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Fast relative sensor orientation estimation
in the presence of real-world disturbances

Evan Remmerswaal1, Ive Weygers2, Gerwin Smit3 and Manon Kok1

Abstract— We present a novel approach to estimate the
relative sensor orientation from inertial sensors placed on
connected body segments. Drift in the relative orientation
estimates obtained by integrating the gyroscope measurements
is corrected solely by incorporating common information in the
inertial sensor measurements due to the connection of the body
segments. We solve the estimation problem using a comple-
mentary filtering implementation to reduce the computational
complexity. We study its robustness under common real-world
model violations, e.g., soft tissue artifacts and spikes in the
acceleration signals due to impacts. The efficacy of the method
is illustrated with numerical simulations and is compared to
a multiplicative extended Kalman filter implementation, both
with and without outlier rejection. In addition, a human
experiment strengthened the simulation results under realistic
sensor errors.

I. INTRODUCTION

In recent years, the use of body-attached inertial mea-
surement units (IMUs) for movement analysis applications
is receiving increasing interest [1], [2], [3], [4]. Within
movement analysis, interest is often in kinematics, which
requires estimation of the relative sensor orientation from
sensors placed upon the body [5]. Widely used techniques
to determine these relative sensor orientations for kinematic
analysis are either based on optoelectronics or based on
inertial sensors.

In contrast to standard optoelectronic systems, inertial
sensor based methods allow for a prolonged kinematic anal-
ysis in outside-lab environments over multiple days or even
weeks [6]. It is therefore necessary to develop algorithms that
are both computationally efficient and that result in accurate
orientation estimates in real-world scenarios. Common real-
world disturbances include large acceleration signals due
to impacts, and soft tissue artifacts (STA). These result
in violations of the model assumptions that are commonly
used in orientation estimation, such as a rigid connection
between skin-attached sensor and segment. In this work,
we present a novel algorithm to estimate the relative sensor
orientation between two sensors placed on connected body
segments as illustrated in Fig. 1. We show that the algorithm
is computationally efficient and study its robustness against
real-world disturbances.
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Fig. 1: We estimate the relative orientation qS1S2 between two
IMUs S1 and S2 placed on adjacent segments. We assume
that measurements from both sensors can be used to correctly
approximate the acceleration at the joint center jc and study
the effect of violations of this assumption on the quality of
the estimates.

Algorithms to estimate the sensor orientation from inertial
measurements typically integrate the measurements of the
angular velocity, provided by the gyroscope. The resulting
orientation estimates are accurate on a short time scale.
However, integration of the noisy and biased gyroscope mea-
surements results in an increase of the orientation error over
time [7]. Accelerometers are often assumed to predominantly
measure gravity and are therefore often used to remove the
drift in the inclination part of the orientation estimate. Mag-
netometers can be used to remove the drift in the heading,
assuming that the sensor only measures a constant local
magnetic field. Since the magnetic field is typically different
at different sensor locations, the use of magnetometers is
considered to be problematic when analyzing human motion
using multiple body-attached inertial sensors [8], [9].

Recent algorithms to estimate the relative orienta-
tion between body segments have therefore focused on
magnetometer-free estimation approaches by including kine-
matic models concerning the joint configurations and their
degrees of freedom [10], [11], [12]. For the most general
three-dimensional ball-and-socket joint type, we can assume
that adjacent segments are connected (which is most often
valid, up to small joint translational movements [13]) to de-
fine a more specific sensor fusion problem on ‘estimating the
relative pose of sensors on connected segments’. Assuming
that adjacent segments are connected and that an IMU is
placed on each segment, it has been shown that under mild
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conditions on the motion of the body segments [14], drift-
free estimates of the relative orientation can be obtained
by exploiting common information in the inertial sensor
measurements [15], [16]. In [16], an optimisation-based
smoothing approach was presented to exploit this informa-
tion, while [15] presented both a filtering and a smoothing
approach.

Although existing methods allow for the estimation of
accurate relative sensor orientation estimates, optimization-
based smoothing approaches inherently result in high compu-
tational complexity. Furthermore, real-life disturbances that
commonly occur during joint kinematic estimation can cause
the estimation algorithm’s accuracy to rapidly decrease if
they violate the model assumptions [17]. Such disturbances
naturally arise when sensors are placed on human body
segments due to STA. In addition, accelerometer outliers
caused by impacts on external surfaces of the sensor or the
body that the sensor is placed, need to be compensated for.

