hydrodynamic flood simulations.
Examples are SOBEK, HEC-RAS and D-Hydro. In the Netherlands, most existing flood simulations are either
2D or 1D/2D simulations made with SOBEK1D2D. So called 0-order models or bathtub models are in some
cases used to make flood simulations for smaller dike rings and floods from regional waterways. In the river
floodplains, the WAQUA models are often used. DFlow-Flexible Mesh (DFlow-FM) is a software program that
uses the innovations in unstructured grids or flexible meshes and was developed by Deltares and the Delft
University of Technology and uses the numerical concepts of SOBEK1D2D [18].

2.3. 2D hydrodynamic models 9

2.3.7. SOBEK
In this study, the SOBEK software program is used because it can be used to write simulation output text files
of the flood characteristics every time step (1 minute), which can be used as training data for deep learn-
ing architectures. In addition, it uses a rectangular grid which is easy to construct and results in output that
has uniform structure which is easy to interpret. The SOBEK model was developed by Delft Hydraulics, now
Deltares, and has played an important role in quantification of flood risk in many projects in the Nether-
lands. One example of the application of SOBEK is in The Flood Risk in the Netherlands project (Veiligheid
Nederland in Kaart, in Dutch), which is a large-scale assessment project of flood risk in the Netherlands and
was started in 2007 [16]. SOBEK is a 1D/2D modelling framework which gives fully implicit finite difference
scheme for the 2D shallow water equations. The convective momentum terms in the equations are in a spe-
cial way such that mixed sub- and super critical flows can be computed [2]. This discretization makes the
model robust and accurate and also damp the oscillation in velocity directions at irregular model bound-
aries. At each time step, checks are made to ensure only physically realistic results are output of the model.
The time step is reduced such that no negative water depths can be present in the approximations. For flood-
ing and drying, a similar approach is used where each time step only a maximum of one neighbouring cell is
allowed change from a dry to a wet state or the other way around.

3
Deep-learning architectures for the

surrogate model

In this chapter, we give an introduction to deep learning and introduce the techniques and architectures that
can be used for a surrogate model of flood simulation. For a more detailed explanation of this topic of deep
learning, the reader is referred to [11]. Firstly, we will discuss convolutional neural networks (CNNs) and their
use in encoder-decoder networks for image-to-image translation problems. Secondly, we discuss recurrent
neural networks (RNNs) and how they can be combined with CNNs to handle inputs containing a sequence
images.

3.1. Introduction to deep learning
Deep learning generally refers to machine learning models with a layered architectures that are ’deep’, or in
other words, that contain many layers stacked on top of each other. Most layers of these network contain
trainable weights that are adjusted in the training process to make the model fit output data well. Activation
functions are applied to the output of the layers, which are often non-linear functions such that deep learning
models are flexible and able to learn complex mappings between the input and output. A key advantage of
deep learning over classical machine learning methods is that feature selection from data is incorporated in
the learning process [21]. Each layer may extract different information or features from the input, and with
many layers the network may be able to detect higher level representations. A first layer of a trained network
may for example detect edges in an input image, whereas layers that are located deeper in the network may
detect larger motifs.

The network complexity separates a deep learning model from a larger family of machine learning models
that have been around now for a few decades. In both approaches, the networks are trained to find relations
between inputs and outputs rather than using rules that were explicitly formulated. Deep learning techniques
have recently gained popularity in many applications and are also starting to be widely used in the water in-
dustry [33]. The popularity of these techniques is primarily due to the availability of enormous amount of
data. Furthermore, development in computer resources contributes to this trend. Deep-learning software
libraries such as Tensorflow and Pytorch are freely available and open-source. These libraries take advantage
of the computing power of modern graphical processing units (GPUs).

Networks in deep learning are often referred to as neural networks as they are loosely inspired by the connec-
tions between neurons in the human brain. The activation functions of the network layers have conceptual
similarities to a process in neuroscience called action potential and give deep learning models the ability to
learn non-linear mappings. The nodes in the networks are sometimes called neurons. The simplest type
of neural network is the fully connected network in which all nodes in a layer are connected to every node
in an adjacent layer. Other versions are recurrent neural networks (RNNs) that are frequently used in natu-
ral language processing tasks and convolutional neural networks (CNNs) that have shown to be effective in
for example image classification tasks. These types of networks will be discussed in more detail in Section 3.2.

11

12 3. Deep-learning architectures for the surrogate model

Often, deep learning networks are trained with input- and output examples, which is sometimes called a
supervised learning problem. The input examples are often denoted X and the ground truth output Y . In
training a neural networks, first the weights are initialized and the network is passed examples in a training
set resulting in predictions Ŷ . A loss function L is used to compute the error between Ŷ and Y given X . Many
loss functions exist such as the mean squared error (MSE) and mean absolute error (MAE). In training, the
gradients of the weights of the network with respect to the loss function can be computed using the chain-
rule for differentiation, this process is called a backpropagation step. Adjusting these weights to minimize the
loss function is called gradient descent. The learning rate is a value that controls how much the weights are
adjusted each training step and is an important hyperparameter of the model.

Apart from the training data, a validation data set is used to evaluate the performance of the model during
training process. A typical problem with deep learning models is that they have the tendency to start over-
fitting, meaning that they start performing very well on the training data but loose the ability generalize and
start performing worse on unseen data (see figure 3.1). Evaluating the model on validation data helps to
identify overfitting during training. After the model is trained, the model performance can be evaluated by
applying the model to unseen data in the test set.

Figure 3.1: Concept of overfitting. During training of
a deep neural network, the error on training data will
decrease. At some point in time the network will start
overfitting on the training data examples, which can be
spotted by keeping an eye on the validation error. The
error on validation data will increase as the network
starts to focus too much on the details of the training
examples.

3.2. Convolutional Neural Networks
Image data is typically high dimensional data with grid-like structure. A deep learning architecture that was
specifically designed to handle this data format is called a convolutional neural networks (CNN) or ConvNet
[21]. CNNs contain among others convolutional layers that consist of a kernel of trainable weights that per-
forms a convolution operation on the input. These layers learn a feature representation of the input. A kernel
convolves over the input array (or image) and by doing so the kernel weights are multiplied with the under-
lying input elements. This operation results in an output array to which then an element-wise (non-linear)
activation function is applied.

Apart from convolutional layer, CNNs often also contain other types of layer such as layers that reduce the
dimension of the input which are called pooling layers and layers that increase the dimension of the input,
upsampling layers. Pooling layers are layers that reduce the dimension of the input. They have kernels and
make a convolution over the input, similar to convolutional layers, however do not contain weights. Instead,
they output values using some criteria such as taking the average of the inputs under the kernel or take the
maximum value. Upsampling layers increase the dimension of the input and thus are a type of layer that can
be used to generate data. This generation of data is done by using an interpolation method such as nearest
neighbor, bicubic or bilinear interpolation.

One may ask the question what makes these type of network so successful in deep learning tasks. There
are three main characteristics of CNNs that set them apart from other network types. Firstly, convolution
layers have sparse connectivity (sometimes called sparse weights or sparse interactions) [11]. In dense layers
or fully connected layers output nodes are connected to every input node. Using these types of layers for
high dimensional inputs, such as image data which can have thousands or millions of pixels, the number
of weights in the network will explode. The kernels in convolutional layers are smaller than the input size

3.3. Recurrent neural networks 13

and thus less weights are used. Due to the convolution operation, the small set of trainable weights in a
kernel are applied to all pixels of the input image as apposed to having a unique weight for every input node.
These layers are therefore said to be weight sharing. The number of weights that have to be stored is thus
much lower which makes convolutions layers much more efficient than dense layers in terms of the required
memory. This is inline with the idea that learned kernels that are effective in detecting, say certain edges,
in one part of the image are also likely to be useful in other parts of the image. It means that advantage of
convolution layers over regular dense layers is that the number of connections is fixed and does not depend
on the size of the input array. Finally, the way in which parameter are shared in a kernel gives convolutional
neural networks the property of being equivariant to translation. Features that are identified in feature maps
can move with the input. This is for example very important in object detection, where an object should be
given the same label irrespective of its location within the image.

Figure 3.2: Edge detection in an image.
Detection of vertical edges can be done
using a convolution operation with a ker-
nel of two elements. The same transfor-
mation can also be described by a ma-
trix multiplication, however, it is much
less efficient in representing and compu-
tationally. It is a transformation that in-
volves applying the same transformation
of a small region over the entire input,
which is done efficiently by convolution.
[11]

3.3. Recurrent neural networks
It was discussed that convolutional neural networks are typically used for data that are in a grid structure, such
as image data. A type of networks that is used and specialized for sequential data are referred to as recurrent
neural networks (RNNs). This type of network processes the inputs of the sequence once at a time and they
keep track of a state variable that is sometimes called the memory of the network as it can contain information
from inputs earlier in the sequence [11, 21]. Training these type of networks is sometimes difficult, however
improvements such as Long-Short Term Memory (LSTM) networks partially solved these training issues.

3.4. Encoder-decoder network
Apart from supervised learning, where labels are given to the model explicitly, another type of learning for
deep learning models is called unsupervised learning. With unsupervised learning, the labels are not ex-
plicitly given to the model, in contrast to supervised learning, but the input data itself is used for extracting
features. The model is forced to learn a representation of the data based on some global criteria and this
representation can than be used for all sorts of tasks, such as dimensionality reduction transformations [11].

Dimensionality reduction techniques have been used in extraction of flow features from large fluid mechan-
ics simulations [4]. In this field, the simulation outputs are often two- or three-dimensional and can be very
large. In dimensionality reduction, one tries to find lower dimensional representations of this data often us-
ing an information bottleneck. A well known technique is called linear principal component analysis (PCA).
The information bottleneck is usually a vector with entities called latent variables. Autoencoder can be seen
as a deep learning dimensionality reduction technique, or latent variable model, and they can introduce non-
linearity making them more flexible [1]. An autoencoder network is a deep neural model consisting of two
network, an encoder that tries to encode the original information into a latent space, and a decoder network
that aims to reconstruct the original information. The encoder and decoder are both neural networks con-
sisting of multiple layers, such as convolutional layers, with trainable weight and they are trained using only
the training data itself and without any additional labels. The loss function which is used as a global criterion
for this learning process is called the reconstruction loss. If autoencoders are applied to images, a pixel wise
difference between the input and reconstruction can be taken as a reconstruction loss function.

14 3. Deep-learning architectures for the surrogate model

Figure 3.3: Autoencoder network for dimensionality re-
duction. In a self-supervised learning setting, the encoder-
decoder structure aims to encode the input to a lower di-
mensionality latent space variable after which the informa-
tion is decoded to reconstruct the original input.

Figure 3.3 presents a illustration of the concept of an autoencoder network. Here x denotes the input of the
network and x̂ the output or reconstruction. The latent space variable is of lower dimension than the original
input, creating a dimensionality-reduction or compression of the input. Here the latent variable is a vector.
In the encoder and decoder networks, fully connected layers can be used. When autoencoders are used for
reconstruction image data, usually they consist of convolutional layers. The encoder reduces the dimension
of the input and thus pooling layers are used in this network. The decoder generates data and thus upsam-
pling layers are used there. These encoder-decoder type networks with convolutional layers are often called
convolutional autoencoders (CAEs), originally proposed by [24].

3.5. image-to-image regression
In some problems in deep learning tasks, the input of and output of a learning problem are both images and
the goal of training a network is to learn a specific translation from the input- to the output image. This prob-
lem is different from image classification because now pixel-wise predictions are learned where a quantity is
predicted is made for every pixel in an image instead of prediction a label for an image. For these image-to-
image regression problems, a coarse-refine process can be used where high-level coarse features are extracted
from the input images with an encoder network and a decoder network is used to refine the coarse features to
produce an output image [43]. The encoder-decoder structure is similar to autoencoder networks, however
the input and output images of image-to-image regression problems may appear very different while with
autoencoder networks the goal is to reconstruct input images.

3.5.1. Convolutional Encoder-decoder network
For image-to-image regression problems, CNN-based networks can be used. The encoder network contains
convolutional layers and pooling layer to extract features with reduced dimensionality. The decoder network
contains convolutional layers and upsampling layer to refine the course features and produce an output im-
age. In solutions of partial differential equations (PDEs) a time dimension is often present. The input and
output images of the image-to-image regression problem have a time shift of ∆t . Figure 3.4 illustrates an
such a problem formulation where a convolutional encoder-decoder network takes as input a snapshot of
some physical quantity ϕt and as output the next snapshot in the sequence ϕt+∆t .

Figure 3.4: Time-lagged autoencoder
structure. This architecture consists of
an encoder network that forces the input
into a lower dimensional latent space
vector or matrix, and a decoder that con-
structs a target from this latent space. In
this case the target is a time-lagged ver-
sion of the input. [39]

3.5.2. U-net
The course-refine process of the encoder-decoder network causes some information loss and can make the
output images appear blurry. Sometimes, so called skip connections are added to this architecture to reduce
the loss of information through the bottleneck. These skip connections are paths where feature maps are
copied from some layer in the encoder to a location in the decoder. Network architectures with these skip
connections are referred to as U-net architectures and were first proposed by [29], which used such network

3.5. image-to-image regression 15

for image segmentation task in a biomedical context. Adding these skip connections can be effective when
the input and target of the network contain similar information at different spatial scales [23]. When input
and output of a network may be very similar, for example if they are snapshots with a small time shift ∆t
such as in presented in Figure 3.4. In these situation, skip connections may be very effective to reduce the
information loss caused by pooling and upsampling.

3.5.3. Convolutional LSTM
In addition to feed-forward networks architectures also recurrent networks can be used for image-to-image
regression problems. For example, a sequence of input images or snapshots can be provided when the data
has a temporal dimension. A convolutional LSTM layer is a layer type that combines the convolutional layer
with a LSTM layer. The input-to-state and the state-to-state transitions have a convolutional structure in-
stead of a fully connected (dense) connection [32]. Figure 3.5 presents the structure of a convolutional LSTM
architecture.

