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Abstract

This research explores the integration of machine learning to support sustainable design in data centres
by incorporating reclaimed steel elements into automated structural design workflows. The study begins
with a literature review addressing the impact of steel reuse, the availability of reclaimed sections, strate-
gies for automated, stock-constrained design and the applications of machine learning within the struc-
tural design process. Three reclaimed steel element databases are considered and three cross-section
selection methods are evaluated and validated, establishing the optimal basis for a machine learning
application within the design process. The cross-section selection method is used to gather data on gen-
erated design configurations for braced structures and moment-tight frame structures. Per element, the
element location, length, type and profile are recorded for four separate design choice configurations.
The data collected acts as a basis for a machine learning application for cross-section prediction.

Central to this research is the development and training of a Recurrent Neural Network (RNN) for se-
quential classification, aimed at predicting cross-sections based on design parameters. Four models were
trained, each tailored to different combinations of design choices and reclaimed steel profiles. The sec-
ond step in this workflow is the reclaimed steel integration which is an optimization model that integrates
the RNN’s predictions to refine grid-spaces in response to available reclaimed steel databases. Finally,
the models and the resulting designs were validated to assess performance and applicability.

The trained RNN models reached a test accuracy ranging between 82% to 93% and the optimized steel
integration resulted in design configurations which are slightly over-dimensioned, but all have an overall
steel utilisation between 0.2 and 0.8. These findings underscore the feasibility of applying machine
learning within the structural design domain to promote reclaimed steel integration at the early stages
of the design process. A practical workflow is established that creates the possibility for adaptation to
other building design typologies, making reuse-oriented design more accessible and efficient.

Front page image from Target Recycling Services inc. (2023)
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1
Introduction

Following the Paris Agreement in 2015, a global reduction of 50% of all greenhouse gas (GHG) emis-
sions is mandatory by 2030, followed by the goal to be completely carbon neutral by 2050 (Broer et al.,
2022). As the construction sector is estimated to be responsible for 37% of all GHG emissions (UNEP,
2022), a shift towards environmentally conscious practices within this sector is necessary. To execute
this transition, the integration of reclaimed materials into structural design has emerged as a promis-
ing area of exploration (Alaux et al., 2024). This research presents a solution to reduce environmental
impact while enhancing resource efficiency in construction projects. Simultaneously, the up-rise of Ma-
chine Learning (ML) and Artificial Intelligence (AI) within research has been significant in recent years
as almost ten per cent of all published papers now incorporate ML or AI in the title (Van Noorden and
Perkel, 2023). However, combining these two relevant topics to create an automated design workflow,
implementing ML to effectively incorporate reclaimed steel elements directly into the design has been
under-explored (Liao et al., 2024).

1.1. Design Process
In structural engineering projects, the early phases of design are critical to influencing the project’s
outcomes while requiring relatively low expenditure (Bakker and de Kleijn, 2014). Figure 1.1 shows
the development of influence versus the cost of change during the lifetime of a project, where the Final
Investment Decision is the tipping point where changes within the project become too expensive.

Figure 1.1: The development of influence versus expenditure during the progression of a structural design project (adapted
from Bakker and de Kleijn, 2014)

1



1. Introduction 2

The current workflow of incorporating reclaimed steel in a design is a time-consuming process. Figure
1.2 shows the steps needed to be taken, which form an inefficient feedback loop between engineering
firms and steel distribution companies, as the design needs to be aligned with the available stock not
known beforehand. This separated process creates a possibility for improvement. The feedback loop can
be made faster, or even disregarded when an automated reclaimed steel integration method is applied
within the design process that can quickly generate an initial design based on available stock. This would
result in a more accurate initial concept design and time reduction between the concept design and the
preliminary stage.

Figure 1.2: Current design process for reclaimed steel integration where a feedback loop between the engineering firm and the
steel distribution companies is shown

1.2. Problem Statement
The core challenge addressed in this research is the adaptation of automated design processes to inte-
grate reclaimed steel elements into the structural design of data centres. Although existing research has
looked at the feasibility and benefits of incorporating reclaimed materials, methodologies to effectively
implement these elements within automated design algorithms and tools remain underdeveloped. The
main research question posed to tackle this problem is as follows:

”How can the incorporation of reclaimed steel elements be made more accessible within the design
process of datacentres when using Machine Learning applications?”

To answer the main research question, the following sub-questions are set up:

1. What effect has the integration of reclaimed steel on the design approach and sustainability cal-
culations of data centres?

2. What stock-constrained automated design processes have been researched and which apply best
within this application?

3. What machine learning applications that assist in the structural design process have been re-
searched?

4. How can machine learning techniques be applied to effectively incorporate reclaimed steel within
the design process of data centres?

5. What are the key optimization variables for incorporating reclaimed steel into a design?
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This research aims to bridge the knowledge gap on automatically integrating reclaimed steel by explor-
ing innovative approaches with machine learning and combining previous research. The result of this
research is a workflow that makes reclaimed steel integration more accessible for sustainable structural
design practices.

1.3. Scope
The integration of automated design processes can be applied in many different aspects and stages of the
design process. To narrow the scope of this research, this study focuses on the load-bearing structure of
data centres with a focus on the data hall (the room that houses the server racks). This building function
has the highest impact on the effectiveness of the data centre as poor floorplan layouts can lead to 50%
more energy consumption due to inefficient cooling conditions (Rasmussen and Torell, 2015). Only
the load-bearing structure is considered as most material used in the design is located there, leaving the
most room for optimization of the total embodied carbon. The design variable chosen to be automated
is the cross-section selection process and the floorplan grid spacings of the data hall. The variable grid
spaces allow for an adaptive design to find the configuration with the most reclaimed steel applied. These
boundaries result in a comprehensive and insightful study of the application of reclaimed steel elements.

1.4. Approach
The approach to answer the research questions can be split up into three parts: the literature study which
acts as the theoretical framework, the application process and the validation of the research outcome.
The overview of objectives and their respective approach, algorithm and tool are shown in Table 1.1 for
the parts on application and validation.

Theoretical framework
• Effect of reclaimed steel application to the design approach and sustainability calculations: A
literature study where the embodied carbon of reclaimed steel has been researched, as well as
the design strategies needed to be implemented in order to incorporate reclaimed steel within the
design process.

• Data centre building design and design automation: A literature study on the specific design
requirements of data centres, combined with research on stock-constrained automated design.

• Machine learning applications in the structural design process: A literature study on the differ-
ences in algorithms, previously researched applications and the best fit for automated topology
optimization.

Application
• Initial design set-up and reclaimed steel element database generation: This is based on the spe-
cific design requirements for data halls in data centre buildings. Three different types of reclaimed
steel element databases are considered: one collected from open-source databases, one based on
existing design and one generated based on Eurocode design standards.

• Cross-section selection: Two different approaches for the cross-section selection were combined
to create a reliable cross-section profile selection result. This is applied for two configurations of
cross-section profiles and two types of stability systems, resulting in four design choice combi-
nations. The data has been recorded for almost five thousand different floorplan sizes and grid
spacings for which the element ID, element type, element length and profiles for the four design
choice combinations are saved.
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• Automated cross-section selection: The generated dataset formed a basis for training and vali-
dating a Recurrent Neural Network (RNN) for sequential classification that is applied as an au-
tomated cross-section selection. Four separate models were set up and trained for the different
design choice combinations.

• Reclaimed steel integration: The addition of reclaimed steel is done by combining the RNN for
cross-section selection and a component matcher to combine the design with a reclaimed steel
element database into a Grasshopper model. Where a matching algorithm is applied to find perfect
matches, matches with cut-off length or matches with a bigger profile size are applied. The shape
of the grid is then optimized with an evolutionary optimization using a genetic algorithm to find
the configuration with the most matches to the reclaimed steel database.

Research outcome
• Cross-section selection validation: The validation of the combined cross-section selectionmethod
is done with hand calculations in Python and a structural analysis within Oasys GSA.

• RNN model validation: The RNN models are validated by running the model on unseen test
data and plotting the predictions against the actual labels in a confusion matrix, from which the
accuracy of the model can be calculated.

• Design validation: The resulting design configuration with the reclaimed steel integrated is vali-
dated with a final structural analysis done with finite element modelling in Oasys GSA.

Table 1.1: Objectives for the automated reclaimed steel integration with their respective approach, algorithm and tool.

Objective Approach Algorithm Tool / Implementation

Initial design set-up Data centre design requirements - Grasshopper
CS profile selection Eurocode steel profile calculations - Karamba3D / Python
Automated CS selection Machine Learning Recurrent Neural Network Python
Reclaimed steel integration Object-oriented programming - Magpie (Grasshopper)
Shape optimization Evolutionary optimization Genetic algorithm Opossum (Grasshopper)

CS selection validation Hand calculations / Structural analysis Finite Element Modeling Python / GSA
RNN model validation CS prediction for unseen test-dataset - Python
Design validation Structural analysis Finite Element Modeling Oasys GSA

1.5. Report Outline
The structure of the report aligns with the order of tasks from subchapter 1.4. The first part of the
report analyses the theoretical aspects of reuse, automated design, and machine learning. The second
part presents the overall workflow with further explanation of the two model types: a Machine Learning
model and an evolutionary optimization model. The report concludes with the final results, discussion
and proposed further research. An overview of the report structure can be found in Figure 1.3.
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Figure 1.3: Overview of report structure which shows the links between theoretical chapters and application.
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2
Reuse of Steel Elements

The reuse of structural steel has emerged as a key strategy for reducing carbon emissions in construction,
aligning with the European Commission’s goal of climate neutrality by 2050 (EuropeanCommission,
2020). A pivotal development is the Dutch Technical Agreement NTA 8713 (2023), which provides
clear guidelines for reusing structural steel, including dismounting, assessing material properties, adapt-
ing designmethods, and preparing elements for reuse (NTA 8713, 2023). This report highlights that steel
produced after 1972 can be considered new steel in terms of application and strength, provided it meets
strict visual and structural checks, reinforcing its potential for long-term circular use. By streamlining
reuse practices, such initiatives make it possible to reduce raw material use and GHG emissions, pre-
senting a promising approach for sustainable design and life cycle calculations in the building industry.
In this chapter, the first sub-question is further explored:

1. What effect has the integration of reclaimed steel on the design approach and sustainability cal-
culations of data centres?

2.1. Impact of Steel Reuse
To explain the impact of steel reuse, clear life cycle stages of the material need to be identified. This is
generalizedwithin the Life CycleAssessment (LCA) calculations of structures as described byBroniewicz
and Dec (2022):

• A1-3: Product Stage - This stage involves the extraction and processing of raw materials, as well
as the manufacturing of building products. It includes all the environmental impacts from the
point of resource extraction to the delivery of the product to the construction site.

• A4-5: Construction Process Stage - This stage covers the transportation of building materials
to the site and the construction of the building itself. It includes the energy used in construction
and the waste generated on-site.

• B1-7: Use Stage - This is the longest stage in a building’s life cycle and includes the use, main-
tenance, repair, replacement and refurbishment of the building. It also accounts for the energy
used for heating, cooling and lighting during the building’s operational phase.

• C1-4: End of Life Stage - This stage involves the deconstruction or demolition of the building,
waste processing and disposal. It also includes the transportation of the waste and any potential
recycling or recovery processes to its new location.

7
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• D: Benefits and Loads Beyond System Boundaries - This stage considers the potential future
generated or avoided environmental impacts. It includes the benefits of recycling materials from
the demolished building into new products or the environmental load of waste disposal. As this
model shows the benefits of reusing material it is interesting within this research. Therefore, the
sub-modules, according to the Eurocode (15804+A2, 2019), are explained as well.

– D1: Export of secondary materials.
– D2: Export of secondary fuels.
– D3: Export of energy as a result of waste incineration.
– D4: Export of energy as a result of landfilling.

Each of these stages, or modules as they are known in the Netherlands, combined give the total overview
of the environmental impact of a structure. To correctly identify the impact of reuse on the total carbon
emissions, it is important to clarify its exact meaning and to keep the calculations constant.

2.1.1. Module D
The first four modules have been thoroughly assessed and researched for building structures, creating
little room for discussion. But Module D on the other hand has been a controversial topic in recent
years, as stated in an article by den Hollander (2024). In the article, the negative image of Module D is
addressed. It is even mentioned by the writer that certain politicians accused the Module of being a tool
for green-washing building designs. This is based on the fact that carbon emissions would be able to be
reduced by promised actions made at the end-of-life (EoL) stage of the structure.

To clarify the application and differences of Module D when applied in different circumstances, MRPI
conducted three thorough calculations on different design approaches. The calculations are done for
a standard new-steel design, a design including reused material and a design for reuse at end-of-life.
These calculations were done as a way to show the differences in Modules for these alternate design
considerations. Since Module B would be the same for each iteration, it is left out of the calculations.
Table 2.1 shows the resulting Global Warming Potential (GWP) expressed in embodied carbon per kg
material for each of the life cycle stages. By comparing these values for the three design approaches,
a clear overview is created of the specific stages that lower the total embodied carbon when reclaimed
materials are applied. The table shows the highest differences in modules A1-A3 and D.

Table 2.1: GWP expressed in equivalent kg CO2 per kg of steel which is emitted during the lifecycle of a building. Here three
different design approaches are compared, one for raw material use, one with 90% reuse in the design and one structure which
is designed to be reused at EoL. For the first two calculations, 16% reuse at EoL is taken into account as this is the current
average of reuse at the EoL stage of buildings.

[kgCO2e/kg]
Raw material, 16% reuse EoL
(Kraaijenbrink et al., 2022c)

90% Reuse, 16% reuse EoL
(Kraaijenbrink et al., 2022b)

Raw material, 80% reuse EoL
(Kraaijenbrink et al., 2022a)

A1-A3 1.12 0.198 1.12
A4 0.0201 0.0201 0.0201
A5 0.0477 0.0477 0.0477
C1-C4 0.0807 0.0807 0.0808
D −0.219 −0.0171 −0.761

Total 1.049 0.329 0.508
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The high differences within module D can be further explained by looking at the formula for stage D1
in more detail, which is shown in equation 2.1.

𝑒moduleD1 =∑
𝑖
(𝑀MR,out|𝑖 −𝑀MR,in|𝑖) ∗ (𝐸MR,afterEoW,out|𝑖 − 𝐸VMSub,out|𝑖 ∗

𝑄R,out
𝑄sub

|𝑖) (2.1)

𝑀MR,out = Amount of output material that will be recycled or reused
𝑀MR,in = Amount of input material that is recycled or reused

𝐸MR,afterEoW,out = Emissions from recovered material previous system
𝐸VMSub,out = Emissions from material acquisition to substitution in a subsequent system

𝑄R,out
𝑄sub

= Quality ratio of recovered material versus otherwise applied material

The equation describes the material flow with parameter 𝑀, where the difference of recovered material
entered into the system versus the amount of material that will be reused at end-of-waste point. These
material flows are then multiplied by their relative emissions, as shown with parameter 𝐸. According to
NTA 8713 (2023), it can be assumed that the quality of steel elements will not degrade over its reuse
cycles when it passes the prescribed visual checks, resulting in the 𝑄R,out

𝑄sub
being equal to one. The biggest

benefits of the D module will be in the step from raw material use to design for reuse at EoL. However,
since reusing elements will lead to a decreased value for A1-A3, the overall LCA calculation of amaterial
per service life application will stagnate over its life cycles.

2.1.2. Literature on Effect of Reuse
Many different research groups have explored the topic of quantifying the positive effects of steel reuse
by using LCA calculations. By looking at the effect on carbon emissions and costs, a complete picture
can be painted to highlight the benefits and create a feasible business case for reuse. Buzatu et al. (2023)
presents a comparative analysis of the environmental and economic impact of steel structures, through
life cycle assessment (LCA) and life cycle cost (LCC) assessment. It was found that utilizing reclaimed
steel structures leads to a 29-35% reduction in emissions compared to new steel. The study evaluates
scenarios involving different levels of reuse, showing that even partial reuse of steel elements yields sig-
nificant environmental and economic benefits, with the greatest gains observed in the production stage.

While Buzatu et al. (2023) focused on the benefits of steel reuse, Broniewicz and Dec (2022) took a
more comparative approach by examining different design strategies based on LCA calculations calcu-
lated with GaBi software. Their research highlights the favourable Design for Deconstruction (DfD)
strategy, which results in about 70% energy savings and an 80% reduction in CO2 equivalent emissions
compared to the scenario where the existing structure is remelted to fit a new design. Designing for
deconstruction will lead to a more cost-competitive option to dismount the structure compared to de-
molition, as more elements can be recovered for a reasonable market value. However, it is important
to note that this solution focuses on greenhouse gas reduction in the future while minimising emissions
now is urgent as well.

A bit closer to home, Aardoom (2023) created a LCA and cost calculation tool called Steel-IT that builds
on the previously mentioned papers together with the thesis of van Maastrigt (2019), where transporta-
tion costs are analysed in detail as well. Aardoom further facilitates the application of reuse as the tool
creates a fast and thorough insight into the steel reuse possibilities and advantages. The key distinction
between new and reclaimed steel lies in the design approach and stakeholder engagement. Although
reclaimed steel designs are often more costly due to additional processes like re-fabrication, material



2. Reuse of Steel Elements 10

testing, and storage, a 25% environmental impact reduction can be achieved with minimal cost increase
when there’s a good match between donor elements and building geometry. The Steel-IT tool creates a
fast and easy overview of reuse possibilities, making donor steel designs also more cost-competitive.

In summary, this section has explored the life cycle stages of buildings and the significant potential
of reclaimed steel to promote sustainable construction practices. Research by Buzatu et al. (2023) and
Broniewicz and Dec (2022) has highlighted the environmental and economic benefits of using reclaimed
steel, demonstrating reductions in emissions and potential energy savings. Which are visualised effec-
tively by Aardoom (2023) in the Steel-IT tool. Table 2.2 shows the total embodied carbon per kg of steel
listed per source. This overview gives insight into the differences found in the literature.

Table 2.2: Greenhouse Gas emissions for new and reused steel as per three different sources. These account for the opening
of connections, usage of the crane and preparation of the element.

[kgCO2e/kg] Brütting et al., 2020 van Maastrigt, 2019 Aardoom, 2023

New steel 0.894 0.985 1.0624
Direct reuse 0.447 0.109 0.3294
Indirect reuse - 0.147 0.3423
Indirect reuse (waste) - 0.085 0.0129
Transport 1.1 ∗ 10−4[1/𝑘𝑚] 1.32 ∗ 10−4[1/𝑘𝑚] -

2.2. Design Strategies
Following a very recent study done by Alaux et al. (2024), a variety of design strategies have been de-
veloped to minimize the environmental footprint of buildings throughout their life cycles. These strate-
gies emphasize optimizing material use and reducing energy demand, which collectively contributes to
lowering the embodied and operational emissions of buildings. The report provides a comprehensive
framework of 11 design strategies that outline the key approaches and their potential impact on carbon
reduction and their effects are visualised in Figure 2.1.

Figure 2.1: The figure from Alaux et al. (2024) shows an overview of the proposed design strategies and the respective impact
on carbon reduction per life cycle stage of the building. * Shows the share of affected life cycle GHG emissions, based on
average annual life-cycle related emissions of the EU building stock for the year 2020 from Le Den et al. (2023).
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Within this research, the focus will go to design strategy eight, which includes the reuse of existing build-
ing components. Despite the environmental benefits of this design strategy, several obstacles hinder its
widespread adoption. Rakhshan et al. (2020) identify key challenges, including the questionable state of
many reusable components, which may no longer meet modern building standards. Additionally, there
is a lack of clear regulations and uniform standards, creating uncertainty in the application. Finally,
the labour-intensive process of deconstructing and re-purposing elements leads to higher costs, further
complicating the feasibility of reuse in large-scale construction projects.

In order to effectively incorporate reclaimed elements into the design of new structures, a different design
approach should be adopted. A Joint Inter-disciplinary Project (JIP) was established in collaboration
with a municipality to determine the necessary changes to adopt a circular design and construction work-
flow (Keranis et al., 2023). They stated that several challenges need to be overcome for the successful
transition from a linear to a circular construction sector. These include the perception that the circular
approach is complicated, expensive, or even impossible to adopt and the lack of coordination between
different departments. Following the release of new standard codes regarding reuse, Vergoossen et al.
(2023) stated that the lack of knowledge on the possibilities of reuse created unnecessary discussions
which haltered the distribution of knowledge. The following steps to overcome these barriers were
identified within both studies:

• A Clear Vision: A clear and detailed vision for circular construction needs to be established. This
vision should outline the goals and objectives of adopting a circular approach.

• Improve Coordination: There needs to be improved coordination and information sharing among
various disciplines involved in the construction process. Creating a more efficient way of working
between demolition, architectural design, structural design and execution.

• Establish a Circular Construction Process: A detailed circular construction process needs to be
developed. This process should outline the steps involved in the efficient application of donor
steel elements within the design process.

• Develop a Database of Reusable Elements: This database should include information on the avail-
ability, condition, and potential uses of each element.

By following these steps, the transition to a circular construction industry can be facilitated, contributing
to the set sustainability goals.

These steps create a pathway for the application of reclaimed elements to enter the design process, which
now needs to be implemented further. Kavoura and Veljkovic (2023) highlighted three distinct phases in
the design process that are crucial for the successful reuse of structural elements. The first phase involves
an assessment for potential reuse before deconstruction, creating a need for a systematic approach to
inspection and documentation. Following deconstruction, the second phase entails the sampling and
testing of elements, which ensures the reliability of the structural member. These aspects are elaborated
further in Chapter 2.3. The third and final phase requires modifications to the design process to include
reuse, taking into account the accurate load-bearing capacities and structural integrity of the elements.
This is explained extensively in chapter 3.
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2.3. Preparation Process
The release of NTA 8713 (2023) has introduced a standardizedmethodology for assessing steel elements
in existing buildings to prepare them for reuse. This standard represents a significant step forward in
streamlining reclaimed steel applications in the construction industry. Earlier research as done by Gor-
don et al. (2023), explored innovative ways to evaluate buildings for reuse. Their research, which in-
cluded sensing and scanning technologies, Scan-to-BIM and computer vision, was applied in a Geneva
case study and demonstrated the potential of advanced digital tools for deconstruction planning and
recovery analysis. However, the comprehensive criteria outlined in NTA-8713 now provide a more ac-
tionable framework for the industry which is more widely applicable and cost-effective.

The NTA-8713 process begins with a detailed visual inspection of steel elements, resulting in a thor-
ough inspection report. This document includes key assessments such as archival document status,
conservation evaluations, material property verification, geometric deviations, potential consequence
class applications, and weldability tests. A critical recommendation from the NTA is to classify all
reused steel as S235 to account for potential variability in material properties, ensuring consistency and
safety.

After passing inspection, reused steel elements must comply with the same structural codes as new ma-
terials. While the reuse of nuts and bolts is prohibited, steel profiles with pre-existing bolted connections
are allowed if they meet visual and structural design requirements. The standard also emphasizes the
importance of coating removal, particularly where toxic substances are involved. This step is crucial
for making elements safe and viable for reuse, as confirmed by industry feedback (“Beschikbaarheid en
process hergebruik constructiestaal. Interview by Tessel van Oers”, 2024).

2.4. Availability
The availability of steel beams and columns is a critical factor in the construction industry as mentioned
in section 2.2, influencing both the design and execution phases of projects. One of the biggest hurdles
when it comes to reclaimed steel is the cost of storage, due to their size, quantity and need for quality
retention, according to a steel distribution company (“Beschikbaarheid en process hergebruik construc-
tiestaal. Interview by Tessel van Oers”, 2024). Instead, they primarily source steel elements from donor
structures after receiving assignments from engineering firms. This approach underscores the impor-
tance of efficient resource management and the need for a streamlined process to meet project demands.

