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Abstract

For a system to be able to interpret data, learn from it, and use those learnings to reach
goals and perform tasks is what it means to be intelligent [1]. Since systems are not
a product of nature, but rather made by humans they are called Artificial Intelligence
(AI). The field of Side-Channel Attacks (SCA) has benefited from applying AI systems
to their problems. Operations previously to resource-intensive to perform can now be
executed using AI. Currently, the focus lies on exploring which parameters result in the
optimum performance when classifying side-channel traces. But since this application
has only recently been applied, there is much more research to be done. As of now,
the literature claims that a reduction in the size of the architecture would result in
an improvement of the explainability of the models used. However, this change in
explainability has not been explicitly proven to hold for SCA models. This created a
gap in knowledge. This paper aims to close this gap by exploring these assumptions.
The goal is to explore if a reduction in complexity of SCA models leads to improved
explainability. An experiment was conducted using two existing SCA architectures
with a small and large complexity respectively. Using heatmaps, the explainability of
these models were assessed to investigate the existence of patterns. The results show
a difference in the consistency of the classification process, where the model with the
lowest complexity could more consistently state why a certain classification was made.
The results indicate that the explainability of a given SCA model can be improved by
decreasing its complexity.

Keywords: Heatmap, Visualization, Side-Channel Analysis, Explainability,
Artificial Intelligence

1 Introduction
The options available in Side-Channel Attacks (SCA) have increased during the 20 years
that have passed since the field was first invented. By studying the power consumption,
sound or electromagnetic output, a person or group harboring malicious intent, the so-called
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threat actors have various methods to obtain information about systems. These actors can
obtain this information either with or without invading the systems at hand. An actor could
perform a profiled attack, in which case they would have access to a device that acted similar
to the one they wanted to attack. After obtaining such a device they would analyze it to
reveal the relation between observation and internal behaviour. After this process has been
completed they would use this relation to extract the internal secret from the device they
wanted to attack [2].

Dhem et al. demonstrates how it is possible to recover encryption keys using a timing
attack [3]. Simple Power Analysis (SPA) allows actors to gain information on key material
and operations by observing the power consumption of a certain device [4]. Differential
Power Analysis (DPA) attacks allows one to undo the process of almost any encryption
algorithm by correlating power consumption with computation values [4]. The possibility
for an actor to use one of the aforementioned techniques to obtain information about a
computer system makes it vulnerable. Therefore it is crucial to analyze and resolve these
threats and protect the vulnerable systems before the information is gathered, or other harm
is done.

A common way to protecting such a leaking system is to apply countermeasures. These
countermeasures can be grouped into masking and hiding countermeasures [2]. When mask-
ing countermeasures are applied the aim is to divide the information gained from sensitive
variables, by randomly splitting variables. If the split is done in a way that does not reveal
information unless all parts of the split are in possession, the sensitive variable is successfully
masked. Hiding countermeasures is when the physical implementation is made constant or
random, thus not revealing the potential change that might be happening as a result of
computational operations. An example of this would be constant ventilator speed. This
would make it harder to detect patterns from it.

Recent developments in Artificial Intelligence (AI) and in turn in Machine Learning (ML)
allow these technologies to be useful as tools in the field of SCA. Deep Neural Networks
(DNN’s) can be used to classify observed patterns gained from system data with very high
accuracy. The most notable example where this accurate matching can be applied is in
cryptography, where it makes it possible to recover an encryption key by monitoring power
consumption. As first proposed in Lerman et al. [5].

But the advantages AI brings are not without its drawbacks. Where models are now
able to map data to create an effective classification process, these models suffer from the
problem that its processes are difficult to assess due to its black-box nature. This nature
stems from the inability to distinguish whether the result is followed from a process not
previously thought of, or if a mistake was made. Therefore it is crucial for AI to have the
ability to provide insight to their users of its inner workings, in turn explaining its decision-
making process. Therefore it is a good thing that such insights can be obtained by using
visualization techniques. These techniques allow for insight to be gained by highlighting
determining factors in the decision-making process or input. This is under the assumption
that the information can be displayed in a way that allows the user to interpret them.