Figure 3.5: Recurrent encoder-decoder
structure. This type of architecture uses
the encoder to extract the most impor-
tant features from a sequences of inputs
and one or more recurrent layers to ac-
count for the order of the data within
the sequence. The recurrent layer keeps
track of a cell state as a type of memory.

4
Surrogate modelling framework

In this Chapter, a surrogate modelling framework is proposed which can be used to train deep neural net-
works to emulate 2D flood simulations. We give an introduction to surrogate modelling and present an
overview of the proposed framework. After that, we discuss how to generate flood simulations by sampling
input variables. Next, we present how we use a deep learning-based surrogate model to emulate flood simu-
lation. Finally, we explain the approach for creating training examples from simulation output and we discuss
how these examples can be used to train deep learning architectures.

4.1. Introduction to surrogate modelling
Computer simulations of real (physical) systems are used in many fields of science and engineering, for ex-
ample in weather forecasting or in the design of aircraft. Creating these computer simulations is often com-
putationally intensive, therefore a commonly used approach is that of surrogate modelling where part of
the computational budget is invested in creating training simulations that are then used to train a surrogate
model [10]. The surrogate model aims to emulate the original expensive simulations and, once trained, it can
be used as a substitute for the full order model. The advantage of using the surrogate model is that it is much
more efficient in terms of run time. In engineering design the use of such surrogate models can be very valu-
able, for example in exploring different design options. With the same computational budget of one full order
model simulation, multiple surrogate simulations can be created instead. These surrogate simulations may
give insight of the effect of multiple designs elements. There are challenges in applying surrogate modelling,
for example it is often not so straightforward to choose which simulations are best to use as training data.

A data-driven surrogate modelling approach involves creating expensive simulations and using this data to fit
a certain approximation function. This method is referred to as response surface modelling [28]. Another ap-
proach is to use simpler physics-based versions of the original simulation model. In the context of inundation
modelling, one can think of using simplified models such as the bathtub model or 1D hydrodynamic models
as a surrogate for expensive 2D hydrodynamic models. In this study, we use a response surface modelling
approach for emulating 2D flood simulations. The main steps of this type of approach are [10]:

(1) Create a sampling plan for input variables, or design variables, of the training simulations. In surrogate
modelling one is free to choose and define these inputs. The choice of which simulations to use for
training the surrogate model is important because it will influence the performance in the application
stage. It will be more challenging for the surrogate to emulate simulations with inputs that differ from
inputs of the training simulations. The sample of input variables should ideally be space-filling such
that it captures a wide range of responses of the underlying simulation model.

(2) Choose a function approximation model. The model should be flexible enough to approximate the
possibly complex response surface of the underlying expensive simulation model.

(3) Train the surrogate model on the set of training simulations. This step may involve adjusting certain
model hyperparameters to get a better fit and testing the evaluation of the surrogate model on valida-
tion observations to avoid overfitting.

17

18 4. Surrogate modelling framework

4.2. Framework overview
In this section, we describe the steps of the proposed surrogate modelling framework for emulating 2D flood
simulation with deep learning techniques. The frameworks gives answer to the question of what flood simu-
lations to use for training data and how to process the simulation output to make it suitable for training the
deep learning architectures proposed in Chapter 3. The steps of this framework are the following.

(1) Use a sampling strategy to define the inputs of a set of fictitious flood simulations that are used for train-
ing a deep learning architecture. These input variables Ii are used to specify the initial- and boundary
conditions of the simulations, such as the Digital Terrain Model (DTM) of the flood prone area, the bot-
tom roughness map, the location of the breach and the water level hydrograph at that location. Flood
simulations can then be created for these scenario’s with hydrodynamic modelling software such as
SOBEK.

(2) Process the flood simulation output and extract input- and output patches with time shift ∆t . The
input patches include the flood characteristics ϕt at a time t and local terrain maps while the output
patches only contain flood characteristics at the next time step ϕt+1. In this way, examples are created
for a deep neural network to learn the flood propagation between two successive time steps taking into
account the local topography and roughness. The time shift is present between in- and output patches
such that the network is trained to emulate the spatio-temporal behaviour of the flood.

(3) Apply the surrogate model as a tool for rapid inundation modelling and as a substitution for expensive
2D hydrodynamic simulations. This step first involves constructing a static grid of input- and output
patches, defining the flood duration and boundary condition. Given the initial conditions, the trained
network may then be used to predict output patches at future time steps. By choosing the dimension
of input patches to be larger than the output patches, we give the surrogate model spatio-temporal
context needed to accurately predict the inter-patch propagation of a flood.

Figure 4.1: Schematization of the steps of the proposed framework for surrogate modelling of 2D flood simulation. These steps
involve input sampling and creating flood simulations, processing this data to create training examples for a deep learning architecture
and applying the surrogate model for rapid flood simulations.

4.3. Generate 2D flood simulation data
In this section, we discuss how to generate the flood simulations that are used as training data for the surro-
gate model. To create these flood simulations, the initial- and boundary conditions of the simulations can be
defined by sampling certain input variables. Here we discuss the choice for the input variables that are used
in this study and present a sampling strategy for sampling these simulation inputs.

4.3.1. Flood modelling software
There are many inundation modelling software packages available which may be used to create 2D flood
simulations for a training data set. In this study we used SOBEK216 developed by Deltares. One reason why
this software program was chosen is that it has been used many projects by the consulting firms around the
world and has made an important contribution in many flood risk assessment studies. SOBEK also uses a
Cartesian grid, therefore it is easy to process the data. In addition, it provides the option of writing text files
with snapshots of the flood characteristics at an output frequency of 1 minute, stored in the ASCII format.
These files can be used as training data for deep neural networks. While SOBEK internally can adjust the time
step to ensure numerically stable solutions, the simulation output is fixed at 1 minute time intervals.

4.3. Generate 2D flood simulation data 19

4.3.2. Simulation inputs
Computational grid

To create a flood simulations, a computational grid has to be defined that covers the flood prone area. In
surrogate modelling, we are free to choose which flood prone areas to use for these simulations. In this study,
we choose to use a square grid domain with a size of 1000 by 1000 grid cells for all flood simulations. Using
the same grid size for each training simulations is convenient for processing the resulting data in a later
stage. Because we want to extract (square) patches from the simulation output the computational domain
was also chosen to be a square with a size such that multiple patches fit inside the domain with some overlap.
For the resolution of the grid, a 5 by 5 meter resolution was chosen. This is a relatively fine grid resolution
and therefore certain obstacles such as dikes and waterways are present in the DTM and do not have to be
modelled as line elements in SOBEK.

Elevation map

Flood simulations require a model of the terrain of the flood prone area. In this study we use a DTM obtained
from Light Detection and Ranging (LiDAR) topographic surveys, which are publicly available for the Nether-
lands as raster files in the AHN (Actueel Hoogtebestand Nederland in Dutch). This DTM is a two dimensional
array containing the elevation above a certain reference level. We used AHN data of a number of major dike
rings in the Netherlands and extracted non-overlapping square tiles of size 1000 by 1000 grid cells from these
systems. In extracting these tiles, a small overlap with the boundary of the dike rings was allowed. Also a
random search was used to find an tiling where much of the area of the dike ring was covered.

As input variable for the elevation map, we use a statistic called the information entropy of the square tiles.
Information entropy H is defined as:

H =−∑
i

pi log pi (4.1)

Here, pi is the number of times that the elevation of a grid cell falls into the intervals of the i th bin. The en-
tropy of a tile with elevation data is a value that tells something about the level of information or uncertainty
of that tile. If a tile is nearly flat, the entropy of this tile would be very low. A tile that contains a lot of variation
in height, for example hills, would have a very large entropy value. Entropy is different from the standard
deviation of a tile. To see the difference between these two statistics, imagine a tile that is very flat except
for one cell that has an elevation much much larger than average. The standard deviation or spread of that
tile would be large, however from the definition of entropy it follows that the entropy of the tile is still low. A
motivation of using the entropy as a statistic in the random sampling of inputs is that we assume that floods
on flat tiles propagate different from floods on a tile with more hilly terrain.

Figure 4.2 shows the DTM of some larger dike rings in the Netherlands which is used in this study (see Table
A.2). These levee systems were selected because they are located adjacent to the main rivers in the Nether-
lands and because they are relatively large so that we can extract a lot of elevation data from them. Square
tiles can be extracted from the DTM of these dike rings with elevation data and the entropy of each tile can be
computed. The tile with lowest entropy value is indicated with Hmi n and the tile with highest entropy value
with Hmax . For both tiles also the histogram of the elevation is presented. It can indeed be seen that the low
entropy tile corresponds to flat terrain and the highest entropy tile to a terrain with a lot of height variation.
Also notice that the highest entropy tile is located at the border with Germany, in a region where lot of hills
are present.

Figure 4.2 presents the distribution of the entropy of the tiles extracted from the dike rings. This distribution
will be used for this input variable in the sampling plan. A random value Hi is chosen with uniform distribu-
tion from Hmi n to Hmax and a tile is chosen with entropy value H closest to Hi .

Another option would be to create DTMs synthetically instead of using ’real’ DTM obtained from remote
sensing surveys. This can for example be done with the use of random fields. It was however found that
generating realistic looking DTMs with line elements such as waterways and roads was challenging, if not
impossible, with the use of random field generators.

20 4. Surrogate modelling framework

Figure 4.2: Elevation maps of square tiles extracted from DTM data of major dike rings in the Netherlands. The dike rings are indi-
cated with numbers, for the names we refer to Table A.2. Histogram of elevation map of the minimum and maximum entropy tiles are
presented. The lower left plot shows the distribution of entropy of all elevation tiles used in this study.

Roughness map
Bottom roughness influences the propagation of a flood and can be specified in grid cells of the computa-
tional domain. In SOBEK, bed friction can be specified by the equivalent roughness according to Nikuradse.
The value of the Chézy coefficient C will then be computed according to the White-Colebrook formula [15].

C = 18log10

(12R

kn

)
(4.2)

Here, R is the hydraulic radius which is approximately equal to the water depth h and kn is the Nikuradse
equivalent roughness. In this study, we collected land use information of the extracted DTM patches from
geo-data files of the Key register Large-scale Topography (Basisregistratie Grootschalige Topografie, BGT, in
Dutch). With a conversion table, the land use type can be converted to Nikuradse equivalent roughness value.
In this study, we used a standard conversion table from [8]. A small summary of the conversion table used in
this study is presented in Table A.1.

Hydrograph boundary condition
Many types of boundary conditions exist and can be used to generate flood simulations. In this study we
choose for a simple h-t relation in a single breach grid cell. The breach growth or widening can also be mod-
elled in SOBEK, however in this study we do not take into account breach modelling to reduce the number
of input variables. Instead, we use simple triangular hydrographs specified at a single grid cell in the square
domain. The hydrograph describes the variation of water depth in the breach cell.

The triangular hydrograph is defined by a duration and a peak which are considered input variables. The
duration is a uniformly distributed random variable with minimum of 0 hours and maximum of 24 hours.
The peak is also considered to be uniformly distributed with maximum of 6 meters. The latter maximum
value is rather large, however not unrealistic for breach scenario’s in the Netherlands, where so called polders
are sometimes up to 6 meters below sea level. The duration of the simulations is chosen to equal twice the
duration of the hydrograph. The maximum duration of a training simulation is thus 48 hours.

The row and column index of the breach location grid cell are also considered input variables. Both are
chosen to be uniformly distributed between 400 and 600. We choose this range that to ensure that the breach
location is approximately in the center of the computational domain, see 4.3. We want the breach cell to

4.3. Generate 2D flood simulation data 21

be approximately in the center of the grid to ensure that the boundary of the square domain is not reached
by the flood early on in the simulation. When the boundary of the computational domain is reached by the
propagating flood, water is reflected. Such reflective straight boundaries are unlikely in application of the
surrogate model and therefore may corrupt the training of the surrogate model. The remaining snapshots of
the flood simulation are therefore not used in training. The exact time step at which the flood reaches one of
the four boundaries of the computational domain is not known a priori and is checked once the simulation
is generated.

Figure 4.3: Boundary condition of training simulations. A triangular hydrograph is defined by a peak and duration as input variables.
The breach location in the tile is defined by an x and y location in the inner square as indicated on the left.

4.3.3. Sampling strategy
The choice for the simulations to use for training a surrogate model is important because surrogate models
are generally good at interpolation, but have difficulty with extrapolation [10]. A sampling strategy can be
used to sample the simulation input denoted with I = (I1, ..., Im) for the m input variables. This input vec-
tor determines the output of a single simulation and can be thought of as a point in the input space. The
simulation f (I) that results from creating a simulation with a vector in the input space is sometimes called
an observation. The set of inputs used for training the surrogate model is called the sampling plan, denoted
S = {I(1),I(2), ...,I(n)}. Often, the number of simulations is limited by the computational budget. A sampling
plan should ideally be space-filling [10], such that the surrogate model can be trained to interpolate between
the observations. A sampling plan is said to be space-filling if the inputs cover enough range in the input
space such that the observations help in efficient training of the surrogate model.

Many sampling strategies exists, examples are pseuro-random sampling, full factorial sampling and stratified
sampling. In this framework Latin hypercube sampling (LHS) is used. In LHS the cumulative distribution of
the input variables is divided into intervals, which is called stratification. LHS guarantees that samples only
appear once for every row and every column. Once a sample is generated, the projection properties along the
axes ensure uniform distributions. When one sample is randomly generated, it is often not very space-filling.
An optimization method can be used to generate a sample plan with the best space-filling property [36]. This
can be done using the distance between the points computed as the p-norm.

d(x1,x2) =
(k∑

i=1
|xi

1 −xi
2|p

)1/p
(4.3)

For which p=1 give the rectangular or Manhattan distance and p=2 gives the Euclidean distance. Here, Ψq is
a criterion for space-filling properties of a sampling plan X and was proposed by [26].

Ψq (X) =
(,∑

j=1
J j d−q

j

)1/p
(4.4)

In this study, we use five input variables that are used to create a training flood simulation. The input vari-
ables are summarized in Table 4.1. A total of 100 samples are created, that can be used to generate 100 flood
simulations. A maximin optimization scheme was used with 1e6 iterations to obtain a sampling plan that is

22 4. Surrogate modelling framework

space-filling. In this way, we ensure that we create flood simulations with different inputs and thus aim to
maximize the efficiency of training.

