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FUNCTIONAL CRAMÉR–RAO BOUNDS AND STEIN ESTIMATORS IN

SOBOLEV SPACES, FOR BROWNIAN MOTION AND COX PROCESSES

ENI MUSTA, MAURIZIO PRATELLI, AND DARIO TREVISAN

Abstract. We investigate the problems of drift estimation for a shifted Brownian motion
and intensity estimation for a Cox process on a finite interval [0, T ], when the risk is given by
the energy functional associated to some fractional Sobolev space H1

0 ⊂ Wα,2 ⊂ L2. In both
situations, Cramér–Rao lower bounds are obtained, entailing in particular that no unbiased
estimators (not necessarily adapted) with finite risk in H1

0 exist. By Malliavin calculus
techniques, we also study super-efficient Stein type estimators (in the Gaussian case).

1. Introduction

In this paper, we focus on two problems of nonparametric (or, more rigorously, infinite-
dimensional parametric) statistical estimation: drift estimation for a shifted Brownian motion
and intensity estimation for a Cox process, on a finite time interval [0, T ]. Our investigation
stems from the articles [10, 11], where N. Privault and A. Réveillac developed an original ap-
proach to these problems, by employing techniques from Malliavin calculus to study Cramér–
Rao bounds and super-efficient “shrinkage” estimators, originally developed by C. Stein in [5]
and then expanded in [13], to fit in infinite-dimensional frameworks. Such a combination of
these two powerful techniques can be cast into a more general picture, where Malliavin cal-
culus tools provide insights in statistics and more generally, on probabilistic approximations:
let us mention here the monograph [8], which collects many results of the fruitful meeting of
another great contribution of C. Stein (the so-called Stein method) with Malliavin calculus,
and other recent articles such as [2, 4, 7, 12].

As in [10, 11], here we assume that the unknown function to be estimated belongs to the
Hilbert space H1

0 (0, T ) (which is a reasonable choice, at least in the case of shifted Brownian
motion, because of the Cameron–Martin and Girsanov theorems) but we move further by
addressing the following question, which is rather natural but has apparently not yet been
considered: what about estimators that also take values in H1

0 ? Indeed, in [10, 11], estimators
are seen as functions with values in L2([0, T ], µ) (where µ is any finite measure) or, equiva-
lently, the associated risk is computed with respect to the L2 norm and not the (stronger)
H1

0 norm.
To investigate this problem, we first provide Cramér–Rao bounds with respect to different

risks, by considering the estimation in the interpolating fractional Sobolev space H1
0 ⊂Wα,2 ⊂

L2, for α ∈ [0, 1]. It turns out that no unbiased estimator exists in H1
0 (Theorem 2.5) and

even in Wα,2, for α ≥ 1/2 (Theorem 2.9). Although a bit surprising, these results reconcile
with the following intuition: since the estimator is a function of the realization of the process,
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All authors thank the anonymous referees and the editor C. Genest for remarks and suggestions that led to
an overall improvement of the article.

1



2 ENI MUSTA, MAURIZIO PRATELLI, AND DARIO TREVISAN

whose paths also do not belong to H1
0 (nor Wα,2, for α ≥ 1/2), it is “too risky” to estimate

(without bias) the parameter on that scale of regularity. Therefore, besides answering a rather
natural question, our results highlight the delicate role played by the choice of different norms
in such estimation problems, and one might expect that similar phenomena might appear in
other situations, technically more demanding, e.g., stochastic differential equations.

As a second task, we study super-efficient “shrinkage” estimators in the spaces Wα,2. It
is often suggested on heuristic grounds that the ideal situation for the problem of estimation
would be to have an unbiased estimator with low variance, but that allowing for a little
bias may allow one to find estimators with lower risks, in many situations: we strongly rely
on the recent extensions and combinations of the original approach by Stein with Malliavin
calculus to these frameworks developed in [10, 11]. Using a similar approach, we give sufficient
conditions for the existence of super-efficient estimators in Wα,2, for α < 1/2, and we give
explicit examples of such estimators, in the case of Brownian motion (Example 3.3). In the
case of Cox processes, although it is possible to define a suitable version of Malliavin calculus
and provide sufficient conditions for Stein estimators, we are currently unable to provide
explicit examples.

The paper is organized as follows. In Section 2 we deal with drift estimation for a shifted
Brownian motion, addressing Cramér–Rao lower bounds with respect to risks computed in
H1

0 and fractional Sobolev spaces. In Section 3, we discuss super-efficient estimators. Finally,
analogous results on intensity estimators for Cox processes are given in Section 4.

2. Drift estimation for a shifted Brownian motion

In this section, we fix T ≥ 0 and let X = (Xt)t∈[0,T ] be a Brownian motion (on the
finite interval [0, T ]), defined on some filtered probability space (Ω,F, (Ft)t∈[0,T ], P ). Instead
of choosing a fixed (infinite-dimensional) space of parameters Θ, we simply notice that our

arguments apply to any set Θ of absolutely continuous, adapted processes ut =
∫ t

0 u̇sds (for
t ∈ [0, T ]) such that

(1) (u̇t)t∈[0,T ] satisfies the conditions of Girsanov’s theorem;

(2) Θ contains the Cameron–Martin space H1
0 ;

(3) for any u ∈ Θ, v ∈ H1
0 , one has u+ v ∈ Θ.

Let us recall that H1
0 (= H1

0 (0, T )) is defined as the space of (continuous) functions of the

form h(t) =
∫ t

0 ḣ(s)ds, for t ∈ [0, T ], with ḣ ∈ L2(0, T ). In particular, we may let Θ = H1
0 .

For u ∈ Θ, we define the probability measure P u = LuP , with

Lu = exp

(∫ T

0
u̇sdXs −

1

2

∫ T

0
u̇2
sds

)
.