The current workflow begins when a developer proposes a project, for example a data centre. The ini-
tiator then engages an engineering firm and an architect to develop an initial design based on the desired
floor plan and power requirements. Once the preliminary design is completed, they approach a steel
distribution company to check the design for possibilities to apply reused elements. Who in their turn
will start looking for elements that will become available. This establishes a feedback loop between the
engineering firm to adapt the design based on the availability of specific steel sections. This iterative
process can be time-consuming, as it relies on separate parties who do not have complete insight into
the possibilities.

Designing based on cross-sections that are often readily available shortens this procedure. By doing so,
engineering firms can streamline the design phase, reducing the time spent on sourcing specific steel
elements. The steel distribution company provided a range of cross-sections that are more frequently
available (“Voorraad constructiestaal. Interview by Tessel van Oers”, 2024). This data can be combined
with the application of basic steel design requirements from the Eurocode, generating a starting point for
initial designs. This approach not only accelerates the design process but also ensures that the materials
used are readily accessible, promoting efficiency and sustainability in construction projects.
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2.4.1. Dataset
In order to effectively find the supply of reclaimed steel elements, Opalis.eu (2024) launched a platform
listing all websites that offer reclaimed steel. From this platform, several sources can be found that
have a small stock provided by local demolition companies like Snellen (2024), GBW (2024) and van
Liempd (2024). These companies typically store a limited range of steel elements at their facilities,
which can be accessed for reuse. While smaller in scale, such datasets present a reliable resource for
specific projects where immediate availability is a priority. Figure 2.2 shows such a storage facility and
a few of their available pieces. Another viable option is leveraging data from buildings which are up for
decommissioning, creating an inventory of the used elements as a basis for a new design.

Figure 2.2: Pictures from van Liempd (2024) their available stock of HEA300 and IPE220 beams. As can be seen in the image,
the elements are stored outside which will result in the need for a thorough visual check as per NTA8713. For the sake of this
research, the quality of the beams is assumed to be fit for reuse, but it is important to note this is not a guarantee with this type
of source.

2.5. Summary
This chapter shows the growing importance of reusing steel elements in building construction to reduce
carbon emissions and contribute to a circular economy. Reuse of structural elements aligns with the
European Commission’s climate goals and the new Dutch Technical Agreement (NTA 8713), which
outlines guidelines for reusing structural steelwork. This chapter also shows that reuse of steel signifi-
cantly reduces carbon emissions and can offer economic benefits, as highlighted in several studies. LCA
calculations demonstrate the potential for emission reductions across all life cycle stages, particularly
when Module D, but Module A as well, is carefully considered. Research shows that incorporating
reclaimed steel into designs can reduce emissions by up to 35%, with the most substantial benefits real-
ized during the production stage. However, challenges such as unclear regulations, the labour-intensive
nature of deconstruction and coordination barriers limit widespread adoption. Design strategies, in-
cluding the reuse of building components and designing for deconstruction, offer actionable pathways
to overcome these barriers, promoting a circular construction approach. Ultimately, the reuse of steel
presents a viable solution for minimizing the environmental footprint of buildings while aligning with
sustainable development goals.



3
Automated Design of Data Centres

Due to the increase in electricity demand and internet use, data centres have become more and more
important as they power everything from cloud storage to streaming services. As a result, they are pro-
jected to be the biggest global energy consumer by 2030 (Jones, 2018). However, designing these critical
infrastructures is a complex task that requires careful consideration of various factors, from energy ef-
ficiency and cooling systems to security and scalability (50600-2-1, 2021). Despite the complexity, the
load-bearing structure of a data centre is relatively straightforward, making it an ideal candidate for au-
tomated design.

Automated design processes offer numerous benefits, including increased efficiency, reduced errors and
the ability to quickly explore a wide range of design options. This chapter analyses the research on
automated design processes, examining their findings and applications. Concluding with an overview
of optimization tools available in the visual programming application Grasshopper, which is applied in
the final step of reclaimed steel integration as described in chapter 7. This chapter aims to answer the
second sub-question:

2. What stock-constrained automated design processes have been researched, and which apply best
within this application?

3.1. Data Centre Design
In designing data centres, the Dutch norm NEN50600-2-1 (2021) states several key requirements to
ensure structural integrity. In the document, guidelines and design recommendations are made for this
specific building type, which will be referenced throughout this subchapter. This building type con-
sists of many different functions that help the data centre function normally, each consisting of different
loads and floor plan requirements. Within this research, the focus lies on the main hall which houses
the data racks and cooling system, leaving out the energy storage, access ways and equipment rooms.
This decision is based on the fact that the floor plan layout of the data racks has the most impact on the
efficiency of the overall performance of the data centre (Rasmussen and Torell, 2015), as poor layout
planning can lead to a decrease of data rack effectiveness of 50% due to inefficient cooling.

One of the recommendations made in the NEN50600-2-1 is to design for future expansion possibilities;
the layout of the load-bearing structure should be designed to accommodate additional loads that may
arise from future expansions. Another important requirement is to implement floors with a total height
of around 4.5 meters to facilitate optimal air circulation and accommodate the installation of neces-
sary equipment like raised floors and suspended ceilings. The Eurocode also recommends that roofs be
designed to be able to have solar panels placed on them, promoting the use of renewable energy and
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enhancing the data centre’s sustainability as it generally is a building with high energy consumption.
Lastly, the loads on floors and ceilings should align with the specifications provided in Table 3.1, ensur-
ing these structures can withstand the weight of the equipment and infrastructure housed within the data
centre. The specific load combinations used within this research can further be found in Appendix A.
These design requirements contribute to the creation of robust, sustainable, and adaptable data centres.

Table 3.1: Floor and ceiling loads for electrical and mechanical spaces, and computer room spaces for data centres according
to the Eurocode on information technology - Data centre facilities and infrastructure (50600-2-1, 2021)

Minimum a Recommended

Floor Uniform load b [𝑘𝑁/𝑚2] 7,2 12,0
Point load [𝑘𝑁] 5,0 7,5

Ceiling Uniform load b [𝑘𝑁/𝑚2] 1,2 2,4
a If the minimum requirements are not met, it can be necessary to provide structural measures to distribute the loads.
b For inter-floor structures the uniform load for floor and ceiling shall be added.

In order to create the optimal design of the data halls, a basic floor plan layout as seen in Figure 3.1
can be considered. One data rack is typically 0.6 meters wide and 1.2 meters long and a row consisting
of those racks is typically spaced 1.2 meters with an overall perimeter clearance of again 1.2 meters to
create access ways. Since the data racks have a cold air intake on one side and a hot air exhaust on the
other, the rows will create cold- and hot aisles within the floor plans. To optimize the performance of
the data centre, it is important to keep these aisles separate, as the cooling system can then work on a
more concentrated area. This means creating long rows of at least 5 data racks, no columns in the aisles
and symmetry on the floor plan. An overview of the mentioned design criteria can be found in Table
3.2, which are used as a basis for the automated design of data centres in chapter 7.

Figure 3.1: A basic double-pitched hot-aisle/cold-aisle layout plan for a data hall determined by Rasmussen and Torell (2015).
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Table 3.2: Overview of design aspects to determine the floorplan layout of a data centre. Values come from Rasmussen and
Torell (2015) and NEN-EN 50600-2-1 (2021).

Identified design criteria Value Unit

Data rack depth 1.2 [m]
Data rack width 0.6 [m]
Data rack height 2.5 [m]
Floor-to-floor clearance 4.5 [m]
Distance between rows 1.2 [m]
Perimeter clearance minimum 1.2 [m]
Perimeter clearance possible hot aisle 1.8 [m]
Minimum row length 5 [-]
Minimum number of rows 2 [-]

3.2. Cross-Section Selection
In the context of automated structural design where the lengths and loads are predefined, the selection
of the cross-section becomes a critical task. As the loads of a data centre in the design phase are known
and the lengths of each element are set, an initial cross-section calculation can be done according to the
Eurocode. The cross-section directly influences the structural performance, including its ability to resist
bending, buckling, and shear forces. Three different ways to evaluate cross-section configurations are
compared, all considering the same material strength, stiffness, and stability. By effectively determining
the optimal cross-section, a design is created that not only meets safety and performance criteria but also
minimizes material usage and cost, leading to more sustainable and economical construction practices.

3.2.1. GSA
To generate a robust structural design, structural analysis checks are a necessity as this ensures the feasi-
bility of a structure. One helpful application to apply these checks is the Finite Element software Oasys
GSA. Developed within Arup, this program is designed to execute a range of analyses, from static and
dynamic to more advanced interaction analyses (Oasys, 2024). Oasys GSA is equipped with multiple
design codes, including the Eurocode 3 from 2005 and the Dutch national annex for steel design. In this
application specifically, the Steel Designer analysis tool from Grasshopper GSA is utilized. This tool
creates an optimum cross-section based on the load, length and location within the structure, as per the
Eurocode.

The Steel Designer works on a member-by-member basis. It checks each member for strength and/or
serviceability using the specified combination cases. The sections are drawn from the Steel Section Pool
that the member refers to. These sections serve as potential candidates for the design. If a member fails
a check, the system assigns a fitter section from the pool, thereby creating the optimal design. The steel
checks account for combinations of bending, shear, and axial load. Buckling is considered by applying
a reduction factor that corresponds to the governing buckling type for that specific member.

Within the scope of this research, only the beam and column elements within the structural design are
considered. This creates the need for a floor-loading to load-bearing structure interaction, without ad-
ditional computing power needed. In Oasys GSA, linear 2D elements can be designated as load panels.
Unlike structural elements, these load panels do not contribute to the structure’s stiffness or mass. Their
primary role is to define loads without material or properties. These loads, defined as face loads on 2D
elements, are then distributed to the surrounding beam elements. They are defined by a support type and
a reference edge. The support pattern determines the number of edges to which the load is transferred,
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while the reference edge dictates the selection of free/loaded edges.

While Oasys GSA offers comprehensive structural analysis and design verification, one notable draw-
back is its processing speed. The thorough checks it performs, particularly for each individual member
under various loading conditions, contribute to a slow response time. This is amplified by the fact that it
connects to an external program, adding further delays. In early design stages, when rapid iterations and
adjustments are essential, the level of detail provided by GSA may exceed what is necessary, potentially
hindering the design workflow by slowing down the process.

3.2.2. Karamba
Karamba3D is a widely used structural analysis and optimization tool that is fully integrated within
Grasshopper. It enables engineers and architects to perform structural calculations without leaving the
parametric design environment, making it particularly effective for early-stage design explorations. One
of Karamba3D’s key advantages is its speed. Unlike other external analysis programs, it executes struc-
tural analyses directly in Grasshopper, which significantly reduces computation time and allows for
rapid iterations (Preisinger, 2013). This makes it ideal for projects where the geometry and loading
conditions are still evolving.

Karamba3D’s cross-section optimization tool streamlines the process of selecting optimal beam and
column profiles. It adjusts the cross-section of elements to meet specific strength and serviceability
criteria, ensuring structural efficiency while minimizing material use (Karamba3D, 2024). However, a
notable limitation is that the tool can only optimize one cross-section profile type at a time, meaning
different types of structural elements, such as beams and columns, must be optimized separately. Despite
this constraint, the speed and ease of use make Karamba3D a powerful tool for the initial design stages,
where fast feedback is crucial.

3.2.3. Manual Eurocode Checks
To further ensure the structural integrity of the steel hall, cross-section selection can be done manually,
based on NEN-EN 1993-1-1:2006 (2020). This method allows for direct control over the calculations,
ensuring compliance with design codes while being highly adaptable to specific structural requirements.
Cross-section properties, such as axial and bending resistances, are retrieved from standardized profiles
from the IPE, HEA and HEB family, as detailed in the Eurocode database EurocodeApplied (2017).
These standardized sections provide critical parameters for manual verification.

𝑈𝐶 = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝐹𝑜𝑟𝑐𝑒 < 1 (3.1)

In this approach, the assumption can bemade that the elements of the structure behave as Euler-Bernoulli
beams. This assumption simplifies the analysis, as it considers only bending and axial forces, ignoring
shear deformations. Given the large slenderness ratios typical of steel structures, this assumption is
justified. To calculate the efficiency of a cross-section, Unity Checks need to be done. The general form
is seen in equation 3.1. Detailed calculations for the steel-specific design, including checks for buckling
and lateral-torsional buckling, are provided in appendix A. When Eurocode calculations are applied, the
following checks need to be done:

• Pure bending: Verifies the moment resistance of the section against the applied bending moments.

• Pure axial force: Ensures the axial resistance is sufficient to carry the axial loads.

• Combined axial and bending loads: Assesses the interaction between axial and bending forces
using the Eurocode’s interaction formulae.
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• Buckling resistance: Evaluates both major and minor axis buckling resistances for compression
elements, using the reduction factors specified in Eurocode 3.

• Lateral-torsional buckling resistance: Verifies the capacity of beams to resist buckling due to
torsion and lateral displacement.

• Deflection check: Ensures that the deflection under applied loads remains within acceptable limits
for serviceability.

3.3. Evolutionary optimization
Grasshopper, a visual programming language within Rhino, features a built-in genetic algorithm primar-
ily through its Galapagos component. This algorithm is designed to optimize complex design problems
by mimicking the process of natural selection. Users define a fitness function that evaluates the perfor-
mance of different design iterations based on specified criteria. The genetic algorithm then iteratively
evolves the design by selecting, crossing and mutating the best-performing solutions. This process con-
tinues until an optimal or satisfactory solution is found. The name “Galapagos” reflects the algorithm’s
inspiration from evolutionary biology, emphasizing its role in exploring and optimizing design spaces
efficiently (Shan, 2014). The Galapagos component uses one of two algorithms to generate random
parameter value sets and compare the resulting fitness values to each other. The more variations it tests,
the more ‘good’ solutions Galapagos finds, and it keeps track of the best solutions with the highest fit-
ness in a kind of scoreboard. (Tait, 2024)

Next to the built-in optimizer from Grasshopper, are there additional components which differ in op-
timization algorithm and thus applicability and computation time. the following other optimization
models are considered:

• Goat: This plugin works on the same optimizer as Galapagos, but it adds the possibility to au-
tomatically stop the optimization after a certain time period or after the optimization has not
improved by a certain threshold. This is a helpful addition in case data needs to be collected
automatically, but it does not consider different genetic algorithms than already incorporated in
Galapagos. (Rechenraum, 2023)

• Opossum: This plugin includes two of the best-performing, single-objective optimization algo-
rithms in Grasshopper: model-based RBFOpt and evolutionary CMA-ES. It also includes the
multi-objective RBFMOpt and NSGA-II algorithms. RBFOpt uses advanced machine learning
techniques to find good solutions with a small number of function evaluations, i.e., simulations,
while CMA-ES reliably finds near-optimal solutions when many function evaluations are possi-
ble. (Wortmann, 2017)

• WallaceiX: This is an evolutionary multi-objective optimization engine that allows users to run
evolutionary simulations in Grasshopper 3D. It uses highly detailed analytic tools and various
comprehensive selection methods, including algorithmic clustering, to help users better under-
stand their evolutionary runs and make more informed decisions at all stages of their evolutionary
simulations. (Makki et al., 2022)

These tools collectively offer varying degrees of control over optimization, each suitable for different
stages of the design process. While Galapagos and Goat are suitable for early-stage optimization due to
their simplicity, tools like Opossum and WallaceiX provide more advanced capabilities for refining and
analysing complex design problems.
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3.4. Stock-Constrained Automated Design
Several studies have been conducted regarding stock-constraint automated design, which can be ap-
proached in multiple different ways. Bukauskas (2020) set the stage for extending the application of
reuse into structural design. They introduced the two new concepts that have been used to optimize
designs in an early design stage. First, the concept of ”Assignment” is defined in a binary matrix, where
values indicate if a component from the design is matched to a stock. The second concept is the ”Off-cut
Ratio”, indicating the needed modification of the stock. The last step is then to approximate the optimal
assignment with polynomial-time Heuristics, in order to create the best match within the design.

After these concepts are quantifiable, they can be optimized to create an optimal design based on stock.
Brütting et al. (2020) used these definitions to quantify the embodied greenhouse gas emissions related
to reuse, which resulted in the following values from their literature review shown in Table 2.2. The
automated design was conducted by calculating the moment capacity of the elements in the inventory,
linking those to load combinations within a specific design to create the matches using a branch-and-
bound global optimization method. This however resulted in a very slow process as the program was
required to run again for all different cut-off lengths, as the moment capacity of the elements will change
with it.

Van Marcke et al. (2024) proposed a solution to the high computation time by developing a new ag-
gregation engine that combines a generative algorithm with a finite element analysis. Here the design
is not optimized but rather the application of the available stock, if separating a longer element into
smaller ones would result in a higher percentage of reuse possible. They also looked at the aggregation
of trusses, where the design and combination of stock elements are optimized. Haakonsen et al. (2024)
then translated this algorithm towards a Grasshopper component in order to use the optimizer already
available within the program, creating a visual impression of the process as well. The tool proposes
optimal matching in terms of a structure’s environmental impact without overloading the user with ad-
ditional work or excess information. A thorough case study is performed that shows the applicability of
the tool in a two-storey public building. While this study focuses on timber, the principles and method-
ologies could potentially be applied to steel as well.

From a TUDelft master’s thesis, Rademaker (2022) provides a method to incorporate reusable elements
into the design of a load-bearing structure within a Python model. On the one hand, this study intro-
duces additional steps in the design process, such as checking, testing, and measuring potential reusable
elements, and possibly refurbishing them. Additionally, the study presents an optimization problem de-
fined by an objective, variables, and constraints, providing a Python model for stock assignment within
object-oriented programming. The results show that the amount of new steel required can be signifi-
cantly reduced, depending on the constraints and the available stock of reusable elements. However,
this could lead to low utilization coefficients and significant changes in the beam configuration. This
study offers valuable insights and tools for designing more sustainable load-bearing structures.

These five studies deal with structural design and reuse of materials, all from different perspectives and
with different methodologies. They highlight the potential for reusing materials in construction, which
can significantly reduce environmental impact. However, combining a differing design size used in the
truss topology optimization within Grasshopper on a total building design has not yet been researched.
Leaving a good opportunity open to research the automated design of data centres that combines the
above-mentioned studies and adds a Data Analysis step in the form of Machine Learning, which will be
further discussed in chapter 4, for a complete calculation.
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3.5. Summary
This chapter addresses the increasing importance of data centres as global energy consumers and high-
lights the design challenges associated with their structural systems. Data centres, particularly their
main halls housing the data racks, present an ideal case for automated design due to their straightforward
load-bearing structures. The chapter outlines critical design criteria derived from Eurocode standards,
emphasizing factors such as floor load capacities, column-free aisles, and provisions for future expan-
sions to ensure robust and adaptable facilities.

As a first step for automated design, three cross-section selection methods were reviewed:

1. GSA: A comprehensive tool that ensures compliance with Eurocode 3 by analysing load combina-
tions and selecting optimal cross-sections. While precise, its external processing results in slower
response times, making it less ideal for rapid iterations.

2. Karamba3D: Fully integrated into Grasshopper, Karamba3D enables fast early-stage structural
optimizations. Despite its inability to optimize multiple section types simultaneously, its speed
and usability make it valuable for iterative design processes.

3. Manual Eurocode Checks: These offer direct control and adaptability, leveraging Euler-Bernoulli
beam assumptions for simplicity. Unity Checks and detailed verifications ensure compliance, but
the method is labour-intensive compared to automated alternatives.

The chapter also explores optimization tools, focusing on evolutionary optimization within Grasshop-
per, which iteratively optimizes design configurations through natural selection-inspired algorithms.
Research done by Haakonsen et al. (2024) showed the possibility of stock-constrained design based on
available evolutionary optimizations within Grasshopper, while Rademaker (2022) hinted towards pos-
sibilities to apply the optimization within Python.

In conclusion, automated design processes significantly enhance the efficiency and adaptability of data
centre structural design. Among the reviewed methods, a combination of Karamba3D and manual Eu-
rocode checks emerges as themost applicable for the initial design stages due to its integration and speed.
Combined with evolutionary optimization tools in Grasshopper, it provides a framework well-suited for
stock-constrained design, as further applied in Chapter 7.



4
Machine Learning

In the last couple of years, Artificial Intelligence (AI) and Machine Learning (ML) have been increas-
ingly popular in research. In 4 years, the research output containing AI has increased by 58% (Nature,
2023). While it seems like these practices are new, it has been around for quite some time in different
forms. Dr.Ir. I. Rocha stated the following in his first lecture of the course Machine Learning and Artifi-
cial Intelligence for Engineers: ”Artificial intelligence is the name that popularized Machine Learning,
which in their turn popularized statistics. It can all be brought back to the theory of probability.”

In this chapter, the fundamentals of Machine learning are explained and different research done on the
application of ML within the design process are explored and compared. By doing so, the third sub-
question will be answered:

3. What machine learning applications that assist in the structural design process have been re-
searched?

Liao et al. (2024) shows in Figure 4.1 the relation between different types of AI which have been re-
searched to apply within the structural design process. A clear difference between the biologically
inspired algorithms as discussed in chapter 3 and ML is shown.

Figure 4.1: Relation of different types of Artificial Intelligence applicable within structural design (Liao et al., 2024)
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4.1. Machine Learning Fundamentals
Machine Learning revolves around pattern recognition within data in an automated way. It uses complex
algorithms to identify patterns to perform tasks such as classifying data into categories or predicting
future outcomes based on previous sequences. An example application of this is recognizing handwritten
digits to their value. This is achieved by using a large set of labelled images, known as a training set.
The model consists of various activation functions which can be adapted to predict a result which is as
close as possible to the actual label. The tuning of these individual parameters is called training the
model. Once trained, the model can make predictions on new digit images which were not part of the
initial training set. This is an ongoing process, leading to a higher prediction accuracy after more data
has come in for the model to ’learn’ on (Bishop, 2006).

4.1.1. Types of Training Data
In order to apply real-life data into the activation functions, the original input data is often preprocessed
to transform it into a form that is easier for the ML algorithm to work with. This preprocessing stage,
sometimes referred to as feature extraction, can involve tasks such as scaling and translating data so that
they are all the same size, or computing simple features that are fast to calculate and that preserve useful
discriminatory information. A distinction can be made between models which train on labelled data (in-
put to output), unlabelled data (like sequential data for future predictions) or active learning. This leads
to the three main categories of machine learning: supervised, unsupervised, and reinforcement learning
(Prince, 2023). An example of supervised learning for a classification problem versus unsupervised
learning for a clustering problem is shown in Figure 4.2.

Figure 4.2: Supervised learning is shown with a classification problem where the labels are known beforehand and the bound-
aries of the classes need to be determined. Unsupervised learning is shown with clustering, where a pattern needs to be
identified within unlabelled data. Figure is adapted from Bishop (2006).

Supervised learning models define a mapping from input data to an output prediction. The model is
trained on labelled input-output pairs, where the outputs act as a ”supervisor” to guide the model in
learning the appropriate mapping. This type of machine learning typically requires a training dataset
for learning the mapping, a validation dataset for tuning the model’s parameters, and a test dataset for
evaluating the model’s performance. A distinction can be made between a regression problem, where
the output is a continuous number, and a classification problem, where the output is a categorical as-
signment. Some examples are predicting the percentage of reuse possible within a design (regression,
prediction of target value) or predicting what energy classification a building will have (classification).

The second type is unsupervised learning, where the goal is to understand the structure of the data rather
than learning the output. With this known structure, the clustering of data, the prediction of new sequen-
tial data or the generation of text or images can be realized. These models often use latent variables,
a smaller number of underlying variables, that can compactly represent the high-dimensional observed
data. This concept is applied to weather forecasting and image/text generation.
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Lastly, reinforcement learning is the most recent development within this field. It consists of an entity
(e.g. a human-like robot or chess-bot) that exists in a world where it can perform actions. These actions
change the state of the system and can produce rewards. The goal is for the agent to learn to choose
actions that on average lead to high rewards. This involves dealing with the temporal credit assignment
problem (associating rewards with the right actions) and the exploration-exploitation trade-off (whether
to exploit known good strategies or explore new ones). This concept is subjected to the most resistance
within the field of AI as it has the potential to carry harmful biases (Memarian and Doleck, 2024).