Table 4.1: Description of the in-
put vector I = (I1, ..., I5). This
vector is used to create a flood
simulation that serves a training
data.

Input Description

I1 Information entropy H of the square tile elevation map.

I2 Peak of the triangular hydrograph.

I3 Duration of the triangular hydrograph.

I4 The i th index of the breach cell.

I5 The j th index of the breach cell.

The created two-dimensional (2D) flood simulations result in a large data set of water depth and flow veloc-
ity output files. These flow characteristics can be stored as array data with three channels. The dimension
of these arrays are thus 1000x1000x3 for every time step of the simulation. The first channel of this three-
dimensional array corresponds to the water depth, the second and third channels contain the flow velocities
in x- and y direction.

4.4. Patch-wise prediction
The output of a flood simulations is stored as three-dimensional array data consisting of flow snapshots over
a regular grid of size H ×W , where H and W denote the number of grid cells in the x- and y direction of the
2D domain. Often high elevation contours restrict the size of a flood prone area. Outside the flood prone area
domain, grid cells are assigned no-data values and no numerical computations are made in these grid cells.
In SOBEK, a rectangular 2D grid for a certain dike ring covers the flood prone area and can be large or small
depending on the size of the dike ring and the grid resolution.

In this study we will use patches, that are smaller pieces of a spatial domain, in training and application of
the surrogate model. Patch-wise prediction is used because it allows the surrogate to focus only on regions
where the flood has reached and not on regions where no flood occurs. Figure 4.4 shows how the surrogate
model uses patch-level predictions to create a surrogate simulation of a flood in a dike ring area. It can be
seen that only predictions are needed for those patches that contain part of the flood extent. Trained CNNs
will be used to make patch-level predictions of the flow characteristics.

Figure 4.4: Proposed patch-
based prediction method. By
using patches, we force the
surrogate model to focus on
regions where the flood has
reached. Input patches have
larger dimension and contain
part of the neighbouring out-
put patches to give the surro-
gate spatio-temporal context.

A possible drawback of the patch-wise prediction approach is that the trained surrogate will have to make
multiple prediction, instead of one prediction for the larger domain. Making one prediction for each patch
may be less efficient. In addition, the predictions of flood propagation in individual patches have to be con-

4.5. Patch-wise training 23

nected again. With connecting the patch predictions we face the problem that the propagation of the flood
in one patch influence solutions in other patches. This problem is also encountered in parallel computation
algorithms applied to flood simulations. One can imagine that patches should be given a certain context of
the surrounding patches in order to make accurate predictions. Within one time step ∆t , the flood may prop-
agate from one patch to the next.

To give the surrogate model spatio-temporal context, we use input patches that cover a larger part of the
spatial domain than the output patches. In Figure 4.4, it can be seen the the grid of input patches is partly
overlapping. This means that the input of the neural network contains a small part of the neighbouring
patches. Output patch predictions are placed exactly next to each other without any overlap to reconstruct a
flood snapshot at a certain time t . If a flood is about to reach the boundary of an output patch, it is detected
in the input of a neighbouring patch. Therefore it should be possible to have flood propagation between
patches.

4.5. Patch-wise training

For using the surrogate model to make patch-wise predictions, it is not strictly required to train on patches
as well. Once trained, the convolutional neural networks are not restricted to the images sizes encountered
during training but can be applied to inputs of arbitrary size. However, we used patch-wise training strategy
because the flood simulation output of size H ×W = 1000×1000 was found to be large and thus taking up
much of the memory of a graphical processing unit (GPU). Large arrays may not fit in GPU memory or it can
pose restrictions on the batch size used during training. For the same reason it may also pose restrictions
on the network size, that is the number of (convolutional) layers and filters. A patch-wise training strategy
is also sometimes used as a data-augmentation step because with overlapping patches the number of train-
ing examples can be increased. In this study, the output patches extracted from the flood simulations are
not chosen to be overlapping for simplicity reasons. This opportunity for data-augmentation thus was not
utilized.

4.5.1. Patch dimensions

For the dimensions of the input patches we choose 232×232 grid cells and for the output patches we choose
128×128 grid cells. With a larger patch dimension, you need less patches to cover a dike ring area and there-
fore the surrogate also needs to make less predictions to emulate the flood simulation. We choose these
dimension because they are common image sizes used in training deep learning models. The size difference
between in- and output patches equals 52 on all sides. This corresponds to 260 meters with the mesh size
∆x = 5 meter. With a time step of ∆t = 1 minute, we can calculate the flow velocity limit below which the
propagation of the flood between two neighbouring patches can be predicted ul i mi t = 4.33m/s. Above this
limit, the flood propagates too fast and a smaller time step may be used for more accurate prediction.

4.5.2. Patch extraction

To create training examples for deep learning architectures, we extract couples of input-output of which the
input will be the flow characteristics at time t as well as elevation and roughness maps for a given patch. The
network output will be the flow characteristics at a given time step ∆t later for the same patch. Figure 4.5
shows how these patches are extracted from the snapshots of a given flood simulation. The dimensions of
the in- and output patches and of the flood simulation grid were chosen such that exactly 7 output patches
fit inside a row or column of the simulation grid. For extracting patches, it must be known at what time step
water is entering an output patch. For this, arrival times are computed and stored in separately.

24 4. Surrogate modelling framework

Figure 4.5: Extraction of input- and output patches from a training simulation snapshots. (a) Extraction of an input patch with water
depths at time step t . (b) Extraction of an output patch with water depths at time step t +∆t . (c) In- and output water depth patches at
time step Nbound , when water hits one of the domain boundaries. Input patches are indicated with a dotted line and are larger than the
output patches indicated with a solid line.

A final step is to track down the time step at which water hits the boundary of the computation grid, indi-
cated with Nbound . The snapshots after this time are not taken as training data as they are influenced by the
reflective straight boundary. This corrupts the training data as such boundaries are not likely to be present in
practical applications of the surrogate.

4.5.3. Pre-processing steps and data augmentation
As a last step the training examples are processed to make get the best training results for the deep learning
architectures. In grid cells of the output of flood simulations generated with SOBEK where no terrain infor-
mation is present, that are cells outside of the valid computational domain, are returned as no-data values.
In SOBEK, the default is -999 for terrain and -999.999 for flood characteristics. These default values lie well
outside the observed range for the characteristics that one expects during a flood. These no-data values can
cause difficulties during training and for that reason they are changed by zeros.

The elevation maps from LiDAR surveys are given with respect to NAP, and used for simulations for SOBEK
as such. To make training easier, the datum was adjusted in the training set to the elevation at the breach
location. This ensures that the elevation values in the training set are approximately in the same range. The
friction values are all between zero and ten, so no adjustments are made for this input.

Figure 4.6: Data augmentation
step. Input and output exam-
ples are randomly rotated with
angle θ = [0◦,90◦,180◦,270◦].

With deep learning in general it is often a good idea to perform data augmentation steps. With flood inun-
dation simulations, a possible augmentation step is to use 90 degree rotations of the patches. In the training
phase, this random augmentation step is used here. Figure 4.6 present the augmentation of a patch.

4.6. Deep learning architectures for the surrogate model
In this section, three deep learning architectures are proposed for the use in the surrogate modelling frame-
work. These architectures will be trained on patch-level examples and tested in a surrogate model to emulate
2D flood simulations. We discuss the choice for the input and output of these networks. After that we describe
the layout of two feed-forward architecture and one recurrent architecture.

4.6. Deep learning architectures for the surrogate model 25

4.6.1. Network in- and outputs
As discussed in Chapter 2, 2D flood simulation snapshots ϕt have grid-like structure similar to images. To
emulate flood simulations, we use an image-to-image regression network that can be used to predict future
snapshots ϕt+1 given input images. For patch-level inputs of these networks we use flow characteristics at
past time steps as well as the elevation and roughness maps. To create a spatio-temporal learning setting,
the output of the network has a certain time shift compared to the input. The output of a network may be
the flood characteristics shifted with one time step ∆t . Since the DTM and roughness are considered not to
change in time, they are not included in the output of the network.

4.6.2. Convolutional encoder-decoder network
The first network architecture that we will train and test is illustrated in Figure 4.7. This is a feed-forward
architecture with an encoder-decoder structure and convolutional layers such that it can take a multi-channel
image and input and produce an output of similar data type. The encoder of the network architecture uses
pooling layers to decrease the dimension of the input. In doing so, convolutional layers are used to extract
feature maps f . Here only convolutional layers are used to introduce trainable weights and no fully connected
layers are used in the information bottleneck. We did not choose to use fully connected layers as this greatly
increases the number of weights of the network. In the encoder part of the network, max pooling layers are
present. It can be seen that the number of feature maps f is increased by using the convolution layers. In
this way, the loss of information due the pooling operations is reduced. In the last layer of the network, the
output is cropped to the output patch size of 128×128. In the decoder part of the network, upsampling layers
are present that use linear-interpolation to increase the dimension of the input. As a last layer, the output
can be cropped to a different width and height. In this way, we can make the output patches of smaller size
than input patches. In addition, the cropping layers removes possible boundary artifacts that are sometimes
present in the predictions because of the convolutional operations [27].

Figure 4.7: Network layout
of the convolutional au-
toencoder architecture.

The input of the convolutional autoencoder network consists of an image with 5 channels. The first three
channels contain the water depth ht , flow velocity in x-direction ut and flow velocity in y-direction vt in a
certain patch at a time t . The last two channels include the elevation and roughness maps of the patch. The
output of the network consists of the flow characteristics ht+1, ut+1 and vt+1 at a time step t +∆t .

4.6.3. Modified U-Net
The second feed-forward network that we have trained is a modified U-Net architecture, the layout of this
network is presented in Figure 4.8. Three skip connections are added to the architecture where filter maps
are copied and concatenated with output of convolutional layers deeper in the network.

Figure 4.8: Network layout
of the the U-net architec-
ture.

These skip connections avoid the loss of information caused by pooling and upsampling. This can be very
effective as the input- and output of the network are flow snapshots that are shifted by a small time step and
thus in most cases look very similar. The last convolutional layer of this network produces three feature maps

26 4. Surrogate modelling framework

and which are cropped to get the desired output size of 128×128×3 of the output patch.

4.6.4. Convolutional LSTM network
The final architecture that is proposed is a recurrent architecture that has an encoder for the flow character-
istics input sequence and a separate encoder for the elevation and roughness map. The reason for choosing a
separate flow encoders and terrain encoder is that the terrain data is static and it would be redundant to add
to each of the elements in the sequence. This is undesirable as the image in the sequence lead to high memory
consumption during training as well as in application of the surrogate. The latent space of the flow encoder
and the terrain encoder are later concatenated and after that a decoder reconstructs the output. For the flow
encoder, an input sequence X f l ow = [ϕt−3,ϕt−2,ϕt−1,ϕt] is given with dimension 4×232×232×3. Although
a single flow characteristics ϕt = (ht ,ut , vt) would contain enough information to predict future frames, as-
suming the boundary condition is known, it may be easier to train a network with a larger sequence and it
may result in better performance since more information is available. Figure 4.9 presents a schematization
of the network layout. A flow encoder network operates on the input sequence and two convolutional LSTM
layers are used. The first convolutional LSTM layer outputs a sequence and the second gives a single output
with feature maps. These are added to the feature maps resulting from the terrain encoder. After concatenat-
ing, there are fed into the encoder network that generates an output patch of dimension 128×128×3.

Figure 4.9: Network lay-
out of the ConvLSTM net-
work. This architecture
has a separate flow en-
coder and terrain encoder
that take as input a se-
quence of past flow frames
and the patch terrain maps
respectively.

5
Network training

In this Chapter we discuss the training process of the network architectures proposed in Chapter 4. We dis-
cuss how the simulation data set will be divided into a training set, validation set and test set. In addition, the
different training runs which include variations in the used loss function, the time step between examples
and the use of different input-output type are summarized. We discuss the choice for the hyperparameters
that were used for the various training runs. The training time of the different architectures is is also presented
and we present the test simulation that will be used to test the various trained architectures.

5.1. Training set
As discussed in Chapter 4, a total of 100 two-dimensional (2D) flood simulations were created with the soft-
ware program SOBEK and the output of these simulations was processed further to create a large set of input
and output patches containing flow characteristics and terrain data. We use the full set of simulations and
divided these randomly in a training, validation and test set. The patch examples in these sets are randomly
shuffled to avoid overfitting. Patch examples from training, validation or test set are not mixed with one of
the other sets. The statistics of the data sets resulting from the random split are presented in Table 5.1. Here
N is the number of time steps in the simulation and Nbound is the number of time steps until water hits one
of the domain boundaries.

5.1.1. Training scenarios
We found that the training data set was large which leads to long training times of the network architectures.
Because of limited time, a second training scenario is defined which contains a fraction of the full data. In
this partial training scenario’s, 15 training simulations and three validation simulations are randomly chosen
from the set of training simulations in the full training scenario. The statistics of this partial training scenario
data set are also given in Table 5.1. It can be seen that the data in the partial training scenario is similar to that
of the full training scenario, such that results for architectures on this smaller data set may also mean that it
performs good in full training.

It can be seen from Table 5.1 that not exactly all simulations are used in the full training scenario. Two sim-
ulations were left out because the boundary conditions of these simulations was found to be such that no
simulation was generated. In one of the simulations, the hydrograph peak was very close to zero and the
other simulation had very short duration. SOBEK often does not produce output for numerical computa-
tional reasons when the boundary has very small water level increments [15].