Girsanov’s theorem entails that, with respect to the probability measure P u, the process
Xu
t = Xt − ut is a Brownian motion on [0, T ].
We address the problem of estimating the drift with respect to P u on the basis of a single

observation ofX (of course, repeated and independent observations can improve the estimates,
but this amounts to a simple generalization). Such a problem is of interest in different fields of
application: for example, we can interpret X as the observed output signal of some unknown
input signal u, perturbed by a Brownian noise. Such a problem is investigated, e.g., in [10],
where the following definition is given.
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Definition 2.1. Any measurable stochastic process ξ : Ω× [0, T ]→ R is called an estimator
of the drift u. An estimator of the drift u is said to be unbiased if, for every u ∈ Θ, t ∈ [0, T ],
ξt is P u-integrable and one has Eu(ξt) = Eu(ut).

In this section, we forego the specification of “the drift u” and simply refer to estimators.
Moreover, we refer to the quantity Eu(ξt − ut) as the bias of the estimator ξ (whenever it is
well-defined).

By introducing as a risk associated to any estimator ξ the quantity

Eu(‖ξ − u‖2L2(µ)) = Eu
{∫ T

0
|ξt − ut|2µ(dt)

}
, (1)

where µ is any finite Borel measure on [0, T ], Privault and Réveillac provide the Cramér–Rao
lower bound stated next for adapted and unbiased estimators [10, Proposition 2.1]. In what
follows, Θ being the space of all absolutely continuous, adapted processes, whose derivatives
satisfy the conditions of Girsanov’s theorem.

Theorem 2.2 (Cramér–Rao inequality in L2(µ)). For any adapted and unbiased estimator
ξ, one has

Eu(‖ξ − u‖2L2(µ)) ≥
∫ T

0
tµ(dt), for every u ∈ Θ. (2)

Equality is attained by the (efficient) estimator û = X.

Before giving our results, we briefly report the original proof in [10] but observe that the
requirement made therein to the effect that ξ is adapted is actually unnecessary.

Proof. The inequality follows from an application of the Cauchy–Schwarz inequality to the
crucial identity

v(t) = Eu
{

(ξt − ut)
∫ T

0
v̇(s)dXu

s

}
, for t ∈ [0, T ], (3)

valid for every deterministic process v ∈ Θ (thus, v(t) =
∫ t

0 v̇(s)ds). Indeed, if we choose, for

any t ∈ [0, T ], v̇(s) = 1[0,t](s), then v(t) = t and
∫ T

0 v̇(s)dXu
s = Xu

t . We obtain, from (3),

t = Eu {(ξt − ut)Xu
t } ≤ Eu

{
(ξt − ut)2

}1/2
Eu{(Xu

t )2}1/2 = Eu{(ξt − ut)2}1/2
√
t,

since Xu is a Brownian motion under P u. After dividing by
√
t and squaring on both sides,

we integrate with respect to µ for t ∈ [0, T ], to obtain (2).
In turn, to prove (3) we use the fact that, for every ε ∈ R, one has u+ εv ∈ Θ, and hence

Eu+εv(ξt) = Eu+εv{ut + εv(t)} = Eu+εv(ut) + εv(t), for t ∈ [0, T ].

We then differentiate with respect to ε, at ε = 0. Exchanging between differentiation and
expectation is justified by the finiteness of the left-hand side in (2), for µ-a.e. t ∈ [0, T ];
otherwise there is nothing to prove. We obtain

d

dε

∣∣∣
ε=0

Eu+εv(ξt − ut) = E

{
(ξt − ut)

d

dε

∣∣∣
ε=0

Lu+εv
T

}
= Eu

{
(ξt − ut)

∫ T

0
v̇(s)dXu

s

}
. �
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Remark 2.3. Once again, let us stress the fact that in the above proof, ξ need not be adapted.
Concerning the issue of comparing adapted with non-adapted estimators, it would be desirable
to argue that general (not necessarily adapted) estimators cannot perform better than adapted
ones, and the following argument might seem to go in that direction. However, it does not
allow us to conclude. Let ξ be any unbiased estimator and for u ∈ Θ, consider the optional
projection η of ξ, with respect to the probability P u, so that ηt = Eu(ξt|Ft), for t ∈ [0, T ].
Then Eu(ηt) = ut and one has

Eu(|ηt − ut|2) = Eu
{

Eu(ξt − ut|Ft)2
}
≤ Eu(|ξt − ut|2).

However, this does not entail that η performs better that ξ, since η = ηu depends also on u;
thus it is not an estimator. Note, however, that if we keep ū ∈ Θ fixed, then ηū could be
biased, i.e., Eu(ηūt ) 6= Eu(ut) for some u ∈ Θ, t ∈ [0, T ]. A similar issue appears in [10].

Remark 2.4. Beyond the mean squared error, one can consider the risk defined by Lp norms,
for p ∈ (1,∞), viz. ∫ T

0
Eu(|ξt − ut|p)µ(dt).

Again, by direct inspection of the proof in [10], applying Hölder’s inequality (with conjugate
exponents (p, q)) instead of the Cauchy–Schwarz inequality in (3), we obtain an inequality of
the form

Eu(|ξt − ut|p) ≥
|v(t)|p

c
p/q
q

{∫ t
0 v̇

2(s)ds
}p/2 ≥ 1

c
p/q
q

tp/2, for t ∈ [0, T ],

where cq = E(|Y |q) is the qth moment of a N(0, 1) random variable Y . Integration with
respect to µ then provides a Cramér–Rao type lower bound. However, letting ξ = X, one has

Eu(|Xt − ut|p) = Eu(|Xu
t |p) = cpt

p/2, for t ∈ [0, T ].

Thus X is not an efficient estimator in Lp(Ω× [0, T ]) for p 6= 2.