4.1.2. Model Validation
Data that is used as a basis of an ML model is often split up into three separate datasets: a training set,
a validation set and a test set. These sets are often split for 70%, 20% and 10% respectively of the total,
but it depends on the size of the original dataset as there should always be enough training data to get an
accurate model (Goodfellow et al., 2016). The training data is used as a basis for the model on which
the activation functions are altered to approach the correct result. The validation data is used to tune the
hyper-parameters of the model to make sure it is not overfitting on the training data. The quality of the
predictions can be monitored by the residuals of the loss function (Prince, 2023).

The trained model can be validated by running the predictions on the unseen test data and comparing
the actual result. Within a classification problem, for every label, there are four types of results: True
Positive (TP), TrueNegative (TN), False Positive (FP) and FalseNegative (FN). The relationship between
these result types is shown in Figure 4.3 and can be used to calculate the Accuracy, Recall, Precision
and F1-Score.

Figure 4.3: Confusion matrix of a binary classification. This visualization shows the relation of model outputs True positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN), which are needed to calculate the performance metrics
accuracy, precision, recall and the F1 score. Figure is adapted from Jayaswal (2020).

The Accuracy gives a useful overall metric but could be insufficient in uneven spreads of predictions.
The Recall is particularly important if the cost of a False Negative is high, whereas the Precision is
more important if False Positives are worse. The F1-score creates a balanced summary between the
two by combining both the precision, favouring the False Positives, and the recall, which favours the
False Negatives. These metrics facilitated iterative improvements, guiding adjustments to both data
preparation and model parameters. These values indicate the performance of the predictions and are
calculated with the following formula following from Jayaswal (2020):

Accuracy ∶ 𝑇𝑃 + 𝑇𝑁𝑃 + 𝑁 (4.1)
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Recall ∶ 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 (4.2)

Precision ∶ 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 (4.3)

F1− Score ∶ 2 ⋅ Precision ⋅ Recall
Precision+Recall = 2 ⋅ 𝑇𝑃

2 ⋅ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 (4.4)

4.2. Recurrent Neural Networks
Within the application of this research, the type of Deep learning that seems the most promising is Re-
current Neural Networks (RNNs). This is explained by Goodfellow et al. (2016) as a specialized type
of neural network designed for handling batches of sequential data, such as time series, speech, or text.
Or in this case, it is able to learn patterns across different design configurations with multiple inputs.
Unlike traditional artificial neural networks, which process data independently, RNNs are built to rec-
ognize patterns across sequences by maintaining a form of memory of previous inputs. The differences
in network architecture can be found in Figure 4.4. This memory is encoded in the hidden states of the
network, which evolve as the network processes each element of the input sequence. RNNs have been
successfully applied in many fields, from natural language processing to time series forecasting, making
them a powerful tool for tasks involving sequential dependencies.

Figure 4.4: Overview of a typical ANN network versus an RNN network made by Baheti (2022). Note that with an RNN, the
multiple data inputs are seen as one sequence, creating the possibility of learning based on an entire set of data at once. The
RNN also contains a feedback loop which is often done by adding gates. This is further explained in chapter 4.2.2.

4.2.1. RNN Architecture
The core innovation of RNNs is their ability to maintain a hidden state that captures information from
previous time steps. This hidden state is passed through each layer of the network along with new input,
allowing the RNN to retain a memory of what it has seen before. This property enables RNNs to per-
form well on problems where the order of inputs matters, such as predicting the next word in a sentence
or forecasting future values in a time series. A key characteristic of RNNs is that they use the same set
of parameters (shared weights) at every time step, unlike feed-forward networks where different weights
are used for each layer. This weight-sharing reduces the complexity of the model and allows RNNs to
generalize across sequences of varying lengths.
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Despite these advantages, basic RNNs struggle with learning long-term dependencies, as the influence
of past inputs diminishes over time. This is known as the vanishing gradient problem, which limits the
RNN’s ability to remember information from far earlier in the sequence (Goodfellow et al., 2016). To
address this issue, more advanced architectures like Long Short-Term Memory (LSTM) networks and
Gated Recurrent Units (GRU) have been developed, which we will discuss in the following sections.

While RNNs are effective for processing sequential data, certain tasks, such as machine translation,
require transforming one sequence into another, possibly of different lengths. The Encoder-Decoder
architecture was developed for this purpose. In this architecture, the RNN is divided into two parts;
an encoder, which processes the input sequence to a context vector in latent space which can be seen
as the summary of the sequence. Secondly, there is a decoder which takes this context vector together
with previous results to generate a new output. This architecture is particularly effective in tasks like
language translation and speech recognition, where the input and output sequences may have different
lengths and the goal is to generate a sequence rather than a single output.

Despite the advancements in RNN architectures, like LSTMs and GRUs, which mitigate issues like
the vanishing gradient, the problem of exploding gradients can still arise when working with very long
sequences or highly non-linear functions. Exploding gradients occur when large derivatives cause the
gradients to grow uncontrollably, which can lead to unstable updates during training. To address this,
a technique known as gradient clipping is often employed. Gradient clipping prevents these gradients
from exceeding a predefined threshold, effectively “clipping” their magnitude to avoid excessively large
updates. By scaling down gradients that surpass the threshold, gradient clipping helps maintain stability
during training and ensures that the network converges more reliably (Goodfellow et al., 2016). This
technique is especially useful in applications where the sequence lengths or the nonlinearity of the
network can otherwise lead to numerical instability.

4.2.2. Gated RNN
While basic RNNs excel at handling short-term dependencies, their performance degrades on longer
sequences due to the vanishing gradient problem. This is where Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRUs) come in. These are forms of gated RNNs that incorporate
mechanisms to control the flow of information through the network, ensuring that important information
is retained over long sequences. A visual representation of the differences in components can be seen
in Figure 4.5, adapted from Rathor (2018).

• LSTM: LSTMs introduce three gates (input, forget, and output gates) that regulate the flow of
information. The input gate controls how much new information should be added to the memory,
the forget gate determines what information should be discarded, and the output gate decides
how much of the memory should be used to generate the output. This gating mechanism allows
LSTMs to remember important information for much longer sequences compared to standard
RNNs, making them ideal for tasks that require learning long-term dependencies, such as speech
recognition or time series analysis.

• GRU: GRUs simplify the LSTM architecture by combining the forget and input gates into a single
gate, reducing the complexity of the model while still retaining the benefits of gating mechanisms.
GRUs tend to perform similarly to LSTMs but are computationally more efficient, which makes
them a popular choice in scenarios where training speed is a concern.

Both LSTMs and GRUs maintain a more stable gradient flow during training, enabling them to learn
better from longer sequences. This makes them highly suitable for structural design applications, where
temporal dependencies (such as the sequential arrangement of elements or the incremental progression
of a design) can play a critical role.
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Figure 4.5: Basic architecture overview of a component in a simple RNN, LSTM and a GRU layer. The simple RNN consists
of an input and output, passed through a 𝑡𝑎𝑛ℎ activation function. The LSTM component introduces a forget- and update-gate,
where additional information is propagated to the following layer. The GRU combines the two gates and simplifies the output
into one stream (Rathor, 2018).

4.3. Application within Structural Design
AI has increasingly been recognized as a promising tool within the structural design process. Liao et
al. (2024) created a literature study on the current state of research in this domain, emphasizing that
the vast amount of architectural, structural, and empirical data available is often not used to its full
potential. Their review identifies generative adversarial networks (GANs) and graph neural networks
(GNNs) as the most promising technologies for optimizing component layouts and cross-sectional sizes
in building structures. They argue that the intelligence of structural design must evolve through methods
that effectively learn from available data, thereby enhancing efficiency and providing diverse design
solutions.

4.3.1. Application Examples
The following sub-chapter will explain four other ML concepts that are promising for incorporating
donor elements automatically. The approaches aim to simplify the design process by taking part in de-
sign decisions at early stages.

Pizarro andMassone (2021) developed a deep neural network (DNN) to predict the length and thickness
of reinforced concrete shear walls. Their study used a dataset derived from architectural and structural
floor plans of 165 Chilean residential layouts, which featured 30 unique design parameters per shear wall,
such as length, height, and surrounding floor area. After normalizing the data, the DNN transformed
these input features into outputs specifying the structural dimensions. With a coefficient of determina-
tion (𝑅2) of 0.995, the model demonstrated remarkable accuracy in deriving structural designs directly
from architectural inputs. However, a limitation of this approach lies in its reliance on existing floor
plans, which may not always be available.

In contrast, Potijk (2024) implemented a simplified artificial neural network (ANN) to estimate building
material mass, linking it to both structural and environmental costs. Using a Grasshopper script, the
study analysed various building envelopes based on finite element method (FEM) calculations. Since
this script was set up for two separate stability systems, the opportunity to compare the two based on
the respective structural and environmental costs presented itself. As this ML concept is not considered
Deep Learning, it does not capture as many latent variables as the previously mentioned DNN. This
turns out to be not necessary for this application as a sufficient comparison could be made, resulting in
a much faster model.

Mirra and Pugnale (2023) explored reinforcement learning (RL) for structural design optimization, fo-
cusing on the adaptive design of tension structures. They demonstrated how RL agents could effectively
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navigate complex design spaces, balancing competing objectives such as structural performance and ma-
terial efficiency. By applying iterative feedback loops, the RL framework enhanced the adaptability of
the design process, making it particularly suited for optimizing structures with highly variable boundary
conditions.

Bleker et al. (2024) extended the application of reinforcement learning by integrating deep reinforcement
learning (DRL) with graph neural networks (GNNs). Their research tackled the challenge of optimiz-
ing large-scale structural systems by leveraging the GNN’s ability to represent relationships between
structural components. The DRL approach allowed the model to iteratively improve structural con-
figurations, ensuring optimal load distribution and material usage. This combined framework proved
especially valuable for designing complex systems with interconnected elements, such as bridges or
high-rise structures.

4.3.2. AI Applications for other design aspects
In line with the evolving focus on sustainability in building design, the application of machine learn-
ing is extending into LCA calculations. As highlighted by Fenton et al. (2024), early-stage machine
learning predictions for embodied GHG emissions can significantly enhance sustainable design by pro-
viding a quick insights into the carbon impact of material choices and configurations. By applying such
models, designers can integrate environmental considerations earlier in the design process, potentially
leading to more informed and lower-impact structural decisions. This approach complements the struc-
tural optimization methods discussed above, further broadening the scope of AI applications available
to structural engineers and architects (Fenton et al., 2024).

AI is also being applied to improve ecological areas in urban and architectural design. Mirra et al. (2022)
explored the use of neural networks for analysing human-made habitat structures to enhance their in-
tegration with natural ecosystems. By evaluating parameters such as material composition, geometry,
and spatial arrangement, the study developed predictive models that informed designs supporting bio-
diversity and ecological balance. This represents an interesting new perspective in AI applications, as it
is essentially used to assist in creativity.

A big direction AI has demonstrated potential in is data-driven design to again, aid the creative design
process. Fuhrimann et al., 2018 investigated data-driven methods to inspire innovative structural forms,
inserting AI to generate and refine free-form shapes based on aspects like material usage or structural
stability. By acting as a creative collaborator, machine learning tools provided designers with new ideas
while ensuring feasibility. This highlights AI’s capacity to assist not only in the structural but also the
artistic design.

4.3.3. Possibilities for RNN Application
Recurrent Neural Networks (RNNs), especially gated architectures like LSTMs and GRUs, offer sig-
nificant advantages in the field of structural design. Many design tasks involve sequences such as the
step-by-step optimization of building components or the gradual refinement of load-bearing structures.
RNNs can model these sequential dependencies effectively, making them suitable for predicting the
progression of a structural design or optimizing layouts based on previous design states.

Additionally, in the context of reusing structural elements, wheremultiple configurations of elements and
their interactions over time must be considered, the ability of RNNs to capture long-term dependencies
allows for better decision-making. The RNN can be applied to label elements with their respective
cross-section size, turning the model into a multi-class classification problem.
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4.4. Summary
In summary, the growing integration of Machine Learning into structural design presents an exciting
development for optimizing design processes and improving sustainability. From supervised learning
models that predict material reuse potential to advanced Recurrent Neural Networks capable of mod-
elling sequential dependencies in design, AI offers powerful tools for modern engineering challenges. In
the situation of this research, the application of gated RNNs, such as LSTMs and GRUs, holds promise
for tasks that involve complex temporal relationships, such as progressive design optimizations or the
incorporation of reused materials. This stems from the fact that RNNs handle temporal sequential data,
but also in the application of design configurations, making them a promising candidate for cross-section
predictions. As more data becomes available and as AI techniques continue to evolve, the potential for
creating more efficient, environmentally friendly designs will only expand, highlighting the necessity
for further exploration in this field.
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5
Methodology

In the following chapter, the overall workflow answering the main research question is explained:

”How can the incorporation of reclaimed steel elements be made more accessible within the design
process of datacentres when using Machine Learning applications?”

The methodology that is applied in this research is focused on creating a workflow to incorporate re-
claimed steel early on in the design of data centres, by using a combination of machine learning tech-
niques and computational design. The goal is to develop an optimized structural design that minimizes
embodied carbon while maximizing the reuse of reclaimed steel elements. Figure 5.1 shows the steps
taken to come to the final result, split up into four different groups. The following chapter delves into
the initial design set-up, data gathering and the reclaimed steel element databases. The RNN model is
explained in chapter 6 and the reclaimed steel integration is further discussed in chapter 7.

Figure 5.1: Workflow diagram to answer the main research question.
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5.1. Initial Design Set-up
The first stage of the workflow is choosing a building typology, which creates a list of design require-
ments. In this research, only a data hall, a function within a data centre building, is considered. This
leads to specific design requirements as the floorplan layout influences the efficiency of the necessary
cooling system. The number of rows and the number of server racks per row together with the location
of the columns in the floorplan determine the initial design. Further design requirements are discussed
in chapter 3.1 and Table 3.2. By standardizing the data centre layout, the methodology ensures that the
generated designs adhere to industry specifications and are directly applicable to practical scenarios.

The range that is considered for the number of rows is set from 2 to 7 rows, resulting in possible widths
of 7.2 to 19.2 meters. The range that is considered for the number of racks per row is 11 to 29, resulting
in an overall floorplan length of 9 to 19.8 meters. After the basic floorplan layout is set up, the location
of the columns can be determined in the form of the number of rows and the data rack the column is
located. This is based on the fact that columns should not be in the aisle between the racks (Rasmussen
and Torell, 2015). The columns can be placed in any row, but the minimum row length of 5 racks needs
to be followed. On the other hand, the length should not exceed the threshold for maximum cross-
sections, which is equal to a maximum of 10. This results in a total of 6 ⋅ 19 = 114 different floorplan
sizes being considered. When combining this with the different grid spaces possible, a total of 40824
different floorplan configurations can be generated. Three examples of the generated floorplans can
be found in Figure 5.2. Note that these floorplans show the size boundaries, but all combinations of
floorplan width and height in between are considered as well.

Figure 5.2: Overview of some floorplan layout options with grid sizes, all values show the lengths in meters. (A) shows
the smallest floorplan with the specified ranges and the smallest grid space. Floorplan (B) indicates that all combinations of
lengths and widths are considered, not just square configurations. (C) shows the biggest floorplan with still the smallest grid
space. (D) shows again the biggest floorplan but now with the biggest grid spaces considered.

The next step necessary to generate an initial design is to choose the profile types and stability system.
The choice of stability system impacts the moment distribution and the buckling length of the columns,
creating different section profile sizes for each element. The two stability systems considered are a
braced frame and a moment-fixed frame. A braced frame structure consists of simply supported beams
with hinged connections to the columns. The stability is created from diagonal braces that only support
axial forces, the system has no moment in the corners and a buckling length equal to the column height.
A moment-fixed frame creates stability by fixing element rotations in the connections, creating lower
moments at midspan, higher at the corners and a buckling length of twice the column height. Next to
these stability systems, two profile-type combinations are considered within this research. One config-
uration has IPE beams and HEB columns, and one configuration has all elements of type HEA. These
design choice options are visualised in Figure 5.3 and result in 4 combinations, which are abbreviated
to IPEm, IPEb, HEAm and HEAb.
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Figure 5.3: Visualisation of the two stability systems considered within the research. As well as the two combinations of
section profile types applied. These combinations result in four different design choice configurations abbreviated by IPEm,
IPEb, HEAm and HEAb.

After the choice of stability system is made and the profile types for the beams and columns are de-
termined, the initial design can be generated. Within this research, a design of two floors is chosen to
better visualise the load transfer of the server racks, assumed to be uniform over the floor surface, to the
columns. Since these loads are relatively high, a two-way spanning floor system is chosen. This results
in lower, triangular-distributed loads on the beams which ultimately leads to lower maximum moments
(Dolan and Hamilton, 2019). The resulting initial design can be seen in Figure 5.4. The next step is to
optimize the cross-sections to match the load pattern of this specific building type. These checks are
done with ULS loading calculations as shown in appendix A, and tested following Eurocode calculations
as further described in chapter 5.2.

Figure 5.4: Render of the initial design set-up for a floor plan design consisting of three rows and eleven data racks per row



5. Methodology 33

5.2. Data Gathering
This subchapter outlines the cross-section optimization process for the design of a data centre structure,
combining design tool Karamba3D together with Eurocode-based unity checks from appendix A, ap-
plied by using the Python script from appendix C. The primary aim of the machine learning model was
to develop a flexible, automated tool that selects optimal cross-sections for structural elements (beams
and columns) based on moment, axial, and buckling resistances, tailored to each design configuration.
In order to realize this model, data needs to be gathered which can act as a basis. The section begins
with an overview of the Eurocode checks and proceeds to explain the dataset preparation, followed by
the generation of cross-section data and design configurations. The Eurocode provides a comprehen-
sive framework for structural design, incorporating various load scenarios and structural checks. These
checks are implemented within a Python script as seen in appendix C, where the Eurocode-based re-
sistance values are calculated and compared against applied forces and moments. These results are
then validated with GSA as a sanity check. To ensure structural safety and serviceability, the following
checks (detailed in appendix A) were incorporated into the Python script:

1. Bending Resistance: This evaluates whether the section can withstand applied moments without
yielding. The script uses moment resistance values from Eurocode to compare with the calculated
moments in each element. [1993-1-1:2006 (2020) 6.2.5]

2. Axial Force Resistance: Checks whether the section can resist applied axial forces. This is
essential for columns and beams experiencing significant axial loading. [1993-1-1:2006 (2020)
6.2.4]

3. Combination of Axial and Bending: For elements subjected to both axial forces and bending
moments, the Eurocode provides interaction equations to verify the combined effects. [1993-1-
1:2006 (2020) 6.2.9]

4. (Lateral Torsional) Buckling Resistance: Buckling occurs due to compressive forces, and lateral
torsional buckling is particularly relevant for beams under bending. The Python script calculates
buckling resistances based on element length, section properties, and boundary conditions. [1993-
1-1:2006 (2020) 6.3.1 and 6.3.2]

5. Deflection: The serviceability limit for deflection is checked to ensure that the deformations do
not exceed allowable values. [1990:2021 (2021) Table A.1.10]

One key challenge in automating cross-section selection was the varying lengths of the dataset for dif-
ferent grid spaces. For example, a structure with a 2x3 grid configuration would have fewer elements
compared to one with a 4x6 configuration. To handle this variability, the element IDs were normalized,
allowing the script to consistently address elements across different configurations. This step ensured
that the selection process was adaptable to any grid size or structure geometry.

The next step involved generating datasets using a Grasshopper script. This script calculated cross-
sections for various configurations of a data centre floorplan. For each configuration, the following data
was collected:

• Element ID: A unique identifier for each element in the structure, normalized to be between 0 and
1. This value can be used in theMachine learningmodel to identify separate design configurations.

• Element type: Distinctions were made between different types of elements based on their orien-
tation, location and structural function. The beams are identified with the labels ’B1x’, ’B1y’,
’B2x’ and ’B2y’, which separate the beams on the first floor (1) and on the roof (2) together with
the span direction. The columns are identified with the labels ’C1e’, ’C1m’, ’C2e’ and ’C2m’,
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which separate the columns at the edge of the structure to the middle columns together with the
level they are located.

• Element length: The lengths of the element have the biggest impact on the load distribution, as
longer spans carry a higher percentage of the floor-surface loads.

• Cross-section Calculation: Cross-sections were determined for each element based on four sce-
narios, some configurations of length combined with the high loads resulted in a non-applicable
(N.A) element as there is no profile which could sustain the configuration, the spans and loads
were too high for possible cross-sections. The design configurations and their respective percent-
age of N.A elements are as follows:

1. IPEm: Moment-tight connections, IPE beams and HEB columns. 0.5% N.A
2. HEAm: Moment-tight connections, HEA cross-sections. 0.02% N.A
3. IPEb: Hinges in a braced structure, IPE beams and HEB columns. 5% N.A
4. HEAb: Hinges in a braced structure, HEA cross-sections. 0.05% N.A

The resulting data is a 3D array which includes the three input variables that separate the different
elements together with the four different cross-sections linked to the four design choice combinations.
This method represents an efficient and systematic approach to selecting cross-sections for data centre
structures using a combination of Karamba3D and Eurocode standards. Table 5.1 shows the dataset
sizes which are generated together with their respective generation time. Note that for this research,
12% of all possible floorplan configurations are used to train the RNN model of chapter 6.

Table 5.1: Dataset sizes that are generated to be used as a basis for the machine learning model. The input is given in the
number of rows and the number of racks per row. The sizes are the number of designs it has generated times the length of
the element index sequence. Note that this length is all adapted to be the same length as the shorter configurations are padded
with the value minus one to still be the same length.

Dataset input [row x racks] Size Generation time [hours]

2x11 + 3x13 + 4x15 + 4x21 205x294x7 1
3x20 + 5x16 171x294x7 0.5
2x29 + 7x11 339x294x7 1.5
5x23 338x294x7 1.5
6x26 1134x294x7 4.5
7x29 2686x294x7 6

Total design configurations 4873

5.3. Reclaimed Steel Databases
This sub-chapter focuses on the different databases of reclaimed steel elements that were used for in-
corporating reused steel in the design process of data centres. Three different types of databases were
explored: open-source databases, a database from realized structures, and a custom-generated dataset
based on common lengths and Eurocode standards. Each dataset had unique characteristics, offering
a range of element sizes, lengths, and cross-sections, all of which were evaluated to determine their
suitability for integration into the design process. Figures illustrating the spread of cross-sections and
element lengths for each dataset are provided, with further details on the generated dataset can be found
in appendix B.
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The first dataset consists of a collection of open-source resources, which compile available reclaimed
steel elements from various projects and demolition companies. These databases were sourced from the
platform Opalis.eu (2024), which is a collection of small-scale storage locations that house reclaimed
steel elements. The elements within these databases vary widely in terms of cross-section profiles,
lengths, and conditions. The open-source nature of this database makes it highly accessible, offering
a broad range of options that can be quickly matched with new designs. The downside of this data is
that they tend to have a high degree of variability in terms of element availability and quality. Some
databases may include elements that are outdated or damaged, which can limit their applicability in
structural design. For the sake of this research, it is assumed that the quality of the available steel ele-
ments is sufficient and that differences in transportation distance are not an added environmental load.
The following three sources are used to generate the database: GBW (2024), Snellen (2024) and van
Liempd (2024). An overview of the content of this combined database can be seen in Figure 5.5.

Figure 5.5: Overview of available steel elements combined from three sources. The box plots show the spread of the lengths
per cross-section in the data and the red line shows the number of elements present in the database per cross-section.