Table 5.2 presents some statistics of the run times of simulations created in SOBEK. The simulation with the
longest calculation time took around 13 days to finish on a CPU core. Because the duration of the simulations
varied due to input sampling some simulations were rather fast as they only consisted of a couple of frames.
On average, the simulations took around 2 days to complete. We also show the calculation time until Nbound ,
which indicates the duration of the simulations that are valid as training examples. That is, the run time of the
simulations when we remove the frames after the moment that water reach one of the domain boundaries. It

27

28 5. Network training

Partial training Full training

Property Training set Validation set Training set Validation set Test set

Simulations 15 3 92 4 2
Examples 84,325 23,518 479,268 26,514 9,868
Percentage of total 78.19 21.81 92.94 5.14 1.91
Mean tile entropy 1.51 1.50 1.54 1.37 1.19
std tile entropy 0.64 0.51 0.56 0.50 0.45
Mean peak 3.43 2.91 3.00 2.65 1.11
std peak 1.94 1.88 1.74 1.69 0.71
Mean duration 13.92 18.89 11.83 16.23 13.34
std duration 6.78 5.24 7.01 6.47 3.98
Mean N 794.13 1314.67 679.82 1230.00 861.00
std N 345.01 163.24 408.51 203.69 241.00
Mean Nbound 417.07 678.33 363.48 569.75 468.00
std Nbound 380.39 546.25 288.47 509.08 152.00

Table 5.1: Statistics of the training, validation sets. A partial training scenario and a full training scenario are defined.

can be seen that the maximum calculation time in this case is much shorter. This indicates that the duration
of some of the simulations was chosen too large and a lot of the data resulting from these simulations is not
being used.

Nbound N

Mean run time 0 days 11:38:43 hours 1 days 21:51:20 hours

Maximum run time 1 days 11:12:39 hours 13 days 00:06:07 hours

Minimum run time 0 days 22:51:20 hours 0 days 00:22:06 hours

Table 5.2: SOBEK simulation run times. Average values of 100 flood simulations on square tiles of 1000×1000 grid cells.

5.1.2. Training runs
Various training runs are performed for the different network architectures. For the convolutional encoder-
decoder network, two training runs were performed. In the first run, the input X contains the flow snapshot
ϕt = (ht ,ut , vt) and terrain maps of a certain input patch and the output Y contains the flow snapshot ϕt+1 =
(ht+1,ut+1, vt+1) at time step ∆t = 1 mi n later. In the second training run, the output is changed to the
discrepancy between two successive time steps, that is Y =∆ϕ=ϕt+1 −ϕt . In both runs, a MSE loss function
was used and a time step of ∆t = 1 mi n. Table 5.3 summarizes the settings of the two training runs.

run time step input size output size output Loss scenario

1 1 min (232,232,5) (128,128,3) ϕt = (ht+1,ut+1, vt+1) MSE Partial

2 1 min (232,232,5) (128,128,3) ∆ϕ=ϕt+1 −ϕt MSE Partial

Table 5.3: Training runs performed for the convolutional encoder-decoder network.

Figure 5.1 presents the loss during training as well as the validation loss evaluated at the end of each epoch.
It can be seen that the validation loss is lower than the training loss throughout the epochs. A reason for this
can be that the validation set contains simulations that are easier for the model to predict accurately. Another
explanation is that the validation loss is evaluated after the epoch whereas the training loss is computed dur-
ing the epoch in between batches.

5.1. Training set 29

Figure 5.1: Loss during training and on the validation set for various training runs of the convolutional encoder-decoder network.

For the modified U-net architecture, a total of four training runs were performed. In the first and second runs,
the network was trained to predict ϕt+1 for time step ∆t = 1 mi n and ∆t = 2 mi n respectively. In the third
training run, the outputs were the discrepancies between the current and next time step ϕt+∆t with time step
∆t = 1 mi n. For all three above described training runs a MSE loss was used. Finally, in the fourth training
run a physics informed loss function was used. Table 5.4 summarizes the settings of the four training runs.

run time step input size output size output Loss scenario

1 1 min (232,232,5) (128,128,3) ϕt = (ht+1,ut+1, vt+1) MSE Partial

2 2 min (232,232,5) (128,128,3) ϕt = (ht+1,ut+1, vt+1) MSE Partial

3 1 min (232,232,5) (128,128,3) ϕt = (ht+1,ut+1, vt+1) PI Partial

4 1 min (232,232,5) (128,128,3) ∆ϕ=ϕt+1 −ϕt MSE Partial

Table 5.4: Training runs performed for the modified U-Net architecture.

Figure 5.2 presents the loss during training as well as the validation loss evaluated at the end of each epoch.

Figure 5.2: Loss during training and on the validation set for various training runs of the modified U-Net network.

Finally the ConvLSTM network was trained on the partial training set. The network was trained once on
predicting discrepancies ∆ϕ

30 5. Network training

run time step input size output size output Loss scenario

1 1 min (4,232,232,5) (128,128,3) ∆ϕ=ϕt+1 −ϕt MSE Partial

Table 5.5: Specifications of the training run performed with the ConvLSTM architecture.

5.2. Hyperparameter choice
In this section we discuss the choices for the hyperparameters used in training the network architectures.
These parameters must be specified before training starts and influence the training process. Ideally, the
influence of hyperparameters choices should be explored and an optimization strategy can be used to find
optimal parameters. However, due to long training time, in this study the influence of hyperparameters was
not explored. The hyperparameters are based on computer specifications and on values used in examples
such as in [7] and literature.

A first hyperparameter choice that will be discussed is called the batch size. Deep learning models are trained
on training examples, however generally a batch of examples is created after which an update is made to the
trainable weights. There are two reasons to use batches instead of training on the whole data set at once [30].
Firstly, when a training data set is large it may not be possible to load the whole data set at once and you are
forced to train on batches of the data set. Secondly, training on smaller batches speeds-up training as you are
updating the weights after each batch. When small batches are used, the number of updates per epoch in-
creases. Only making an update of the weights after going through all training examples may not be efficient.
A disadvantage of using small batch sizes is that the accuracy of the gradient will be smaller. The size of the
batches is usually constrained to memory of the graphical processing unit (GPU). A typical value is 32, 64, 128
etc. Often powers of 2 are used because operation can work faster when their inputs are sized in powers of 2.
Here a batch size of 16 was chosen because it is used very often in training deep learning models and because
it was possible within memory constraints of the GPU used in training.

A second hyperparameter is the learning rate of the optimizer which determines by how much the weights
are adjusted after each training step. Choosing an appropriate right learning rate can be challenging. When a
small value for the learning rate is chosen, the convergence of training may be slow. When a very large value is
chosen, the network may not converge to a minimum of the training loss [30]. The learning rate of the model
is sometimes seen as the hyperparameter that has largest influence on the performance of the model. Here,
a learning rate of 1e −4 was used. Also, the learning rate was decreased as soon as the validation loss stops
improving.

A third hyperparameter is the actual optimization method used for training the deep learning model. Here
Adaptive Moment Estimation (Adam [19]) is used as an optimization algorithm. This optimizer is available to
use in many deep learning libraries and it has been showed to give good performance for many learning tasks.

In addition to the above choices for hyperparameters, the length of training was chosen to be 10 epochs.
That means that the networks goes through all training examples 10 times. The loss function that is used in
training is the mean squared error (MSE). During training also the mean absolute error (MAE) is tracked. The
choices for hyperparameters are summarized in Table 5.6.

5.3. Training time
We found that training the network architectures on the partial data set with training 10 epochs took approx-
imately 1.5 days for the convolutional encoder-decoder network and modified U-Net, which was feasible for
trying different training runs in the available time for this research. Estimates of the network training times
are summarized in Table 5.7. Training was done on a 8 GB Nvidia GeForce RT2080 GPU in all cases. It was
not clear how much of the capacity of this GPU was used during training. The efficiency of the training pro-
cess may be improved with a more efficient input data pipeline which was not explored in this study. The
training time of the ConvLSTM network was found to be significantly longer than the training time of the
other models. This can be explained by the network complexity as the recurrent layers in the ConvLSTM
network increase the number of weights of this network architecture. Also, the input of these network is four

5.4. Test simulation 31

Table 5.6: Hyperparameters used in training runs. For the learning rate, a plateau
was used such that the learning rate is decreased when validation loss starts to
increased.

Parameter Value

Batch size 16

Learning rate λ 0.0001

Pptimizer Adam

Loss MSE

Metric MAE

Epochs 10

times larger than the inputs of the non-recurrent network. Loading these inputs during training therefore
also takes more time which leads to a longer overall duration of training. One training run was performed
using the full training set, however the results were not included in this report as due to an error in the loss
function which corrupted the results of the trained network. The training time of this run was approximately
9 days, which is significantly longer than the training time of the partial data set. The larger validation set of
full training was also larger, which contributed to the longer duration as well. The ConvLSTM network was
not trained on the full training set because of time limitation of this research.

Table 5.7: Training time of different
network architectures. These are es-
timates for 10 epochs using the partial
data set.

Architecture Partial training
set

Full training
set

CAE ≈ 1.5 days ≈ 9 days

U-Net ≈ 1.5 days ≈ 9 days

ConvLSTM ≈ 5 days -

5.4. Test simulation
In this section we discuss one of the simulations in the test set which will be used in Chapter 6 to test the
performance of the surrogate model with various trained network architectures. Figure 5.3 gives the initial-
and boundary conditions of the test simulation. From the elevation and roughness maps, it can be seen
that the terrain is mostly rural area. The friction coefficients are low for most of the area indication grass or
agricultural area with only a few buildings present along a main road. The hydrograph is presented in Figure
5.3 (c) and shows that the water rises to about 1.7 meters in 300 minutes. Shortly after the peak is reached,
water hits one of the boundaries of the domain and the rest of the simulations neglected.

(a) Elevation map (b) Roughness map (c) Hydrograph

Figure 5.3: Initial- boundary conditions of simulation 23 from the test set. (a) The elevation map of the domain and the breach location,
(b) the roughness map and (c) the triangular hydrograph specified in the breach location.

To see how the surrogate performs on the described test simulation with different starting points, we use four
starting times t0 ∈ [0,10,50,100] minutes. The water depth and flow velocities at these time instances are pre-

32 5. Network training

sented in Figure 5.4. It is expected to be more challenging for the surrogate model to predict the flood prop-
agation for start time t0 = 0 minutes because the amount of information in the initial conditions is smaller
than for the later start times. The information provided to the surrogate model comes solely from the water
level variation in the breach cell for starting time t0 = 0 minutes. The flood has to be predicted completely
from this information. With t0 = 100 minutes, much more of the computational domain is flooded and the
amount of information that is provided to the surrogate is much larger.

Figure 5.4: Initial conditions
at different starting times t0.

Figure 5.5 presents the inundation maps of the test simulation, it can be seen that the flood extents more
towards the rural area away from the buildings in the small town. Near the breach, high flow velocities are
observed with an extreme of more than 15 m/s. Away from the breach, much lower maximum flow velocities
occur. Water depths in the overall flood stay below 2 meters in most of the flooded area.

(a) Maximum water depth (b) Maximum velocity (c) Time of arrival

Figure 5.5: Ground truth inundation maps for the test simulation.

6
Feed-forward architecture

In this chapter, we discuss the results of the trained feed-forward architectures. These are a convolutional
encoder-decoder network and a modified U-Net architecture. We use the trained networks resulting from
the different training runs as described in Chapter 5 to create surrogate simulations and emulate the test
simulation. The performance of the surrogate model with the trained networks is then compared to the test
simulation generated with SOBEK.

6.1. Convolutional encoder-decoder network
Here we discuss the performance of the convolutional encoder-decoder network as presented in Figure 4.7.
The network is trained with the settings presented in Table 5.3.

6.1.1. Test set performance
The convolutional encoder-decoder architecture was first trained on the partial training set with a MSE loss
function and 10 training epochs. Figure 6.1 presents the Root Mean Squared Error (RMSE) in the water depth
h and flow velocity u =

p
u2 + v2 for the surrogate simulation for different starting times t0 i n[0,10,50,100]

minutes. With begin time t0 = 100 minutes, the flood has propagated over a region of the domain and thus
there is more information in the input patches of the surrogate model. Therefore, we expect that it may be
easier for the model to predict future time steps of the simulation than for starting time t0 = 0. It can be seen
that due to the error propagation, the RMSE increases with the number of time steps of the simulation. The
RMSE in h remains within 10 cm for about 22 time steps and does not show a dependence on the begin time
t0 of the simulation. In the flow velocity u, it can be seen that the RMSE increases more rapidly for the larger
begin time of t0 = 100 minutes.

Figure 6.1: Test simulation RMSE for convolutional encoder-decoder network. The error in water depth h and flow velocity u =√
u2 + v2 is presented for different begin times t0.

6.1.2. Error reduction with threshold filter
From Figure 6.2, it can be seen that small errors are introduced in the predictions of the trained network at
each time step. These small errors start to rapidly spread over the flood domain since they also occur at the

33

34 6. Feed-forward architecture

boundary of the patches. These water depth errors will quickly appear in the overlap regions between two
patches which causes a propagation to neighbouring patches. After four time steps of ∆t = 1 mi n, these
errors already reached the boundary of the domain. In this section, we investigate post-processing steps that
can be used to reduce the rapid propagation of small errors over the flood domain.

Figure 6.2: Water depth predictions for the convolutional encoder-decoder network. Here, snapshots of the ground truth simulation
(SOBEK) and the surrogate simulation are presented.

The errors propagate to neighbouring patches quickly because at each time step the surrogate checks if there
is water present in each input patch of the grid. From the results, it can be seen that at every time step, the
flow prediction contains small errors over the entire area of the patch. These small errors in the overlap re-
gions triggers the surrogate to make predictions for a neighbour patch. To reduce the propagation speed, a
water depth threshold θh > 0 can be defined such that neighbouring patches only start making flow predic-
tions once the water depth in these patches exceed this threshold value. In other words, at each time step
we check for each input patch if there is at least one cell with water depth above this threshold. If that is the
case, the trained network is used to make a flow prediction for these patches. Another approach to reduce the
propagation of these errors is to use a filter. That is, water depths below a certain threshold value are removed
from the flow predictions.

In Figure 6.3, We used the same trained network to create surrogate simulations for start time t0 = 10 mi n.
We used a threshold filter and an approach were we delay the propagation of errors and compared these to a
surrogate simulation without error reduction. It can be seen that a filter to patch predictions and removing
small water depths below a threshold θh is most effective in reducing of the RMSE in water depth h and flow
velocity u. For this error filter, a threshold value of θh = 0.01 m was used. In the other approach, we check if
water depths in the input patches exceed a threshold θh = 0.01 m. If that is the case, the patches that share
the overlap region will start to make predictions in the future time step. However, if the water depths in the
overlap regions are smaller than the threshold value the predictions are not induced. In this way, we can delay
the propagation of the error over the computational domain. It can be seen that this approach however leads
to a smaller reduction of the RMSE compared to the error filter approach. For this reason we will use an error
filter for the surrogate simulations in the remaining of this study.