Let us recall that the Cameron–Martin space H1
0 is a Hilbert space, endowed with the

norm induced by the natural Sobolev “energy” functional, namely ‖h‖H1
0

= ‖ḣ‖L2(0,T ). For

simplicity of notation, we extend such a functional identically to +∞ for any Borel curve
h : [0, T ]→ R that does not belong to H1

0 .

We observe that H1
0 is continuously included in C1/2(0, T ), the space of 1/2-Hölder contin-

uous functions: since the paths of the Brownian motion are not 1/2-Hölder continuous, we
deduce that the process X is not H1

0 -valued (negligibility of the Cameron–Martin space holds
true also for abstract, infinite-dimensional, Wiener spaces). However, since the drift u takes
values in H1

0 , it is natural to look for an estimator ξ sharing this property. Our first result
shows that, if we require ξ to be unbiased, this is not possible, i.e., such an estimator ξ has
necessarily infinite H1

0 risk.

Theorem 2.5 (Estimators in H1
0 ). Let ξ be an estimator such that, for some u ∈ Θ, one has

Eu(‖ξ − u‖2
H1

0
) <∞. Then ξ is not unbiased (in particular, the bias in not zero at u).

Before we address the proof for general, possibly non-adapted estimators, we give the
following argument that exploits Itô’s formula. Actually it is longer, but we feel that it has
more of a stochastic flavor.
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Proof. (Case of adapted estimators.) Arguing by contradiction, we assume that ξ is unbiased
and the risk at u is finite, i.e., ξ − u ∈ L2(Ω, P u;H1

0 ). For every (deterministic) v ∈ H1
0 ,

arguing exactly as above for the deduction of (3), we obtain

v(t) = Eu
{∫ t

0
(ξ̇s − u̇s)ds

∫ t

0
v̇(s)dXu

s

}
, for t ∈ [0, T ],

where stochastic integration reduces to the interval [0, t] because of the adaptedness assump-
tion. Integrating by parts (i.e., using Itô’s formula) we rewrite the random variable above
as ∫ t

0

{∫ s

0
v̇(r)dXu

r

}
(ξ̇s − u̇s)ds+

∫ t

0

{∫ s

0
(ξ̇r − u̇r)dr

}
v̇(s)dXu

s .

The Itô integral has zero expectation, since ξ−u ∈ L2(Ω, P u;H1
0 ) ⊆ L2(Ω, P u;C1/2(0, T )) and

v̇ ∈ L2(0, T ), hence the integrand is an adapted and square-integrable process. Therefore,
taking expectation, we obtain the analogue of (3) for the study of H1

0 energy:

v(t) = Eu
[∫ t

0

{∫ s

0
v̇(r)dXu

r

}
(ξ̇s − u̇s)ds

]
, for t ∈ [0, T ].

Indeed, the Cauchy–Schwarz inequality and Itô’s isometry give

v(t)2 ≤ Eu
[∫ t

0

{∫ s

0
v̇(r)dXu

r

}2
ds

]
Eu
{∫ t

0
(ξ̇s − u̇s)2ds

}
=

∫ t

0

{∫ s

0
v̇2(r)dr

}
ds

∫ t

0
Eu{(ξ̇s − u̇s)2}ds

=

∫ t

0
(t− s)v̇2(s)ds

∫ t

0
Eu{(ξ̇s − u̇s)2}ds.

In particular, choosing t = T , we deduce

Eu(‖ξ − u‖2H1
0
) ≥ v(T )2∫ T

0 (T − t)v̇2(t)dt
.

To reach a contradiction, it is enough to prove that for every constant c > 0, there exists
v̇ ∈ L2(0, T ) such that the left-hand side above is greater than c, i.e.,{∫ T

0
v̇(t)dt

}2

≥ c
∫ T

0
(T − t)v̇(t)2dt. (4)

Indeed, if we let v̇(t) = (T − t)−α for some 0 < α < 1, we get{∫ T

0
v̇(t)dt

}2

=

(
T 1−α

1− α

)2

and

∫ T

0
(T − t)v̇2(t)dt =

T 2(1−α)

2(1− α)
.

It is then sufficient to let α ↑ 1 to conclude. �

Remark 2.6. Instead of the explicit construction of v ∈ H1
0 above, to obtain a contradiction

we can also use the following duality result. On a measure space (E,E, µ), suppose that g ≥ 0
is a measurable function such that, for some constant c > 0, the following condition holds:∫

E
fgdµ ≤ c

(∫
E
f2dµ

)1/2

, for every f ∈ L∞(µ), f ≥ 0.
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Then g ∈ L2(µ) with ‖g‖L2(µ) ≤ c. The easy proof follows from considering the continuous,

linear functional φ initially defined on L∞∩L2(µ) by f 7→
∫
E fgdµ and then applying Riesz’s

theorem on its extension to L2(µ). In the proof above, a contradiction immediately follows
from (4), letting µ(dt) = (T − t)dt and g(t) = (T − t)−1.

We now provide a complete proof of Theorem 2.5.

Proof. (General case.) Arguing by contradiction, we assume that ξ is unbiased and the risk
at u is finite, i.e., ξ − u ∈ L2(Ω, P u;H1

0 ). For every (deterministic) v ∈ H1
0 , arguing as above

for the deduction of (3), we obtain instead

v(t) = Eu
{∫ t

0
(ξ̇s − u̇s)ds

∫ T

0
v̇(s)dXu

s

}
, for t ∈ [0, T ].

Then we differentiate with respect to t ∈ [0, T ] (exchanging derivatives and expectation is
ensured by the finite risk assumption), and we obtain, for a.e. t ∈ [0, T ],

v̇(t) = Eu
{

(ξ̇t − u̇t)
∫ T

0
v̇(s)dXu

s

}
.