The second database is based on the idea of utilizing realized structures as input for reclaimed steel that
are either up for decommission or expected to be decommissioned in the future. The key idea behind this
database is that steel elements from these structures can be reused in new designs after deconstruction.
By cataloguing steel elements from existing buildings, this database aims to provide a realistic stock of
reusable steel for upcoming construction projects. The advantage of this method is that the structural
integrity of the elements is known and designed to current engineering standards, making them suitable
for reuse. A challenge with this approach is that retrieving all steel from a design can be expensive when
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it is not designed for deconstruction. For this research, the database consists of two separate designs
realized by Arup, one data centre consisting of over 80% steel and one residential high-rise building
which only housed small amounts of steel elements. Since the confidentiality requirements of the data
centre design are high, the added elements from the residential building act as a diffuser, as to not be
able to identify what element is from which. The residential building was finalized in 2023, whereas
the data centre has just started construction. From these designs, the steel elements are retrieved with
details on their cross-section profiles, length and current structural usage. Figure 5.6 shows an overview
of the amount and lengths per cross-section present in the database. Note that the y-axis on element
counts is not consistent as the number of elements per profile type differs a lot.

Figure 5.6: Overview of available steel elements combined from two Arup designs. The box plots show the spread of the
lengths per cross-section in the data and the red line shows the number of elements present in the database per cross-section.
Note that the axis showing the counts is not consistent as the differences are relatively big.

The third database was generated using a Python script (which can be found in appendix B) based on
common steel profiles and lengths specified by Eurocode standards. This database serves as a theoret-
ical stock of steel elements, including standard lengths and cross-sections that are frequently used in
structural design. By generating this database, the research aimed to create a baseline against which
the availability and suitability of reclaimed steel could be evaluated. This database is predictable and
based on standard design practices. It allows for detailed analysis and testing of design configurations,
particularly for scenarios where the availability of reclaimed steel elements is unknown. It is important
to keep in mind that the database is artificially generated, creating a basis for a standardized design, but
it does not represent actual availability. The overview of the data can be seen in Figure 5.7.
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Figure 5.7: Overview of the generated available steel database, based on Eurocode design rules-of-thumb, the code that gen-
erates the database can be found in appendix B. The box plots show the spread of the lengths per cross-section in the data and
the red line shows the number of elements present in the database per cross-section.

5.4. Summary
This chapter highlights the approach taken to answer the main research question. The approach inte-
grates machine learning and computational design to incorporate reclaimed steel into the early design
stages of data centres, balancing low carbon emissions with structural efficiency.

The first stage defines the initial design set-up of data centres, such as layout and structural geometry,
based on industry standards for practical relevance. The design model, a two-storey structure, accom-
modates heavy floor loads typical in data centres, with load scenarios tested according to Eurocode
standards. The next stage focuses on gathering data which is used as a basis for the machine learn-
ing model, where the element characteristics are combined with the optimized cross-section for four
design choice combinations. The data is used to set up a machine learning model that can predict the
cross-sections for those four design choice combinations and is further discussed in chapter 6. The pre-
dicted cross-sections are then tested on three realistic inputs for reclaimed steel elements databases: An
open-source database, a database consisting of existing designs and a generated database based on steel
design standards from the Eurocode. In the final optimization phase, the Grasshopper model seeks a
configuration with minimal embodied carbon, adjusting parameters like grid spacing and column posi-
tioning to align the machine learning predictions with available steel stock. This automated approach to
integrating reclaimed steel provides a foundation for sustainable data centre designs.
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Machine Learning Model

In this chapter, an answer to the fourth research sub-question is presented:

4. How can machine learning techniques be applied to effectively incorporate reclaimed steel within
the design process?

This research presents a Recurrent Neural Network model that predicts the optimized cross-sections for
structural elements in a data centre design. The goal of this model is to automate the selection of steel
profiles based on a variety of input parameters, including grid configuration, element types and lengths.
By doing so, a proof of concept is shown to streamline the design process, ultimately used to integrate
sustainable construction principles, as further explained in chapter 7.

The model employs a supervised learning approach, using a neural network architecture that was fine-
tuned to handle variable input lengths and diverse element types. The following sections outline the
data preparation, network architecture, training process and post-processing steps required to achieve
accurate cross-section predictions. The code which generates this model can be found in appendix D.

6.1. Data Preparation
Effective data preparation is essential for achieving reliable results in machine learning, especially in
applications with varying input lengths and different element types. The process involved four main
steps: normalization, padding, one-hot encoding and dataset splitting. a visual representation of the
one-hot encoding process can be seen in Figure 6.1.

Figure 6.1: Visual indication of the process of one-hot encoding labelled data. The list of profiles in the training data is
transposed to have a possibility per possible profile. Since the output is known in the training data, the value for the label
which is present is set to one. In this way, the model can assign prediction values per label when it is run on unseen data. The
label with the highest possibility is chosen for the prediction.
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Neural networks perform optimally when input data is normalized. This process scales features to a
range of 0 to 1, ensuring that all input features contribute equally to the learning process. Normalization
helps in accelerating convergence of the gradient descent algorithm and prevents the model from being
biased towards features with larger magnitudes (Prince, 2023). This normalization is applied to the
element_ID data, which indicates the location of the element within the design. This normalization
also helps identify what sequence represents one design. Another normalization step includes one-hot
encoding of string data types. Since the Element_type and Profile data are in strings format, the
data needs to be transformed to a numeric result indicating the different labels available. After training is
done, the results would need to be decoded again to generate the output back to the cross-section profile.

The next step is to pad the sequences to be the same length. When the spaces between columns enlarge,
fewer columns will fit in the floor plan. This creates a shorter list length necessary to indicate the grid
spaces. To accommodate this difference, the lists are padded with zeroes until it has the maximum list
length. Note that the location of the zeroes does not change the end values as it generates the same floor
plan layout. After loading in the data as one 2-dimensional data frame, the data is transformed into a
3-dimensional tensor with every design configuration as a new layer and padded to be the same length.
The total dataset consists of 5125 design configurations. Figure 6.2 shows a representation of the 3D
tensor.

Figure 6.2: Representation of the dataset used as input for the RNN. The squares indicate different design configurations with
at the top the four element characteristics: the ID, element type, length and profile. The side represents the length of each
configuration by the number of elements. The grey squares indicate the zero-padding done to make configurations with fewer
elements of the same length. In the square, a division has been made, indicating the beams on the first floor (B1), the beams
on the roof (B2) and the columns on the ground floor (C1) and on the first floor (C2).

Lastly, the dataset was split into training (80%) validation (15%), and test sets (5%) to enable effective
training, hyper-parameter tuning and unbiased model evaluation. This split helps to monitor over-fitting
and allows the model’s performance to be objectively assessed on unseen data. a relatively high percent-
age of training data is chosen compared to what is discussed in chapter 4, as the dataset would otherwise
be too small to use as a basis for the model.
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6.2. RNN Architecture
As discussed in chapter 4, the Recurrent Neural Network architecture was chosen and adjusted based on
the specific characteristics of this structural design problem. The following sections detail the network
architecture, compilation and training of the model. The graphical representation of the specific archi-
tecture used within this research can be seen in Figure 6.3. This architecture was specifically chosen
to balance the need for sequential context, computational efficiency, and predictive accuracy, making it
well-suited for the prediction of cross-sections for an entire design at the same time.

Figure 6.3: Graphical overview of the RNN architecture used within this research. This input of the model is the padded list
of elements with the element characteristics. The first input layer of the model has the same size as the input, so 294x3. Then
a masking layer is applied so the model is alerted to what the padded values are. Then two consecutive bi-directional LSTM
layers are applied to find the hidden correlation of the values. A collection of duplicates is removed in the drop-out layer
before two sense neural network layers are applied with a ReLu activation function to map the data onto the correct length.
The activation layer consists of a SoftMax function and is the same length as there are options of profiles to choose from,
which are IPE, HEA or HEB profiles. This is then translated to the output layer, which is the padded list of element profiles.

The RNNmodel architecture used for this application consists of a series of specialized layers to process
sequential data, particularly to handle dependencies across variable-length sequences. First, an input
layer receives preprocessed sequences of elements, including IDs, one-hot encoded element types, and
associated lengths. The model starts with a Masking layer that ignores padded values (-1), ensuring that
non-informative elements do not impact model training or prediction. The Bidirectional LSTM (Long
Short-Term Memory) layers form the core of the model, with two bidirectional layers each consisting of
128 units to effectively capture both past and future contextual relationships within each sequence. The
bi-directionality of the LSTMs helps by accounting for dependencies in both temporal directions, en-
hancing prediction accuracy in structural configurations where sequential relationships might not strictly
follow a single direction (Goodfellow et al., 2016).

A Dropout layer is included to reduce over-fitting by randomly setting a fraction of the LSTM outputs
to zero during training, helping the model generalize better to new data. Following the LSTMs, a Dense
layer with 64 units and a ReLU activation is applied, providing additional capacity to capture complex
relationships within the data after the sequential features are extracted. The ReLU (Rectified Linear
Unit) activation function is commonly used in hidden layers due to its simplicity and effectiveness in
mitigating the vanishing gradient problem (Nair and Hinton, 2010). Finally, a SoftMax output layer
with a size equal to the number of possible element profiles predicts the probability distribution for
each profile type, enabling the model to classify each element effectively. The Adam optimizer with
gradient clipping is used to stabilize training, particularly when dealing with the long sequences and
high parameter count characteristic of RNNs, ensuring convergence and minimizing the risk of explod-
ing gradients. The Adam optimizer is a popular choice due to its adaptive learning rate and efficient
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handling of sparse gradients. It combines the advantages of two other extensions of stochastic gradient
descent, namely AdaGrad and RMSProp (Kingma and Ba, 2017).

With the specific model architecture set-up, a fitting loss function needs to be chosen which will be used
to monitor the quality of predictions during training. Within this model type, an adapted loss function
is necessary to encapsulate the loss over the different classes. Ankalaki (2022) proposed the use of
the Categorical Cross-Entropy (CCE) loss function which is based on the Softmax function, which is
present in the output layer of the model architecture. The Softmax and CCE functions are given below.

Softmax ∶ 𝑓(𝑋𝑖) =
𝑒𝑋𝑖

∑𝑛𝑖=1 𝑒𝑋𝑐
(6.1)

CCE ∶ −
𝑛

∑
𝑖=1
𝑦𝑖 ∗ log(𝑓(𝑋𝑖)) (6.2)

𝑋𝑖 ∶ Predictions
𝑋𝑐 ∶ Groundtruth

𝑛 ∶ Classes

The training setup for the model utilizes a carefully tuned configuration to optimize performance and
prevent over-fitting. The model is trained for up to 150 epochs with a batch size of 16, selected based
on the dataset size to maintain efficient memory usage and stable gradient updates. To train the model,
batch sizes and epochs need to be set. Batch size determines the number of samples that will be prop-
agated through the network at once. Smaller batch sizes can lead to more stable updates, while larger
batch sizes can speed up training. Epochs are the amount of time the model is run, but keep in mind that
the model can over-fit on noise present in the data when it is run for too long. A learning rate reduction
callback (ReduceLROnPlateau, Keras (2024)) monitors the validation loss, dynamically adjusting the
learning rate by a factor of 0.5 if improvements stagnate for 10 consecutive epochs, with a minimum
learning rate threshold of 1e-6 to ensure the model can continue refining its predictions while preventing
excessively small updates. This approach optimizes convergence by gradually reducing learning rates
during plateaus, which promotes higher accuracy and better generalization across both training and val-
idation data. To choose when to stop the training, early stopping can be used to halt training when
the validation loss starts increasing again, ensuring that the model does not over-fit on the training data
(Prechelt, 2012).

The last step is to evaluate the model. This is already partly done during the monitoring of over-fitting, as
the validation dataset is used there to determine the hyper-parameters. The final model is then evaluated
on the test set to get an unbiased estimate of its performance, as it shows the model’s performance on
unseen data.

6.3. Output
The output of the model consists of predicted cross-section profiles for each structural element. The
model outputs a list of probability distributions across possible cross-sections for each element, allow-
ing for the selection of the profile with the highest predicted probability. This probabilistic approach
enables flexibility in cases where multiple profiles show similar suitability. After obtaining the model
predictions, the profiles were checked for compliance with Eurocode standards to ensure structural in-
tegrity. The model can be validated by running predictions for the previously unseen test dataset. When
plotting the predicted output against the actual profiles, a clear diagonal line should be present, indicat-
ing that the predictions coincide with the true labels. The accuracy of the model can be quantified by
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calculating the performance metrics Accuracy, Recall, Precision and the F1-score, as discussed in chap-
ter 4. Since this model is used to indicate the applicability of reclaimed steel, there is no bias towards
false negatives or false positives. This means that the F1-score, which shows a balance between the two,
is the most favourable measure to indicate the effectiveness of the model.
This process is repeated for the four different design choice combinations as mentioned before: IPEm,
HEAm, IPEb and HEAb. This resulted in four separately trained models to compare the design choices
for each application, resulting in an early insight into the effects these design decisions have on the total
embodied carbon of the structure.

6.4. Summary
This chapter detailed the development and implementation of a machine learning model aimed at pre-
dicting optimal cross-sections for structural elements in data centre design, aiming to streamline the
incorporation of reclaimed steel in a secondary model. Leveraging a carefully structured RNN architec-
ture, the model effectively processes variable input lengths and multiple element types, providing pre-
dictions for each structural component based on unique grid configurations, element types, and lengths.

The methodology involved data preparation, including normalization, one-hot encoding and padding to
handle varying sequence lengths. Key design choices in the model architecture (such as bidirectional
LSTM layers, dropout regularization, and adaptive learning rate adjustments) helped the model capture
sequential dependencies and generalize well across diverse data configurations. The performances of
the models are further discussed in chapter 8. A probabilistic output approach allowed for flexible cross-
section selection while ensuring compliance with structural standards.

This machine learning model not only streamlines cross-section selection but also integrates with the
broader design process, creating the groundwork for future integration of the secondary optimization
step within the model.
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Optimization Model

The following chapter discusses the fifth research sub-question:

5. What are the key optimization variables for incorporating reclaimed steel into a design?

Figure 7.1 shows the approach to answer this question, it contains a shorter version of the workflow given
in Figure 5.1 as it excludes the steps for data gathering and training of the ML model. The cross-section
prediction can be done directly through the pre-trained RNN model to quickly set up an initial design
of a data centre. The next step is to match the components to a given database of reclaimed steel, after
which the LCA calculations can be performed to indicate the effects of reclaimed steel integration. Due
to the swift nature of the generation, an optimization algorithm can be used to generate the design con-
figuration which contains the most reclaimed steel. While still ensuring a valid design that adheres to the
design standards of data centres. This optimization algorithm is executed entirely within Grasshopper.

Figure 7.1: Schematic of the optimization model setup in Grasshopper and the relation to the machine learning RNN model
as mentioned in chapter 6.

Grasshopper is a visual programming language and environment that runs with the Rhinoceros 3D
computer-aided design (CAD) application and is widely used for parametric design. It allows designers
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to create complex forms and structures through a graphical interface without writing traditional code.
Next to that, it is particularly powerful for optimization tasks, as it can handle multiple variables and
constraints to find the best possible solution as stated in chapter 3.3. In this chapter, the optimization
model aimed to design an optimal data centre developed within this research is explained. The model
incorporates reclaimed steel to minimize the embodied carbon of the structure, using background infor-
mation as explained in part one of this research.

7.1. Input for RNN Model
As discussed in chapter 5.2, in this research there are four options for design choices: HEA profiles on
all elements with a stability system of moment fixed connections or hinged connections with a braced
frame structure. The other design option is IPE beams and HEB columns, again with the same options
for stability systems. These inputs are defined in the Grasshopper model with the use of value lists, as
can be seen in Figure 7.2. The second input of the model is the floorplan size, how these configurations
lead to the final floor plan design has been described in chapter 5.1. In the figure, the gene pools are
shown which are used to generate the grid-spaces based on the location of the columns in the floorplan.
As mentioned in chapter 3.1, columns can only be located at the location of a data rack, which is how
the grid spaces are defined. The total number of rows, the number of racks per row and the lists of
integers indicating the column locations are entered into a Python component. In this component are
the data racks visualized and the actual floorplan size and grid spaces calculated. The code can be found
in Appendix E.

Figure 7.2: Overview of input options for the Grasshopper model, consisting of three design choices and 2 options for floorplan
sizes. The size of the gene pools, which determine the grid spaces, is influenced by the floorplan size.

When the design choices are set and the distances between the columns are determined, they can be
transformed into a grid, as discussed earlier in chapter 5.1. In this research, the floor height and number
of floors are not considered variable inputs as these values are determined by the building type. After all
the elements are created by elevating line elements to their destined locations, the data can be converted
to match the RNN input. This is done by determining the vector of the beams, giving them either an x
or a y direction handle, and normalizing the IDs to be between zero and one. These values can then act
as the input of one of the 4 generated RNN models, depending on the initial design choices, to predict
the cross-section per element. The code from the Python components in the Grasshopper script can be
found in appendix E.
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7.2. Component Matcher
After the List of elements present in the design is created, a comparison can be made to the list of readily
available reclaimed steel elements from chapter 2.4. To make this comparison, a Grasshopper compo-
nent developed by Lut et al. (2022) can be used. The component, called MagPie follows the workflow
as shown in Figure 7.3, where it matches the design elements to a stock of reclaimed elements based
on a perfect match in cross-section and length, or closest fit. The latter would result in either an over-
dimensioned cross-section or the need to cut off the excess length.

Figure 7.3: Workflow of the component matcher (Lut et al., 2022)

After the component matcher, all elements are divided into three groups: The new steel needed for the
design, the reused steel and the added cut-off waste which is created when indirect reuse is applied.
All three options come with their own LCA calculations as per chapter 2, resulting in a total embodied
carbon score for the design.

There are two types of indirect reuse possible, either over-dimensioning of the beam or an element length
which is too long and needs to be cut off for the design. The type of indirect reuse that is applied depends
on the cut-off waste length and the section size. The component compares the added volume from both
options and chooses the least amount. Table 7.1 shows a calculation done for different profiles and the
same two indirect reuse options applied; choosing one profile higher or choosing an element with one
meter of cut-off length. In the case of IPE100, the second option creates less added volume. Whereas
with IPE500, the first option generates significantly less volume.

Table 7.1: Comparison of the two different options for indirect reuse for two different section profiles applied in the same
length.

Volume [𝑚𝑚3] Volume increase

IPE100, L=4 4.13e6 -

1 Profile higher (IPE120) 5.28e6 28%
1 Meter cut-off length 5.26e6 25%

IPE500, L=4 46.2e6 -

1 Profile higher (IPE550) 53.8e6 16%
1 Meter cut-off length 57.8e6 25%
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7.3. LCA Calculations
To evaluate the environmental impact of the design, a Life Cycle Assessment (LCA) was conducted
comparing the embodied carbon for a new structure versus a structure incorporating reused steel ele-
ments. The Grasshopper model shown in Figure 7.4 was used to calculate the total embodied carbon for
two design scenarios: One containing only new steel and one design utilizing reclaimed steel. The model
produced several key outputs, including the total embodied carbon for the new structure [kgCO2e], the
structure with reused elements [kgCO2e], and the percentage reduction in embodied carbon due to reuse
[%].

Table 7.2: Embodied carbon of four different types of applications of steel. When indirect reuse is applied, the weight of the
used part is multiplied by 0.3423, while the weight of the cut-off part is multiplied by 0.129. Those values combined serve as
the total embodied carbon for indirect reuse.

Steel application type Equivalent embodied carbon per kilogram [kgCO2e/kg]
New steel 1.0494
Direct reuse of steel 0.3294
Indirect reuse of steel 0.3423
Indirect reuse - cut-off waste 0.129

Themodel also calculated additional metrics such as the carbon score, representing the embodied carbon
per square meter of the structure [kgCO2e/m2], and the embodied carbon per data rack present in the
design [kgCO2e/rack]. These metrics allow for a complete understanding of the environmental savings
achieved through reuse. The LCA calculations are based on specific carbon factors for different types
of steel usage, as outlined in chapter 2. These values, as shown in Table 7.2, are incorporated into the
Grasshopper model to calculate the overall carbon impact of both the new and reused steel structures.

Figure 7.4: Overview of the LCA calculation in Grasshopper based on the weight of material per application type. The contents
of the Python components shown can be found in appendix E.
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7.4. Optimizer
The final step in the Grasshopper model workflow focuses on optimizing the structural configuration to
achieve minimal embodied carbon. This phase relies on the Opossum optimization plug-in, which of-
fers a powerful combination of machine learning-based RBFOpt and evolutionary CMA-ES algorithms,
making it well-suited for tackling complex and multi-variable structural design tasks, as discussed in
chapter 3.3. Through iterative adjustments of the grid spaces, the optimizer narrows down the floor plan
configuration that maximizes the application of reclaimed steel.

The optimization model evaluates several critical metrics:

• Total Embodied Carbon: The primary target for minimization, as it reflects the environmental
impact of the material choices made within the structure. This includes both direct and indirect
reuse of reclaimed steel, providing a comprehensive carbon calculation for each design iteration.
Related to this metric is the carbon score calculated as well, which indicates the embodied car-
bon per square meter of the building and it is a generic term for embodied carbon comparisons.
(Hrivnak, 2023)

• Percentage of Total Reuse: This metric indicates the proportion of reclaimed steel incorporated
into the design. High reuse rates indicate an efficient allocation of existing resources, reducing
the need for new steel and its associated carbon footprint.

• Percentage of CO2 reduction: Next to the total embodied carbon of the design incorporating reuse,
the embodied carbon of a new design is calculated. This difference shows the impact reuse can
have on the embodied carbon of a design.

• Embodied carbon per data rack: This metric is set up to also incorporate a design requirement, as
data centres often require the least amount of columns in the floorplan and a design which houses
the most data racks possible, as discussed in chapter 3.

These metrics combined determine the score for each configuration, with carbon per data rack acting
as a single, unified metric that balances environmental impact with design practicality. By optimizing
for this carbon-per-rack score, the model inherently considers both structural integrity and carbon effi-
ciency, guiding the design towards sustainable, viable configurations.

Using an iterative process, the Opossum optimizer modifies the grid spaces for which the embodied
carbon per data rack is recalculated each time. This adaptive feedback loop allows the optimizer to
adjust its approach as it evaluates configurations, ultimately selecting the grid spaces that yield the lowest
carbon impact while meeting functional requirements. The RBFOpt was chosen for this research as it is
a single objective optimization, the optimization will terminate if the variable has not been improved in
the last 40 iterations. The result is an optimized structural configuration that maximizes reclaimed steel
usage, reduces embodied carbon, and balances the practical needs of data centre layout and structural
integrity. This iterative optimization approach provides crucial insights, offering designers a clear path
to more sustainable building practices.
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7.5. Summary
In this chapter, we have detailed the Grasshopper optimization model developed to integrate reclaimed
steel in data centre structures. The model combines parametric inputs, RNN cross-section predictions,
and LCA calculations with an advanced optimization framework, centred around reducing embodied
carbon through the reuse of reclaimed steel. Each component of the model plays a distinct role, con-
tributing to an integrated solution that balances structural, environmental, and economic considerations.
The optimization phase, powered by the Opossum optimizer, is the core of this model, transforming
raw input configurations into valid design solutions. By iteratively testing grid spaces and component
choices, the optimizer identifies a configuration that meets functional requirements while achieving the
lowest possible carbon footprint. The metric ’carbon per data rack’ provides a single objective for op-
timization, merging structural integrity with environmental goals. This process supports data-driven
design, enabling engineers to make informed decisions that prioritize sustainability alongside perfor-
mance.