This paper will analyze the benefits obtainable by using visualization techniques currently
available in side-channel attacks. Specifically, what are the effects are that network size has
on the ability of AI to explain its decision-making process, when classifying side-channel
traces? This question follows from a literature study performed and is followed by an
experiment, both described in this paper.

This paper is structured as follows. Section 2 describes the steps taken to conduct the
literature study, this section also provides the results from which the experiment conducted
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stems. Section 3 states the motivation behind the experiment. Section 4 discusses the theo-
retical idea behind the experiment. In section 5 the steps taken to perform the experiment
are discussed. This includes the setup, execution, and results of the experiment. Section 6
contains a reflection on the ethical aspects of the experiment and discusses its reproducibil-
ity. In section 7 the results are put into context and reflected upon. Section 8 concludes the
paper by answering the research question, after which the future work is presented.

2 Literature analysis
Section 2.1 states the methodology of the literature study. Section 2.2 describes the process
used to analyze the existing literature on visualization techniques used in SCA, after which
2.3 shows and analyses the contributions made by the individual papers. Section 2.4 high-
lights common themes found throughout the literature, which forms the basis on which the
rest of the paper is build.

2.1 Methodology
The application of AI in the field of SCA is a relatively new thing and because AI and thus
AI visualization techniques are rather new to this field, there are many unexplored areas.
Therefore it was decided to conduct a literature study, to inspect the work conducted on
visualization techniques and assess their contributions. This was done to better understand
this emerging technology. The literature study should highlight commonly discussed topics
that will serve as an indication as to what themes are worth exploring in the short term.

2.2 Setup of the analysis
Based on the need for knowledge, a literature analysis was conducted. Figure 1 visually
describes the steps taken. The first step was to create search queries and execute them.
These queries were performed on paper databases Google Scholar and DBLP, resulting in a
combined total of 49 papers.

The second step was to screen the scientific papers found, and exclude papers deemed
irrelevant. 6 duplicate papers were removed after which the collection consisting of unique
papers had their titles, abstracts and, keywords analyzed for relevance. To remain included
in this step the papers had to meet three criteria. Firstly, the language used in the paper
needed to be English. Secondly, the papers needed to be related to the field of SCA. Thirdly
the papers needed to have a visualization technique as part of the content, and not merely
present in a citation or the introduction. These criteria would ensure that the papers left
were relevant to the topic and that they were readable and comprehensible. By applying
these basic, but crucial criteria 37 papers were excluded, which left 6 papers included for
the eligibility check.

The third step taken was to scan the rest of the papers and further exclude papers that
would not contribute to this research. The remaining papers were fully read, and excluded if
the scope of the papers was not similar or relatable to our research question. This excluded
3 papers, thus resulting in 3 papers remaining included.
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Figure 1: PRISMA flow diagram describing the process used to conduct the literature study.

2.3 The included papers
2.3.1 Methodology for Efficient CNN Architectures in Profiling Attacks

The paper on efficient CNN Architectures in profiling attacks by Zaid at al. [6] addresses
the problem of complex inner workings that neural networks have. By applying weight
visualization, gradient visualization and heatmaps, the aim is to provide insight into the
role that hyperparameters have in the feature selection phase.