6.2. Modified U-Net 35

Figure 6.3: Test simulation RMSE for noise filters. For begin time t0 = 10 mi n with water depth threshold θ = 0.01 m.

To investigate the value of the threshold θh used in the error filter approach, we create three simulations with
θh ∈ [0.005,0.01,0.05] meters for start time t0 = 10 mi n. Results of the simulations are presented in Figure 6.4.
It can be seen that a larger value of θh reduces the RMSE of the water depth h and flow velocity u, however
the the flood extent decreases in this case. The flood extent is the percentage of cells in the computational
domain that contain water depth h > 0. We can see that the SOBEK simulation increases slowly over time.
Using a large filter threshold θh = 0.05 m causes a decrease of the flood extent, indicating that the flood prone
area is drying out. The filter threshold of θh = 0.01 m leads to flooding behaviour which spreads more rapidly
than the SOBEK simulation. The RMSE error in water depth is also presented and indicates the error in the
area of non-zero water depth hwet in the SOBEK simulation. Here, a larger value of θh increases the RMSE in
hwet . From these four plots, it can be seen that using an error threshold of θh = 0.01 m gives results that are
closest to the SOBEK simulations which we consider as ground truth.

Figure 6.4: Test simulation RMSE for threshold values of water depth.

6.2. Modified U-Net
Here we discuss the performance of the modified U-Net architecture as presented in Figure 4.8. The network
is trained with the settings presented in Table 5.4. We also compare the modified U-Net with the convolu-
tional encoder-decoder model.

36 6. Feed-forward architecture

6.2.1. Test set performance
Figure 6.5 presents the performance of this modified U-Net architecture on the test simulation with begin
time t0 = 10 mi n compared to the convolutional encoder-decoder or convolutional autoencoder (CAE) net-
work. In this case a filter of θh = 0.01 m was used. To investigate the influence of the skip connections that
have been introduced to the modified U-Net architecture, we compare the results on the test simulation to
the convolutional encoder-decoder network that does not have skip connections. It can be seen that the
modified U-Net architecture has smaller RMSE in h and u than the convolutional encoder-decoder network.
Also, the flood extent in time is more close to the SOBEK simulation. This indicates that skip connections
are effective for training the deep learning architectures and for emulating flood simulation. From the plot
indicating the RMSE in hwet , we see that the modified U-Net is first more accurate than the convolutional
encoder-decoder network however at around 10 time steps it starts the RMSE becomes larger. The modi-
fied U-Net may preserve more detail of the flood than the convolutional encoder-decoder network but these
results indicate that this also result in a larger error propagation.

Figure 6.5: Test simulation performance of the CAE and U-Net architectures.

6.2.2. Influence of time step
By looking at the patch-level examples with time shift ∆t = 1 mi n, it was found that the change in flow char-
acteristics ∆ϕ=ϕt+1 −ϕt between two consecutive time steps was often very small. In training, the network
architectures may therefore focus mainly on reconstructing the input and not on the gentle difference in
flood propagation. Increasing the time steps between frames in the examples may make it easier for the net-
works to learn these temporal changes. Here, we test the performance of the U-Net network if we increase
the time step of training examples from 1 minute to 2 minutes. Figure 6.6 presents the performance of the
modified U-Net architecture trained with time step ∆t = 1 mi n and time step ∆t = 2 mi n. It can be seen
that the network trained with 1 minute time steps is has smaller RMSE for h and u and also follows the flood
extent of the SOBEK simulation much more closely than the network trained on time steps that are twice as
large. From the plot showing the RMSE in hwet , wet region of the SOBEK simulation, it can be seen that the
network trained on two minute time steps performs better. For the same duration, the number of predictions
created with the surrogate is however twice as small compared to the network trained on 1 minute time steps
and thus it is effected less by error propagation. The plots indicate that increasing the time step of training
examples does not lead to more accurate surrogate simulations. Therefore, a time step of ∆t = 1 mi n will be
used in the surrogate simulations in the remaining of this study.

6.2. Modified U-Net 37

Figure 6.6: Test simulation error for U-Net architecture trained on different time resolutions.

6.2.3. Physics-informed loss
In this section a loss functions is proposed that aims to use knowledge about the physics of floods in the
training process. The loss function consists of two terms. The first term is a weighted mean squared error loss
that distinguishes between wet and dry parts of the area. From the results of the training runs using a MSE
loss term, the trained networks were found to often falsely predict water depths in regions that are dry in the
SOBEK flood simulations. Here we use the snapshots of SOBEK at time t +1 to create a wet-dry mask. This
mask is then used to compute the MSE in the dry regions and the MSE in the wet regions. The weight λw and
λd for are then multiplied with the wet MSE and dry MSE respectively.

L1 =λw MSE(Y , Ŷ)wet +λd MSE(Y , Ŷ)dr y (6.1)

If we choose the weight λd larger than λw , the network is forced to focus more on correctly predicting dry
regions in order to minimize the loss function. Figure 6.7 shows a wet-dry mask for a certain example in the
training set.

Figure 6.7: Mask used in the wet-dry loss function. The ground truth Y at
a certain time step t can be used to extract a mask of wet- and dry regions.

38 6. Feed-forward architecture

The second loss term that is proposed here is based on the continuity equation, the first equation of the
shallow water equations.

∂ζ

∂t
+ ∂hu

∂x
+ ∂hv

∂y
(6.2)

This is a mass balance, which for incompressible fluids is equal to the volume balance. Violation of this equa-
tion means that the volume of water between two time steps is not conserved and thus water has appeared
or disappeared in one time step. Since this is physically not possible, we can use this violation as a measure
to penalized the network.

In training, the input X t = (ht ,ut , vt) can be used to create a prediction with the network Ŷt+1 = (ĥt+1, ût+1, v̂t+1).
The time derivative in eq. 6.2 can then be approximated with simple backward difference. The spatial deriva-

tives can be computed using a convolutional layer with a specific kernel. A partial derivative ∂ f
∂x can be com-

puted with the kernel weights [−1,1] as a row vector and ∂ f
∂y with the same weights as a column vector. For

the spatial derivatives, the product rule of differentiation can be used.

L2 =λc
1

n

∑
Ω

(ht+1 −ht

∆t
+ht

ut

∆x
+ut

ht

∆x
+ht

vt

∆y
+ vt

ht

∆y

)2
(6.3)

Figure 6.8 present a visualization of the first term in this loss function. In this case, the water depth ht+1 of a
SOBEK simulation is shown. During training, the network is used instead to compute the prediction ĥt+1.

Figure 6.8: Visualization of
the water depth difference
ht +1−ht between two time
steps. Here, the water depth
ht over an input patch of
dimension 232 × 232 is pre-
sented and the water depth
ht+1 over the output patch
with dimension 128×128 pix-
els.

We trained the modified U-net architecture to predict (ht+∆t ,ut+∆t , vt+∆t) with a 1 minute time step and the
loss L = L1 +L2. For the weights, λw = 0.2, λd = 0.7 and λc = 0.1 were chosen. It was found that a small value
for λc resulted in better training results. From Figure 6.9, it can be seen that the use of this physics-informed
loss function for training results in a larger RMSE in h and u. The resulting surrogate simulation is also less
accurate in terms of the flood extent compared to the training run where a MSE loss term was used. The use of
a weighted loss function may complicate the training process and it may be more difficult to find a minimum
for the loss function. Also, SOBEK uses a smaller time step internally than the time step of 1 minute for which
output is available. Therefore, the continuity loss term may sometimes not be very accurate in some cases.

6.3. Patch predictions 39

Figure 6.9: Test simulation error for U-Net architecture trained with MSE loss and PI-loss.

6.3. Patch predictions
To see the output of the surrogate simulations created by the trained CAE and U-Net architectures and com-
pare them with the SOBEK simulation, we can take a closer at one of the patches of the test simulation. Figure
6.10 shows one of the patches in the test simulation at time t = 50 minutes. The input patch is indicated with
a solid black line and the corresponding output patch with a dashed line.

Figure 6.10: Patch 25 in test
simulation. Solid line shows
input patch and the dashed
line shows the output patch at
time t = 50 minutes.

Figure 6.11 presents three patch-level frames of the surrogate flood simulations and SOBEK simulation. Here,
the trained CAE network and modified U-Net architecture were used to create the surrogate simulations.
The results are presented for three forecast times: 4, 8 and 14 time steps and starting at t0 = 50 mi n. It
can be seen that the predictions from the CAE network are distorted and blurry as expected due to loss of
information resulting from the pooling and upsampling layers. At t0 +12 mi n, there is some propagation of
the flood however also dry regions appear that were wet originally. For the modified U-Net architecture, the

40 6. Feed-forward architecture

information loss is reduced by using skip connections that copy information from the encoder to the decoder
part in the network. It can be seen that the output of this network preserves a lot more detail. It can be seen
however that there is less flood propagation and the water depths increase faster.

Figure 6.11: Water depth predictions for a flow patch in the test simulation. Here a begin time t0 = 50 mi n is used and the 2 min, 14
min and 28 min forecast is presented.

6.4. Predicting flow discrepancies
In this section we discuss performance of the convolutional encoder-decoder and modified U-Net archi-
tectures trained on flow discrepancy examples. We discussed that flow characteristics between frames in a
simulation (with 1 minute time step) is found to be small. In this section we investigate if predicting flow dis-
crepancies ∆ϕ between two time steps leads to more efficient training and better performance. Future frames
of the surrogate simulation ϕt+1 can be created by taking the current frames ϕt and adding the discrepancies
predicted by the trained network ∆ϕ.

ϕt+1 =ϕt +∆ϕ (6.4)

By looking at the resulting surrogate simulations we found that without a threshold filter, small errors propa-
gate to neighbouring patches quickly and spread over the complete computational domain within a few time
steps. Therefore, we investigate the use of an error filter, but now on the predicted discrepancies ∆ĥt . Figure
7.2 presents the error in the surrogate simulation created with the trained convolutional encoder-decoder
architecture for different threshold values θ.

6.5. Comparing feed-forward architectures 41

Figure 6.12: Test simulation error for CAE network trained on flow discrepancy ∆ϕ prediction and influence of noise filter with dif-
ferent water depth threshold θ.

It can be seen that a threshold value of θ = 0.002 m gives the smallest RMSE in h and u and it also is closest to
SOBEK in terms of flood extent in time. The RMSE over the wet cells in the SOBEK simulation hwet is however
slightly larger than for smaller threshold values.

6.5. Comparing feed-forward architectures

In this section, we compare the performance of the modified U-Net and convolutional encoder-decoder net-
work trained on predicting ϕt+1 and ∆ϕ. We use the error filters as discussed in previous sections, a time step
of 1 minute and the networks were trained with a MSE loss function. Figure 6.13 presents the performance of
these trained architectures. It can be seen that the surrogates that predict the flow discrepancies give simula-
tions that have the smallest error in time. This indicates that it is more efficient to train the networks on the
flow discrepancy examples. In terms of flood extent, we see that the convolutional encoder-decoder network
or CAE performs better in the case of flow discrepancy predictions. The opposite is true for the modified
U-Net architecture. If we compare all four surrogates, the CAE trained on flow discrepancies gives the best
overall performance.

In Figure 6.14, the frames of the surrogate simulations at different time steps after t0 = 50 mi n are presented
as well as the ground truth SOBEK simulation. Here the water depth predictions are presented for the CAE
and U-Net architectures trained on predicting the flow discrepancies ∆ϕ. It can be seen that the predictions
of the U-Net and CAE architectures have difficulty predicting the propagation of the flood, especially in the
upper right direction. The modified U-Net architecture seems to predict slightly more small errors than the
convolutional encoder-decoder network.

The various trained network architectures were found to have similar calculation time. For a flood simulation
with 316 time steps, the surrogate takes less than one minute to finish on a CPU. On a GPU the run time of
the surrogate simulation is even and the efficiency of the surrogate model may be still improved to reduce
the run time even further. The calculation time of the test simulation created with SOBEK was found to be a
little more than 1 hour for the same number of frames.

42 6. Feed-forward architecture

Figure 6.13: Test simulation performance of trained architectures. Here the CAE and U-Net are the ones trained on 1 min timesteps
with MSE loss. CAE ∆ϕ and U-net ∆ϕ indicate networks that predict flow discrepancies.

Figure 6.14: Water depth predictions for a flow patch in the test simulation. Here a begin time t0 = 50 mi n is used and the 4, 8 and 12
minute forecast is presented.

7
Recurrent architecture

In this Chapter the performance of the surrogate model is discussed using a trained convolutional Long-
Short Term Memory (ConvLSTM) architecture. This is a recurrent network architecture that takes as input
a sequence of past flow characteristics X f l ow = [ϕt−3,ϕt−2,ϕt−1,ϕt] instead of a single frame. This input
sequence is processed by a flow encoder. A separate terrain encoder is used for the elevation and roughness
map of an input patch. The network layout is presented in Figure 4.9. Here, performance of the network on
the test simulation is discussed. After that, a small case study is presented in which the surrogate model is
used to create simulations for a dike ring in the Netherlands. These surrogate simulations are compared to
flood simulations created with SOBEK. We show that the surrogate model is able to create surrogate flood
simulations for dike ring areas. Finally, we discuss the calculation time of the surrogate model and compare
it to the calculation time of the SOBEK flood simulations.