At this stage, the Cauchy–Schwarz inequality and Itô’s isometry together yield

|v̇(t)|2 ≤ Eu
(
|ξ̇t − u̇t|2

)∫ T

0
|v̇(s)|2ds, for a.e. t ∈ [0, T ], (5)

From this inequality, we easily obtain a contradiction, arguing as follows. Let A ⊆ [0, T ] be a

non-negligible Borel subset such that
∫
A Eu(|ξ̇t− u̇t|2)dt < 1, which exists because of the finite

risk assumption and uniform integrability (notice that A does not depend upon v). Then,
integrating the above inequality for t ∈ A, we obtain∫

A
|v̇(t)|2dt ≤

∫
A

Eu(|ξ̇t − u̇t|2)dt

∫ T

0
|v̇(t)|2dt,

for every v̇ ∈ L2(0, T ), in particular for every v̇ ∈ L2(A). Simply taking v̇ = 1A, we obtain
the required contradiction. �

Actually, the result on the absence of unbiased estimators in H1
0 can be slightly strength-

ened, allowing for estimators whose bias is sufficiently regular. We state it as a corollary (of
the proof), remarking that similar deductions could be performed also in the cases that we
consider below.

Corollary 2.7. Let ξ be an estimator such that, for every u ∈ Θ, t ∈ [0, T ], ξt is P u-integrable,
and one has, for some C = (Ct)t∈[0,T ] ∈ L2(0, T ) (possibly depending upon u ∈ Θ),∣∣∣∣ ddt ddε ∣∣∣ε=0

Eu+εv{ξt − ut − εv(t)}
∣∣∣∣ ≤ Ct‖v‖L2(0,T ), a.e. t ∈ [0, T ], for every v ∈ H1

0 .

Then the H1
0 risk of the estimator ξ is infinite, i.e.,

Eu(‖ξ − u‖2H1
0
)ds =∞, for every u ∈ Θ.

Proof. We argue exactly as in the proof above, but we write

Eu+εv(ξt) = Eu+εv(ut) + εv(t) + bu+εv
t .
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where but = Eu(ξt − ut) is the bias. After differentiation with respect to ε and t, we obtain

(5) with Eu(|ξ̇t− u̇t|2) +C2
t in place of Eu(|ξ̇t− u̇t|2) and we conclude arguing as in the proof

above. �

We address now analogous results for the intermediate spaces H1
0 ⊂ Wα,2 ⊂ L2, for α ∈

(0, 1), defined as follows.

Definition 2.8. For α ∈ (0, 1), p ∈ (1,∞), the fractional Sobolev space Wα,p(= Wα,p(0, T ))
is defined as the space of functions u ∈ Lp(0, T ) such that their “energy” functional is finite,
i.e.,

‖u‖p
Wα,p

0
=

∫ T

0

∫ T

0

|ut − us|p

|t− s|pα+1
dtds <∞.

The notation Wα,p
0 , with subscript 0, is introduced here to distinguish the energy functional

from the usual norm in the theory of fractional Sobolev spaces, for which we refer throughout
to the survey [3]. For our purposes, we need nothing more than the definition above, but let
us stress some further (well-known) facts. The space Wα,p (endowed with a suitable norm)

interpolates between the Sobolev space W 1,p and Lp; for example, one has Wα′,p ⊆Wα,p for
0 < α ≤ α′ < 1, and Wα,2 ⊆ H1, with

‖u‖2
Wα,2

0

≤ 2

∫ T

0
|u̇r|2

∫ T

r

∫ r

0

1

|t− s|2α
dsdtdr ≤ Cα,T ‖u‖2H1

0
. (6)

From this inequality, the above theorem for estimators in H1
0 could also be obtained from the

next results. Moreover, if αp > 1, then one can prove a continuous embedding of Wα,p(0, T )
into Cβ(0, T ), with β = α− 1/p.

Let us first consider the Cramér–Rao bound in the quadratic case.

Theorem 2.9 (Cramér–Rao inequality in Wα,2). Let ξ be an unbiased estimator. For every
α ∈ (0, 1), one has

Eu
(
‖ξ − u‖2

Wα,2
0

)
≥
∫ T

0

∫ T

0

1

|t− s|2α
dtds, for every u ∈ Θ.

Equality is attained by the (efficient) estimator ξ = X.

In particular, if an estimator ξ has finite Wα,2 risk for some α ∈ [1/2, 1) and some u ∈ Θ,
then it is not unbiased. This is consistent with the qualitative and informal fact that the
paths of Brownian motion do not possess “half of a derivative” in time, even measured in a
L2 sense.

Proof. We introduce the notation ∆t = ξt − ut, for t ∈ [0, T ], so that, by Fubini’s theorem,
we write

Eu
(
‖ξ − u‖2

Wα,2
0

)
=

∫ T

0

∫ T

0

Eu(|∆t −∆s|2)

|t− s|2α+1
dtds.

If ξ is an unbiased estimator and v ∈ H1
0 , we argue (once again) to obtain (3), and subtract

the corresponding identities for s, t ∈ [0, T ], thus

v(t)− v(s) = Eu
{

(∆t −∆s)

∫ T

0
v̇(r)dXu

r

}
.
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Hence, the Cauchy–Schwarz inequality and Itô’s isometry give the lower bound

Eu(|∆t −∆s|2) ≥ |v(t)− v(s)|2∫ T
0 v̇2(s)ds

, for s, t ∈ [0, T ].

We let v̇(r) = 1[s∧t,s∨t](r), so that

Eu(|∆t −∆s|2) ≥ |t− s| for s, t ∈ [0, T ].

The Cramér–Rao bound then follows, viz.∫ T

0

∫ T

0

Eu(|∆t −∆s|2)

|t− s|2α+1
dtds ≥

∫ T

0

∫ T

0

1

|t− s|2α
dtds.

Finally, if ξ = X, then X − u = Xu, thus one has

Eu(|Xu
t −Xu

s |2) = |t− s|, for s, t ∈ [0, T ].