After the different visualization techniques are explored the paper explores how to create
efficient CNN architectures. It does so by analysing the length of filters and the number of
convolutional blocks. The settings are explored by looking at different optimizers, weight
initialization techniques, activation functions, learning rates, batch sizes, amount of epochs,
and network size. It is theoretically shown that an increase in filter length decreases the
network confidence. Since network confidence is defined as the ability to detect POI’s in
the convolutional part, this impacts the performance of the model. Furthermore, the way
pooling is used between convolutional was shown to have impact on the performance of a
model. The paper states that when MaxPooling is used, the training time should increase
and performance should increase. This is result from relevant information being spread over
pooling samples, and thus more iterations are needed during training to find this relevant
information. It is recommended to use AveragePooling since no relevant points are discarded
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this way, and training time can be reduced.
It is proven that changes proposed to filter length and number of convolutional blocks

result in an performance improvement of the architecture. The architecture proposed is
proven to be less complex and faster than the current state of the art. It is proposed to test
on other masking schemes then the ones used.

2.3.2 Deep Neural Network Attribution Methods for Leakage Analysis and
Symmetric Key Recovery

The paper from Hettwer et al. [7], aims to investigate the ability for DNN’s to be used as
tools assessing countermeasures applied to the field of SCA. This investigation is done by
examining three visualization techniques proposed in image classification, and see how well
they perform on side-channel traces. This should more closely highlight the decisions made
by DNN’s, in turn allowing the decision to be interpreted. When these decisions are able
to be highlighted information leakage of model can be analysed. This in turn provides the
data from which it is assessed if a countermeasure is effective, or not.

The paper introduces the reader attribution or heatmapping, a visualization technique
that visualizes the level of contribution to the classification process for every datapoint in
the input. Furthermore the authors state the techniques they intent to investigate, namely
saliency maps, occlusion and Layer-wise Relevance Propagation (LRP).

The paper continues by stating the datasets used as well as the process used to create
heatmaps from trained CNN’s, after which they evaluate the results. It is stated that this
evaluation process is normally done qualitatively by human experts, but is assumed to not
hold for side-channel traces since ’it is not possible to judge whether a 1D heatmap indicates
the "important" sample points by visual inspection’ as found on page 9. After which, the
two techniques proposed are used to evaluate a heatmap. The paper concludes that there is
no clear evidence to suggest that any of the techniques outperforms the others in detecting
sensitive sample points.

2.3.3 Gradient Visualization for General Characterization in Profiling Attacks

The paper provided by Masure et al. [8] aims to analyse succesfully trained models that
extract sensitive data. The paper makes use of the fact that the loss gradient can be used to
locate the POI’s. This is then further tested by conducting a study on the ASCAD database.
Using this database an experiment was conducted in which the different parts of the dataset
are tested. The paper shows that gradient visualization can be used identify POI’s, an the
technique would remain effective even when countermeasures were applied.

2.4 Common themes
The first common theme is the discussion of smaller sized neural networks. Multiple times
the benefits of small sized networks are mentioned. Masure at al. shows that a network
reduced in filter amount, performs well. Zaid et al. concluded that smaller sized models
would require less time to train compared to their larger sized counterparts. Furthermore it
is claimed that smaller sized networks would have improved explainability due to the POI’s
not being spread over neurons but rather grouped together. This would result in said neuron
obtaining a relatively higher weight in the decision making process.

Even in the limited amount of papers that fit the selection criteria, little work was done
on the explainability of AI models in SCA. The focus remained mostly on locating leakage
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in datasets or picking the right parameters to optimize the performance of AI models. Even
when visualization techniques were used, their use was as a tool to investigate the effects of
said parameters.

The papers show that there is no standard visualization technique to use as different
techniques were used throughout the literature. The techniques discussed or used were
heatmaps, Layer-wise Relevant Propagation (LRP), occlusion, and weight visualization.
Hettwer et al. concluded that there was no observed difference between 3 of the 5 mentioned
techniques. This further confirms the statement that there is no standard.

Furthermore the papers shared two datasets. The ASCAD dataset occurred the most,
but the DPA contest v4 datasets also occured more than once throughout the literature.
The amount of datasets seemed to be limited and the datasets the papers shared was even
smaller.