Overall, this model demonstrates a replicable, adaptable approach to sustainable structural design, show-
casing how reclaimed materials can be incorporated to achieve reductions in embodied carbon. The
resulting designs of this workflow are presented and validated in chapter 8. The developed method
establishes a foundation for future work, potentially applying similar optimization processes to other
building types or expanding the dataset of reclaimed elements to maximize reuse.
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8
Results

This chapter addresses the results from the workflow as described in chapter 5, 6 and 7, examining the
automatic integration of reclaimed steel into data centre design to answer the main research question.

”How can the incorporation of reclaimed steel elements be made more accessible within the design
process of datacentres when using Machine Learning applications?”

The chapter is structured to discuss the results of the RNN models as a cross-section prediction and the
applications of the optimization model, which aims to maximize the reuse of steel elements in load-
bearing structures. The research’s core objective was to develop predictive models to facilitate efficient
cross-section selection from available reclaimed steel stock. By training distinct Recurrent Neural Net-
work (RNN) models on four design configurations, the models were enabled to predict appropriate
cross-sections based on parameters such as element length, location, and type. These cross-section pre-
dictions then feed into a separate optimization model developed in Grasshopper. The chapter concludes
with a validation of the final model by using Oasys GSA.

8.1. RNN Model
The RNN models as explained in chapter 6 were set up as a proof of concept to incorporate machine
learning into the design process. This exploration is linked to sub-question 4 within this research:

4. How can machine learning techniques be applied to incorporate reclaimed steel within the design
process effectively?

With the development of these models, the first step into the incorporation of reclaimed steel with ma-
chine learning has been made, as the RNN is set up to predict the cross-sections of the design. To
facilitate the selection of optimal steel cross-sections, four separate RNN models were trained to predict
the profiles for different design choice combinations. The four combinations are visualised and ex-
plained in Figure 5.3 and abbreviated to IPEm, IPEb, HEAm and HEAb throughout this chapter. Each
model’s performance was evaluated based on training and validation loss, illustrated in Figure 8.1 and
Table 8.1. These are then further analysed by running the prediction on the unseen test data and evalu-
ating the confusion matrices.

Figure 8.1 illustrates the training and validation loss curves, with all models demonstrating effective
convergence as the loss values decrease over time (the epochs). This indicates that the models were able
to generalize well from the training data, maintaining a stable performance on unseen validation data.
The IPEm and IPEb models showed steady convergence after approximately 100 epochs, after which
they were stopped early to prevent overfitting on the training data.
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Figure 8.1: Result of the cross-entropy loss function over time (epochs) for the training and validation dataset. This is shown
for each of the 4 models.

Whereas Figure 8.1 shows the training over time, Table 8.1 shows the last recorded residual of the loss
function before the validation loss starts to increase from overfitting on the training data as explained
in chapter 4.1.2. The table shows that IPEm results in the highest residual loss-function value, indicat-
ing that this model will have the lowest accuracy. The IPEb model on the other hand approaches the
lowest residual loss values and training continued for the highest amount of epochs, indicating more
useful interconnections between the data could be found. These extremes are an interesting result when
looking at the percentage of non-valid elements as discussed in chapter 5.2. Where the IPEb and IPEm
configurations consist of 10 to 100 times more N.A values than the HEA data. This in combination with
the model accuracy could indicate that the IPEb configuration created a better understanding of the N.A
values whereas the IPEm did not contain enough data to learn that pattern. The HEA configurations
contain so few N.A values due to the high beam dimensions that are possible (as IPE goes to 600mm in
height and HEA up to 1000mm), creating a stable accuracy even when the model does not predict the
existence of N.A values.

Table 8.1: Residuals of the loss function for training and validation data together with their respective accuracy. This is
explained in chapter 4.1.2

Residual training loss Total training accuracy Residual validation loss Total validation accuracy

IPEm 0.3095 0.8846 0.4562 0.8264
IPEb 0.1164 0.9641 0.2056 0.9343
HEAm 0.1924 0.9319 0.2921 0.8862
HEAb 0.1266 0.9580 0.2074 0.9297
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To further analyse and validate the RNN models, predictions were generated for the previously unseen
test data, which was determined to be 5% of the initial dataset as discussed in chapter 6. Since the model
contains a multi-class classification problem, only calculating the accuracy might not be enough as im-
balances across labels are not shown, as previously discussed in chapter 4. Following this, the models
were evaluated using both the accuracy and F1-score, which can be seen in Table 8.2. Across all datasets,
the models achieved high performance, with F1-scores ranging from 0.8202 (IPEm) to 0.9350 (IPEb).
The highest performance was observed for datasets IPEb and HEAb, where F1-scores were 0.9350 and
0.9335, respectively, indicating the model’s strong ability to generalize. Even for the lower-performing
dataset (IPEm), the model achieved an F1-score of 0.8202, demonstrating consistent effectiveness across
varied conditions.

These clear differences in accuracy for the two stability systems can be explained by looking at the
force distribution between the two. In the case of a braced structure, the elements are connected with
hinges, which entails that no moments are transferred between the two. This results in the fact that each
element is only subjected to the moments from forces directly on the element itself, together with shear
and normal forces transferred through the system. Creating a straightforward calculation. However, for
moment-fixed connections, the elements can be seen as continuous. Creating an interplay between the
elements throughout the system as the heavy loads are transferred via moments. Since this is a more
complex calculation, the hidden interconnections between the data are more difficult to pick up for the
RNN model. This could be prevented by deepening only the RNN models trained for moment-fixed
connections by adding extra input features or LSTM layers in the model.

Table 8.2: Accuracy and weighted F1-Score of the four RNN models when applied to the unseen test dataset. The score is
weighted based on the number of instances each label is present in the output data.

Model Accuracy Weighted F1-Score

IPEm 0.8215 0.8202
IPEb 0.9349 0.9350
HEAm 0.8825 0.8822
HEAb 0.9337 0.9335

To visualise the label-specific behaviour of the models, a confusion matrix can be set up, indicating the
accuracy per label. The confusion matrix is often shown as a heatmap where the predicted value result-
ing from the trained model is plotted against the actual value. This can only be applied for supervised
learning as the result needs to be known, which is the case for the remaining test dataset. A diagonal
line in the figure indicates a correct prediction, as it aligns with the actual value. Figure 8.3 and 8.2 both
show the clear diagonal line from the elements, with some over or under-estimation of the profiles of
only 1 profile size. Note that the scale of the colour map is logarithmic, indicating that most predictions
are in fact on the diagonal line.

Figure 8.2 shows the Predictions versus the true labels for the IPE configurations. The figure shows a
light-grey line that separates the IPE beams from the HEB columns, as that is how this design configu-
ration is set up in chapter 5. These separation lines show that there are no predictions that have a false
profile type (IPE versus HEB). It does however result in a lower number of elements per label, which
could explain the higher level of confusion shown for high HEB profiles. Figure 8.3 on the other hand
shows a clear diagonal line throughout as in this design configuration, one profile type is present.

From Figure 8.2, it can be concluded that the lower accuracy rate from the moment-fixed stability system
models is caused by less accurate predictions of the column profiles, as the highest level of confusion is
located at the HEB profiles. This further validates the conclusions stated based on the test accuracies of
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Table 8.2 that moment-fixed stability systems could benefit from additional design features as input. As
mentioned in chapter 5.2, the current models operate with three input features: Element ID, element type
and element length. Together they indicate the location of the element within the model. An additional
design feature that could improve the moment-fixed predictions is the number of beams connected to
the columns, as two beams indicate a corner column, three indicate an edge column and four a middle
column. This affects the total direction of the transferred moment onto the column creating highly
different values for the column’s buckling resistance, following from the calculations shown in Appendix
A.

Figure 8.2: Confusion matrix of the predicted values versus the true values for the unseen test dataset for the IPEm and IPEb
model. The grey lines indicate the separation between the IPE profiles chosen for the beams and the HEB profiles for the
columns. Note that the gradient scale is set to logarithmic to show the spread of predictions more clearly.

Figure 8.3: Confusion matrix of the predicted values versus the true values for the unseen test dataset for the HEAm and HEAb
model. Note that the gradient scale is set to logarithmic to show the spread of predictions more clearly.
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8.2. Grasshopper Model
The following sub-chapter shows the results linking to the last sub-question:

5. What are the key optimization variables for incorporating reclaimed steel into a design?

After training and validating the prediction models, they can be loaded into the Grasshopper optimiza-
tion model to start the second part of the automated design process. To show the effects of the cross-
section selection process and generate a comprehensive overview, a single design configuration was
selected. The configuration creates interesting results when it makes predictions for unseen data and
visualises the effect of the model on a relatively large design. To adhere to these aspects, a floorplan of
5 rows with 20 racks per row is chosen. This configuration was not present in the RNN training data
from Table 5.1 and results in a large floorplan equal to a size of 14.4 by 14.4 meters.

The figures below illustrate the outcomes of the optimization model in Grasshopper, designed to in-
tegrate reclaimed steel into a load-bearing structure with minimal embodied carbon. For each of the
three datasets of reclaimed steel elements from chapter 5.3, four design configurations are presented,
reflecting variations in structural choices: IPE/HEB beams and moment-fixed (IPEm) vs. braced (IPEb)
systems, as well as HEA beams with moment-fixed (HEAm) and braced (HEAb) systems. The colour
coding highlights the source of materials, where red indicates newly sourced steel, green represents
directly reused elements, and blue denotes indirect reuse. Key optimization variables across these con-
figurations include grid spaces, the total embodied carbon, and the proportion of reused materials in the
accompanying tables. These LCA calculation results are based on the calculations explained in chapter
7.3.

First, the Open-Source dataset from Figure 5.5 was applied to the model, creating a real-life example
of reclaimed steel integration into the design. Figure 8.4 shows the optimized structures and their re-
claimed steel applications, there it can be seen that direct reuse (green elements) is not as often applied.
It also shows that reuse is mostly applied in the roof structure or columns, which stems from the fact
that the Open-Source dataset consists of relatively low section profiles whereas the high floor loads in
the data centre require more resistance. From Table 8.3 it can be seen that for grid spaces in y-direction,
relatively small spans are applied as the grid is divided into 4 or even 5 sections. This indicates that
the added steel and decrease in possible data racks in the floorplan do not outweigh the CO2 reduction
possible when the spans are smaller.

Next, the model was run based on the Exiting Designs dataset as shown in Figure 5.6. This application
is based on a hypothetical situation where a decommissioned structure is disassembled for reuse. This
application is a common practice due to the lowered transportation cost and a better indication of the
previously applied load when the elements are from one structure, as discussed in chapter 2. Figure 8.5
shows the optimized structure for the same four design choice combinations as discussed for the Open
Source dataset. It can be seen that the Existing Design dataset consists mostly of IPE beams, as these
configurations incorporate the most reused elements. For the HEA configurations, only the elements
under lower loading conditions like the roof structure incorporate some reuse, since the few HEA ele-
ments have a relatively small cross-section.

Lastly, the optimization model was applied based on the generated dataset from Figure 5.7 based on
Eurocode calculations (Appendix B). This dataset is the largest and has the most even spread across
cross-sections, which can be seen from the high percentage of reuse from Table 8.5. The application of
this dataset shows the generalized availability of steel elements when the basic design codes are applied.
Figure 8.6 shows almost no red elements, meaning that the optimal design coincides with the generated
dataset relatively well.
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Table 8.3: Results from the Grasshopper optimizer when applied with the Open-Source dataset. The configuration ID indicates
the design choices, whether the design consists of IPE beams and HEB columns or all HEA, and the applied stability system,
either moment-fixed connections or bracings.

Open-Source dataset

Configuration ID IPEm HEAm IPEb HEAb
Grid - x [6, 9] [6, 9] [8, 7] [7, 7]
Grid - y [1, 2, 2] [1, 2, 2] [1, 1, 2, 1] [1, 2, 2]
Total carbon - original [kgCO2e] 17169.3 25060.4 29631.7 34399.3
Total carbon - improved [kgCO2e] 12224.9 19565 22968.7 28817.3
Total reuse [%] 62.9 48.2 56.3 36.8
CO2 reduction [%] 28.8 21.9 22.5 16.2
Carbon Score [kgCO2e/m2] 58.96 94.35 110.77 138.97
Carbon per data rack [kgCO2e/rack] 130.05 208.14 249.66 306.57

Figure 8.4: Optimized design considering the four different design choice combinations as discussed in chapter 5 when the
Open-Source database from Figure 5.5 is applied. The red colour indicates the new steel, green is direct reuse and blue is
indirect reuse. The structure is optimized to generate the least amount of embodied carbon per data rack.
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Table 8.4: Results from the Grasshopper optimizer when applied with the Existing Designs dataset. The configuration ID
indicates the design choices, whether the design consists of IPE beams and HEB columns or all HEA, and the applied stability
system, either moment-fixed connections or bracings.

Existing Designs dataset

Configuration ID IPEm HEAm IPEb HEAb
Grid - x [6, 9] [6, 9] [8, 7] [7, 8]
Grid - y [2, 2] [1, 2, 2] [2, 2] [2, 2]
Total carbon - original [kgCO2e] 19137.9 25060.4 29242.8 33772.8
Total carbon - improved [kgCO2e] 9249.2 24373.2 18885.9 33133.1
Total reuse [%] 97.4 10.7 77.8 7
CO2 reduction [%] 51.7 2.7 35.4 1.9
Carbon Score [kgCO2e/m2] 44.6 117.54 91.08 159.79
Carbon per data rack [kgCO2e/rack] 96.35 259.29 200.91 345.14

Figure 8.5: Optimized design considering the four different design choice combinations as discussed in chapter 5 when the
Existing-Designs database from Figure 5.6 is applied. The red colour indicates the new steel, green is direct reuse and blue is
indirect reuse. The structure is optimized to generate the least amount of embodied carbon per data rack.
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Table 8.5: Results from the Grasshopper optimizer when applied with the generated dataset. The configuration ID indicates
the design choices, whether the design consists of IPE beams and HEB columns or all HEA, and the applied stability system,
either moment-fixed connections or bracings.

Generated dataset

Configuration ID IPEm HEAm IPEb HEAb
Grid - x [7, 9] [7, 9] [8, 8] [7, 8]
Grid - y [2, 2] [2, 2] [2, 2] [2, 2]
Total carbon - original [kgCO2e] 19481.6 24947.8 32276.3 33772.8
Total carbon - improved [kgCO2e] 7756.8 9358.1 13715 13389.2
Total reuse [%] 98.4 96.8 96.6 98.4
CO2 reduction [%] 60.2 62.5 57.5 60.4
Carbon Score [kgCO2e/m2] 37.41 45.13 66.14 64.57
Carbon per data rack [kgCO2e/rack] 80.8 97.48 142.86 139.47

Figure 8.6: Optimized design considering the four different design choice combinations as discussed in chapter 5, when the
Generated database from Figure 5.7 is applied. The red colour indicates the new steel, green is direct reuse and blue is indirect
reuse. The structure is optimized to generate the least amount of embodied carbon per data rack.
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8.3. Model validation
The last step of the workflow presented at the beginning of Chapter 5 is the validation of the final
optimized structure. This step uses the FEM software Oasys GSA to calculate force distributions, de-
flections and overall steel utilization, ensuring the structural integrity and efficiency of the design. For
this validation, the optimized design based on the generated database is applied to both the IPEm and
IPEb configurations. These configurations are selected for specific reasons: the IPEm configuration
provides a test case for the less accurate predictions of the RNN, while the IPEb configuration allows a
comparison of the force distribution between the two stability systems considered.

The GSA model was set up by importing the optimized model into the software. The model was op-
timized to include the most reclaimed steel from the Generated dataset and it includes the predicted
profiles from the trained RNN model. To resemble the design from the Grasshopper optimization, the
same load combinations are applied as stated in Appendix A. The design was subjected to a static anal-
ysis that calculates the load distribution with the use of a finite element analysis. These loads are then
tested according to Eurocode 3, which results in the steel utilization per element. The analysis incorpo-
rated both linear elastic behaviour and global stability effects, which are particularly relevant given the
mix of braced and moment-resisting stability systems in the designs.

The results of the validation as shown in Figure 8.7 and 8.8 highlight the robustness of the optimization
process and the reliability of the structural predictions made by the model. The moment distributions
highlight key differences between the two stability systems. For the braced structure (IPEm), moments
are highest at the midspan of beams, reflecting the bending behaviour expected in simply supported
spans. In contrast, the moment-fixed system (IPEb) shows peak moments at the connections, consistent
with the rotational restraint provided by the fixed joints. These patterns align with the expected struc-
tural behaviour, indicating that the stability system types were accurately generated.

The steel utilization ratios provide further insight into the design’s efficiency. All beams exhibit utiliza-
tion ratios between 0.2 and 0.8, ensuring an acceptable balance between material usage and structural
performance. The spread in unity checks stems from a combination of factors:

• Reclaimed Steel Application: Over-dimensioning of elements is permitted when it enables a
higher percentage of reclaimed steel to be used. This strategy results in some elements being
underutilized (closer to 0.2), as their capacity exceeds the applied loads due to the limited avail-
ability of smaller reclaimed profiles.

• Interconnection Effects: The interconnected nature of the structural system causes load redistri-
bution. These variations in load paths lead to varying failure mechanisms which can be amplified
in critical elements when even one profile lower is applied. Elements near connections often
experience higher forces, leading to utilization ratios closer to 0.8, while elements further from
load-critical regions exhibit lower utilization.

The analysis underscores the success of the proposed methodology in combining machine learning pre-
dictions with structural optimization and validation tools. The moment diagrams validate that the sta-
bility system designs align with expected behaviours for the applied load cases. Moreover, the well-
balanced utilization ratios indicate that the design efficiently meets both performance and sustainability
objectives. The observed spread in utilization ratios, although seemingly random, reflects the constraints
and strategies inherent to the design. Specifically, the integration of reclaimed steel prioritizes envi-
ronmental impact reduction over strict optimization of individual member utilizations. This trade-off,
evident in the results, offers a promising pathway toward reducing embodied carbon through the reuse
of steel, combining advanced computational methods with practical engineering requirements.
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Figure 8.7: IPEm validation by placing the optimized design with 5 rows and 20 racks per row based on the Generated dataset
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Figure 8.8: IPEb validation by placing the optimized design with 5 rows and 20 racks per row based on the Generated dataset
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8.4. Summary
The results chapter concludes by addressing the thesis’s main research question through a thorough
evaluation of both the RNNmodels and the Grasshopper optimization model. The chapter demonstrates
that RNN models can effectively predict cross-sections from available reclaimed steel stock, which can
then inform an optimization model in Grasshopper to maximize steel reuse in a load-bearing structure
for data centres. The following key findings are addressed:

1. Performance of RNN Models:

• The models regarding the braced structure demonstrated the best performance, achieving a
weighted F1-score for IPEb of 0.9350 and for HEAb of 0.9335.

• Lower accuracy was observed for the moment-fixed structures, with scores for HEAm of
0.8822 and the lowest for IPEm of 0.8202.

• Confusion matrices indicated that the less accurate predictions lie within the column calcu-
lations

2. Stability System Insights:

• Braced systems (IPEb, HEAb) outperformed moment-fixed systems (IPEm, HEAm) due to
their more simple force distribution.

• Enhancing moment-fixed systems’ accuracy could involve adding input features, such as the
number of connected beams, which influence moment transfer and buckling resistance.

3. Optimized Reclaimed Steel Integration:

• Designs based on the Generated Data set achieved the highest reuse percentages (>90%)
with minimal reliance on new steel and a CO2 reduction up to 62.5%.

• TheOpen-Source dataset showed limited direct reuse, mainly in roof structures and columns.
With varying percentages of CO2 reduction between 16.2 and 28.8%.

• The Existing Designs dataset demonstrated the highest variation in applied reuse with higher
reuse for configurations involving IPE beams and HEB columns (35.4 and 51.7%) in contrast
with the HEA configurations (1.9 and 2.7%).

4. Design Validation:

• Validations showed the correct application of the different stability systems considered and
a steel utilization between 0.2 and 0.8 for all elements.

Overall, the findings emphasize that the selection of reclaimed steel profiles is influenced by both the
dataset characteristics and the structural configuration. While the optimization model successfully re-
duced embodied carbon across all scenarios, the greatest impacts were observed when datasets aligned
closely with the design requirements. These insights underscore the importance of tailoring reclaimed
stock to anticipated design needs and refining predictive models for more complex structural systems.
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Discussion

This chapter analyses the broader implications of the research findings presented in the previous chap-
ters, focusing on the integration of reclaimed steel into data centre design through the application of
machine learning and optimization models. By interpreting the results of the RNN models and the
Grasshopper optimization model, this discussion aims to review the significance of these findings within
the field of sustainable construction. Additionally, it addresses the limitations encountered during the
study and proposes directions for future research to enhance the applicability and effectiveness of the
proposed methodologies. Through this analysis, the chapter seeks to highlight the potential of advanced
computational techniques in promoting environmentally responsible design practices.

9.1. Research Implications
This research provides a significant proof of concept for the application of machine learning in the
automated design of data centre structures, achieving improvements in both structural efficiency and
environmental performance. The Recurrent Neural Network models developed for this study demon-
strated high predictive accuracy for braced structures, achieving weighted F1-scores of 0.9350 (IPEb)
and 0.9335 (HEAb). While moment-fixed systems resulted in lower accuracies, with scores of 0.8822
(HEAm) and 0.8202 (IPEm), the model effectively captured critical patterns within the complex config-
urations, providing a foundation for further development. The lower accuracy for moment-fixed systems
suggests that additional input features, such as beam-to-column connections, could improve the model’s
ability to account for more complex structural behaviours.

The integration of these RNN predictions into a Grasshopper workflow demonstrated how reuse-focused
optimization can align reclaimed steel stock with design needs. The Generated Dataset achieved reuse
rates exceeding 90%, reducing CO2 emissions by up to 62.5%. In contrast, the Existing Designs dataset
showed reuse percentages of 35.4% for IPE beams and 51.7% for HEB columns, while HEA config-
urations reached much lower rates (1.9% and 2.7%). These findings confirm that alignment between
available stock and design requirements is crucial for maximizing reuse potential.

Validation of the generated structure further confirmed its applicability to practical design scenarios.
Stability systems were applied correctly and all structural elements achieved utilization levels between
0.2 and 0.8, demonstrating a balanced design approach that meets both structural and environmental tar-
gets. By combining the automated cross-section selection, component matcher and LCA calculations,
this model positions itself as a valuable approach for automated decision-making, enabling environmen-
tally conscious design within tight project timelines.
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The established workflow in this study shows the potential of integrating ML and Grasshopper for auto-
mated design processes, presenting a workflow that includes data collection, ML-driven predictions and
design optimization within a user-friendly interface. Grasshopper’s parametric environment paired with
the predictive capabilities of an ML model demonstrates how powerful tools can work together to not
only optimize for reclaimed materials but also streamline the design process. The interaction between
Grasshopper’s geometric flexibility and ML’s adaptability highlights a pathway for further innovations
in building design, enabling a workflow that is both technically robust and accessible to a broad spectrum
of design professionals.

9.2. Research Limitations
A key limitation of the proposed workflow lies in the uncertainties associated with the predictions for
cross-section selection. The RNN model, while powerful, is ultimately data-dependent and includes
prediction uncertainties, especially given the complexity and variability inherent in reclaimed steel sec-
tions. These uncertainties pose a risk, as incorrect predictions could result in structural designs that
fail to meet necessary safety and performance criteria. Therefore, this workflow should be viewed as
a preliminary indication of reuse potential rather than a final design configuration. Practitioners are
advised to use these results as a guide, conducting further verification steps and cross-referencing with
traditional structural analysis methods to ensure the safety and reliability of the final design.

The model’s precision is also impacted by non-valid element values (N.A values) within the dataset.
The elements that could not be designed under the given load and length combination, are set to N.A.
One could argue that if an element within the design is not applicable, that means that the entire de-
sign configuration for that specific combination of design choices is insufficient and should be neglected.