7.1. test set performance
The ConvLSTM network consists two separate encoder networks. This network architecture takes as input a
sequence of past flow predictions. The sequence length of 4 used in this study, which was found be possible
with the size of GPU memory used in training. The terrain of a patches does not change in time. This means
that the elevation and roughness are the same for all flow frames in the sequence. Therefore, it is decided split
the flow and terrain inputs and use separate encoder networks to avoid redundancy in the inputs. Figure 7.1
presents the Root Mean Squared Error (RMSE) in the water depth h and flow velocity u =

p
u2 + v2 for the

surrogate simulation for different starting times t0 ∈ [0,10,50,100] minutes. The RMSE in h remains within
10 cm for about 22 time steps and does not show a dependence on the begin time t0 of the simulation. It
stays very close to zero for the first 15 time steps, indicating that the predictions for this forecast duration are
accurate. In the flow velocity u, it can be seen that the RMSE increases more rapidly for the larger begin time
of t0 = 100 minutes.

Figure 7.1: Test simulation RMSE for ConvLSTM network. The error in water depth h and flow velocity u =
√

u2 + v2 is presented for
different begin times t0.

From observation of the predictions, we can see that small errors are again present in the predictions of the
network at locations that are not connected to the flood extent. To reduce these errors we again apply an

43

44 7. Recurrent architecture

error filter for various filter threshold values θh . Here, it can be seen that using a filter of θh = 0.002 m is very
effective in reducing the RMSE in the water depth h and in u. In addition, the flood extent is very close to the
SOBEK simulation which is considered as the ground truth. If we look at the error in hwet , that is in the wet
cells of the SOBEK simulations, it can be seen that this larger threshold value leads to larger a larger RMSE.
However, the errors in time of the various simulations are close. These results indicate that using a filter of
θh = 0.002 m is most effective and for that reason we will use this value in the application of the surrogate
model.

Figure 7.2: Test simulation error for ConvLSTM network trained on flow discrepancy ∆ϕ prediction and influence of noise filter with
different water depth threshold θ.

7.2. Case study: flood simulation in Arcen
In this section, we discuss a case study where we applied the surrogate to make flood simulations in a small
levee system located along the river Meuse near Arcen in Limburg, the Netherlands. The results of the surro-
gate model are compared to the hydrodynamic flood simulations created with SOBEK, which are considered
to be ground truth. The main purpose of this case study is to show that the surrogate model and the method
of patch-level predictions can be used to create flood simulations for dike ring areas of arbitrary shape. The
terrain of the dike ring area has a lot of height difference, making it different from other terrain models used
in the training set. For that reason makes a suitable case for testing the generalization capabilities of the
surrogate. The relatively small size of the levee system allows for the computation of the flood using the hy-
drodynamic model within reasonable run time and memory use. In total, three simulations will be created
in Levee system 65 in the South-East of the Netherlands. Figure 7.5 presents the study area with the breach
locations along the river as well as the grid with input and output patches used by the surrogate model.

The levee system lies along the upper part of the Meuse such that it is not influenced by the tide or backwater
effects from lakes. High water levels resulting from discharges in this part of the river are due to heavy rainfall
events. The river is slightly meandering in this region of the Netherlands. There is some urban area in the
middle of the levee system and further here is mostly agricultural businesses in the region and recreational
destinations. To the North, East and South of the area, high elevation grounds are present and no flood
protection is needed. The accepted frequency of high water in this region of the Netherlands used to be 1/50
years, however recently the protection level was increased to 1/250 resulting in a dike strengthening project
called Maaswerken.

7.2. Case study: flood simulation in Arcen 45

Figure 7.3: Water depth predictions for a flow patch in the test simulation. Here a begin time t0 = 50 mi n is used and the 2 min, 14 min
and 28 min forecast is presented.

Table 7.1: Scenario speci-
fications. Breach location
and boundary conditions
for three flood scenario’s in
Arcen.

variable UNIT breach 1 breach 2 breach 3

Kmr km 120 119 118

Latitude DEG N 388787.72 387932.65 387058.04

Longitude DEG E 209477.48 209893.02 210282.55

Breach cell elevation m + NAP 15.72 16.51 16.35

Peak (1/300 Y) m + NAP 17.33 17.41 17.54

7.2.1. Hydraulic boundary conditions
To test application of the surrogate model we use realistic boundary conditions. Here three breach locations
that are chosen based with water levels based the safety norms in the Netherlands. The safety norm along the
dikes in the Arcen levee system have return period 1/300 years. Hydraulic boundary conditions for locations
along the Meuse were quantified in a study performed by Deltares [5]. A 1D hydrodynamic model was used
with an upstream boundary point at Borgharen. For this upstream boundary condition, generated time se-
ries of the GRADE project were used instead of extrapolation from historic high river discharge observations.
The advantages of using generated series is that they avoids the need to choose an extreme value distribution

46 7. Recurrent architecture

Figure 7.4: Topographic
map of levee system 65 near
Arcen and grid for the sur-
rogate model. Three breach
locations are indicated that
will be assessed in this case
study. The river kilometers
indicate the distance from
the Borgharen measuring
station. The input and output
patches are shown in a grid
that is used by the surrogate
model. Here, output patches
are presented with black solid
lines and input patches with
dashed line.

and fit in on the arguably too small and possibly inhomogeneous set of historic distribution. GRADE uses a
stochastic weather generator using nearest-neighbour resampling and a hydrological rainfall-runoff model
as well as a routing model (SOBEK 1D) for the river Meuse basin to the simulate a 50,000 year discharge series
at Borgharen. All water level series that can occur downstream of this location are assumed to be due to the
change of discharge in Borgharen as a function of time. In this stretch of the river, the water level occurring is
primarily due to high river discharges and no tidal or backwater effects are present.

Figure 7.5: Hydrograph boundary conditions speci-
fied at the three breach locations. These hydrographs
were constructed using water levels corresponding to
a 1/300 year return period as determined in [5].

7.2.2. Surrogate model setup
In this section, we discuss several steps that are required to use the surrogate model. We first discuss how
to construct a grid of input and output patches. Second, we discuss how to specify the boundary condition
in the breach location grid cell. Finally, some pre-processing steps are explained that are needed to use the
surrogate model for the dike ring area.

Define a computation grid
The first step in creating the surrogate flood simulation for the Arcen dike ring is to create a static grid of
patches. The choice for the location op patches within the grid is made based on the breach location. Here

7.2. Case study: flood simulation in Arcen 47

we choose the breach location to lie approximately in the center of a patch, and build patches around it
outwards. The result of such creation of a grid is illustrated in Figure 7.5. Note that some patches are contain
only a very small region of the levee system. This is due to the chosen patch size and due to the shape of the
Arcen levee system. It may be a challenge for application of the surrogate model, because in the proposed
training procedure, flow examples in such patches were not present.

Specify initial- and boundary conditions
To specify specify the hydrograph boundary condition, the water depth variation is stored as a one-dimensional
array with a length determined by the number of time steps in the simulation. The information of this bound-
ary condition is given to the model by adjusting the water depth in the cell at the breach location. This means
that the patch containing the breach location is informed on water level differences, and all other patches
get this information indirectly by flow through the patch boundaries. Another important step is to adjust the
elevation map of the area such that the elevation at the breach location is the datum or zero-mark. This same
pre-processing step was done during training, and it avoids having very different ranges of inputs. In addi-
tion, no data values which sometimes are chosen -999 in DEMs should be adjusted to zeros, again to match
training conditions.

7.2.3. Results
In this section, the results of flood simulations are presented for the proposed case study. We first discuss the
SOBEK flood simulations that were made for the three breach scenario’s. Second, we compare the surrogate
flood simulations to the SOBEK simulations to evaluate the performance of the surrogate model.

SOBEK simulations
These results were that were created with SOBEK using a 2D breach node with the above described hydro-
graphs. The simulation output are water depths and flow velocities at 1 minute time intervals. These are
returned in ascii file format. The total number of ascii files that can be returned is 10,000 so that the sim-
ulation was stopped after that amount of minutes. It should be noted that the size of this data is quit large
(hundreds of GBs). Also generating these simulations was found to be very computationally intensive due to
the small mesh width of 5 by 5 meters used in this study. From the different scenario’s breach 1 was found to
be most computationally intensive. This simulation has not been run for the full prescribed duration as the
computation took very long, it was stopped after running for over one month.

Figure 7.6 presents the maximum water depth maps for the previously defined flood scenario’s. It can be seen
that the low lying part in the North of the flood prone area has the largest water depths. These water depths
can be over 3.5 meters, for the first flood scenario.

Figure 7.6: Results of maximum water depths in the Arcen area for the three flood scenarios.

48 7. Recurrent architecture

Figure 7.7 presents maps with the maximum occurring flow velocities in the three flood scenario’s. It can be
seen that in the first scenario the largest flow velocities are encountered. This explains the long run time of
this simulation. SOBEK internally adjusts the time step of computation based on the Currant number to en-
sure numerically stable solutions. When the flow velocities are high, a smaller time step is chosen resulting
in longer run time. The larger flow velocities were expected as the amount of water entering the flood prone
area was largest for this scenario. In the second and third scenario, the maximum flow velocities are much
lower.

Figure 7.7: Results of maximum flow velocities in the Arcen area for the three flood scenarios.

Surrogate simulations
We use the trained ConvLSTM network to create three surrogate flood simulations and compare these to the
three simulations made with SOBEK. Figure 7.9 presents the RMSE of the surrogate model for the three flood
scenario’s as a function of the forecast time steps. Here a start time of t0 = 100 mi n was used. It can be
seen that the surrogate model performs better for the second and third simulations and it has difficulty with
accurately emulating the first simulations. The flow velocities in the latter flood simulation were found to be
much larger and this may be more difficult for the surrogate model because the flood propagates faster.

Figure 7.8: RMSE for three surrogate simulations. The error in water depth h and flow velocity u =
√

u2 + v2 is presented for begin
times t0 = 100 mi n.

Figure 7.9 shows the flood extent the flood simulation made with SOBEK and the surrogate flood simulation
created with the trained surrogate model. Again, the flood in the first simulation spreads much more rapidly
and the surrogate model is not able to replicate this behaviour accurately. The performance of the surrogate
model for the second simulation are much better. For this scenario, the flood extent in time of the surrogate

7.3. Calculation time 49

simulation is much closer to the SOBEK simulation. Finally, in the third simulation we see that the flood sim-
ulation resulting from the surrogate model first spreads to fast over the domain. However, after approximately
three time steps the increase in flood extent is very similar to that of the SOBEK simulation.

Figure 7.9: Flood extent in time for surrogate and SBOEK simulations.

In Figure 7.10, we present the results of surrogate model for the output patch surrounding the breach location.
We show the predictions of the surrogate model for the water depth after 8, 16 and 24 forecasting time steps.

7.3. Calculation time
In this section we discuss the simulation run time of the surrogate model and compare it to the simulation
run time of the SOBEK simulation. The different SOBEK simulations were found to have a lot of variability
in calculation time. The duration of these simulations was over 12000 time steps, however it was found that
SOBEK has a limit on the amount of simulation snapshot it can output of 9999. The first was found to have
a very long run time. This simulation was stopped after running for 2 months. This long calculation time
may be explained by the large flow velocities that were present in the simulations. SOBEK adjust the time
steps used based on a stability condition, for large flow velocities a small time step is required for numerically
stable solutions. The second and third simulations were found to have a run time of 3 and 5 days respectively.

The recurrent network of the surrogate model takes longer to run than the feed-forward network types. The
reason for this is that the architecture is more complex than a feed-forward network, it has more weights.
In addition, this network takes a sequence of past flow snapshots as inputs and thus it takes longer to load
these arrays into memory. The run time of these simulations was found to be still smaller than the SOBEK
simulations. It was not possible to create a flood simulation of 9999 time steps since that would require
over 200 Gigabytes of CPU memory. The calculation time of 999 time steps was found to be approximately
2 minutes on a CPU. When using a GPU for making the surrogate flood simulation, the calculation time is
expected to be even much lower. Also, it is expected that there is still room for improving the efficiency of the
surrogate model.

50 7. Recurrent architecture

Figure 7.10: Water depth predictions for a flow patch in sim 2. Here a begin time t0 = 5000 mi n is used and the 8 min, 16 min and 24
min forecast is presented.

8
Discussion

The proposed framework for surrogate modelling of flood simulation can be used to train deep neural net-
works to emulate such simulations. A trained surrogate model may be used as a substitute of expensive
hydrodynamic flood simulations and it is orders of magnitude faster in terms of calculation time. This has
the potential to be used for real-time flood forecasting allowing for example scenario-specific evacuation
planning. In addition, such surrogates may be used in a Monte Carlo framework to quantify uncertainty in
consequences of flood by simulating a very large number of possible flood scenario’s.

In this study, convolutional neural networks with an encoder-decoder structure were trained on examples
consisting of high resolution flood simulation output. Some assumptions and choices were made in con-
structing the data set and in creating a patch-wise training environment that is suitable for training the net-
work architectures. These assumptions will be addressed in more detail below.

8.1. Hydrodynamic simulations used in the training data set
In Chapter 4, the input sampling for creating fictitious flood scenario’s for the training data set was discussed.
For these scenario’s, terrain grid tiles from a number of large dike rings in the Netherlands were extracted and
used for the training simulations. This makes the trained surrogate models applicable for creating flood sim-
ulations in prone areas with similar terrain characteristics. If the terrain of a certain flood prone area is very
different from the ones used in training, different terrain may need to be selected for the training simulations
to get better performance of the surrogate model.

The mesh width of the uniform grids used in this study was 5 meters which is relatively high. An advantage of
using a high resolution grid is that it removes some of the needs to model 1D elements such as channels and
water retaining structures inside the 2D domain. From the simulations in the training data set it can for exam-
ple be seen that the floods sometimes spread very fast through small waterways that have low roughness. If a
coarser grid resolution was used, such small waterways would not be present in the terrain model which can
lead to a different propagation of the overall flood. The fine mesh width chosen in this study does however
require the time step of the simulations to be small for numerical stability reasons. This makes the construc-
tion of the training set a time costly process due to long run times of the flood simulations. In addition, the
resulting simulation output takes up large storage space. This restricts the number of flood scenario’s that
can used for the training data set.