In this paper, we present a novel complementary filtering
approach using similar models as in [15] for the estimation of
relative sensor orientations. We show that our algorithm is
computationally more efficient than the filtering algorithm
presented in [15]. Our algorithm takes inspiration from
the complementary filter presented in [18] to estimate the
absolute sensor orientation of a single IMU. That algorithm
was shown to be robust against outliers in the accelerometer
measurements. We study the robustness against accelerom-
eter outliers and STA of our algorithm, and show that it is
robust against outliers and to a certain degree also against
STA.

In Section II we present the different sensor models and
the kinematic model. Section III presents our algorithm. Sec-
tion IV studies the robustness of our algorithm against model
violations with numerical simulations. Finally, a human ex-
periment strengthens the simulation results and conclusions
in Section V. The final conclusion and extensions for future
works are given in Section VI.

II. MODELING

We are interested in estimating the relative sensor orien-
tation of IMUs which are placed on adjacent human body
segments. We assume that these segments are rigid and con-
nected via a spherical joint [15]. Without loss of generality
we focus our discussion on only two body segments and their
connected sensors, with corresponding sensor coordinate
frames Si, i = 1, 2. These coordinate frames are aligned
with the inertial sensor axes and their origin is located
at the center of the i’th accelerometer triad. We estimate
the orientation at time step t of both sensors in terms of
unit quaternions qGSi

t , representing the orientations at time
instance t from the frames Si, i = 1, 2 to the frame G.
The frame G is a fixed geographic frame that is aligned
with the gravity vector. The alignment of the frame G can
without loss of generality arbitrarily be chosen since our
interest does not lie in the absolute orientations qGSi

t but in
the relative orientations qS1S2

t , which can be computed from

the estimates qGSi
t but do not depend on the specific choice

of the alignment of the frame G.

A. Sensor models

We model the measurements of the gyroscope ySi
ω,t as

ySi
ω,t = ωSi

t + eSi
ω,t, (1)

where ωSi
t denotes the angular velocity and eSi

ω,t the measure-
ment noise at time step t. The superscripts explicitly indicate
that these quantities are expressed in the sensor frame Si.

We assume that the accelerometer measures the Earth’s
gravity gG accompanied by a linear acceleration aG. The
accelerometer measurements ySi

a,t are therefore modeled as

ySi
a,t = R

(
qSiG
t

) (
aG
t − gG)+ eSi

a,t, (2)

where eSi
a,t denotes the measurement noise of i’th accelerom-

eter. The operation R(qGSi
t ) converts the unit quaternion qGSi

t

to a rotation matrix [7] and R(qGSi
t ) = (R(qSiG

t ))>.

B. Joint Kinematic Modeling

As illustrated in Fig. 1, we consider the case of two
adjacent body segments that connect at a common point,
the joint center jc. It is possible to compute the acceleration
at this common point expressed in the two rigidly attached
inertial sensor frames as in [15]

aSi

jc,t = ySi
a,t − C

Si
t r

Si
i ,

CSi
t =

[
ySi
ω,t×

]2
+
[
ẏSi
ω,t×

]
.

(3)

Here, [ · ×] denotes the cross-product matrix and ẏSi
ω,t the

angular acceleration of the i’th sensor at time instance t.
Furthermore, the vectors rS1

1 and rS2
2 denote the distance

from the IMU to the joint center [19], [20].
The difference in the joint center accelerations aS1

jc,t and
aS2

jc,t computed from the measurements of the two inertial
sensors should be zero (up to inertial measurement errors),
when expressed in a common global frame G. Hence,

RGS1
t aS1

jc,t = RGS2
t aS2

jc,t + elink,t, (4)

where elink,t denotes the error due to measurement noise of
the accelerometers and gyroscopes or disturbances. We will
use the model (4) in our complementary filtering approach
in Section III to provide information about the relative
orientation between the two sensors.