3 Methodology
The literature study revealed a gap in knowledge regarding the explainability of models
that differ in complexity. To fill this gap, we propose to conduct an experiment. This
section describes the proposed experiment and justifies its decisions. Section 3.1 contains
the motivation of the experiment. Section 3.2 argues why the ASCAD dataset is the preferred
choice. Section 3.3 states why heatmaps were chosen as a visualization technique.

3.1 Motivation
The experiment would compare the decision-making processes of two preexisting architec-
tures and determine the existence of any notable differences. The reasoning behind using
existing models is that creating models high in performance is the current focus of the field.
With this being a time consuming task it would not fit in the scope of this project. More
information on the models chosen and the training process can be found in section 5.2.

An alternative option would be to up- or downscale one of the current models and com-
pare the two. We are of the opinion that not would not be feasible. Either the difference
would become trivial making the comparison not realistic, or the performance would be im-
pacted in a negatively harming the results. This has to do with the parameters. The papers
in the literature use different parameters for the small and large architectures. This different
parameters are expected to correlate with with network size, impacting the performance.

3.2 Dataset selection
It was decided to use the ASCAD dataset. Firstly, because it makes use of the masking
countermeasure, which makes it closely resemble the data a threat actor would need to use to
perform an attack. This leads to the results of the experiment also being more applicable to a
realistic setting. Secondly, because it has already served as the basis for many experiments.
This proved to be the case for the models used in the experiment, which would ensure
that the performance required for the experiment could be met. Furthermore, the ASCAD
dataset came with a checksum, which could be used to verify the integrity of the data. The
only other dataset that appeared in more than one paper from the literature study was the
DPA-contest v4 dataset, however this dataset can be considered as unprotected since it has
a leaking mask [6]. The lack of effective masking makes it a less realistic option compared
to the ASCAD dataset.
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3.3 Visualization technique selection
The visualization technique used in the experiment was the heatmap. This technique was
chosen because of its visual relation between input and output. It makes use of the weights
stored in the model to compute the effective weight of each of the neurons, allowing the
user to gain insight into the decision-making process. We perceive the process of the model
indicating which neurons are high in weight and thus high in importance, as simple and
effective. Furthermore, a heatmap can be created by classifying an image once, this ensures
no computational overhead, something that other techniques require. The other options
considered were Weight visualization, Occlusion, and LRP. Weight visualization misses the
relation to the input which was important for our analysis. Recall that occlusion and LRP
were concluded to not outperform heatmaps in Hettwer et al. further justifying the decision.

Furthermore, Hettwer et al. makes the claim that heatmaps are not able to indicate sen-
sitive samples. Ans while this might be true for some SCA model the aim of this experiment
is to gain insight into the decision-making process of the model, which can be explored using
heatmaps.

4 The placement of information
The general idea rests on the fact that neural networks have a decision-making process.
This process resulting from the training is used to classify new traces. By visualizing the
importance of the input it highlights influential areas. By studying these areas, a better
understanding can be obtained on why a certain classification was made. This general
idea is then applied to analyze the decision-making process of classes, which allows for the
comparison of multiple models using the results from the same class. The process of the
model large in complexity is expected to be more difficult to interpret due to the Points of
Information (POI’s) being spread over multiple neurons. This would result in a decrease
in importance for the individual neurons. The same reasoning applies to the model low
in complexity. Here the POI’s are expected to be spread less resulting in a higher weight
difference between the neurons.

5 Experimental setup and results
This section shows the steps taken to set up and perform the experiment. Section 5.1 shows
how the environment for the experiment was created. The models used are described in
section 5.2, whereas the corresponding performance is shown in section 5.3. Section 5.4
describes the steps taken to conduct the experiment, whereas section 5.5 shows its results.