Another limitation is the specificity of this research to data centre design, particularly looking at the data
halls within those design types. While this focused scope allows for a better insight into the application,
it restricts the workflow’s direct applicability to other types of structures. The methods, datasets, and
parameters were curated with data centres in mind; applying the model to other building types would
require replicating the entire process, including data gathering, ML training, and validation. Although
theworkflow could theoretically be adapted to other applications, these structural contextsmay introduce
new variables and demands that the current model is not optimized to handle.

9.3. Future Research
The following five potentials for future research have been identified:

Incorporating prediction uncertainty in Grasshopper:
A valuable extension of this workflow would be the ability to incorporate the prediction uncertainty
for each optimized model directly within Grasshopper. Since the reuse potential currently reflects a
percentage of reused elements in the design, it would be beneficial to also display the model’s predic-
tion accuracy for cross-section selections. By integrating this uncertainty score, designers would gain a
clearer understanding of the reliability of reuse recommendations, adding a new layer of transparency
to the results. This feature could allow users to weigh reuse potential more effectively, particularly in
critical applications further into the design process.

Enhancing the RNN model:
Further improvement of the ML model could be achieved by restructuring the N.A values within the
RNN model. By creating a first entry that classifies if a model is correct, the result will have an ini-
tial indication of N.A elements are present within the design configuration. Additionally, introducing
additional design features focussed on the moment-fixed connections would improve the accuracy of



9. Discussion 64

the models trained for that stability system. An example of such an added feature could be linking the
element types of the columns to the number of beams connected to it instead of only saving if it is an
edge or a middle column. By updating the model’s focus on these element-specific characteristics, fu-
ture iterations could result in more refined predictions, especially for unique or challenging structural
components.

Expanding the dataset:
The development of a larger, more diverse dataset could substantially enhance the performance of the
ML model. Generating additional configurations of valid designs could improve the model’s ability to
generalize across various scenarios, particularly for those less represented in the current dataset. Ex-
panding data volume would likely lead to more accurate predictions and greater resilience in model
performance across a broader range of design constraints.

Combining the separate workflows into one ML model:
An intriguing direction for future research is the integration of optimization within the RNN model it-
self, streamlining the process by combining design configuration and reclaimed steel databases as inputs.
This approach would allow the model to output both the reuse potential percentage and associated uncer-
tainty, creating a complete model capable of evaluating reuse potential without a separate optimization
step in Grasshopper. This integrated model could simplify the workflow and potentially increase the
efficiency and accessibility of the design process by consolidating prediction and optimization into one
single framework.

Application to new design aspects and building types:
Expanding this workflow to incorporate additional design aspects or to address different structural types
would broaden its applicability and reveal new insights into the versatility of ML-driven, reuse-focused
design. Testing the model on various building types or applying it to different aspects of structural
design, such as floor systems or alternative material applications, could lead to innovations in other
areas of sustainable design. Comparative studies on these different applications would also provide
valuable information on the adaptability and scalability of this workflow, showcasing the potential to
apply similar methods in a wider range of architectural and engineering contexts.
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Conclusion

In this final chapter, the core findings from each sub-question are summarized to provide a comprehen-
sive answer to the main research question:

”How can the incorporation of reclaimed steel elements be made more accessible within the design
process of datacentres when using Machine Learning applications?”

This summary highlights the impact of steel reuse, the availability and structural properties of reclaimed
elements, the potential design methodologies for integrating stock-constrained elements and the role of
machine learning (ML) in optimizing configurations that leverage reclaimed materials. This chapter is
structured based on the research sub-questions.

1. What effect has the integration of reclaimed steel on the design approach and sustainability cal-
culations of data centres?

The application of reclaimed steel has demonstrated significant environmental advantages, particularly
in terms of reducing carbon emissions throughout the material’s life cycle. According to the LCAmodel
outlined by Broniewicz and Dec (2022), reused steel reduces emissions across key life cycle stages, such
as the extraction and manufacturing phases (A1-A3) and the end-of-life stage (C1-C4), where steel reuse
minimizes the need for newmaterial production. Module D of the LCA framework, which covers poten-
tial avoided environmental impacts, plays a critical role in quantifying the benefits of steel reuse. Studies
such as those by Buzatu et al. (2023) further highlight the emissions reduction potential of reused steel,
with estimates ranging from 29-35% lower emissions than new steel. Tools like Steel-IT developed by
Aardoom (2023), make it easier to visualize these benefits, aiding decision-makers in realizing substan-
tial environmental gains while ensuring that reclaimed steel remains cost-effective. This emphasis on
life cycle impacts demonstrates that reclaimed steel in building design not only contributes to immediate
reductions in greenhouse gas emissions but also supports a broader, long-term environmental strategy.

2. What stock-constrained automated design processes have been researched and which apply best
within this application?

To address the second research question on stock-constrained automated design processes, five key stud-
ies offer insights into the integration of stock availability in structural design. Bukauskas (2020) intro-
duced foundational concepts for reuse in structural design, defining ”Assignment” in a binary matrix to
indicate stock matches, and ”Cut-off Ratio” to show required modifications. Building on this, Brütting
et al. (2020) linked moment capacities of stock elements to structural load cases using a branch-and-
bound method. However, this approach proved slow due to the recalculation needed for each cut-off
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length. To address computation time, Van Marcke et al. (2024) employed a generative algorithm paired
with finite element analysis, focusing on maximizing stock application by optimizing truss structures
and element aggregation. Haakonsen et al. (2024) adapted this algorithm to Grasshopper, improving
user accessibility by visualizing stock assignment for structural design in a two-storey timber building.
Lastly, Rademaker (2022) presented a Python-based model for reusable stock assignment, achieving
significant reductions in new steel usage with custom optimization constraints, though yielding lower
utilization coefficients.

These studies highlight diverse methodologies for stock-constrained design, each with unique strategies
for minimizing environmental impact through reuse. However, the full-scale application to a building-
level design, specifically a data centre, was determined as a research gap.

3. What machine learning applications that assist in the structural design process have been re-
searched?

Machine learning has shown significant potential in advancing the structural design process by using data
more effectively and enabling automated decision-making. Research by Liao et al. (2024) emphasizes the
transformative role of models like generative adversarial networks (GANs) and graph neural networks
(GNNs), which excel in optimizing component layouts and cross-sectional sizes based on diverse design
data. Practical applications include Pizarro and Massone (2021)’s deep neural network (DNN), which
predicts the dimensions of reinforced concrete shear walls with remarkable accuracy, and Potijk (2024)’s
artificial neural network (ANN), which simplifies comparisons of structural and environmental costs
for different stability systems. Additionally, Fenton et al. (2024) highlight the growing integration of
sustainability metrics, using machine learning to predict embodied greenhouse gas emissions early in
the design process. Further possibilities lie in recurrent neural networks (RNNs), which are particularly
suited for sequential design tasks and the reuse of structural elements, offering a promising topic for
both efficiency and sustainability in structural engineering.

4. How can machine learning techniques be applied to effectively incorporate reclaimed steel within
the design process?

To answer the fourth research question, an RNN model was set up as a proof of concept to show the
application of machine learning on cross-section selection. Data processing techniques such as normal-
ization, one-hot encoding, and padding for variable sequence lengths optimize the model’s adaptability,
while bidirectional LSTM layers capture dependencies in between the design configurations. The fi-
nal trained model showed accuracies ranging from 82 to 92% with accurate predictions as seen on the
confusionmatrices for HEA and IPE profiles, but HEB profile predictions showed less promising results.

5. What are the key optimization variables for incorporating reclaimed steel into a design?

The final sub-question combines the design aspects determined by the Grasshopper optimization model
and building-type specific design requirements. The developed optimization model initiates with grid-
spacings determining the column placement in the floorplan. With the help of the RNN for cross-section
selection predictions, the model can be automatically generated, for which a comparative LCA calcula-
tion was done resulting in the total embodied carbon based on the percentage of reuse applied. Since
data halls from data centres perform significantly better when fewer columns are located in the floor-
plan, a customized metric is set up which combines the embodied carbon with the data centre design
requirements. To conclude, the final metric to minimize with the optimization algorithm is the embod-
ied carbon per data rack present in the floorplan.
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In answering the main research question, this research has successfully demonstrated a practical appli-
cation of machine learning to streamline the incorporation of reclaimed steel within data centre design.
The combination of an RNN model for cross-section prediction and a customized optimization model
in Grasshopper effectively reduces the manual input and expertise typically required to match reclaimed
materials to specific structural demands. This model-driven approach not only simplifies the selection
and integration of reclaimed steel, enhancing accessibility within the design process but also aligns with
industry goals of minimizing embodied carbon. While this framework shows strong potential, further
refinement could enhance its effectiveness. Overall, the research provides a significant step toward au-
tomated, resource-conscious structural design, offering a scalable solution for sustainable data centre
development.
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A
Structural Loads and Steel Resistance

Table A.1: Participation factors from Eurocode

Load 𝜓0 𝜓1 𝜓2
Cat E2: industrial 1.0 0.9 0.8
Wind 0 0.2 0
Snow 0 0.2 0

Table A.2: ULS load factors for consequence class CC2

ULS Imposed load Governing live load Other live loads

ULS 1 1.35 ⋅ 𝐺 - 1.5 ⋅ 𝜓0,𝑖𝑄𝑘,𝑖
ULS 2 1.2 ⋅ 𝐺 1.5 ⋅ 𝑄𝑘,1 1.5 ⋅ 𝜓0,𝑖𝑄𝑘,𝑖

Within the calculations, only plastic design is considered as the assumed cross-section class is 1 or 2.
The buckling curves are determined by EurocodeApplied (2017).

Bending resistance [1993-1-1:2006 (2020) 6.2.5]

𝑀𝐸𝑑
𝑀𝑐,𝑅𝑑

≤ 1.0

𝑀𝑐,𝑅𝑑 = 𝑀𝑝𝑙,𝑅𝑑 = 𝑊𝑝𝑙𝑓𝑦

Compression [1993-1-1:2006 (2020) 6.2.4]

𝑁𝐸𝑑
𝑁𝑐,𝑅𝑑

≤ 1.0

𝑁𝑐,𝑅𝑑 = 𝐴𝑓𝑦
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Combination Axial and bending [1993-1-1:2006 (2020) 6.2.9]

𝑀𝐸𝑑
𝑀𝑁,𝑦,𝑅𝑑

≤ 1.0

𝑀𝑁,𝑦,𝑅𝑑 = 𝑀𝑝𝑙,𝑦,𝑅𝑑
1 − 𝑛
1 − 0.5𝑎
𝑛 = 𝑁𝐸𝑑

𝑁𝑐,𝑅𝑑

𝑎 =
𝐴 − 2𝑏𝑡𝑓

𝐴

Buckling [1993-1-1:2006 (2020) 6.3.1]

𝑁𝐸𝑑
𝑁𝑏,𝑅𝑑

≤ 1.0

𝑁𝑏,𝑅𝑑 = 𝜒𝐴𝐹𝑦

𝜒 = 1
𝜙 + √𝜙2 − �̄�2

𝜙 = 0.5[1 + 𝛼(�̄� − 0.2) + �̄�2]

�̄� = √
𝐴𝑓𝑦
𝑁𝑐𝑟

𝑁𝑐𝑟 =
𝜋2𝐸𝐼
𝐿2𝑏

Bracing ∶ 𝐿𝑏 = 𝐿 ∨Moment ∶ 𝐿𝑏 = 2𝐿

Lateral Torsional Buckling [1993-1-1:2006 (2020) 6.3.2]

𝑀𝐸𝑑
𝑀𝑏,𝑅𝑑

≤ 1.0

𝑀𝑏,𝑅𝑑 = 𝜒𝐿𝑇𝑊𝑝𝑙,𝑦𝑓𝑦

𝜒𝐿𝑇 =
1

𝜙𝐿𝑇 +√𝜙2𝐿𝑇 − ̄𝜆2𝐿𝑇
𝜙𝐿𝑇 = 0.5[1 + 𝛼𝐿𝑇( ̄𝜆𝐿𝑇 − 0.2) + �̄�2𝐿𝑇]

�̄�𝐿𝑇 = √
𝐴𝑓𝑦
𝑀𝑐𝑟

𝑀𝑐𝑟 =
𝐶
𝐿√𝐸𝐼𝑧𝐺𝐼𝑡

Deflection [1990:2021 (2021) Table A.1.10]

𝑤𝑚𝑎𝑥 ≤
𝐿
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Dataset_gen

October 27, 2024

[ ]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from matplotlib.ticker import FixedLocator

Generating the reuse dataset

First all existing cross-sections are loaded in from the website
https://eurocodeapplied.com/design/en1993/ipe-hea-heb-hem-design-properties. Then the
minimum and maximum length are set using the eurocode and adapted using the ranges optained
by interviewing Vic Obdam and Bouwen met Staal. first the number of sections with a certain
profile is picked following a gaussian distribution. The accompanying lengths are then picked
randomly from a uniform distribution in the given interval. This notebook ends with some
visualisations of the dataset.

[ ]: data = pd.read_csv('CS_info_total.csv', skiprows=[0, 1, 3, 4], usecols=[0, 1])
data.rename(columns={'Unnamed: 0': 'Steel Profile', 'h': 'height'}, inplace=True)
data.head()

[ ]: def Quick_reference(df, QRmin, QRmax, Min, maxMin, Max):
df['QRlength_min'] = df['height'] * QRmin / 1000
df['QRlength_max'] = df['height'] * QRmax / 1000
df['QRlength_min'] = df['QRlength_min'].apply(lambda x: Min if x < Min else␣

↪→x)
df['QRlength_min'] = df['QRlength_min'].apply(lambda x: maxMin if x > maxMin␣

↪→else x)
df['QRlength_max'] = df['QRlength_max'].apply(lambda x: Max if x > Max else␣

↪→x)
return df

def Gaussian_counts(df, counts, std, mean_loc):
num_rows = len(df)
mean = num_rows * mean_loc # Mean value (somewhere around HEA300, HEB300␣

↪→and IPE240)
std_dev = num_rows / std # Standard deviation
x = np.arange(num_rows)

1



gaussian_values = np.exp(-0.5 * ((x - mean) / std_dev) ** 2)

gaussian_values = gaussian_values / gaussian_values.sum() * counts
gaussian_values = np.round(gaussian_values).astype(int)

df['Gaussian_count'] = gaussian_values
return df

def Extend_dataset(df, extended_df):
for index, row in df.iterrows():

# Convert Gaussian_count to an integer
count = int(row['Gaussian_count'])

# Generate random lengths within the specified range
lengths = np.random.uniform(row['QRlength_min'], row['QRlength_max'],␣

↪→count)

# Round the lengths to one decimal point
lengths = np.round(lengths, 1)

# Create a DataFrame for the current profile with the generated lengths
temp_df = pd.DataFrame({

'Steel Profile': [index] * count,
'height': [row['height']] * count,
'Length': lengths

})

# Append the temporary DataFrame to the extended DataFrame
extended_df = pd.concat([extended_df, temp_df], ignore_index=True)

# Reset the index to create a new simple numeric index
extended_df.reset_index(drop=True, inplace=True)
return extended_df

[ ]: HEA = data[data['Steel Profile'].str.startswith('HEA')].set_index('Steel␣
↪→Profile')

HEB = data[data['Steel Profile'].str.startswith('HEB')].set_index('Steel␣
↪→Profile')

IPE = data[data['Steel Profile'].str.startswith('IPE')].set_index('Steel␣
↪→Profile')

# Initial design rules-of-thump from the Eurocode and bounding boxes for each␣
↪→type

Quick_reference(HEA, 18, 28, 2, 6, 15)
Quick_reference(HEB, 20, 30, 3, 8, 16)
Quick_reference(IPE, 15, 25, 2, 5, 12)
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# Mean and standard deviation per profile type
Gaussian_counts(HEA, 500, 2, 1/3)
Gaussian_counts(HEB, 250, 2, 1/3)
Gaussian_counts(IPE, 250, 2, 1/2)

combined_df = pd.concat([HEA.reset_index(), HEB.reset_index(), IPE.
↪→reset_index()], axis=1)

combined_df = combined_df.reset_index(drop=True)
display(combined_df)

[ ]: # Initialize an empty DataFrame to store the extended data
Dataset_gen = pd.DataFrame()

Dataset_gen = Extend_dataset(HEA, Dataset_gen)
Dataset_gen = Extend_dataset(HEB, Dataset_gen)
Dataset_gen = Extend_dataset(IPE, Dataset_gen)

Dataset_gen['ID'] = [f'database_element_{i+1}' for i in range(len(Dataset_gen))]
Dataset_gen['Material Type'] = 'S235'
# Dataset_gen.to_csv('Gen_dataBASE_small.csv', index=False, header=True)
display(Dataset_gen)

Visualisations

[ ]: data2 = Dataset_gen
IPE = data2[data2['Steel Profile'].str.startswith('IPE')]
HEA = data2[data2['Steel Profile'].str.startswith('HEA')]
HEB = data2[data2['Steel Profile'].str.startswith('HEB')]

[ ]: # Data and titles
datasets = [HEA, HEB, IPE]
titles = ['HEA', 'HEB', 'IPE']
colors = ['blue', 'orange', 'green']

plt.figure(figsize=(15, 13))
plt.suptitle('Cross-Sections and Lengths')

for i, (df, title, color) in enumerate(zip(datasets, titles, colors), start=1):
ax1 = plt.subplot(3, 1, i)
plt.title(f'{title} profiles and lengths, total size = {len(df)}')
sns.boxplot(data=df, x='Steel Profile', y='Length', color=color, ax=ax1)
ax2 = ax1.twinx()
ax2.plot(df['Steel Profile'].value_counts(sort=False), color='r',␣

↪→label=f'{title.split()} profile count')
ax2.set_yticks(np.arange(0, 35, 5))
ax2.set_ylabel('Counts')
ax2.legend()
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ax1.set_yticks(np.arange(0, 21))
ax1.xaxis.set_major_locator(FixedLocator(ax1.get_xticks()))
ax1.set_xticklabels(ax1.get_xticklabels(), rotation=45)
ax1.grid(True, axis='y', color='whitesmoke')

plt.tight_layout()
# plt.savefig('Gen_dataset.png', bbox_inches='tight')
plt.show()
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Cross-section selection verification
Tessel van Oers - 4953479

December 6, 2024

The following document shows my Python code for automatic cross-section selection based on
Eurocode 0 and 3. The document has all the code highlighted in grey, which also contains the
formulas used for the calculations. The moment and deflection calculation is done with a Python
implementation of the Matrix-method, where the stiffness matrix is used to generate nodal loads
from the elements.

The document starts with loading the data found online on the cross-sections which are considered.
Next, the Matrix-method is described in three classes. Then functions are set up to calculate
flexural- and lateral torsional buckling, which are used within the unity check calculations. These
functions are first verified with a simply supported beam, then in a fixed 2-dimensional frame.
Lastly, the code is implemented in Grasshopper. The resulting 3-dimensional structure is placed in
GSA for a final steel utilisation verification.

Contents

1 Loading cross-section data 2

2 Matrix-method in Python 3
2.1 Node class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Element class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Constrainer class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Function set-up 7
3.1 Calculate buckling resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Calculate Bending moment and deflection . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Unity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Verify implementations - Beam 10
4.1 CS selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Verify implementation - Frame 13
5.1 Cross-section selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Grasshopper implementation and GSA validation 22

1



[1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

1 Loading cross-section data

All data is from the website: https://eurocodeapplied.com/design/en1993/ipe-hea-heb-hem-design-
properties , Where steel grade S235 is chosen.

[2]: data = pd.read_csv('CS_info_total.csv', skiprows=[0, 1, 3, 4], index_col=0,
usecols=[0, 1, 2, 4, 6, 8, 11, 15, 19, 21, 23, 27, 29, 30,␣

↪→31])
data.rename(columns={'Unnamed: 30': 'buck_cy', 'Unnamed: 31':'buck_cz', 'IT':
↪→'It',

'Npl,Rd':'Npl_rd', 'Mpl,Rd,y':'Mpl_rdy', 'Mpl,Rd,z':
↪→'Mpl_rdz'},

inplace=True)

# Add columns for EIy, EIz and EA
E = 210000 # n / mm2
data['EIy'] = data['Iy'] * E * 10**(-3) # kNm2
data['EIz'] = data['Iz'] * E * 10**(-3) # kNm2
data['EA'] = data['A'] * E * 10**(-3) # kN

print('Note that height h[mm], width b[mm], self weight m[kg/m], A[mm2], ')
print('Iy and Iz [10^6 mm4] are not in units of kN and m, all other values are.')

# Split dataset into different cross-section families
IPE = data[data.index.str.startswith('IPE')]
HEA = data[data.index.str.startswith('HEA')]
HEB = data[data.index.str.startswith('HEB')]
data.head()

Note that height h[mm], width b[mm], self weight m[kg/m], A[mm2],
Iy and Iz [10ˆ6 mm4] are not in units of kN and m, all other values are.

[2]: h b tf m A Iy Iz It Iw Npl_rd \
IPE80 80 46 5.2 6.0 764 0.8014 0.08489 6.727 115.1 179.62
IPE100 100 55 5.7 8.1 1032 1.7100 0.15920 11.530 342.1 242.60
IPE120 120 64 6.3 10.4 1321 3.1800 0.27670 16.890 872.0 310.44
IPE140 140 73 6.9 12.9 1643 5.4100 0.44920 24.010 1951.0 386.01
IPE160 160 82 7.4 15.8 2009 8.6900 0.68310 35.300 3889.0 472.15

Mpl_rdy Mpl_rdz buck_cy buck_cz EIy EIz EA
IPE80 5.46 1.37 a b 168.294 17.8269 160440.0
IPE100 9.26 2.15 a b 359.100 33.4320 216720.0
IPE120 14.27 3.19 a b 667.800 58.1070 277410.0
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IPE140 20.76 4.52 a b 1136.100 94.3320 345030.0
IPE160 29.11 6.13 a b 1824.900 143.4510 421890.0

2 Matrix-method in Python

To program the matrix-method in Python, three classes are set up to encompass the structure.
This method makes use of local axes and combines them into two-dimensional ‘global’-axes. Since
the design is orthogonal, it can be transformed to three-dimensional by adding the 2D frames
together orthogonally. The first class sets the nodes of the system, this is the location where loads
from different two-dimensional systems can be combined. The elements are added, after which the
stiffness matrix is defined to calculate the deflections and moments. Lastly, the constraints of the
system are added.

2.1 Node class

Three degrees of freedom. Possibility to add loads on the node itself.

[3]: class Node:
ndof = 0
nn = 0

def clear():
Node.ndof = 0
Node.nn = 0

def __init__ (self, x, y):
self.x = x
self.y = y
self.p = np.zeros(3)

self.dofs = [Node.ndof, Node.ndof+1, Node.ndof+2]

Node.ndof += 3
Node.nn += 1

def add_load (self, p):
self.p += p

2.2 Element class

Euler-Bernoulli beam element, accounting for only axial forces and bending. Here the section
properties and loads are applied, resulting in the calculated deflection and bending moment.