Hence the Cramér–Rao lower bound is attained, i.e.,∫ T

0

∫ T

0

Eu(|Xu
t −Xu

s |2)

|t− s|2α+1
dtds =

∫ T

0

∫ T

0

1

|t− s|2α
dtds. �

In the case of a general exponent p ∈ (1,∞) (with q = p/(p − 1)), arguing similarly, we
obtain the following bound, in Wα,p. As above, we let cq = E(|Y |q) be the qth moment of a
standard Gaussian (Normal) random variable.

Theorem 2.10 (Cramér–Rao inequality in Wα,p). Let ξ be an unbiased estimator. For every
α ∈ (0, 1), p ∈ (1,∞), one has

Eu
(
‖ξ − u‖p

Wα,p
0

)
≥ 1

c
p/q
q

2T 1−pα+p/2

p{1 + p(1/2− α)}max{0, (1/2− α)}
.

Since

Eu(|Xu
t −Xu

s |p) = cp|t− s|p/2,
the risk of the estimator ξ = X is given by∫ T

0

∫ T

0

Eu(|Xu
t −Xu

s |p)
|t− s|pα+1

dtds = cp

∫ T

0

∫ T

0

1

|t− s|pα+1−p/2 dtds.

As in Remark 2.4 above, we conclude that X is not an efficient estimator with respect to the
risk in Wα,p, for p 6= 2.

Remark 2.11. Before we conclude this section, we remark that all the bounds above can
be generalized (at least) to the case of a continuous Gaussian martingale, with quadratic

variation process
∫ t

0 σ
2
sds, t ∈ [0, T ] and also by introducing different energies, such as∫ T

0

∫ T

0

|u(t)− u(s)|p

|t− s|αp+1
µ(dt, ds),

where µ is a measure on [0, T ] (a natural choice would be to take µ somehow related to σ2).
However, we choose to restrict the discussion to the case of the Brownian motion, to limit
technicalities and emphasize the role played by the norm chosen to estimate the risk.
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3. Super-efficient estimators

In this section, we address the problem of Stein type, super-efficient estimators for the
drift of a shifted Brownian motion, with respect to risks computed in the Sobolev spaces
introduced above.

For L2(µ)-type risks, super-efficient estimators in the form X + ξ were first studied in [10],
using tools from Malliavin calculus. Before we discuss their approach and our extension to
Sobolev spaces, let us review some facts about Malliavin calculus on the classical Wiener
space (we refer to the monograph [9] for details), limiting ourselves to what is essential for
our purpose.

3.1. Malliavin Calculus on the Wiener space. In the framework of Section 2, i.e., if
X = (Xt)t∈[0,T ] is a Brownian motion (on the finite interval [0, T ]), defined on some filtered
probability space (Ω,F, (Ft)t∈[0,T ], P ), we introduce the space S of smooth functionals, as
those in the form F = φ (Xt1 , . . . , Xtn) for some t1, . . . , tn ∈ [0, T ] and φ ∈ C∞b (Rn), n ≥ 1.
The Malliavin derivative DF is then defined as the L2(0, T )-valued random variable

DtF =

n∑
i=1

∂φ

∂xi
(Xt1 , . . . , Xtn) 1[0,ti](t), for a.e. t ∈ [0, T ].

For h ∈ L2(0, T ), we let DhF =
∫ T

0 DtFh(t)dt (in the classical Wiener space framework, this

corresponds to differentiation along the direction in H1
0 given by h̃(t) =

∫ t
0 h(s)ds, t ∈ [0, T ]:

differently from the previous sections, we prefer to focus on the space L2(0, T ) instead of H1
0 ).

The Cameron–Martin theorem entails the following integration by parts formula for smooth
functionals.

Proposition 3.1. Let F ∈ S and h ∈ L2(0, T ). Then

E(DhF ) = E (Fh∗) , (7)

where we let h∗ =
∫ T

0 h(s)dXs be the Itô(–Wiener) integral.

A straightforward consequence of the integration by parts formula above is closability for
the operator D : S ⊂ L2(Ω)→ L2(Ω× [0, T ]). The domain of its closure defines the Sobolev–
Malliavin space D1,2, on which the operator D extends continuously.

Proposition 3.2 (chain rule). Let F1, . . . , Fn ∈ D1,2 and φ ∈ C1
b (Rn). Then φ(F1, . . . , Fn) ∈

D1,2 with

Dtφ(F1, . . . , Fn) =
n∑
i=1

∂φ

∂xi
(F1, . . . , Fn)DtFi, for a.e. t ∈ [0, T ].

3.2. Stein’s shrinkage estimators in fractional Sobolev spaces. In [10], Privault and
Réveillac consider an estimator ξt = D1[0,t]

lnF , t ∈ [0, T ], where F is any P -a.s. non-negative

random variable in D1,2 such that
√
F is ∆-superharmonic with respect to a suitable “Lapla-

cian” operator, actually related to the structure of the risk considered (which is not, in the
Gaussian case, the usual Gross–Malliavin Laplacian). We show that a similar approach leads
to super-efficient estimators also in fractional Sobolev spaces Wα,2, for α ∈ [0, 1/2) (of course,
this perturbative approach does not provide any information for larger values of α). Indeed,
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for every ξ = (ξt)t∈[0,T ], with Eu(‖ξ‖2
W 2,α

0

) <∞, we write

Eu(‖X + ξ − u‖2
Wα,2

0

) = Eu
(
‖X − u‖2

Wα,2
0

+ ‖ξ‖2
Wα,2

0

)
+

+ 2

∫
Eu [(ξt − ξs){(Xt − ut)− (Xs − us)}]µα(ds, dt),

where we introduce the Borel measure µα(ds, dt) = 2(t − s)−2α−11{s<t}dsdt on [0, T ]2. If