5.1 Environment
The aim was for the experiment to not be influenced by existing dependencies present on the
machine. Therefore Anaconda 3 [] was used to create an isolated environment to test on.
In this clean environment the following dependencies were installed Python version 3.7.7
to act as the programming language [9], Tensorflow version 2.1 as the machine learning
library of choice [10], Keras-GPU version 2.3.1 to serve as the hardware-accelerated backend
for Tensorflow [11], Numpy version 1.18.1 for scientific calculations [12], ScikitLearn version
0.22.1 [13] and H5py version 2.10 as a dependency from previous work [14], used to prepossess
and manipulate data respectively. Lastly, CV2 version 4.2.0 [15] and MatplotLib version
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3.2.1 [16] were used to alter the size of and to plot the results. These packages were installed
using Anaconda’s package manager where possible and Pythons pip package manager when
this was not the case. The experiment was conducted on a machine equipped with an Intel
i7 CPU, a GeForce GTX 1650 graphics card and 8GB of RAM.

5.2 The architectures
This section describes the two models used in the experiment. Both models were trained
based on the code found at [17]. Firstly, we describe the model large in complexity in section
5.2.1. Secondly, section 5.2.2 describes the model small in complexity. It was decided to
use CNN’s for this experiment because of its inclusion of feature extraction [18]. This was
required to calculate the heatmap. By CNN’s having the ease of calculation a benefit was
gained over the MLP, since it is more difficult to extract this information. Furthermore,
CNN’s perform well at classifying traces [6], ensuring the two requirements on the model
type would be met.

5.2.1 ASCAD model

The first model was implemented as it was described in Benadjila et al. [19] and is referred
to as the ASCAD model in this paper. This model contains 5 blocks, each containing a
convolutional and an average pooling layer represents the model large in complexity. The
5 convolutional layers all have a kernel size 11 but a different amount of filters; 64, 128,
256, 512, 512 respectively. All of the 5 layers used the standard ReLu activation function,
the standard initialization Glorot uniform and, padding of type same. The average pooling
layer all had a pooling window of 2, and thus down-scaled the input by a factor of two.
After the 5 blocks that perform feature extraction, the model contains two dense layers for
classification containing 4096 neurons each. The classification was finalized by a Softmax
activation.

The model was trained using a batch size of 200, RMSprop as its optimizer, categorical
cross-entropy as loss function and a learning rate of 10-5. The number of epochs used to
train the model was 100 as opposed to the 75 epochs that was stated to be sufficient in the
original paper.

5.2.2 ZAID model

The second model implemented was the one described in Zaid et al. [6] and is referred
to in this paper as the ZAID model. This model was shown to be more efficient and less
complex than the previous state of the art and it consists of 1 block. This block contains a
convolutional and an average pooling layer. The convolutional layer has a kernel size of 1
and uses 4 filters. The ZAID model makes use of He uniform initialization, SeLu activation
and, padding of type same. The average pooling layer is set up the same as in the ASCAD
model with an average window of 2 and down-scaling the input by two as well. Note that
this model makes use of batch normalization to speed up the training process, but the input
data was not preprocessed. The classification is done using two dense layers of 10 neurons
each, after which the Softmax function is applied.

The model was trained with a batch size of 50, Adam as its optimizer and used the
categorical cross-entropy as the loss function. The model makes use of a one-cycle policy
that can determine learning rate boundaries by running the model for a small number of
epochs and where the learning rate varies within this interval [20]. This would result in a
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learning rate within the interval [ 5*10-4 , 5*10-3 ]. The training process consisted of 50
epochs.

5.3 Performance evaluation
After the models were trained, their performance were assessed. This was done to see how
the performance of the replicated models relate to the models discussed in their respective
papers.

Figure 2: Key rank (batch size 10) of the ASCAD model

Figure 2 shows the key rank of the ASCAD model described in 5.2.1. The line converges
to rank 0 as more traces are evaluated. This is proof that the replicated model performs
well, and is representative of the model described by Benadjila et al.

Assessing the performance of the replicated ZAID model proved to be difficult. The code
used to assess the performance would crash during the assessment of the ZAID model which
would leave us unable to prove that the performance of the replicated model matched the
performance of the original. As a workaround it was explored if the trained model provided
Zaid et al. could be used for the experiment, but this proved to not be possible. The last
convolutional layer would output an empty response, which prevented the heatmap from
being calculated. Therefore the replicated model was used in the experiment.