[4]: class Element:
ne = 0

def clear():
Element.ne = 0
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def __init__ (self, nodes):
self.nodes = nodes

self.L = np.sqrt((nodes[1].x - nodes[0].x)**2.0
+ (nodes[1].y - nodes[0].y)**2.0)

dx = nodes[1].x - nodes[0].x
dy = nodes[1].y - nodes[0].y

self.cos = dx / self.L
self.sin = dy / self.L

R = np.zeros ((6,6))

R[0,0] = R[1,1] = R[3,3] = R[4,4] = self.cos
R[0,1] = R[3,4] = -self.sin
R[1,0] = R[4,3] = self.sin
R[2,2] = R[5,5] = 1.0

self.R = R
self.Rt = np.transpose(R)

self.q = np.zeros(2)

Element.ne += 1

def set_section (self, props):
if 'EA' in props:

self.EA = props['EA']
else:

self.EA = 1.e20
if 'EI' in props:

self.EI = props['EI']
else:

self.EI = 1.e20

def global_dofs (self):
return np.hstack ((self.nodes[0].dofs, self.nodes[1].dofs))

def stiffness ( self ):
k = np.zeros ((6, 6))

EA = self.EA
EI = self.EI
L = self.L
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# Extension contribution

k[0,0] = k[3,3] = EA/L
k[3,0] = k[0,3] = -EA/L

# Bending contribution

k[1,1] = k[4,4] = 12.0 * EI / L / L / L
k[1,4] = k[4,1] = -12.0 * EI / L / L / L
k[1,2] = k[2,1] = k[1,5] = k[5,1] = -6.0 * EI / L / L
k[2,4] = k[4,2] = k[4,5] = k[5,4] = 6.0 * EI / L / L
k[2,2] = k[5,5] = 4.0 * EI / L
k[2,5] = k[5,2] = 2.0 * EI / L

return np.matmul ( np.matmul ( self.Rt, k ), self.R )

def add_distributed_load ( self, q ):

l = self.L

self.q = np.array( q )

el = [ 0.5*q[0]*l, 0.5*q[1]*l, -1.0/12.0*q[1]*l*l,
0.5*q[0]*l, 0.5*q[1]*l, 1.0/12.0*q[1]*l*l ]

eg = np.matmul ( self.Rt, np.array ( el ) )

self.nodes[0].add_load ( eg[0:3] )
self.nodes[1].add_load ( eg[3:6] )

def bending_moments ( self, u_global, num_points=2 ):

l = self.L
q = self.q[1]
EI= self.EI

xi = np.linspace ( 0.0, l, num_points )
M = np.zeros(num_points)

ul = np.matmul ( self.R, u_global )

M = ( -l**5.0*q + 6.0 * l**4.0*q*xi
- 6.0*q*xi*xi*l**3.0 - 48.0*(ul[2] + ul[5]/2.0)*EI*l**2.0
+ 72.0*EI*((ul[2]+ul[5])*xi+ul[1]-ul[4])*l -
144.0*xi*EI*(ul[1]-ul[4]) ) / 12.0 / l**3.0

w = ( l**5*q*xi**2 - 2*l**4*q*xi**3 +
(q*xi**4 - 24*EI*ul[2]*xi + 24*EI*ul[1])*l**3
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+ 48*xi**2*(ul[2] + ul[5]/2)*EI*l**2 -
24*((ul[2] + ul[5])*xi + 3*ul[1] - 3*ul[4])*xi**2*EI*l
+ 48*xi**3*EI*(ul[1] - ul[4]))/EI/l**3/24

return w, M

2.3 Constrainer class

Constrain degrees of freedom in nodes and calculate support reactions.

[5]: class Constrainer:
def __init__ (self):

self.cons_dofs = []
self.cons_vals = []

def fix_dof (self, node, dof, value=0):
self.cons_dofs.append(node.dofs[dof])
self.cons_vals.append(value)

def fix_node (self, node):
for dof in node.dofs:

self.fix_dof (node, dof)

def full_disp (self,u_free):
u_full = np.zeros(len(self.free_dofs) + len(self.cons_dofs))

u_full[self.free_dofs] = u_free
u_full[self.cons_dofs] = self.cons_vals

return u_full

def constrain (self, k, f):
self.free_dofs = [i for i in range(len(f)) if i not in self.cons_dofs]

Kff = k[np.ix_(self.free_dofs,self.free_dofs)]
Kfc = k[np.ix_(self.free_dofs,self.cons_dofs)]
Ff = f[self.free_dofs]

return Kff, Ff - np.matmul(Kfc,self.cons_vals)

def support_reactions (self,k,u_free,f):
Kcf = k[np.ix_(self.cons_dofs,self.free_dofs)]
Kcc = k[np.ix_(self.cons_dofs,self.cons_dofs)]

return np.matmul(Kcf,u_free) + np.matmul(Kcc,self.cons_vals) - f[self.
↪→cons_dofs]
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3 Function set-up

A separate function is set up for the flexural buckling and the lateral torsional buckling. Then a
function is set up to automatically load in and calculate a single simply-supported beam.

3.1 Calculate buckling resistance

For a set load case and length, the flexural buckling of the columns and the lateral torsional buckling
of the beams can be computed. Since the length of all columns is set to 4.5m, the only variable
in those calculations is the type of constraints as it influences the buckling length. the constraint
needs to be specified to be either ‘simple’ or ‘fixed’.

[6]: def buckling_res(CS, EI, constrain):
EI = data.loc[CS, EI]
Npl_rd = data.loc[CS, 'Npl_rd']
# All columns have length = 4.5m,
# simply supported on one end and partly constrained
if constrain == 'simple':

L = 4.5
elif constrain == 'fixed':

L = 4.5 * 2

if data.loc[CS, 'buck_cz'] == 'a':
a = 0.21

elif data.loc[CS, 'buck_cz'] == 'b':
a = 0.34

elif data.loc[CS, 'buck_cz'] == 'c':
a = 0.49

Fe = np.pi**2 * EI / (L**2)
slender = np.sqrt(Npl_rd / Fe)
phi = 0.5 * (1 + a * (slender - 0.2) + slender**2)
reduction = 1 / (phi + np.sqrt(phi**2 - slender**2))
Nb_rd = reduction * Npl_rd
return Nb_rd

def LTB(CS, L, constrain):
# Lkip is assumed to be l as it accounts for no lateral restraints
l = L
# C values depend on moment line caused by the constraints
if constrain == 'simple':

C1 = 1.13
C2 = 0.45

elif constrain == 'fixed':
C1 = 2.57
C2 = 1.55

EIw = 210 * data.loc[CS, 'Iw'] * 10**(-6)
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GIt = 81 * data.loc[CS, 'It'] * 10**(-3)

S = np.sqrt(EIw / GIt)
C = np.pi * C1 * (np.sqrt(1 + (np.pi**2 * S**2 * (C2**2 + 1)/

(l**2))) + np.pi * C2 * S / l)

if data.loc[CS, 'h'] / data.loc[CS, 'b'] <= 2:
a = 0.34

elif data.loc[CS, 'h'] / data.loc[CS, 'b'] > 2:
a = 0.49

M_cr = (C / l) * np.sqrt(data.loc[CS, 'EIz'] * GIt)
slender_lt = np.sqrt(data.loc[CS, 'Mpl_rdy'] / M_cr)
phi_lt = 0.5 * (1 + a * (slender_lt - 0.4) + 0.75 * slender_lt**2)
reduction_lt = 1 / (phi_lt + np.sqrt(phi_lt**2 - 0.75 * slender_lt**2))
reduction_lt = min(1, reduction_lt, 1 / (slender_lt**2))
Mb_rdy = reduction_lt * data.loc[CS, 'Mpl_rdy']
return Mb_rdy

3.2 Calculate Bending moment and deflection

Based on the cross-section chosen and the applied line load on the set length. The following equation
sets up a simply supported beam and subsequently calculates the moments and deflections in the
element. This is used to verify the method.

[7]: def M_w_calculation_simple(CS, q, L):
section = {}
section['EI'] = data.loc[CS, 'EIy']
section['EA'] = data.loc[CS, 'EA']

Node.clear()
Element.clear()

node1 = Node(0, 0)
node2 = Node(L, 0)

elem = Element([node1, node2])
elem.set_section(section)

con = Constrainer()

# Simply supported beam, u and w are constrained for both ends, but phi is␣
↪→not

con.fix_dof(node1, 0)
con.fix_dof(node1, 1)
con.fix_dof(node2, 0)
con.fix_dof(node2, 1)
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# Add distributed load on the structure,
# array form with [local x-direction, local z-direction]
elem.add_distributed_load(q)

global_k = elem.stiffness()
global_f = np.zeros(6)

global_f[0:3] = node1.p
global_f[3:6] = node2.p

Kc, Fc = con.constrain(global_k, global_f)
u_free = np.matmul(np.linalg.inv(Kc), Fc)

u_elem = con.full_disp(u_free)[elem.global_dofs()]

w, moments = elem.bending_moments(u_elem, 101)
w = w * 1000 # In mm
return w, moments

3.3 Unity checks

For the unity checks, there has been made a distinction between the unity check for the beams and
for the columns. Additionally, two separate equations are set up for a simply supported beam, which
is calculated with the M_w_calculation_simple equation and one for moment fixed connections.

[8]: def UC_beam_simple(CS, q, L):
q_tot = q + data.loc[CS, 'm'] * 9.81 / 1000
w, moments = M_w_calculation_simple(CS, [0, q_tot], L)
w_max = max(w)
M_ed = max(moments)

Mpl_rd = data.loc[CS, 'Mpl_rdy']

UC_m = M_ed / Mpl_rd
UC_ltb = M_ed / LTB(CS, L, 'simple')
UC_w = w_max / (L * 1000 / 250)
return UC_m, UC_ltb, UC_w

def UC_beam(CS, elem_no, elements, constrainers):
section = {}
section['EI'] = data.loc[CS, 'EIy']
section['EA'] = data.loc[CS, 'EA']

elements[elem_no].set_section(section)
Kc, Fc = con.constrain ( global_k, global_f )
u_free = np.matmul ( np.linalg.inv(Kc), Fc )
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u_full = con.full_disp(u_free)
u_elem = u_full[elements[elem_no].global_dofs()]
m_ed = max(abs(elements[elem_no].bending_moments(u_elem, 100)[1]))
w_max = max(abs(elements[elem_no].bending_moments(u_elem, 100)[0]))

L = elements[elem_no].L

UC_m = m_ed / data.loc[CS, 'Mpl_rdy']
UC_ltb = m_ed / LTB(CS, L, constrainers[elem_no])
UC_w = w_max / (L * 1000 / 250)

return UC_m, UC_ltb, UC_w

[9]: def UC_col(CS, elem_no, nodes, elements, constrainers, indices):
section = {}
section['EI'] = data.loc[CS, 'EIy']
section['EA'] = data.loc[CS, 'EA']
elements[elem_no].set_section(section)

fz = global_f.reshape((9, 3))[:, 1].reshape((3, 3))
N1 = fz[indices[elem_no][0], indices[elem_no][2]]
N2 = fz[indices[elem_no][1], indices[elem_no][2]]
N_ed = N1 + N2
m_ed = m_max[elem_no]
w_ed = w_max[elem_no]

A = data.loc[CS, 'A']
n = N_ed / data.loc[CS, 'Npl_rd']
a = min((A - 2 * data.loc[CS, 'b'] * data.loc[CS, 'tf']) / A, 0.5)
Nb_rdy = buckling_res(CS, 'EIy', constrainers[elem_no])
Nb_rdz = buckling_res(CS, 'EIz', constrainers[elem_no])

UC_n = n
UC_by = N_ed / Nb_rdy
UC_bz = N_ed / Nb_rdz
UC_mn = m_ed / ((1 - n) / (1 - 0.5 * a) * data.loc[CS, 'Mpl_rdz'])
UC_mn_int = n**2 + m_ed / data.loc[CS, 'Mpl_rdz']
UC_mm = (m_ed / data.loc[CS, 'Mpl_rdy'])**2 + (m_ed / data.loc[CS,␣

↪→'Mpl_rdz'])**5
UC_w = w_ed / (4.5 * 1000 / 250)

return UC_n, UC_by, UC_bz, UC_mn, UC_mn, UC_mm, UC_w

4 Verify implementations - Beam

These calculations are applied to a single simply supported beam and then checked against forget-
me-nots and a FEM analysis in GSA.
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[10]: L = 6.3
q = [0, 40]
CS = 'IPE450'

[11]: w, moments = M_w_calculation_simple(CS, q, L)

Plot the moment and deflection line of the single simply-supported beam element. The moment
and deflection at mid-span can be compared to the following forget-me-nots:

Mmax =
1

8
qL2

wmax =
5

384

qL4

EI

[12]: print(f'Moment at midspan = {max(moments)} kNm')
print(f'Moment from forget-me-not = {q[1] * L**2 / 8} kNm')
print(f'Deflection at midspan = {max(w)} mm')
print(f"Deflection from forget-me-not = {5 * q[1] * L**4 / (384 * data.loc[CS,␣
↪→'EIy']) * 1000} mm")

plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.title('Moment line test element under continuous q-load')
plt.xlabel('x [m]')
plt.ylabel('Moment (positive downwards) [kNm]')
plt.plot(np.linspace(0,L,101),moments, 'r')
plt.ylim(0, moments.max() + moments.max()/10)
plt.xlim(0, L)
plt.plot(L/2, moments.max(), 'go', label=f'Max moment = {moments.max():.8f} kNm')
plt.gca().invert_yaxis()
plt.legend()

plt.subplot(1, 2, 2)
plt.title('Deflection line test element under continuous q-load')
plt.xlabel('x [m]')
plt.ylabel('Deflection [mm]')
plt.plot(np.linspace(0,L,101),-w, 'r')
plt.ylim(-w.max() - w.max()/2, 0)
plt.xlim(0, L)
plt.plot(L/2, -w[50], 'go', label=f'Max w = {w.max():.8f} mm')
plt.legend();

Moment at midspan = 198.45 kNm
Moment from forget-me-not = 198.45 kNm
Deflection at midspan = 11.57968101659751 mm
Deflection from forget-me-not = 11.57968101659751 mm
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4.1 CS selection

For the single simply-supported beam in the verification example.

[13]: def find_optimal_CS(data, q=40, L=6.3, threshold=0.9):
for CS in data.index:

UC = max(UC_beam_simple(CS, q, L))
if UC < threshold:

return CS
return None # If no cross-section meets the threshold

optimal_IPE = find_optimal_CS(IPE)
if optimal_IPE:

print(f"The optimal cross-section is: {optimal_IPE} ")
print(f"with UC = {UC_beam_simple(optimal_IPE, 40, 6.3)}")

else:
print("No cross-section meets the threshold.")

optimal_HEA = find_optimal_CS(HEA)
if optimal_HEA:

print(f"The optimal cross-section is: {optimal_HEA} ")
print(f"with UC = {UC_beam_simple(optimal_HEA, 40, 6.3)}")

else:
print("No cross-section meets the threshold.")

The optimal cross-section is: IPE450
with UC = (0.5056680869423886, 0.7614919581125341, 0.6237173809174011)
The optimal cross-section is: HEA340
with UC = (0.4680830648714528, 0.5028495197085249, 0.7649687424326245)
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5 Verify implementation - Frame

Show cross-section selection and deflection calculation of a 2d frame structure. This is just to show
how the cross-section selection is set up. The gravity loading which results in the correct link
between beams and columns is added in Grasshopper. The moment- and deflection lines are then
compared to the result from MatrixFrame.

[14]: Node.clear()
Element.clear()

coordinates = [(0, 0), (4.5, 0), (9, 0), (0, 4.5), (4.5, 4.5),
(9, 4.5), (0, 9), (4.5, 9), (9, 9)]

# Create nodes using a for-loop and assign them to variables
nodes = []
for i, (x, y) in enumerate(coordinates, start=1):

globals()[f'node{i}'] = Node(x, y)
nodes.append(globals()[f'node{i}'])

# List of node pairs for elements
col_pairs = [

(node1, node4),
(node2, node5),
(node3, node6),
(node4, node7),
(node5, node8),
(node6, node9)

]
beam_pairs = [

(node4, node5),
(node5, node6),
(node7, node8),
(node8, node9)

]

elements = []
# Create elements using a for-loop
for i, (node_a, node_b) in enumerate(col_pairs, start=1):

globals()[f'col{i}'] = Element([node_a, node_b])
elements.append(globals()[f'col{i}'])

for i, (node_a, node_b) in enumerate(beam_pairs, start=1):
globals()[f'beam{i}'] = Element([node_a, node_b])
elements.append(globals()[f'beam{i}'])

# Constrain bottom nodes in u and w direction
con = Constrainer()
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con.fix_dof (nodes[0], 0)
con.fix_dof (nodes[0], 1)
con.fix_dof (nodes[1], 0)
con.fix_dof (nodes[1], 1)
con.fix_dof (nodes[2], 0)
con.fix_dof (nodes[2], 1)

Start with the same section everywhere to calculate moments in the structure and initial deflections.
In this case, HEA300 is chosen. The loads are split up into self-weight and imposed loads, then
combined for ULS calculations from the Eurocode. The area loads need to be multiplied by the floor
length in the lateral direction to accommodate the correct floor area which is loaded by the beam.
Assuming that the length of the beam in the y-direction is the same or more than the x-direction,
the loaded area which is carried by the beam is a triangle calculated with 1

4L
2 meters squared. To

generate a line-load on the beam in x-direction, it results in a multiplication of the area load by 1
4L

meters. Since this regards an industrial building, ψ0;i can be set to 1 for general loads, resulting in
the following calculation for ULS:

1.35Gk +
∑

1.5Qi;k

Gselfweight = A ∗ 7850 ∗ 9.81

1000

Gsuspendedceiling = 1.7[kN/m2] ∗ 1

4
L

Gfloorfinish = 1.2[kN/m2] ∗ 1

4
L

Groof = 1.5[kN/m2] ∗ 1

4
L

Qfloor = 15[kN/m2] ∗ 1

4
L

Qroof = 1[kN/m2] ∗ 1

4
L

[15]: def set_section_loads(section_list):
loads = []
sections = []
L = 4.5 # Specific for this case

for CS in section_list:
section = {}
section['EI'] = data.loc[CS, 'EIy']
section['EA'] = data.loc[CS, 'EA']
sections.append(section)

selfweight = data.loc[CS, 'm'] * 9.81 / 1000
q_beam1 = 1.35 * (selfweight + (1.7 + 1.2) * 0.25 * L) + 1.5 * 15 * 0.25␣

↪→* L
q_beam2 = 1.35 * (selfweight + (1.7 + 1.5) * 0.25 * L) + 1.5 * 1 * 0.25␣

↪→* L
q_col = 1.35 * selfweight
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loads.append([[-q_col*2, 0], [-q_col*2, 0], [-q_col*2, 0],
[-q_col, 0], [-q_col, 0], [-q_col, 0],
[0, q_beam1], [0, q_beam1],
[0, q_beam2], [0, q_beam2]])

for i in range(len(elements)):
elements[i].set_section(sections[i])
elements[i].add_distributed_load(loads[i][i])

# Initial cross-section
section_list = ['HEA300', 'HEA300', 'HEA300', 'HEA300', 'HEA300',

'HEA300', 'HEA300', 'HEA300', 'HEA300', 'HEA300']
set_section_loads(section_list)

[16]: global_k = np.zeros ((3*len(nodes), 3*len(nodes)))
global_f = np.zeros (3*len(nodes))
for e in elements:

elmat = e.stiffness()
idofs = e.global_dofs()
global_k[np.ix_(idofs,idofs)] += elmat

for n in nodes:
global_f[n.dofs] += n.p

print(f'The following matrix shows the global loads applied on the {len(nodes)}␣
↪→nodes:')

df = pd.DataFrame(global_f.round(1).reshape((9, 3)),
columns=['Fx', 'Fz', 'M'], index=np.arange(1, 10))

df.index.name = 'Node number'
display(df)

The following matrix shows the global loads applied on the 9 nodes:

Fx Fz M
Node number
1 0.0 5.3 0.0
2 0.0 5.3 0.0
3 0.0 5.3 0.0
4 0.0 77.4 -52.1
5 0.0 146.9 0.0
6 0.0 77.4 52.1
7 0.0 20.0 -13.0
8 0.0 37.4 0.0
9 0.0 20.0 13.0

[17]: Kc, Fc = con.constrain ( global_k, global_f )
u_free = np.matmul ( np.linalg.inv(Kc), Fc )
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u_full = con.full_disp(u_free)

dofs = np.array([[0, 0, u_free[0]],
[0, 0, u_free[1]],
[0, 0, u_free[2]],
[u_free[3],u_free[4],u_free[5]],
[u_free[6],u_free[7],u_free[8]],
[u_free[9],u_free[10],u_free[11]],
[u_free[12],u_free[13],u_free[14]],
[u_free[15],u_free[16],u_free[17]],
[u_free[18],u_free[19],u_free[20]]])

print('The following matrix shows the nodal displacements ')
print('in x- and z-direction and rotation phi:')
df2 = pd.DataFrame(dofs, columns=['d_x', 'd_z', 'd_phi'], index=np.arange(1, 10))
df2.index.name = 'Node number'
display(df2)

The following matrix shows the nodal displacements
in x- and z-direction and rotation phi:

d_x d_z d_phi
Node number
1 0.000000e+00 0.000000 2.852898e-04
2 0.000000e+00 0.000000 -5.421011e-20
3 0.000000e+00 0.000000 -2.852898e-04
4 -7.863419e-06 0.000175 -5.653373e-04
5 2.168404e-19 0.000371 -4.743385e-20
6 7.863419e-06 0.000175 5.653373e-04
7 1.399806e-05 0.000214 -9.136758e-05
8 6.505213e-19 0.000442 2.710505e-20
9 -1.399806e-05 0.000214 9.136758e-05

[18]: print('Lastly, the support reactions on node 1, 2 and 3 are computed:')
df3 = pd.DataFrame(con.support_reactions(global_k,u_free,global_f).
↪→reshape((3,2)),

columns=['Fx', 'Fz'],
index=['node 1', 'node 2', 'node 3'])
df3.index.name = 'Support reactions [kN]'
display(df3)

Lastly, the support reactions on node 1, 2 and 3 are computed:

Fx Fz
Support reactions [kN]
node 1 3.221545e+00 -97.323763
node 2 5.988142e-17 -200.141810
node 3 -3.221545e+00 -97.323763
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[19]: plt.figure(figsize=(10, 7), tight_layout=True)
plt.suptitle('Moment lines (local system) - Column Elements', fontsize=20)
m = []
w = []
for i, elem in enumerate(elements[:6]):

plt.subplot(2, 3, i+1)
u_elem = u_full[elem.global_dofs()]
x = np.linspace(0, elem.L, 100)
m.append(elem.bending_moments(u_elem, 100)[1])
w.append(elem.bending_moments(u_elem, 100)[0])
plt.title('Element ' + str(i+1))
plt.xlabel('Local x-axis [m]')
plt.ylabel('Moment (positive downwards) [kNm]')
plt.ylim(-25, 25)
plt.fill_between(x,-m[i], 0)
plt.plot(x[0], -m[i][0], 'ro', label=f'M_start = {-m[i][0]:.2f}')
plt.plot(x[-1], -m[i][-1], 'go', label=f'M_end = {-m[i][-1]:.2f}')
plt.legend()

plt.show()

plt.figure(figsize=(10, 7), tight_layout=True)
plt.suptitle('Moment lines (local system) - Beam Elements', fontsize=20)
for i, elem in enumerate(elements[6:]):

plt.subplot(2, 2, i+1)
u_elem = u_full[elem.global_dofs()]
x = np.linspace(0, elem.L, 100)
m.append(elem.bending_moments(u_elem, 100)[1])
w.append(elem.bending_moments(u_elem, 100)[0])
plt.title('Element ' + str(i+7)) # Adjusting the element number
plt.xlabel('Local x-axis [m]')
plt.ylabel('Moment (positive downwards) [kNm]')
plt.ylim(-35, 65)
plt.fill_between(x,-m[i+6], 0)
plt.plot(x[0], -m[i+6][0], 'ro', label=f'M_start = {-m[i+6][0]:.2f}')
plt.plot(x[-1], -m[i+6][-1], 'go', label=f'M_end = {-m[i+6][-1]:.2f}')
plt.plot(x[m[i+6].argmax(axis=0)], min(-m[i+6]), 'ko',

label=f'M_mid = {min(-m[i+6]):.2f}')
plt.legend()

plt.show()
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[20]: plt.title('Displacements of the structure, magnified by 500 for visualisation')
plt.xlabel('x')
plt.ylabel('z')

for i in coordinates:
plt.plot(i[0], i[1], color='lightgray', marker='o')

a = np.linspace(0, 4.5, 100)
b = np.zeros(100)

plt.plot(b, a, color='lightgray')
plt.plot(b+4.5, a, color='lightgray')
plt.plot(b+9, a, color='lightgray')
plt.plot(b, a+4.5, color='lightgray')
plt.plot(b+4.5, a+4.5, color='lightgray')
plt.plot(b+9, a+4.5, color='lightgray')

plt.plot(a, b+4.5, color='lightgray')
plt.plot(a+4.5, b+4.5, color='lightgray')
plt.plot(a, b+9, color='lightgray')
plt.plot(a+4.5, b+9, color='lightgray')