III. METHODS

To estimate the relative sensor orientation of two inertial
sensors placed on connected body segments, we jointly
estimate the orientations qGS1

t and qGS2
t . In Section III-A we

outline our general approach, summarized in Algorithm 1.
We use a complementary filtering approach to compute the
orientations using the gyroscope measurements modeled as
in (1) and correct these estimates using the joint kinematic
model (4) in Section III-B.
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A. Estimating the relative sensor orientation

We jointly estimate the orientations q̂GSi
t of the sensors

Si, i = 1, 2 using a complementary filtering approach.
Following [18], we interpret our estimation problem in terms
of estimating angular velocities ω̂Si

t , i = 1, 2. These are
subsequently used to update the orientation estimate q̂GSi

t−1

as [7], [21].

q̂GSi
t = q̂GSi

t−1 � expq

(
T

2
ω̂Si
t

)
, (5a)

≈ q̂GSi
t−1 +

T

2
S
(
q̂GSi
t−1

)
ω̂Si
t , i = 1, 2, (5b)

where T denotes the sampling time,� the quaternion product
and

expq(ω) =
(
cosα v> sinα

)>
,

α =‖ω‖2, v =
ω

α
,

(6)

with ‖ · ‖2 denoting the two-norm. Furthermore,

S(q) =

(
−qv

q0I3 − [qv×]

)
, (7)

for q = [q0 q1 q2 q3]
>

=
[
q0 q>v

]>
. Note that we use

the approximation (5b) to reduce computational complexity.
We estimate the angular velocities from the gyroscope

measurements ySi
ω,t, i = 1, 2 and a correction based on the

model (4) as

ω̂Si
t = ySi

ω,t −∆ω̂Si

link,i,t, i = 1, 2. (8)

The computation of the correction ∆ω̂Si

link,i,t will be detailed
in Section III-B.

The relative orientation between the sensors can subse-
quently be computed as

q̂S1S2
t =

(
q̂GS1
t

)c
� q̂GS2

t , (9)

where the superscript c denotes the quaternion conjugate [7].
The resulting algorithm is presented in Algorithm 1.

Note that an alternative interpretation of (5b) and (8) is
that in Algorithm 1 we first update the orientation with the
gyroscope measurements (similar to a filtering time update)
and subsequently correct the estimate using information from
the joint kinematic model (similar to a measurement update).
However, first computing an estimate of the angular velocity
and then using that estimate to update the orientation was
shown in [18] to be computationally more efficient, while
in other respects being similar to the widely used approach
from [22], [23]. Note also that the crucial difference between
Algorithm 1 and the one presented in [18] is that we consider
the case of jointly estimating the orientation of multiple
IMUs placed on connected segments, rather than estimating
the orientation of a single IMU. This enables us to exploit
the joint kinematic model (4).

Algorithm 1 Relative sensor orientation estimation
Input: Gyroscope and accelerometer measure-
ments ySi

ω,t, y
Si
a,t, the orientation estimate at the previous

time instance q̂GSi
t−1, the distances from the IMUs to the joint

center rS1
1 , rS2

2 , the tuning parameter β and the sampling
time T .
Output: Relative sensor orientation estimate q̂S1S2

t .
1: Compute the gradient (13) at time instance t using q̂GSi

t−1

and aSi

jc,t determined according to (3).
2: Compute the estimated angular velocities ω̂Si

t , i = 1, 2
according to (8) and (12).

3: Compute the orientation estimates q̂GSi
t , i = 1, 2 accord-

ing to (5b) using ω̂Si
t and q̂GSi

t−1.
4: Compute the relative sensor orientation q̂S1S2

t from q̂GSi
t ,

i = 1, 2 according to (9).

B. Computing the correction to the angular velocity

We formulate estimation of the orientation of both sensors
using the model (4) as an optimization problem as

min
ηt

V (ηt) = min
ηt

1

2

∥∥∥R(q̃GS1
t

)
(I3 + [ηS1,t×]) aS1

jc,t

−R
(
q̃GS2
t

)
(I3 + [ηS2,t×]) aS2

jc,t

∥∥∥2

2
,

(10)

where ηt =
[
η>S1,t

η>S2,t

]>
. Inspired by [7], [18], in (10)

we write the orientation in terms of linearization points q̃GS1
t ,

q̃GS2
t and associated deviations ηS1,t, ηS2,t as

R
(
qGSi
t

)
= R

(
q̃GSi
t

)
expR (ηSi,t) , (11a)

expR (ηSi,t) = I3 + sinα[v×] + (1− cosα)[v×]2

≈ I3 + [ηSi,t×] ,
(11b)

with α = ‖ηSi,t‖2 and v =
ηSi,t

α . The approximation
in (11b) is valid for small ηSi,t [7]. By rewriting the problem
in this fashion, we optimize over orientation deviations
parametrized as rotation vectors, avoiding the inclusion of
constraints that would be necessary for other orientation
parametrizations and reducing the size of the optimization
variable to R6.