5.4 Conducting the experiment
Now that the environment, trained models, the dataset and, the visualization technique are
discussed, a better understanding can be obtained on how the experiment was conducted.
Section 5.4.1 shows the steps taken to compute the heatmaps, where section 5.4.2 discusses
the techniques used to represent the heatmaps in order to allow the comparison.

5.4.1 Heatmap calculation

To calculate the heatmap the code Keras Class Activation Map [21] was used as a base, from
which the code was altered to be usable on 1D input. The process of creating a heatmap
is as follows. A model is created that, given an input trace, outputs the values present in
the last convolutional layer, as well as the computed means. The output present during
the classification process is then multiplied with the standard influence to create the total
impact each of the neurons had. This data is then is normalized, which gives an array with
the same length as the last convolutional layer containing a score between 0 and 1 depending
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on the relative importance the corresponding neuron had in the classification process of the
trace. This heatmap is then displayed using a color gradient to create the colorized image.

5.4.2 Visualization

The visualization techniques were to be used to inspect the decision-making processes of the
two models and comparing them. However working with changes in color proved to be a
difficult way to compare heatmaps, especially heatmaps that differ in size. Therefore other
ways to represent the heatmap were used to make the comparison possible. We determined
it as important that the methods used stayed visual, as opposed to numeric. What was to
be avoided was to turn the visual insight gain from the black box AI back into a black box
metric, because then the benefits gained by visualizing would be lost. Two ways were used
to aid the analysis and comparison.

The first method was to overlay the heatmap with the input data. This way the trace
would be colorized, indicating where the influential data is located. The problem encountered
with this method was that the size of the trace and the size of the heatmap were different
from each other. This was resolved using by interpolating values and creating a larger sized
heatmap. This solution shown in [21] ensured that input size matched with the size of the
last convolutional layer, which allowed them to be combined in one figure.

The second method in which the data visualization was improved was by treating the
heatmap as a function. When this is done, the data indicating the influence in the decision-
making process will not be represented by color, but as a data point in a function. The
heatmap made it difficult to detect some peaks and this technique would make it more
evident. For convenience, the data points of the function were linearly interpolated. Note
that this interpolation is different from the one used to create the overlay.

Using the models described in section 5.1, trained on the ASCAD dataset described in
section 3.2 heatmaps were created using the test data. From these heatmaps were created
according to the process described in section 5.4.1, after which the two techniques were
applied. This resulted in graphs that could be used to analyze and compare the models.

5.5 Experiment Results
This section is dedicated to the results obtained from the experiment. Section 5.5.1 shows
the results of the heatmap along with the corresponding overlay that was created. Section
5.5.2 discusses the impact misclassification has on the heatmap, whereas 5.5.3 compares
the data from a whole label to compare larger patterns between the models. Note that
the results shown represent interesting or common behavior found and is not an exhaustive
analysis of all the different graphs found.

5.5.1 Heatmap

Figure 3 depicts an example of the heatmaps encountered as described in section 5.4.2. On
the left, we see the heatmap corresponding to the ASCAD model with 43 bars corresponding
to the 43 neurons in the last convolutional layer of the model. Depicted on the right is the
heatmap from the ZAID model containing 700 bars, from its corresponding last convolutional
layer. The color depicts the influence the neuron has on the decision-making process, where
blue represents low influence and yellow high influence.

The depicted trace, #17 was chosen because it was classified correctly by both models.
This allows the optimal scenario to be represented and analyzed. As can be seen from the
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Figure 3: A Heatmap visualization of trace #17 from the ASCAD model (left) and the ZAID
model (right). Neurons weight in the decision-making process is shown where a high value in the
colorbar indicated high influence.

figure, both models show a yellow bar indicating the neuron most influential. Note that due
to the large amount on neurons in the ZAID model, the yellow bar is more difficult to spot.