The flood simulations were created using the software program SOBEK216 developed by Deltares. The advan-
tage of using this program is that it can be used to write simulation output text files of the flood characteristics
every time step (1 minute), which can be used as training data for deep learning architectures. In addition,
it uses a rectangular grid which is easy to construct and results in output that has uniform structure which is
easy to interpret. The disadvantage of using SOBEK is that it does not have the option to create many simula-
tions automatically, such as it is done with input sampling. The successor of SOBEK, D-Hydro does have such
option and may be better suited for creating training simulations. The approach taken in this study is to use a

51

52 8. Discussion

script to adjust certain initialization files with the initial- and boundary conditions that are used by SOBEK to
initialize the simulation. However, it was found that this approach was only possible for 2D boundary nodes.
For using a breach model or a 1D channel as boundary condition, changing the initialization files was found
to be difficult if not impossible. Even though it was possible to change the initialization files for simulations
containing a 2D boundary node, it was still required to open the model in the GUI where the model had to be
saved manually. This can be a time-costly process and may limit the number of flood scenario’s to be defined
for the training set. In future study, the successor of SOBEK, that is D-Hydro may be used which is better
suitable for defining flood simulations.

In this study, no breach modelling was used and also the outside water level (in the river) was not modelled.
The breaches in the training simulations were schematized by triangular hydrographs at a single cell in the
square grid domains. The h-t relation at this cell increased to a peak water level after which it decreases to
zero after a certain hydrograph duration. The flood simulations would be more realistic if they were com-
bined with a breach growth model and if it was connected to a river model such that the amount of water
entering the domain depends on the river discharge. The water level in the river will start to drop as more
water enters the flood prone area behind the breach.

From analysing the flood simulations resulting from the set of fictitious flood scenario’s created for the train-
ing data set, flow velocities in some simulations were found to be very large. The reason for this may be the
lack of a river model. The water level in the breach grid cell can increase to 5-6 meter in the most extreme
case. Figure 8.1 shows the maximum water depth and maximum flow velocity maps for the simulation with
the steepest water level increase and peak of the hydrograph of around 5 meters. It can be seen that the flow
velocities in this simulation reach more than 50 meters per second close to the breach location. Near this
location, sometimes also instabilities were present

Figure 8.1: Extreme flow conditions present in training set. Maximum water depth and maximum flow velocity maps for the training
simulation with steepest hydrograph. Large flow velocities are present near the breach location

In some simulations, the water level increase defined by the triangular hydrograph is very gentle which is also
not very realistic. In reality the breaches will happen most probably somewhere during the peak discharge
or water level. This will result in very rapid flows in the first moments of the flood. Flood simulations in the
training set often show to be more gradually varying flows.

8.2. Deep learning architectures and training
In this study, input and output patches were extracted from the expensive 2D simulation output generated
with SOBEK. The size of these patches was chosen to be 232×232 grid cells for the input patches. This size
may be quit large which is beneficial for the efficiency of the surrogate model during application because a
smaller number of patches is required to cover the computational domain, for example the dike ring. How-
ever, in general it is more difficult to train models using high-dimensional input. The performance of the
model may increase when smaller patches are used. In addition, the complexity of the simulations was also

8.2. Deep learning architectures and training 53

increased because a grid of roughness values was created for each simulation based on land use information
instead of using a constant roughness. This makes the input of the deep neural networks even greater and
training the deep neural networks an even greater challenge. It does however make the simulations more
realistic.

The data set used for training the neural network architectures in this study was relatively large leading to long
training times. The training time of the convolutional encoder-decoder and modified U-net architecture was
found to be in the order of 5-7 days for 10 epochs. For the recurrent convolutional LSTM (ConvLSTM) ar-
chitecture, training time was found to be even longer. This was in obstacle in accessing and optimizing the
hyperparameters of training and of the network. The choice for hyperparameters and the used layers in the
network architecture can have a large influence on the model performance. This long training time was also
the reason for using a different training scenario where only part of the training examples were used.

It was found that loading the patch examples in batches on the graphical processing unit (GPU) was time
costly. Because of this, the full computing power of the GPU was not exploited. The performance of the GPU
may be improved by making the input pipeline more efficient. This can be done for example by starting to
load the patches of the next training step before the current training step is finished. Also the batch size and
the size of the patches may lead to more efficient training.

9
Conclusion and recommendations

In this study, we explored the application of deep neural networks in a surrogate model for emulating two-
dimensional (2D) hydrodynamic simulations. We proposed a framework for deep learning-based surrogate
modelling of flood simulation that provides a way to generate expensive flood simulation data and train neu-
ral network architectures. A trained surrogate model may be used to create surrogate flood simulations in
dike ring areas.

We used the framework to train and test three deep learning architectures. The first two architectures are
feed-forward networks and the third architecture is of recurrent network type. These networks contain con-
volutional neural network (CNN) architectures with an encoder-decoder structure to make patch-level pre-
dictions of the flood characteristics in time. Using patches has the advantage of making a surrogate model
able to create flood simulations over prone areas without restrictions on size or shape by tiling the output
patches with flow predictions. Also, it allows the surrogate to focus only on regions where the flood has
reached and not on the regions where no water has arrived. By making the input patches larger than the
output patches and partly overlapping, the surrogate model has spatio-temporal context to be able to pre-
dict flood propagation to neighboring patches. In this way, surrogate flood simulations can be created for
domains of arbitrary shape and size.

We performed various training runs of the architectures to test the influence of for example the time step,
loss function and output type. In addition, we used an error reduction filter to improve the results of the
surrogate model. Two feed-forward convolutional neural networks (CNNs) were trained; a convolutional
encoder-decoder network and a modified U-net architecture with skip connections. We found that differ-
ences in flood characteristics between frames in a simulation (with 1 minute time step) was often very small.
Predicting discrepancies in flood characteristics between the current and next time step improved the per-
formance of the surrogate model. The convolutional encoder-decoder network showed the best results when
applied to the test simulation, however this network still had difficulty to accurately predict the propagation
of the flood in time.

Next, a convolutional LSTM (ConvLSTM) network was trained which is a recurrent architecture that takes as
input a sequence of predicted flow patches. This architecture processes the past flood characteristics and
terrain maps with two separate encoder networks and predicts the discrepancies in flood characteristics be-
tween the current and next time step. This trained network was found to be better able to predict the propa-
gation of the flood in time. It was found that introducing memory of the flood in this recurrent architecture
did improve the prediction capabilities of the surrogate. At the same time, taking into account a sequence of
images increases the run time of the surrogate model as well as the training time of the network. We used this
trained network architecture in a case study where the surrogate was applied to create a flood simulation in
a small dike ring in the Netherlands.

We showed that the proposed framework can be used to train and apply deep learning-based surrogate mod-
els to create surrogate flood simulations for dike ring areas which may be used as a substitute of expensive
hydrodynamic flood simulations. The surrogate flood simulations were found to be much more efficient

55

56 9. Conclusion and recommendations

in terms of calculation time compared to the hydrodynamic simulations. We trained the network architec-
tures on fictitious flood scenario’s with digital terrain model data of flood prone areas in the Netherlands
and applied the trained surrogate to other locations not encountered during training. However, two major
challenges in using deep neural networks inside a surrogate model for 2D flood simulations are identified.
Firstly, keeping the predictions in flow characteristics accurate such that the resulting surrogate simulation
is close to ground truth for long flood duration. Due to the flood propagation speed and the size of patches,
the time step should be kept relatively small to accurately predict flow between patches. At the same time,
floods are events that affect large areas and have long duration. The error propagation can result in large dif-
ferences between a surrogate simulation and ground truth as the duration of the flood increases. Secondly,
large amounts of information have to be generated from the little information present in the boundary condi-
tion. This boundary condition is specified as water depth variation in a single grid cell. Accurately generating
this a lot of data from this small variation was found to be difficult for the trained surrogate models.

For further research, we provide the following recommendations based on results and findings in this study.

(1) Avoid extreme flow conditions and instabilities in training simulations. From the discussion of the
results in Chapter 7, it was seen that some training simulations contain extremely large flow velocities
and some instabilities near the breach location. The presence of such flow conditions in the training
data set may not be desirable as these flow velocities are not realistic for floods resulting from levee
breaches. It may be due to the definition of the boundary condition as a triangular hydrograph and the
choice for a 2D boundary node in SOBEK. It is recommended to investigate how these occur and how
they can be avoided as they may introduce unrealistic training examples.

(2) Investigate the use of different boundary conditions. In this study, a simple 2D breach node was
chosen and and a simple triangular hydrograph was specified as a boundary condition. In practice, a
breach model is often used that gives a more realistic simulation of the flood. A recommendation would
be to investigate how such boundary conditions can be included in the surrogate modelling framework.
This can improve the performance of the surrogate in practical applications.

(3) Combine data-driven methods with simple physical models. The difficulty with applying data-driven
methods in surrogate modelling of 2D hydrodynamic simulations is that a lot of simulation has to be
generated from boundary conditions which only contains a small amount of information. Combin-
ing simple physics based model, such as linearized versions of the shallow water equations with deep
learning methods may be an easier problem and is worth studying.

(4) Investigate the influence of the dimensions of the patches. In this study, relatively large patches sizes
were used. It may be easier to train a deep learning model for predicting smaller patch sizes. This can
give better results in surrogate simulations and is worth investigating.

(5) Perform hyperparameters optimization. In this study, the influence of hyperparameters was not in-
vestigated as training time was found to be very long. Finding optimal hyperparameters and investi-
gating the influence of using different layers in the neural network architectures can increase the per-
formance of the surrogate model.

(6) Study and optimize architecture layout. It is not clear whether the model complexity has a lot of
influence on the predictive performance. On a small data set, two models were compared. On this data
set, the more simple model turned out to be better, however it remains unclear how much this tells us
about the performance on the larger data set.

Bibliography

[1] Lionel Agostini. Exploration and prediction of fluid dynamical systems using auto-encoder technology.
Physics of Fluids, 32(6):067103, 2020.

[2] NEM Asselman and K Heynert. Consequences of floods: 2d hydraulic simulations for the case study area
central holland. DC1-233-5, 2003.

[3] Paul D Bates. Integrating remote sensing data with flood inundation models: how far have we got?
Hydrological processes, 26(16):2515–2521, 2012.

[4] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics.
Annual Review of Fluid Mechanics, 52:477–508, 2020.

[5] Houcine Chbab. Waterstandsverlopen rijntakken en maas. Technical report, Deltares, 2016.

[6] M Cheng, Fangxin Fang, Christopher C Pain, and IM Navon. Data-driven modelling of nonlinear spatio-
temporal fluid flows using a deep convolutional generative adversarial network. Computer Methods in
Applied Mechanics and Engineering, 365:113000, 2020.

[7] Francois Chollet et al. Deep learning with Python, volume 361. 2018.

[8] Karin de Bruijn and Kymo Slager. Leidraad voor het maken van overstromingssimulaties. Technical
report, Deltares, 2018.

[9] JUZER F DHONDIA and GUUS S STELLING. Sobek one dimensional–two dimensional integrated hy-
draulic model for flood simulation–its capabilities and features explained. In Hydroinformatics: (In 2
Volumes, with CD-ROM), pages 1867–1874. World Scientific, 2004.

[10] Alexander Forrester, Andras Sobester, and Andy Keane. Engineering design via surrogate modelling: a
practical guide. John Wiley & Sons, 2008.

[11] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT
press Cambridge, 2016.

[12] Frauke Hoss, Sebastiaan N Jonkman, and Bob Maaskant. A comprehensive assessment of multilayered
safety in flood risk management–the dordrecht case study. In ICFM5 Secretariat at International Centre
for Water Hazard Risk Management (ICHARM) and Public Works Research Institute (PWRI), Proceedings
of the 5th International Conference on Flood Management (ICFMS), Tokyo, Japan, pages 57–65, 2011.

[13] Hossein Hosseiny, Foad Nazari, Virginia Smith, and C Nataraj. A framework for modeling flood depth
using a hybrid of hydraulics and machine learning. Scientific Reports, 10(1):1–14, 2020.

[14] R Hu, F Fang, CC Pain, and IM Navon. Rapid spatio-temporal flood prediction and uncertainty quantifi-
cation using a deep learning method. Journal of Hydrology, 575:911–920, 2019.

[15] Delft Hydraulics. Sobek manual help. Technical Reference Manual, 2009.

[16] RB Jongejan, H Stefess, N Roode, W ter Horst, and B Maaskant. The vnk2 project: a detailed, large-scale
quantitative flood risk analysis for the netherlands. In Proceedings of the 5th International Conference
on Flood Management (ICFM5), Tokyo-Japan, pages 27–29, 2011.

[17] Syed Kabir, Sandhya Patidar, Xilin Xia, Qiuhua Liang, Jeffrey Neal, and Gareth Pender. A deep convolu-
tional neural network model for rapid prediction of fluvial flood inundation. Journal of Hydrology, page
125481, 2020.

57

58 Bibliography

[18] Herman WJ Kernkamp, Arthur Van Dam, Guus S Stelling, and Erik D de Goede. Efficient scheme for
the shallow water equations on unstructured grids with application to the continental shelf. Ocean
Dynamics, 61(8):1175–1188, 2011.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[20] Bas Kolen, Bob Maaskant, and Frauke Hoss. Meerlaagsveiligheid: Zonder normen geen kans.
Ruimtelijke veiligheid en risicobeleid, 2:18–25, 2010.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[22] JG Leskens, Marcela Brugnach, Arjen Y Hoekstra, and Wlatm Schuurmans. Why are decisions in flood
disaster management so poorly supported by information from flood models? Environmental modelling
& software, 53:53–61, 2014.

[23] Mario Lino, Chris Cantwell, Stathi Fotiadis, Eduardo Pignatelli, and Anil Bharath. Simulating surface
wave dynamics with convolutional networks. arXiv preprint arXiv:2012.00718, 2020.

[24] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional auto-
encoders for hierarchical feature extraction. In International conference on artificial neural networks,
pages 52–59. Springer, 2011.

[25] Bruno Merz, AH Thieken, and Martin Gocht. Flood risk mapping at the local scale: concepts and chal-
lenges. In Flood risk management in Europe, pages 231–251. Springer, 2007.

[26] Max D Morris and Toby J Mitchell. Exploratory designs for computational experiments. Journal of sta-
tistical planning and inference, 43(3):381–402, 1995.

[27] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts. Distill,
1(10):e3, 2016.