Like [18], [22], [23], at each time step we only perform
a single gradient descent iteration of (10). This decreases
the computational time and because of the high sampling
frequency of the sensors, the corrections that need to be
made are typically minor and the estimates will converge
over time. Furthermore, we choose to normalize the gradient
step at each iteration, which has been shown to result in
robustness against model inaccuracies in previous work [18]
for the case of orientation estimation using a single IMU.
Hence, we compute the correction to the angular velocity
estimate from the model (4) as(

∆ω̂S1

link,1,t

∆ω̂S2

link,2,t

)
= β

∇V (ηt)

‖∇V (ηt)‖2
, (12)
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where β is a tuning parameter which can be chosen based
on the amount of drift expected from the gyroscope integra-
tion [18], [22]. Here, ∇V (ηt) denotes the gradient of (10),
linearized around q̃GSi

t = q̂GSi
t−1 and ηt = 06×1, given by

∇V (ηt) =

(
−R

(
q̂GS1
t−1

)[ [
aS1

jc,t×
]

03×3

]
+R

(
q̂GS2
t−1

)[
03×3

[
aS2

jc,t×
] ])>

(
R
(
q̂GS1
t−1

)
aS1

jc,t −R
(
q̂GS2
t−1

)
aS2

jc,t

)
.

(13)

IV. NUMERICAL SIMULATION

To study the performance of Algorithm 1 in the presence
of real-life disturbances and to demonstrate its computational
benefits, we run 100 Monte Carlo simulations for different
noise realizations and simulated disturbances. We compare
the results from Algorithm 1 with those from the multiplica-
tive extended Kalman filter (MEKF) presented in [15] and a
slightly adapted MEKF that includes outlier rejection [21].
The MEKFs use the same models as those used in Algorithm
1. A minor difference is that they use the exact filtering time
update (5a) instead of the approximation (5b). The evaluation
is done by calculating the average angular distance θ̄ between
the ground-truth and the estimated orientation, q̂S1S2

t [24] and
its standard deviation σθ̄.

Each simulation consists of 800 seconds of data with a
sampling rate of 10 Hz. The simulated movement represents
two IMUs on connected segments, that rotate in opposite
directions with an angular velocity ySi

ω,t that is modeled
as ± sin

(
π

100T t
)

and sequentially applied onto the three
orthogonal sensor axes. Accelerometer measurements ySi

a,t

were constructed following (3) with the joint center accel-
eration aG

jc,t randomly sampled from a uniform distribution
taking values in the range -10 to 10 m/s2, and subsequently
rotated to S1 and S2. The distances of the sensors to the joint
center were set to rS1

1 = [1 0 0]
>, rS2

2 = [−1 0 0]
>.

Measurement noise was added to the data with eω,t ∼
N
(
0, σ2

ω I3

)
, ea,t ∼ N

(
0, σ2

a I3

)
where σω = π

180 rad/s,
σa = 9.81

100 m/s2. Note that these values are significantly
larger than is typically the case for IMUs, to more clearly
demonstrate the properties of the filters. Angular accelera-
tions ẏSi

ω,t were approximated from the simulated gyroscope
measurements with a five-point stencil [25].

The simulations were processed in Matlab (R2020a, Math-
works, USA) on a laptop (Intel Core i5 7th generation) for
both Algorithm 1 and the MEKF presented in [15], with
and without outlier rejection. The initial orientations q̂GSi

1 ,
i = 1, 2 were set to [1 0 0 0]

> for the three filtering
algorithms.

In line with [18], we set β in Algorithm 1 equal to
√

3σω .
Note that lowering the value of β in (12), (8) entails relying
more on the orientation obtained by gyroscope integration,
while increasing the value of β entails relying more on the
orientation obtained by the joint kinematic constraint. The
process and measurement noise covariances in the MEKF
from [15] were chosen based on σa, σω and assuming that

the accelerometer measurement noise is the dominant source
of error in (4).