ξt− ξs ∈ D1,2, for every s, t ∈ [0, T ], with s < t, the integration by parts (7) for the Malliavin
derivative (to be rigorous, we should write in what follows Du, because the derivative is built
with respect to the probability P u, not P ), entail

Eu [(ξt − ξs){(Xt − ut)− (Xs − us)}] = Eu{(ξt − ξs)(Xu
t −Xu

s )}

= Eu{(ξt − ξs)1∗[s,t]} = Eu{D̃s,t(ξt − ξs)},

where D̃s,tF = D1[s,t]

∫ t
s DrFdr. Hence, if we let ρ = Eu(‖X−u‖2

Wα,2
0

) denote the Cramér–Rao

lower bound, we deduce that

Eu
(
‖X + ξ − u‖2

Wα,2
0

)
= ρ+

∫
Eu
{
|ξt − ξs|2 + 2D̃s,t(ξt − ξs)

}
µα(ds, dt).

It is then convenient to introduce the following notion of Laplacian,

∆αF =

∫
[0,T ]2

(D̃s,t)
2Fµα(ds, dt), (8)

initially defined on S. Arguing as in [10, Proposition 4.5], it is possible to show that ∆α : S ⊆
L2(Ω, P u)→ L2(Ω, P u) is closable and that the random variables G ∈ D1,2, with

D̃s,tG ∈ D1,2, for a.e. s, t ∈ [0, T ] and D̃2
s,tG ∈ L2

(
Ω× [0, T ]2, P × µα

)
, (9)

belong to the domain of the closure, so that ∆αG is well-defined (actually, by the same
expression as in (8)). Moreover, the operator ∆α is of diffusion type, i.e., for every F1, . . . , Fn ∈
S, φ ∈ C2

b (Rn), the function φ ◦ F (we write F = (F1, . . . , Fn)) belongs to the domain of ∆α,
and one has

∆α(φ ◦ F) =
n∑
i=1

∂φ

∂xi
(F)∆αFi +

n∑
i,j=1

∂2φ

∂xi∂xj
(F)Γα(Fi, Fj), P -a.e. in Ω, (10)

with Γα(Fi, Fj) =
∫

[0,T ]2 D̃s,tFiD̃s,tFjµα(ds, dt), for all i, j ∈ {1, . . . , n} (the Malliavin ma-

trix associated to (Fi)
n
i=1). This identity, by density, extends under natural integrability

assumptions on F as well as on φ.
The operator ∆α enters in the picture if we assume that the process ξ is of the form

ξt = D̃0,t lnF 2, t ∈ [0, T ], for some P -a.e. positive random variable F ∈ D1,2, with G = lnF 2

satisfying (9). If we are in a position to apply the chain rule (10), one then gets

∆α lnF 2 = 2
∆αF

F
− 2

F 2
Γα(F, F ) =

2∆αF

F
− 1

2
Γα(lnF 2, lnF 2),

which can be explicitly written in terms of ξ as

4∆F

F
=

∫
[0,T ]2

{
2D̃s,t(ξt − ξs) + |ξt − ξs|2

}
µα(ds, dt).



FUNCTIONAL CRAMÉR–RAO BOUNDS IN SOBOLEV SPACES 11

As a result, we obtain

Eu
(
‖X + ξ − u‖2

Wα,2
0

)
= ρ+ 4Eu

(
∆αF

F

)
.

Therefore, in order to find super-efficient estimators, it is enough to prove the existence of
some ξ (independent of u) that can be written in terms of some F (possibly depending on
u), with ∆αF ≤ 0 (i.e., super-harmonic) with strict inequality on a set of positive P u (or
equivalently P ) measure. In the case of shifted Brownian motion, we provide the following
example.

Example 3.3. Let F be a random variable of the form of increments F = φ
(
Xt1 , . . . , Xtn −

Xtn−1), for some 0 = t0 < · · · < tn ≤ T (with φ : Rn → Rn sufficiently regular, in order to
perform all the computations below). Then, by (10), we can express ∆αF in terms of ∇φ,
∇2φ, ∆α(δiX) and, for i, j ∈ {1, . . . , n},

Γα(δiX, δjX) =

∫
[0,T ]2

D̃s,tδiXD̃s,tδjXµα(ds, dt),

with the notation δiX = Xti −Xti−1 .
Before we proceed further, we have to take into account that, with different probabilities P u,

the random variables may have different derivatives DF = DuF and Laplacians ∆αF = ∆u
αF ,

since the calculus with respect to P u is “modeled” on the process Xu = X − u. Thus, for
h ∈ L2(0, T ), t ∈ [0, T ], one has

DhXt = DhX
u
t +Dhut =

∫ t

0
h(s)ds+Dhut

and ∆αXt = ∆αX
u
t + ∆αut = ∆αut, provided that ut is sufficiently regular. To proceed

further with computations, we assume that the process u is deterministic, i.e., we restrict
the space of parameters Θ to H1

0 only, so that Dhut = ∆αut = 0, ruling out the problem of
possible dependence upon u of the Malliavin calculus that we consider. Then (10) reduces to

∆αF =

n∑
i,j=1

∂2φ

∂xi∂xj
ai,j ,

where, for i, j ∈ {1, . . . , n}, with t0 = 0,

ai,j =

∫
[0,T ]2

∫ t

s
1[ti−1,ti](r)dr

∫ t

s
1[tj−1,tj ](r)drµα(dt, ds).

To prove that the symmetric matrix A = (aij)
n
i,j=1 is well-defined and invertible, we argue

as follows: for every v = (vi)
n
i=1, one has, using the notation 〈Av, v〉 =

∑n
i,j ai,jvivj ,

〈Av, v〉 =

∫
[0,T ]2

n∑
i,j

vivj

∫ t

s
1[ti−1,ti](r)dr

∫ t

s
1[tj−1,tj ](r)drµα(dt, ds)

=

∫
[0,T ]2

{∫ t

s

n∑
i=1

vi1[ti−1,ti](r)dr

}2

µα(dt, ds)

=

∫
[0,T ]2

|ṽ(t)− ṽ(s)|2µα(dt, ds) = ‖ṽ‖2
Wα,2

0

,
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where we let

ṽ(t) =

∫ t

0

n∑
i=1

1[ti−1,ti](s)vids.