Figure 4: A heatmap overlay of trace #17 from ASCAD model (left) and the ZAID model (right).
Trace data is colorized depending on the influence of the corresponding neuron, indicating influential
areas in the input data.

Using the heatmap shown in figure 3 and the data from trace #17, an overlay was created.
This overlay allows us to observe which parts of the input data were the most influential.
Figure 4 depicts the overlay created, by depicting the sample data from the trace with the
intensity found in the heatmap. The sample data is plotted using the sample ID against the
value measures.

What can be observed from the overlay is the different behavior in areas of interest. The
ASCAD model has its area of interest shown vertically, whereas the area of interest of the
ZAID model is shown horizontally in the figure.

5.5.2 Misclassification heatmaps

When observing the results it was discovered that the difference between the predicted
label and the true label varied. The difference could be roughly categorized into being
small or large. Therefore these two cases were investigated to analyze if they impacted the
explainability of the models.
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Figure 5: A heatmap from the ASCAD model of trace #131, visualized as a function. This figure
represents a misclassification where the difference in response between the true label (left plot) and
predicted label (right plot) is small.

Figure 5 depicts a heatmap of trace #131 visualized as a function according to the steps
in 5.4.2. The trace represents the misclassified traces in the dataset that have a response
similar to the true label. As can be seen in the figure, it is often the case that the predicted
label has peaks that cover more neurons than the peaks in the true label. Furthermore, the
predicted label often contains peaks not present in the true label.

Figure 6: A heatmap from the ASCAD model of trace #194, visualized as a function. This figure
represents a misclassification where the difference in response between the true label (left plot) and
predicted label (right plot) is large.

Figure 6 depicts a heatmap of trace #194, visualized as a function according to the steps
in 5.4.2. This trace represents the misclassified traces in the dataset that have a response
that is not similar to its true label. When the response differs greatly it is often the case that
the most influential neurons of the true label have a less influential peak in the predicted
label if any peak at all. A second noteworthy observation is the additional peaks that occur
frequently at the predicted label.

Figure 7 depicts a heatmap of trace #125 from the ZAID model. The figure represents
the cases in which the difference in response is small. When such a case occurs in the ZAID
model, the difference between individual neurons were smaller than 1e-2. However, the peaks
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Figure 7: A heatmap from the ASCAD model of trace #125, visualized as a function. This figure
represents a misclassification where the difference in response between the true label (left plot) and
predicted label (right plot) is small.

lie in the same location and no peaks are added.

Figure 8: A heatmap from the ZAID model of trace #131, visualized as a function. This figure
represents a misclassification where the difference in response between the true label (left plot) and
predicted label (right plot) is large.

Figure 8 depicts a heatmap of trace #131 of the ZAID model. This trace represents the
cases in which the difference in response between the true and predicted label is large. In
this case, the neuron weights seem to be uniformly distributed and no clear no pattern can
be found.

5.5.3 Class level patterns

At this stage we would like to discuss the patterns visible at class level. Figure 9 depicts such
a pattern in the decision-making process of the models. It was created by combining the
function heatmaps of 5 traces according to 5.4.2. The black lines represent the influence of
a certain neuron for individual traces, whereas the red lines represents the average response
of the traces. Class #8 represents the reoccurring trend that is found by comparing classes
between the models. As can be seen in the figure, the peaks in explanation from the ASCAD
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Figure 9: Class level pattern of class #8 from the ASCAD model (left) and the ZAID model
(right). This pattern is created by taking the average of multiple function represented heatmaps.

model can be found at different neurons. In the case of the ZAID model, the response is
present at the same neurons. There seems to be more consistency in the decision-making
process of the ZAID model.