[28] Saman Razavi, Bryan A Tolson, and Donald H Burn. Review of surrogate modeling in water resources.
Water Resources Research, 48(7), 2012.

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015.

[30] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[31] Brett F Sanders. Evaluation of on-line dems for flood inundation modeling. Advances in water resources,
30(8):1831–1843, 2007.

[32] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Con-
volutional lstm network: A machine learning approach for precipitation nowcasting. arXiv preprint
arXiv:1506.04214, 2015.

[33] Muhammed Sit, Bekir Z Demiray, Zhongrun Xiang, Gregory J Ewing, Yusuf Sermet, and Ibrahim Demir.
A comprehensive review of deep learning applications in hydrology and water resources. Water Science
and Technology, 2020.

[34] Jin Teng, Anthony J Jakeman, Jai Vaze, Barry FW Croke, Dushmanta Dutta, and S Kim. Flood inundation
modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling &
Software, 90:201–216, 2017.

[35] HJ Verheij and FCM Van der Knaap. Modification breach growth model in his-om. WL| Delft Hydraulics
Q, 3299:2002, 2002.

[36] Felipe AC Viana. Things you wanted to know about the latin hypercube design and were afraid to ask. In
10th World Congress on Structural and Multidisciplinary Optimization, volume 19. sn, 2013.

Bibliography 59

[37] Sergiy Vorogushyn, Bruno Merz, K-E Lindenschmidt, and Heiko Apel. A new methodology for flood
hazard assessment considering dike breaches. Water resources research, 46(8), 2010.

[38] Cornelis Boudewijn Vreugdenhil. Numerical methods for shallow-water flow, volume 13. Springer Sci-
ence & Business Media, 2013.

[39] Christoph Wehmeyer and Frank Noé. Time-lagged autoencoders: Deep learning of slow collective vari-
ables for molecular kinetics. The Journal of chemical physics, 148(24):241703, 2018.

[40] MD Wilson and PM Atkinson. The use of remotely sensed land cover to derive floodplain friction coef-
ficients for flood inundation modelling. Hydrological Processes: An International Journal, 21(26):3576–
3586, 2007.

[41] Marcel Johannes Maria Wit and Tjerk Adriaan Buishand. Generator of rainfall and discharge extremes
(GRADE) for the Rhine and Meuse basins. Rijkswaterstaat/RIZA, 2007.

[42] Faria T Zahura, Jonathan L Goodall, Jeffrey M Sadler, Yawen Shen, Mohamed M Morsy, and Madhur Behl.
Training machine learning surrogate models from a high-fidelity physics-based model: Application for
real-time street-scale flood prediction in an urban coastal community. Water Resources Research, 56(10):
e2019WR027038, 2020.

[43] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for surro-
gate modeling and uncertainty quantification. Journal of Computational Physics, 366:415–447, 2018.

[44] M Zijlema. Computational modelling of flow and transport. Collegedictaat CIE4340, 2015.

[45] Andreas Paul Zischg, Guido Felder, Markus Mosimann, Veronika Röthlisberger, and Rolf Weingartner.
Extending coupled hydrological-hydraulic model chains with a surrogate model for the estimation of
flood losses. Environmental modelling & software, 108:174–185, 2018.

A
SOBEK simulations

A.1. Grid roughness

The bottom roughness of our tiles can be determined using land cover information, which can be constructed
using geo-data files from the Key register Large-scale Topography (Basisregistratie Grootschalige Topografie,
BGT, in Dutch), together with a conversion table. In addition, Buildings and Adresses, BAG (Basisregistratie
Adressen en Gebouwen in Dutch), is used for location of buildings. Finally BRP (Basisregistratie Gewasperce-
len) is used for land cover type of agricultural areas. All these are open data and can be downloaded through
PDOK, a platform for geo datasets in the Netherlands. The conversion table from land cover to Nikuradse
friction coefficient is given in Table A.1.

Table A.1: Land type use and roughness
conversion. For a more elaborate con-
version table, the reader is referred to [8].

Land use type White Colebrook kn [m]

Urban area, wall, quay 10

Forrest, horticulture 5

Main roads, heath, shrubland 1

Parkinglot, swamp 0.5

Grassland, sidewalk 0.2

Channels 0.05

61

62 A. SOBEK simulations

A.2. Levee Systems

Figure A.1: Levee system with topogra-
phy and roughness information used in
creating data set of fictitious flood sce-
narios.

Num. Name Num. Name

9 Vollehove 42 Ooij en Millingen

10 Mastenbroek 43 Betuwe, Tieler- en Culemborgerwaarden

11 IJsseldelta 45 Gelderse Vallei

15 Lopiker- en Krimpenerwaard 47 Arnhemse- en Velpsebroek

16 Alblasserwaard en de Vijfheerenlanden 48 Rijn en IJssel

23 Biesbosch 49 Vollehove

24 Land van Altena 50 Zutphen

35 Donge 51 Gorssel

36 Land van Heusden/de Maaskant 52 Oost Veluwe

38 Bommelerwaard 53 Salland

41 Land van Maas en Waal

Table A.2: Levee systems along the main rivers in the Netherlands used in this study for DEM and friction maps. For each system, this
table indicates the norm frequency, that is the return period for which the levee trajectories are designed for as well as the total area of
the system.

B
Architecture details

In this chapter we provide the detailes of the different architectures used in this study. All architectures were
trained usin Tensorflow and Keras software libraries.

B.1. Convolutional encoder-decoder network

Table B.1 presents the different layers used in the U-net architecture and the parameters and weights of each
layer. Here, f denotes the number of feature maps and k denotes the kernel size.

B.2. Modified U-net

Table B.2 presents the different layers used in the U-net architecture and the parameters of each layer. Also
the number of weights are given for the various layers. Note that the only difference with the CAE network
described in previous section is the merge layers that concatenate feature maps from the encoder with feature
maps in the decoder part of the network.

63

64 B. Architecture details

Layer number Layer type Parameters output shape Weights

1 Convolutional f = 16, k = 3 (232, 232, 16) 736

2 Convolutional f = 16, k = 3 (232, 232, 16) 2320

3 Max pooling (116, 116, 16) -

4 Convolutional f = 32, k = 3 (116, 116, 32) 4640

5 Convolutional f = 32, k = 3 (116, 116, 32) 9248

6 Max pooling (58, 58, 32) -

7 Convolutional f = 64, k = 3 (58, 58, 64) 18496

8 Convolutional f = 64, k = 3 (58, 58, 64) 36928

9 Max pooling (29, 29, 64) -

10 Convolutional f = 128, k = 3 (29, 29, 128) 73856

11 Convolutional f = 128, k = 3 (29, 29, 128) 147584

12 Upsampling (58, 58, 128) -

13 Convolutional f = 64, k = 3 (58, 58, 64) 73792

14 Convolutional f = 64, k = 3 (58, 58, 64) 73792

15 Upsampling (116, 116, 64) -

16 Convolutional f = 32, k = 3 (116, 116, 32) 18464

17 Convolutional f = 32, k = 3 (116, 116, 32) 18464

18 Upsampling (232, 232, 32) -

19 Convolutional f = 16, k = 3 (232, 232, 16) 4624

20 Convolutional f = 16, k = 3 (232, 232, 16) 4624

21 Convolutional f = 3, k = 3 (232, 232, 3) 435

22 Cropping (128, 128, 3) -

Table B.1: Convolutional encoder-decoder architecture layout. f denotes the number of feature maps and k denotes the kernel size.

Layer type Parameters output shape Weights

1 Convolutional f = 16, k = 3 (232, 232, 32) 1472

2 Convolutional f = 16, k = 3 (232, 232, 32) 9248

3 Max pooling (116, 116, 16) -

4 Convolutional f = 32, k = 3 (116, 116, 64) 18496

5 Convolutional f = 32, k = 3 (116, 116, 64) 36928

6 Max pooling (58, 58, 32) -

7 Convolutional f = 64, k = 3 (58, 58, 128) 73856

8 Convolutional f = 64, k = 3 (58, 58, 128) 147584

9 Max pooling (29, 29, 64) -

10 Convolutional f = 128, k = 3 (29, 29, 256) 295040

11 Convolutional f = 128, k = 3 (29, 29, 256) 590080

12 Upsampling (58, 58, 128) -

13 Convolutional f = 64, k = 3 (58, 58, 128) 295040

14 Merge

15 Convolutional f = 64, k = 3 (58, 58, 128) 295040

16 Upsampling (116, 116, 64) -

17 Convolutional f = 32, k = 3 (116, 116, 64) 73792

18 Merge

19 Convolutional f = 32, k = 3 (116, 116, 64) 73792

20 Upsampling (232, 232, 32) -

21 Convolutional f = 16, k = 3 (232, 232, 32) 18464

22 Merge

23 Convolutional f = 16, k = 3 (232, 232, 32) 18464

24 Convolutional f = 3, k = 3 (232, 232, 3) 435

25 Cropping (128, 128, 3) -

Table B.2: U-net architecture layout. Merge layers are locations where the feature maps are copied via skip connections. f denotes the
number of feature maps and k denotes the kernel size.

B.3. Convolutional LSTM (ConvLSTM) 65

B.3. Convolutional LSTM (ConvLSTM)
The specifications of the flow encoder network and the terrain decoder network are presented in Table B.3
and Table B.4 respectively. Note that the patches with flow characteristics in the sequence share the same
encoder. This flow encoder thus operates on each of the patches in the input sequence.

Layer type Parameters output shape Weights

1 Convolutional f = 16, k = 3 (232, 232, 32) 1472

2 Convolutional f = 16, k = 3 (232, 232, 32) 9248

3 Max pooling (116, 116, 16) -

4 Convolutional f = 32, k = 3 (116, 116, 64) 18496

5 Convolutional f = 32, k = 3 (116, 116, 64) 36928

6 Max pooling (58, 58, 32) -

7 Convolutional f = 64, k = 3 (58, 58, 128) 73856

8 Convolutional f = 64, k = 3 (58, 58, 128) 147584

9 Max pooling (29, 29, 64) -

10 Convolutional f = 128, k = 3 (29, 29, 256) 295040

Table B.3: Flow encoder network layout. Shared encoder that operates over a sequence of past flood characteristics. f denotes the
number of feature maps and k denotes the kernel size.

Layer type Parameters output shape Weights

1 Convolutional f = 16, k = 3 (232, 232, 32) 1472

2 Convolutional f = 16, k = 3 (232, 232, 32) 9248

3 Max pooling (116, 116, 16) -

4 Convolutional f = 32, k = 3 (116, 116, 64) 18496

5 Convolutional f = 32, k = 3 (116, 116, 64) 36928

6 Max pooling (58, 58, 32) -

7 Convolutional f = 64, k = 3 (58, 58, 128) 73856

8 Convolutional f = 64, k = 3 (58, 58, 128) 147584

9 Max pooling (29, 29, 64) -

10 Convolutional f = 128, k = 3 (29, 29, 256) 295040

Table B.4: Terrain encoder network layout. Processes the elevation and roughness maps of a patch. f denotes the number of feature
maps and k denotes the kernel size.

66 B. Architecture details

Layer type Parameters output shape Weights

11 Convolutional f = 128, k = 3 (29, 29, 256) 590080

12 Upsampling (58, 58, 128) -

13 Convolutional f = 64, k = 3 (58, 58, 128) 295040

14 Merge

15 Convolutional f = 64, k = 3 (58, 58, 128) 295040

16 Upsampling (116, 116, 64) -

17 Convolutional f = 32, k = 3 (116, 116, 64) 73792

18 Merge

19 Convolutional f = 32, k = 3 (116, 116, 64) 73792

20 Upsampling (232, 232, 32) -

21 Convolutional f = 16, k = 3 (232, 232, 32) 18464

22 Merge

23 Convolutional f = 16, k = 3 (232, 232, 32) 18464

24 Convolutional f = 3, k = 3 (232, 232, 3) 435

25 Cropping (128, 128, 3) -

Table B.5: Decoder network layout. Output of the flow encoder and terrain encoder is concatenated and given as input to this decoder
network. f denotes the number of feature maps and k denotes the kernel size.

	List of Figures
	List of Tables
	Introduction
	Use of flood simulation
	Problem statement
	Research objective
	Thesis Outline

	Two-dimensional (2D) hydrodynamic flood simulations
	Important factors in inundation modelling
	Types of inundation models
	2D hydrodynamic models
	Computational grid
	Numerical methods
	Simulation output data
	Terrain models
	Boundary conditions
	Inundation modelling software
	SOBEK

	Deep-learning architectures for the surrogate model
	Introduction to deep learning
	Convolutional Neural Networks
	Recurrent neural networks
	Encoder-decoder network
	image-to-image regression
	Convolutional Encoder-decoder network
	U-net
	Convolutional LSTM

	Surrogate modelling framework
	Introduction to surrogate modelling
	Framework overview
	Generate 2D flood simulation data
	Flood modelling software
	Simulation inputs
	Sampling strategy

	Patch-wise prediction
	Patch-wise training
	Patch dimensions
	Patch extraction
	Pre-processing steps and data augmentation

	Deep learning architectures for the surrogate model
	Network in- and outputs
	Convolutional encoder-decoder network
	Modified U-Net
	Convolutional LSTM network

	Network training
	Training set
	Training scenarios
	Training runs

	Hyperparameter choice
	Training time
	Test simulation

	Feed-forward architecture
	Convolutional encoder-decoder network
	Test set performance
	Error reduction with threshold filter

	Modified U-Net
	Test set performance
	Influence of time step
	Physics-informed loss

	Patch predictions
	Predicting flow discrepancies
	Comparing feed-forward architectures

	Recurrent architecture
	test set performance
	Case study: flood simulation in Arcen
	Hydraulic boundary conditions
	Surrogate model setup
	Results

	Calculation time

	Discussion
	Hydrodynamic simulations used in the training data set
	Deep learning architectures and training

	Conclusion and recommendations
	Bibliography
	SOBEK simulations
	Grid roughness
	Levee Systems

	Architecture details
	Convolutional encoder-decoder network
	Modified U-net
	Convolutional LSTM (ConvLSTM)