We first study the performance of the different filters in
the absence of disturbances. As can be seen in Table I, in this
case the MEKF without outlier rejection slightly outperforms
Algorithm 1. This is in line with the results from [18], the
fact that extended Kalman filters are known to perform well
for orientation estimation using inertial sensors [7] and the
fact that Algorithm 1 only performs one normalized gradient
descent step (13) to optimize (10) at each time instance. The
latter is also the reason why the computational complexity of
Algorithm 1 can be seen to be significantly lower than that of
the MEKF from [15]. The reason for the MEKF to slightly
outperform the MEKF with outlier rejection could be that
some measurements are wrongfully considered to be outliers.
In Sections IV-A and IV-B we will study the effect of outliers
and STA on the estimates from the different algorithms.

θ̄ ± σθ̄ [◦] Time per iteration [µs]

Alg. 1 MEKF
[15]

MEKF
with o.r.

[15]
Alg. 1 MEKF

[15]

MEKF
with o.r.

[15]
No
dist.

0.71±
0.008

0.59±
0.007

0.62±
0.008 4.16 94.8 102

5% acc.
outliers

0.75±
0.010

3.11±
0.109

0.65±
0.040 4.16 94.8 102

Lowest
STA

0.71±
0.008

0.59±
0.007

0.64±
0.081 4.16 94.8 102

Middle
STA

0.82±
0.011

0.73±
0.009

0.89±
0.084 4.16 94.8 102

Highest
STA

1.52±
0.056

3.62±
0.059

1.99±
0.260 4.16 94.8 102

TABLE I: Average angular distance θ̄ and its standard
deviation σθ̄ in the relative sensor orientation and computa-
tional times for the five Monte Carlo analyses and the three
algorithms (outlier rejection abbreviated as o.r.).

A. Accelerometer model inaccuracies

Outliers in the accelerometer measurements can occur in
practice due to impacts on external surfaces of the sensor or
the body it is mounted on. We simulate such accelerometer
outliers for 5% of the simulated accelerometer data starting
after 100 seconds, which is used as a settling time for
the filters. This relatively large percentage of accelerometer
outliers is used to illustrate the effect of outliers on the
estimates of the filters. The outliers are created from a uni-
form distribution, with a random direction and a magnitude
between 50 and 100 times the standard deviation of the
accelerometer. As shown in Table I, these outliers greatly
influence the estimation performance of the MEKF while
the orientation errors remain small for Algorithm 1 and the
MEKF with outlier rejection.

B. Soft Tissue Artifacts

Since it is not possible to place sensors directly on the
bone, disturbances caused by the non-rigidity of the tissue,
so called STA, are unavoidable. Such disturbances naturally
violate the assumption in (3) on the sensor locations rSi

i

being constant. This typically leads to disturbances in the
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Fig. 2: Average angular distance from Algorithm 1 for the
five different numerical simulations.

acceleration measurements [20]. Following [20], [26], we
model these acceleration disturbances dSi

STA,t as

dSi

STA,t = HSi
t ω̇

Si
t . (14)

The matrix HSi
t ∈ R3×3 contains the parameters to model

the STA for the i’th sensor at time step t. Again, we model
the STA after 100 seconds to allow for settling of the filters.

In practice, the elements of HSi
t depend on multiple

factors, e.g., sensor placement and the subject’s physiology
[20]. We simulated three different levels of STA. Following
[20], we created the lowest levels of STA and continue to
increase the levels of STA to study the robustness properties
of Algorithm 1. To this end, HSi

t was filled with samples
from a normal distribution with zero mean and standard
deviation σSTA. The lowest levels of STA were created by
setting σSTA = 0.018

π m/rad. This resulted in a maximal
disturbance value of 8.7 · 10−3 m/s2, which translates to a
displacement of 87 µm after 10−1 seconds. The mid-levels
of STA were created with σSTA = 1.8

π m/rad, which lead to
a maximum displacement of 0.87 cm. The highest levels of
simulated STA were created by setting σSTA = 18

π m/rad,
leading to a maximum displacement of 8.68 cm.

Both the MEKF from [15] (with and without outlier rejec-
tion) and Algorithm 1 are able to cope with the disturbances
induced by the lowest and mid-levels of simulated STA as
can been seen from Table I. However, in contrast to the
MEKF from [15], Algorithm 1 and the MEKF with outlier
rejection also show robustness to a lesser extent against the
highest level of STA. In Fig. 2, the average angular distance
from Algorithm 1 over time is shown for the different
simulations. During the moments where STA occurs, the
assumed model violations increase which can be seen to
result in an increase in the errors.