# Displacement in z-direction need to be subtrackted as the axis in python is
# in a different direction as the z-axis of our structure
for i in range(len(coordinates)):

plt.plot(coordinates[i][0] + dofs[i][0]*500,
coordinates[i][1] - dofs[i][1]*500, 'ko')

plt.plot(w[0]*500, a, 'k')
plt.plot(w[1]*500 + 4.5, a, 'k')
plt.plot(w[2]*500 + 9, a, 'k')
plt.plot(w[3]*500, a + 4.5, 'k')
plt.plot(w[4]*500 + 4.5, a + 4.5, 'k')
plt.plot(w[5]*500 + 9, a + 4.5, 'k')

plt.plot(a, 4.5 - w[6]*500, 'k')
plt.plot(a + 4.5, 4.5 - w[7]*500, 'k')
plt.plot(a, 9 - w[8]*500, 'k')
plt.plot(a + 4.5, 9 - w[9]*500, 'k');
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[21]: m_max = []
w_max = []
for i in range(len(elements)):

m_max.append(max(abs(m[i])))
w_max.append(max(abs(w[i])))

print(f'The maximum deflection present in the frame is {max(w_max)*1000:.2f} mm')
print(f'The max moment present in the frame is {max(m_max):.2f} kNm')

The maximum deflection present in the frame is 1.45 mm
The max moment present in the frame is 59.53 kNm
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5.1 Cross-section selection

[22]: # Since gravity is not accounted for in this structure on its own,
# the forces of the upper beams and columns need to be added to the lower columns
# This is calculated by the following combination factors:
indices = [(1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 0, 0), (2, 0, 1), (2, 0, 2)]
constrainers = ['half', 'half', 'half', 'fixed', 'fixed', 'fixed',

'fixed', 'fixed', 'fixed', 'fixed']

def select_best_cs_beam(elem_no, data, threshold=0.85):
for CS in data.index:

UC = UC_beam(CS, elem_no, elements, constrainers)
if max(UC) < threshold:

return CS
return None

def select_best_cs_col(elem_no, data, threshold=0.85):
for CS in data.index:

UC = UC_col(CS, elem_no, nodes, elements, constrainers, indices)
if max(UC) < threshold:

return CS
return None

CS_beams = []
CS_cols = []
for i in [6, 7, 8, 9]:

CS_beams.append(select_best_cs_beam(i, IPE))
for i in range(6):

CS_cols.append(select_best_cs_col(i, HEB))

print(f'The optimal cross-sections of the beams = {CS_beams}')
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print(f'The optimal cross-sections of the lower columns = {CS_cols[:3]}')
print(f'The optimal cross-sections of the upper columns = {CS_cols[3:6]}')

The optimal cross-sections of the beams = ['IPE220', 'IPE220', 'IPE140',
'IPE140']
The optimal cross-sections of the lower columns = ['HEB120', 'HEB100', 'HEB120']
The optimal cross-sections of the upper columns = ['HEB140', 'HEB100', 'HEB140']

6 Grasshopper implementation and GSA validation

The code above is implemented in a grasshopper file to generate a structural design of a data centre.
To check this application, a simple structure is calculated in Grasshopper and checked in Oasys GSA
software. The following input parameters are chosen to create a clear and relatively small design:

• 3 rows of 11 dataracks
• One column in floorplan at row 2, datarack 6
• This results in the following grid spacing in meters:

– x-direction: [4.5, 4.5]
– y-direction: [4.8, 4.8]

• The beams are chosen to be IPE sections
• The columns are chosen to be HEB sections
• Simply supported at ground level with moment-tight connections in other nodes

As can be seen in the render, the dataracks are located on the ground floor and the first floor. The
total number of dataracks is then 2 ∗ 3 ∗ 11 minus 2 where the column in the floorplan is located.
Next, the Matrix-method is applied to calculate each load and unity check to find the optimal
cross-sections. The following cross-sections are chosen in the given configuration:
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These cross-sections and loads are then put into a FEM software for a more thorough design check.
The following steel utilization were found:
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Python script for RNN model
T.C.S. van Oers

December 3, 2024

[ ]: # !pip install --upgrade tensorflow
# !pip install -U tensorflow keras

[ ]: # Import necessary libraries
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences # Use from tf.
↪→keras for utils

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import regularizers
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, precision_score, recall_score,␣
↪→f1_score, classification_report, confusion_matrix

[ ]: # Load data and concatenate into a single DataFrame for consistency
# Each dataset represents different floorplan configurations
data1 = pd.read_excel('Config_2x11_3x13_4x15_4x21.xlsx')
data2 = pd.read_excel('Config_3x20_5x16.xlsx')
data3 = pd.read_excel('Config_2x29_7x11.xlsx')
data4 = pd.read_excel('Config_5x23.xlsx')
data5 = pd.read_excel('Config_6x26.xlsx')
data6 = pd.read_excel('Config_7x29.xlsx')
data = pd.concat([data1, data2, data3, data4, data5, data6])

[ ]: # Load available profile information and element labels
CS_info = pd.read_csv('CS_info.csv')
all_profiles = np.concatenate([['0'], CS_info['Unnamed: 0'].values, ['N.A']]) #␣
↪→Add extra profiles if needed

all_labels = ['0', 'B1x', 'B1y', 'B2x', 'B2y', 'C1r', 'C1m', 'C2r', 'C2m']

[ ]: # Label encoding for profile and element type columns
profile_encoder = LabelEncoder()
profile_encoder.fit(all_profiles)

element_type_encoder = LabelEncoder()
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element_type_encoder.fit(all_labels)

# Encode the 'element_type' and 'profile_label' columns using the fitted encoders
data['element_type_encoded'] = element_type_encoder.
↪→transform(data['Element_type'])

data['profile_label_encoded'] = profile_encoder.transform(data['Profile_HEAb'])

# Split data into individual configurations based on normalized ID column
configs = []
current_config = []

for i, row in data.iterrows():
# Start a new configuration when ID is close to 0
if row['ID'] == 0 and current_config:

configs.append(current_config)
current_config = []

# Append row data to the current configuration
current_config.append([row['ID'], row['element_type_encoded'],␣

↪→row['Length'], row['profile_label_encoded']])
# End configuration when ID is close to 1
if row['ID'] == 1:

configs.append(current_config)
current_config = []

# Add last config if not empty
if current_config:

configs.append(current_config)

# Pad each configuration to the same length
max_length = max(len(config) for config in configs)
padded_configs = pad_sequences(configs, maxlen=max_length, dtype='float32',␣
↪→padding='post')

# Convert to a 3D tensor
tensor_3d = np.array(padded_configs)
X_0 = tensor_3d[:, :, :3]
y_0 = tensor_3d[:, :, -1:]

print("3D Tensor shape:", tensor_3d.shape) # (num_designs, max_length,␣
↪→num_features)

[ ]: # Split into input and target tensors
X = tensor_3d[:, :, :3]
y = tensor_3d[:, :, -1:]

# One-Hot Encode Element Type and Profile Labels
num_element_type_classes = len(element_type_encoder.classes_)
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X_element_type = tf.keras.utils.to_categorical(X[:, :, 1],␣
↪→num_classes=num_element_type_classes)

# Concatenate ID, Length, and one-hot element type encoding
X = np.concatenate([X[:, :, [0, 2]], X_element_type], axis=-1)

# One-hot encode target profiles
num_profiles = len(profile_encoder.classes_)
y_one_hot = np.array([tf.keras.utils.to_categorical(seq,␣
↪→num_classes=num_profiles) for seq in y])

# Train-Test-Validation Split
X_train, X_temp, y_train, y_temp = train_test_split(X, y_one_hot, test_size=0.
↪→20, random_state=42)

X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.25,␣
↪→random_state=42)

# Final shapes check
print(f"X_train shape: {X_train.shape}")
print(f"X_val shape: {X_val.shape}")
print(f"X_test shape: {X_test.shape}")
print(f"y_train shape: {y_train.shape}")
print(f"y_val shape: {y_val.shape}")
print(f"y_test shape: {y_test.shape}")

[ ]: print(X_train.shape) # Should be (batch_size, max_seq_length, num_features)
print(X_val.shape)
print(X_test.shape)

[ ]: # Define model architecture
input_layer = tf.keras.Input(shape=(max_length, X_train.shape[-1]))

model = tf.keras.Sequential([
input_layer,
tf.keras.layers.Masking(mask_value=-1),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(256,␣

↪→return_sequences=True)),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(256,␣

↪→return_sequences=True)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(128, activation='relu',␣

↪→kernel_regularizer=regularizers.l2(0.01)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dense(64, activation='relu', kernel_regularizer=regularizers.

↪→l2(0.01)),
tf.keras.layers.Dense(num_profiles, activation='softmax')
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])

# Define the optimizer with the learning rate schedule
optimizer = tf.keras.optimizers.Adam()

# Compile the model
model.compile(optimizer=optimizer, loss='categorical_crossentropy',␣
↪→metrics=['accuracy'])

[ ]: # Define callbacks
lr_schedule = tf.keras.callbacks.ReduceLROnPlateau(

monitor='val_loss', factor=0.5, patience=5, min_lr=1e-6
)

early_stopping = tf.keras.callbacks.EarlyStopping(
monitor='val_loss', patience=10, restore_best_weights=True

)

# Train model and validate with the validation set
history = model.fit(

np.array(X_train), np.array(y_train),
validation_data=(np.array(X_val), np.array(y_val)),
epochs=150,
batch_size=16,
callbacks=[lr_schedule, early_stopping],
verbose=1

)

[ ]: # Plot the training and validation loss over epochs
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss of IPEm model')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig('RNN_HEAb.png', bbox_inches='tight')
plt.show()

[ ]: # Evaluate the model on the test set
test_loss, test_accuracy = model.evaluate(np.array(X_test), np.array(y_test),␣
↪→verbose=1)

print(f"Test Loss: {test_loss:.4f}")
print(f"Test Accuracy: {test_accuracy:.4f}")

[ ]: model.save('trained_model_HEAb.keras')
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[ ]: def evaluate_model(X_test, y_test, model, model_name):
"""Evaluates the model on test data, calculates metrics, and returns␣

↪→flattened true and predicted profiles."""

# Predict class probabilities and get predicted class indices
y_pred = model.predict(X_test)
y_pred_classes = np.argmax(y_pred, axis=-1).flatten()

# Flatten the true labels, excluding padding (-1)
y_true_classes = np.argmax(y_test, axis=-1).flatten()

# Calculate metrics without padding values
y_true_non_pad = y_true_classes[y_true_classes != -1]
y_pred_non_pad = y_pred_classes[y_true_classes != -1]

# Calculate and print test loss and accuracy
test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=1)
print(f"\n{model_name} - Test Loss: {test_loss:.4f}, Test Accuracy:␣

↪→{test_accuracy:.4f}")

return y_true_non_pad, y_pred_non_pad

# Call the function with pre-padded test data
y_true_IPEm, y_pred_IPEm = evaluate_model(X_test, y_test, model, "IPEm")

# Dictionary to store the true and predicted labels for each model
models = {

"IPEm": (y_true_IPEm, y_pred_IPEm)
# "HEAm": (y_true_HEAm, y_pred_HEAm),
# "IPEb": (y_true_IPEb, y_pred_IPEb),
# "HEAb": (y_true_HEAb, y_pred_HEAb)

}

# Loop through each model, calculate metrics, and print results
for model_name, (y_true, y_pred) in models.items():

accuracy = accuracy_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='weighted',␣

↪→zero_division=0)
recall = recall_score(y_true, y_pred, average='weighted', zero_division=0)
f1 = f1_score(y_true, y_pred, average='weighted', zero_division=0)

# Print metrics for each model
print(f"\nModel: {model_name}")
print(f" Accuracy: {accuracy:.4f}")
print(f" Precision: {precision:.4f}")
print(f" Recall: {recall:.4f}")
print(f" F1 Score: {f1:.4f}")
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[ ]: # Filter all profile types from the dataset and store them in separate lists to␣
↪→create a standard order

order_IPE = [profile for profile in all_profiles if profile.startswith("IPE")]
order_HEB = [profile for profile in all_profiles if profile.startswith("HEB")]
order_IPHE = ["0"] + order_HEB + order_IPE + ["N.A"]
order_HEA = ["0"] + [profile for profile in all_profiles if profile.
↪→startswith("HEA")]

order_IPHE_dict = {value: index for index, value in enumerate(order_IPHE)}
order_HEA_dict = {value: index for index, value in enumerate(order_HEA)}

from matplotlib.colors import LogNorm
import seaborn as sns

# Decode the true and predicted labels for the profiles using the profile encoder
y_true = profile_encoder.inverse_transform(y_true_IPEm)
y_pred = profile_encoder.inverse_transform(y_pred_IPEm)

y_label = np.unique(y_true)
x_label = np.unique(y_pred)

# Sort labels based on the predefined order in order_HEA_dict
y_label_ordered = np.array(sorted(y_label, key=lambda x: order_HEA_dict.get(x,␣
↪→float('inf'))))

x_label_ordered = np.array(sorted(x_label, key=lambda x: order_HEA_dict.get(x,␣
↪→float('inf'))))

# Calculate performance metrics for the predictions
precision = precision_score(y_true, y_pred, average='weighted', zero_division=0)
recall = recall_score(y_true, y_pred, average='weighted', zero_division=0)
f1 = f1_score(y_true, y_pred, average='weighted', zero_division=0)

# Generate a confusion matrix to evaluate the model's prediction accuracy
conf_matrix = confusion_matrix(y_true, y_pred)
print(f"Precision: {precision:.4f}, Recall: {recall:.4f}, F1-Score: {f1:.4f}")

# Plot the confusion matrix, focusing on non-zero rows/columns, with a␣
↪→logarithmic color scale

plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix[1:, 1:], fmt='d', cmap='Blues',

xticklabels=y_label_ordered[1:], yticklabels=y_label_ordered[1:],␣
↪→norm=LogNorm())

plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.title("Confusion Matrix: HEAb model predictions of test set")
plt.savefig('ConfusionM_HEAb.png', bbox_inches='tight')
plt.show()
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Grasshopper_codes

October 30, 2024

1 Python scripts in Grasshopper

Throughout the Grasshopper scripts, multiple python components were applied to generate specifc
outputs. The following appendix shows the main components which explain the data conversion.

1.1 Generate Grid-Spaces from input

The input of the data centre design is the number of rows, number of racks per row and a genepool
indicating the location of the columns, thus determining the grid-spaces. The following code was
used to transform the input data into the floorplan design based on specific design requirements
for a data centre hall. The Brep of the data racks are set up, which determine the locations of
the columns and the total floorplan size. The python component creates the total length and the
grid-spaces from zero to one as an output. - Input: rows, racks, rows_loc, cols_loc - Output:
dataracks, x_length, y_length, x_space, y_space, grid

[ ]: import rhinoscriptsyntax as rs

# Define the size of a datarack
rack_width = 0.6
rack_depth = 1.2

# Define the space between rows
row_space = 1.2

# Define the extra space around the perimeter
perimeter_spacex = 1.2
perimeter_spacey = 1.8

print(rows_loc)

def create_datacentre_layout(rows, racks_per_row):

# Initialize the list of rack rectangles
rack_rectangles = []

# Iterate over the rows
for i in range(rows):

# Iterate over the racks in each row
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for j in range(racks_per_row):
# Calculate the position of the rack
x = j * rack_width + perimeter_spacex
y = i * (rack_depth + row_space) + perimeter_spacey

# Create a rectangle for the rack
rack_rectangle = rs.AddRectangle(rs.WorldXYPlane(), rack_width,␣

↪→rack_depth)

# Move the rectangle to the position of the rack
rs.MoveObject(rack_rectangle, [x, y, 0])

# Add the rectangle to the list of rack rectangles
rack_rectangles.append(rack_rectangle)

# Calculate the width and height of the datacentre
datacentre_width = racks_per_row * rack_width + 2 * perimeter_spacex
datacentre_height = rows * (rack_depth + row_space) + perimeter_spacey + 0.6

# Return the rack rectangles and the perimeter rectangle
return rack_rectangles, datacentre_width, datacentre_height

# Call the function to create a datacentre layout with x rows and y racks per row
dataracks, x_length, y_length = create_datacentre_layout(rows, racks)

def create_centers(rows, racks_per_row, row_number, rack_number):
# Calculate the position of specified rack
x = perimeter_spacex + rack_number * rack_width - rack_width / 2
y = perimeter_spacey + row_number * (rack_depth + row_space) - row_space -␣

↪→rack_depth / 2

# Create center and normalise with total length
center = [x / x_length, y / y_length]

# Check if the row_number and rack_number are within the valid range
if row_number > rows and rack_number + 3 > racks_per_row:

print("Invalid row number or rack number. No lines will be created.")
return None, None

if row_number > rows:
print("Invalid row number. No horizontal lines will be created.")
return center[0], None

if rack_number + 3 > racks_per_row:
print("Invalid rack number. No vertical lines will be created.")
return None, center[1]
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else:
return center[0], center[1]

# Only use values of genepool which are within the datacentre perimeter
def filter_genepool(slider_value, genepool):

result = []
current_sum = 0
# Loop over values within gene pool
for value in genepool:

if current_sum + value > slider_value:
break

result.append(value)
current_sum += value

return result

a = rows_loc
b = cols_loc

filtered_a = filter_genepool(rows, a)
filtered_b = filter_genepool(racks, b)

row_number_start = 0
rack_number_start = 0
x_list = [0]
y_list = [0]
max_length = max(len(filtered_a), len(filtered_b))

# Iterate over the range of the maximum length
for i in range(max_length):

# Use the value from list 'a' if it exists, otherwise use a default value
a_val = a[i] if i < len(a) else 0
# Use the value from list 'b' if it exists, otherwise use a default value
b_val = b[i] if i < len(b) else 0

row_number_start += a_val
rack_number_start += b_val
center = create_centers(rows, racks, row_number_start, rack_number_start)
x_list.append(center[0])
y_list.append(center[1])

x_space0 = [list for list in x_list if list is not None]
y_space0 = [list for list in y_list if list is not None]

x_space0.append(1)
y_space0.append(1)

x_space = []
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for item in x_space0:
if item not in x_space:

x_space.append(item)

y_space = []
for item in y_space0:

if item not in y_space:
y_space.append(item)

grid = [len(x_space) - 1, len(y_space) - 1]

2 Data gathering

In order to save the data and use it for the RNN model, the data needs to be adapted based
on the generated design. The following python component transforms the design aspects into
the resulting data by normalising the element IDs, generating their element type and output the
generated profiles for the four different design choice combinations. Note that this code transforms
all design configurations where a profile generated a warning, all profiles in that configuration are
set to N.A. The warnings occur when there is no profile section possible that withstands the applied
load. - Input: grid, Vectors, Lines, beams, warnings - Output: IDs_norm, Gridx, Gridy, Lengths,
Element_type, Profiles

[ ]: import rhinoscriptsyntax as rs

Element_type = []
IDs_norm = []
Lengths = Lines
Gridx = []
Gridy = []
Profiles = []

for i in range(len(Lines)):
if Vectors[i][0] != 0:

Element_type.append(beams[i].split("'")[1] + "x")
elif Vectors[i][1] != 0:

Element_type.append(beams[i].split("'")[1] + "y")
else:

Element_type.append("C")
IDs_norm.append(i / (len(Lines) - 1))
Gridx.append(grid[0])
Gridy.append(grid[1])

status = "GOOD"
for message in warnings:

if "bigger" in message.lower():
status = "FAULT"
break
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for i in range(len(beams)):
test_E = beams[i]
if status == "GOOD":

Profiles.append(test_E.split(':')[3][:6])
if Profiles[i] == "IPE80;":

Profiles[i] = "IPE80"
elif status == "FAULT":

Profiles.append("N.A")

3 Volume to weight

The following Python component calculates the weight of steel per match type, so for new steel,
direct reuse, indirect reuse and accompanying cut-off waste. the division is made by linking the
matchtype to the total volumes of each element, which is multiplied with the specific weight of
the S235 steel. - Input: Matchtype, Volume, Reused_V, Cutoff_V, Weight - Output: Total_W,
Virgin_W, D_Reuse_W, I_Reuse_W, I_Waste_W

[ ]: import rhinoscriptsyntax as rs

Virgin_W = []
D_Reuse_W = []
I_Reuse_W = []
I_Waste_W = []

for i in range(len(Matchtype)):
Virgin_W.append(0)
D_Reuse_W.append(0)
I_Reuse_W.append(0)
I_Waste_W.append(0)

virgin_dict = {i: volume for i, volume in enumerate(Volume) if Matchtype[i] == 0}
dr_dict = {i: volume for i, volume in enumerate(Volume) if Matchtype[i] in [1,␣
↪→2]}

ir_dict = {i: volume for i, volume in enumerate(Reused_V) if Matchtype[i] == 3}
iw_dict = {i: volume for i, volume in enumerate(Cutoff_V) if Matchtype[i] == 3}

for i in range(len(Matchtype)):
if Virgin_W[i] == 0:

Virgin_W[i] = virgin_dict.get(i, 0) * Weight
if D_Reuse_W[i] == 0:

D_Reuse_W[i] = dr_dict.get(i, 0) * Weight
if I_Reuse_W[i] == 0:

I_Reuse_W[i] = ir_dict.get(i, 0) * Weight
if I_Waste_W[i] == 0:

I_Waste_W[i] = iw_dict.get(i, 0) * Weight
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Total_W = sum(Volume) * Weight

4 Calculate design variables

• Input:CO2_new, CO2_opt, Mass, Area, Dataracks
• Output: Ratio_reuse, CO2_reduction, Carbon_score, Carbon_per_rack

[ ]: import rhinoscriptsyntax as rs

Floorplan_cols = (Dataracks[2] - 2) * (Dataracks[3] - 2)
Dataracks_tot = Dataracks[0] * Dataracks[1] - Floorplan_cols
print(Floorplan_cols)
print('The total amount of dataracks in the design = ', Dataracks_tot)

list = [Mass[0], Mass[1], Mass[2] + Mass[3]]
total = sum(Mass)
ratios = []
for i in range(len(list)):

ratios.append(round(list[i] / total, 3) * 100)
Ratio_reuse = ratios[1] + ratios[2]
Ratio_newsteel = ratios[0]
print('The percentage of reuse in the new design = ', Ratio_reuse)

CO2_reduction = round((CO2_new - CO2_opt) / CO2_new * 100, 1)
print('The percentage of CO2 reduction = ', CO2_reduction)

Carbon_score = round(CO2_opt / Area, 2)
print('The carbon score of the optimized design = ', Carbon_score, 2)

Carbon_per_rack = round(CO2_opt / Dataracks_tot, 2)
print('The embodied carbon per datarack = ', Carbon_per_rack, 2)

4.1 Loading in trained RNN model

To load in the trained RNN models, the Grasshopper script is rewritten in Rhino V8, where normal
Python 3 packages can be applied within the Python Grasshopper components by using the syntax
“# requirements: numpy, tensorflow” - Input: input_data - Output: predicted_profiles

[ ]: # requirements: numpy, tensorflow
import tensorflow as tf
import numpy as np

model_path = "C:\Users\Tessel.vanOers\OneDrive - Arup\Thesis\Notebooks/IPEm.
↪→keras"

model = tf.keras.models.load_model(model_path)
predicted_profiles = model.predict(input_data)
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