From this identity and (6) we deduce that A is well-defined, while non-degeneracy follows
from the fact that, if ‖ṽ‖

Wα,2
0

= 0, then ṽ is constant, which cannot happen except when

v = 0.
We let B = (bi,j)

n
i,j=1 be the inverse matrix of A, and consider the function defined, for all

x ∈ Rn, by

φ(x) = 〈Bx, x〉a

for a suitable choice of a ∈ R. Then, by formally applying the chain rule in Rn, one gets

n∑
i,j

∂2φ

∂xi∂xj
ai,j = 2a{2(a− 1) + n} 〈Bx, x〉a−1 ,

which suggests the choice a ∈ (1 − n/2, 0) (and n ≥ 3). However, for a in this range, φ is
not C2

b (Rn) and in order to rigorously conclude super-efficiency for an estimator in the form

Xt + D̃0,t lnF 2, t ∈ [0, T ], we have to justify all the applications of the chain rule above.
Indeed, the only non-trivial step is to prove the following estimate, for every u ∈ H1

0 :

Eu{〈B(δX), (δX)〉−1} <∞.

In turn, this holds true because we may pass to the joint law of δX = (δiX)ni=1, which is
Gaussian non-degenerate (possibly non-centred) and the integrand can then be estimated
from above by some constant times the function x 7→ |x|−2 (here the assumption n ≥ 3 plays
a role, too).

Next, to prove, e.g., that lnF 2 ∈ D1,2, with

Dt lnF 2 = 2a

∑n
i,j=1 bi,jδiX1[tj−1,tj ](t)

〈B(δX), (δX)〉
, for a.e. t ∈ [0, T ],

it is sufficient to notice that, assuming this identity true, then we could estimate, by the
Cauchy–Schwarz inequality,∫ T

0
Eu(|Dt lnF 2|2)dt ≤ 4a2T trace(B)Eu{〈B(δX), (δX)〉−1}.

This a priori estimate entails lnF 2 ∈ D1,2, by suitably approximating the function z 7→ ln z
with smooth functions.

Similarly, to estimate E(‖ξ‖2
Wα,2

0

), we apply the Cauchy–Schwarz inequality and deduce,

for s, t ∈ [0, T ], with s < t,

Eu(|D̃s,t lnF 2|2) ≤ 4a2(t− s) trace(B)Eu{〈B(δX), (δX)〉−1},

which can be integrated with respect to µα (recall that α ∈ (0, 1/2)).

In conclusion, the example above shows that, in the case of deterministic shifts, i.e., Θ =
H1

0 , we are able to explicitly build super-efficient Stein-type estimators. Although it seems
plausible, we do not know whether this technique can actually be extended to stochastic
shifts; it would be even more interesting to provide super-efficient adapted estimators; see
also Remark 2.3 above.
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4. Intensity estimation for the Cox process

In this section, we study the problem of Cramér–Rao lower bounds in the case of Cox
processes (i.e., doubly stochastic Poisson processes), as it is quite interesting to compare
similarities and differences between the continuous and the jump cases, the latter being in
general less developed.

Let T ≥ 0 and let X = (Xt)t∈[0,T ] be a Poisson process defined on some filtered probability
space (Ω,F, (Ft)t∈[0,T ], P ), with jump times (Tk)k≥1 (for k ≥ 1, we let Tk(ω) = T in the
eventuality that no kth jump occur). For the parameter space Θ, we consider the set of all
absolutely continuous, (strictly) increasing, F0-measurable processes u = (ut)t∈[0,T ] such that
their a.e. derivatives (u̇t)t∈[0,T ] satisfy the assumptions of Girsanov’s theorem for the Poisson
process (the proofs work also for slightly smaller sets). Given u ∈ Θ, we define the probability
P u = LuP, where

Lu =

XT∏
k=1

u̇Tk exp
{
−
∫ T

0
(u̇s − 1)ds

}
.

Girsanov’s theorem entails that, with respect to the probability P u, the process X is a Cox
process with intensity (u̇t)t∈[0,T ]; see, e.g., [6, Section 8.4] for details on related doubly sto-
chastic Poisson processes. Notice that P u(A) does not depend on u for A ∈ F0; thus, in
particular, for t ∈ [0, T ], v ∈ Θ, ut is integrable with respect to P v and its expectation Ev(ut)
actually does not depend on v.

We address the problem of estimating u, or equivalently the intensity of X with respect to
P u, based on a single observation of X. In the case of a deterministic intensity, i.e., when X
is an inhomogeneous Poisson process, this is investigated, e.g., in [11]. By analogy with the
case of shifted Brownian motion, we introduce the following definition.

Definition 4.1. Any measurable stochastic process ξ : Ω× [0, T ]→ R is called an estimator
of the intensity u. An estimator of the intensity u is said to be unbiased if, for every u ∈ Θ,
t ∈ [0, T ], ξt is integrable and it holds Eu(ξt) = E(ut).

As in the previous section, we omit to specify “of the intensity u” and simply refer to
estimators.

Privault and Révelliac studied the estimation problem, in the case of deterministic inten-
sities, w.r.t. the risk in L2(µ), defined as in (1), for any finite Borel measure on [0, T ]. Their
set of parameters Θ consists of all the space of deterministic absolutely continuous, increasing
processes u, see [11, Definition 2.1]. We briefly show how a similar argument indeed applies
as well to the case of stochastic intensities.