V. EXPERIMENTAL RESULTS

We also study the robustness against disturbances of Algo-
rithm 1 for a real-world movement analysis application. One
healthy subject gave his written informed consent to perform

a stand-still phase of five seconds and three functional
movement trials consisting of two gait trials and one set of
forward lunge movements [27].

Inertial sensors (MTw Awinda IMU from Xsens) were
attached on the lateral side at mid-distance on the shank
and on the thigh via Velcro strips as shown in Fig. 3.
The sensor placement was altered for the second and third
functional movement to a more anterior position, resulting in
an assumed higher level of STA. An optical motion capture
system (13 camera VICON Vero, Vicon Motion Systems Ltd)
served as reference by tracking infrared reflective marker
clusters attached to the IMUs housing. A hardware time
synchronization was used to simultaneously capture inertial
measurements and optical marker trajectories at a sample
frequency of 100 Hz. The study has been approved by the
medical-ethical committee of UZ Leuven (Nr. S58936) and
adhered to the declaration of Helsinki.

Fig. 3: Experimental set-up with inertial sensors attached on
the thigh and shank segments for a lateral placement (left)
and more anterior placement (right).

We applied both Algorithm 1 and the MEKF from [15]
(with and without outlier rejection), to the experimental data
to obtain relative orientation estimates for the knee joint. To
compare the orientation estimates to those from the optical
motion capture system, constant misalignments between the
inertial sensor sensing axes and coordinate systems on the
base of three optical markers were acquired from relative
orientations measurements and estimated following [15]. The
orientation estimates were evaluated during motion, ignoring
the static time period at the start of each experiment. All three
algorithms were tuned to result in the lowest angular distance
with respect to the reference data. The values for rS1

1 and
rS2
2 were estimated following [20], by minimizing the sum

of absolute errors to gain robustness against outliers. The
initial orientations q̂GSi

1 , i = 1, 2 were set to [1 0 0 0]
>

for the three filtering algorithms.
In Table II we observe that the MEKF from [15] and

Algorithm 1 perform similarly for a first gait trial with
lateral sensor placement, but the MEKF with outlier rejection
outperforms both methods by rejecting accelerometer mea-
surements which are corrupted by STA. Adapting the sensor
placement to a more anterior position, we expect more STA
and hence an increase in the violations of the model (3)
and a decrease in the accuracy of the orientation estimates.
The forward lunge motion is expected to present even higher
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levels of STA during initial contact, where the heel touches
the ground [27]. This resulted in larger estimation errors for
all algorithms. The lower performance of Algorithm 1 during
the lunge trials seems related to large initialization errors. For
the case of large STA resulting in violations of the model (3)
one would prefer to choose a very small value for β, which
entails relying more on the gyroscope. However, this also
entails a slow convergence rate. Our empirically optimized
value for β for this experiment was equal to the relatively
large value of 1, resulting in a relatively large sensitivity to
outliers but a fast convergence.

Angular distance θ [◦]
Alg. 1 MEKF [15] MEKF with o.r. [15]

Gait (lateral) 1.85 1.48 0.94
Gait (anterior) 2.19 1.79 1.74

Lunge (anterior) 8.40 3.87 3.69

TABLE II: Angular distance θ in the relative orientation
for the three experiments and the three algorithms (outlier
rejection abbreviated as o.r.).

VI. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm to estimate the relative
sensor orientation between two sensors placed on adjacent
body segments. The algorithm is computationally efficient,
opening up for the processing of large data sets to analyze
human motion. The algorithm has been shown in simulations
and in experiments to be robust to outliers in the accelerom-
eter data and to a certain degree to model inaccuracies due to
STA. The accuracy of the estimates for larger STA, however,
still degrades and this is an interesting topic for future work.
It would, for instance, be interesting to investigate a dynamic
rather than static value for β, to ensure both convergence
and robustness. Additionally, future work could extend the
measurement models, for instance including sensor biases.
Another topic for future work could be on the validation of
experiments where a range of multiple and highly dynamic
movements are performed.
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[1] I. H. López-Nava and A. Muñoz-Meléndez, “Wearable inertial sensors
for human motion analysis: A review,” IEEE Sensors Journal, vol. 16,
no. 22, pp. 7821–7834, 2016.

[2] P. Picerno, “25 years of lower limb joint kinematics by using inertial
and magnetic sensors: A review of methodological approaches,” Gait
& Posture, vol. 51, pp. 239 – 246, 2017.
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