6 Responsible Research
In this paper, the appropriate time has been taken to cite the work, code, and ideas presented
by others. This ensures that credit is placed where it is due. Since there exists no relation
between the field of SCA and the team that conducted the research, this paper is freed from
the conflicts of interest that might have occurred otherwise. Furthermore, the experiment
does not involve human subjects, thus there exists not the possibility for unethical human
research to occur. However, we acknowledge that the information provided in this paper can
be used for malicious purposes. Therefore it is important to note that this work is meant to
help prevent malicious acts, not to enable them.

An effort was made to improve the reproducibility of this work. It was performed using
an environment, models, visualization technique, and a dataset that is open to be used by
the public. This ensures that any party that wishes to reproduce the results found in this
work, has the opportunity to do so. As mentioned earlier the scientific literature used is
available to the public, which allows the literature to be accessed and reviewed. This further
improves the reproducibility of this work.

7 Discussion
Section 5.5.1 shows that the models have different area of interest. This difference is likely
due to the ASCAD model performing a large number of convolutions. This likely causes
the most informative samples to become mixed with their surroundings. When the area of
interest is upscaled to fit the input size it results in a vertical area of interest. It is likely
that in the earlier layers the same horizontal area of interest would be found.

Section 5.5.2 analyzed the responses of samples that were misclassified. Here it shows
the existence of additional peaks and noted that the peaks are spread over more neurons
in the heatmap of the predicted label. It seems to be the case that these types of traces
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have features that the model addresses to other classes. This results in a high response on
the incorrect label, which leads to an incorrect classification. We also notice peaks that
are spread over multiple neurons. This indicates that the most informative datasamples
are spread over multiple neurons by the convolutions. However in some cases the peaks
consist of only a single neuron indicating that this spread does not always occur. The ZAID
model was shown to have difference in heatmap response of misclassified traces that were
either very small or very large. In the case of the small difference the responses were nearly
the same, implying that the model thought of them as the same. In the case of a large
difference the model was not able to differentiate between neuron relevance resulting in a
uniform distribution. Both cases seem to indicate that the model was not able to determine
what the distinctive features between classes are, implying the model was underfitted.

In section 5.5.3 the decision-making process was compared between the models. Here the
results show that the ASCAD model was inconsistent when classifying traces of the same
class, whereas the ZAID model was shown to be consistent. These results seems to indicate
that the ASCAD model is not able to explain why it makes its decisions.

Now that the results have been discussed, the limitations of the work will be mentioned.
The first limitation is that the models make use of a averagepooling layer instead of a
maxpooling layer. While this does not impact our comparison, it has to be noted that our
work cannot directly be compared to models that make use of a maxpooling as the results
might differ.

The second limitation is that we were not able to determine the performance of one of
the models used. As discussed in 5.3 our replication of the ZAID architecture cuold not be
proven to be of high performance.

The third limitation is the lack of a numerical analysis between the models. One could
argue that the use of numerical evaluation would improve the quality of the comparison.
However this was shown to not be possible. The size of the last convolutional layer differs
between models therefore not allowing for a direct comparison to be made.

8 Conclusions and Future Work
We have experimentally shown that the previously assumed claim that a reduction in net-
work size has a positive impact on the explainability of AI models in SCA. This was done
by showing the existence of observable patterns in the classification process between the two
models on the trace and class level. The patterns found indicate different levels of explain-
ability between the two models, where the smaller model was shown to be more consistent
in its classification process. These finding imply that the explanation of SCA systems can
be improved by reducing the model size and in turn model complexity.

Our work also raised some questions. Firstly what the effect of using different datasets
would be on the observed patterns. Datasets that include different masking or hiding tech-
niques could potentially alter the patterns found, and it would be interesting to observe these
potential changes. Secondly it could be analyzed what these patterns are like in different
SCA models. This could lead to a better understanding of the SCA models and potentially
allow them to be grouped based on explainability besides performance. Thirdly it could be
explored if other visualization techniques could be used to find these patterns. Specifically
occlusion shows promise due to its similarity to the technique used in this work.
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