Theorem 4.2 (Cramér–Rao inequality in L2(µ)). For any unbiased estimator ξ, it holds

Eu(‖ξ − u‖2L2(µ)) ≥
∫ T

0
Eu(ut)µ(dt), for every u ∈ Θ,

and equality is attained by the (efficient) estimator ξ = X.

Proof. For every process v ∈ Θ, since ξ is unbiased we have

Eu+εv(ξt) = Eu+εv(ut + εvt) = Eu+εv(ut) + εEu+εv(vt), for t ∈ [0, T ].
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Differentiating with respect to ε, as in [11, Proposition 2.3], we obtain the identity

Eu(vt) =
d

dε

∣∣∣
ε=0

Eu+εv(ξt − ut)

= Eu
{

(ξt − ut)
∫ T

0

v̇s
u̇s

(dXs − u̇sds)
}
.

(11)

By the Cauchy–Schwarz inequality and the fact that X is a Cox process with intensity u̇, we
get, for t ∈ [0, T ],

Eu(vt)
2 ≤ Eu{(ξt − ut)2}Eu

(∫ T

0

v̇2
s

u̇s
ds

)
.

Thus Eu{(ξt − ut)2} ≥ Eu(ut) once we let v̇ = u̇1[0,t]. The thesis follows by integration with
respect to µ. �

In contrast to the case of Brownian motion, the lower bound depends on the parameter
u ∈ Θ. This is quite natural in view of the classical, finite-dimensional, Cramér–Rao lower
bound, where the inverse of the Fisher information appears, measuring the local regularity
of the densities: when u is small, the density becomes very peaked and the bound becomes
trivial.

Since the intensity u ∈ Θ is absolutely continuous, also in this case we investigate lower
bounds for the H1

0 risk and no unbiased estimators exist. In the next result, we also collect
the case of fractional Sobolev spaces Wα,2, for α ∈ (0, 1).

Theorem 4.3. For any unbiased estimator ξ, α ∈ (0, 1), it holds

Eu(‖ξ − u‖2
Wα,2

0

) ≥ 2

∫ T

0
Eu(u̇r)

∫ T

r

∫ r

0

1

(t− s)2α+1
dsdtdr,

for every u ∈ Θ. There exists no unbiased estimator ξ with finite risk in Wα,2 for α ∈ [1/2, 1),
as well as in H1

0 .

Proof. We subtract (11) for two different times s, t ∈ [0, T ], and apply the Cauchy–Schwarz
inequality, which yields

Eu(|∆t −∆s|2) ≥ Eu(|vt − vs|)2

Eu
(∫ T

0
v̇2s
u̇s
ds
) .

Hence, taking v̇r = 1[s∧t,s∨t](r)u̇r, we find

Eu(|∆t −∆s|2) ≥ Eu(|ut − us|), for every s, t ∈ [0, T ].

If s < t, then the right-hand side above coincides with Eu(
∫ t
s u̇rdr). Integrating with respect

to s, t ∈ [0, T ], with measure |t− s|−2α−1dtds, we obtain the required inequality. To deduce
that no unbiased estimators with finite risk exist, it is sufficient to observe that the double
integral equals +∞, for α ∈ [1/2, 1), and E(u̇r) > 0 for a.e. r ∈ [0, T ]. The case of H1

0 follows
at once from inequality (6). �

We end this section with some remark on the possibility of Stein-type super-efficient esti-
mators in the case of Cox processes.

Remark 4.4 (Malliavin Calculus for a Cox process). It seems reasonable to develop a theory
of differential calculus for Cox processes, akin to that for Poisson processes introduced in [11].
In the setting of Section 4, we let (Xt)t∈[0,T ] be a Cox process on (Ω,F, (Ft)t∈[0,T ], P ), with
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intensity λ = (λt)t∈[0,T ] and jump times (Tk)k≥1. We then denote by S the space of random
variables F of the form

F = f01{XT=0} +
∞∑
n=1

1{XT=n}fn(T1, . . . , Tn),

where, for n ≥ 0, fn : Ω×Rn → R is bounded, measurable with respect to F0×B(Rn) (i.e., its
randomness depends only on λ) and for every ω ∈ Ω, fn(ω; ·) is C∞b (Rn) and symmetric, i.e.,
fn(ω; t1, . . . , tn) is left unchanged by any permutation of the coordinates (t1, . . . , tn) and that,
for every n ≥ 0, one has fn(ω; t1, . . . , tn) = fn+1(ω; t1, . . . , tn, T ), for ω ∈ Ω, t1, . . . , tn ∈ R.

For F ∈ S, we may let DF (ω) ∈ L2(0, T )

DtF = −
∞∑
n=1

1{XT=n}

n∑
k=1

1[0,Tk](t)
1

λTk
∂kfn(T1, . . . , Tn)λt,

for a.e. t ∈ [0, T ].
One can prove the validity of the chain rule and an integration-by-parts formula, providing

some notion of divergence, thus defining Sobolev–Malliavin spaces in this setting. However, it
is at present unclear how to use effectively such calculus to produce super-efficient Stein-type
estimators; see Remark 4.5 below.

Remark 4.5 (Stein estimators for Cox processes). In the case of Cox processes, nothing pre-
vents us from performing similar arguments as in Section 3.2 using, in place of Malliavin
calculus, the calculus sketched in Remark 4.4 above. The case of Poisson processes and
L2(µ)-type risks is investigated in [11]. However, here we currently face a strong limitation
to provide explicit examples, due to the possible dependence upon u (i.e., λ) of the Malliavin
calculus. Let us remark that a similar limitation is also present in [11] and perhaps, at least
in the one-dimensional parametric cases considered in [11, Section 5] (or in the recent paper
[1] on spatial Poisson point processes) one might similarly provide explicit examples of super-
efficient estimators also with respect to Sobolev risks, but the general, infinite-dimensional
parametric problem would remain open.
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