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Modeling Non‐Stationary Wind‐Induced Fluid Motions
With Physics‐Informed Neural Networks for the Shallow
Water Equations in a Polar Coordinate System
Zaiyang Zhou1 , Yu Kuai2 , Jianzhong Ge1,3 , Bas van Maren1,2,4 , Zhenwu Wang1 ,
Kailin Huang5, Pingxing Ding1 , and Zhengbing Wang2,4

1State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China, 2Faculty of
Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands, 3Institute of Eco‐Chongming
(IEC), Shanghai, China, 4Unit of Marine and Coastal Systems, Delft, The Netherlands, 5State Key Laboratory of Water
Resources Engineering and Management, Wuhan University, Wuhan, China

Abstract Physics‐informed neural networks (PINNs) are increasingly being used in various scientific
disciplines. However, dealing with non‐stationary physical processes remains a significant challenge in such
models, whereas fluid motions are typically non‐stationary. In this study, a PINN‐based method was designed
and optimized to solve non‐stationary fluid dynamics with shallow water equations in a polar coordinate system
(PINN‐SWEP). It was developed and validated with a classic circular basin case that is well‐documented in
scientific literature. In the validation case, the wind‐induced water surface fluctuations are less than 1 cm, posing
challenges in modeling. However, our PINN‐SWEP model can accurately simulate such tiny water surface
fluctuations and resolve complex fluid motions based on limited and sparse data. A boundary discontinuity
problem associated with the use of a polar coordinate system is further discussed and improved, thereby
enhancing the applicability of PINN in water research. The methodology can provide an alternative solution for
numerical or analytical solutions with high accuracy.

Plain Language Summary Winds generate flows and waves over open water, with dimensions
ranging from small ripples to large ocean waves. The wind‐induced fluid motions can be described using
governing equations. These equations are usually difficult to solve mathematically. Therefore, we propose a
machine learning (ML) model that combines the governing equations and sparse data to reproduce the wind‐
induced fluid motions. This data‐physics hybrid model is validated by simulating classic wind‐induced fluid
motions in a circular basin. Our method shows good performance, indicating a promising new approach that can
coexist with conventional models. Additionally, machine learning models are prone to encountering a boundary
discontinuity issue when solving problems defined in polar coordinate systems. This issue has been solved
ingeniously, expanding the applicability of ML methods in geophysical and water research.

1. Introduction
Wind‐induced fluid motions occur in most open water systems, leading to vertical fluctuations in surface water,
horizontal oscillations, and residual circulations. In recent decades, our understanding of wind‐induced gravity
waves has advanced significantly (Mitsuyasu & Honda, 1982; Phillips, 1957; Zdyrski & Feddersen, 2020). The
two‐dimensional shallow water equations (SWEs) are often used to describe wind‐induced circulations and
surface gravity waves. These depth‐integrated Navier‐Stokes equations have been extensively applied to study
fluid dynamics in rivers, coastal areas, and oceans, including, for example, river floods (Seyoum et al., 2012),
tsunamis (Arcas & Wei, 2011), and complex flows around structures (Song et al., 2023). With appropriate as-
sumptions and simplifications, analytical solutions (AS) can be derived for the SWEs (Csanady, 1967; Läuter
et al., 2005). For example, Csanady (1967, 1968a, 1968b) analytically solved the SWEs to study wind‐induced
circulations in a large‐scale circular basin. Birchfield (1969) revised Csanady's solutions by correcting the
omission of a forcing term in the boundary condition. For more complicated problems, SWEs are usually solved
numerically.

Recently, machine learning (ML) techniques have been increasingly applied in water and geophysical research
(Bertels & Willems, 2023; Karniadakis et al., 2021; Lu et al., 2021; Mulia et al., 2022; Shen, 2018; Verjans &
Robel, 2024). For instance, ML techniques are applied to parameterize processes unresolved in coarse resolution
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global models (e.g., Verjans & Robel, 2024); and are frequently used to inversely determine spatially variable
parameters in an efficient way (Guo et al., 2023). An important precondition enabling the establishment and
application of an ML model is the availability of a large amount of data. However, even though the observational
methods have substantially improved, data availability is still insufficient in many cases (especially for conditions
where satellite images are not available as input data), preventing a purely data‐driven ML technique. Further-
more, complicated dynamics in water systems strengthen the data requirements and enhance the difficulty for ML
to capture instantaneous, multi‐scale oceanic, estuarine, or riverine processes.

To lower the need for large data sets and improve interpretability, physical constraints (governing equations) are
more and more incorporated into ML‐based methods. One example is physics‐informed neural networks (PINN)
(Chen et al., 2022; Feng et al., 2023; Jin et al., 2021; Raissi et al., 2019, 2020). PINN is an ML‐based solver for
partial differential equations (PDEs). By optimizing a loss function, which includes the deviation of PDEs, a
neural network (NN) with trained parameters can be obtained as a solution function. Although purely physics‐
driven PINN has the potential to deal with various problems, currently they can only solve simple geometries
and simple PDEs and struggle with time‐dependent problems (Dong et al., 2023; Meng et al., 2020). A solution is
to combine PDEs with sparse data to establish hybrid PINN (Chen et al., 2023; Karniadakis et al., 2021; Li
et al., 2023; Wang et al., 2022). These hybrid approaches use small data sets to guide the training process,
significantly enhancing the practicability of PINN by overcoming the data limitation and improving training
efficiency. So far, most PINN‐based models are applied to solve a variety of PDEs written in cartesian coordinate
systems. For example, a data‐involved PINN method is developed to simulate dam‐break flows described by
SWEs in cartesian coordinates (Li et al., 2023). Moreover, advection‐dispersion equations in Cartesian co-
ordinates have also been revisited and solved using PINNs (He & Tartakovsky, 2021). Even though research on
using PINN in polar (or spherical) coordinate systems does exist (e.g., Bihlo & Popovych, 2022), the result of a
circular (or spherical) domain is unfolded into a rectangular plane, or the computational domain does not cover an
entire circle (or sphere). This measure may coincidentally hide a problem of boundary discontinuity, which is
obvious if the results are directly shown without unfolding. The insufficient focus on polar coordinates negatively
affects the promotion of PINN in solving equations on the sphere, which are quite often applied in hydrological
and geophysical research. Well‐known analytical models such as the aforementioned circular basin case (Csa-
nady, 1968a, 1968b) provide training data as well as the governing equations in a polar coordinate system and are
therefore ideal cases to investigate the suitability of PINN to resolve wind‐driven gravity waves.

In this study, we apply and improve PINN to resolve wind‐induced fluid motions in open water. Random, sparse,
pseudo‐observational data were derived from Csanady's analytical model and combined with the governing
equations to establish a data‐physics hybrid model. Successful application of PINN to this circular basin required
the development of methods to deal with the discontinuity caused by the polar coordinate system. A detailed
description of our method is given in Section 2. Results and discussion are provided in Section 3. Conclusions are
summarized in Section 4.

2. Methods
2.1. Governing Equations

The data‐physics hybrid PINN model is established to solve SWEs in polar coordinate systems. A large circular
basin case is used to validate the model where the fluid motions in response to a constant wind (Figure 1a) can be
described with the dimensionless SWEs in a polar coordinate system (Birchfield, 1969; Chen et al., 2007):

∂u∗

∂t∗
− v∗ + λ

∂ζ∗

∂r∗ = 0 (1)

∂v∗

∂t∗
+ u∗ + λ

∂ζ∗

r∗∂θ
= 0 (2)

∂ζ∗

∂t∗
+ λ(

1
r∗
∂(r∗u∗)

∂r∗ +
1
r∗
∂v∗

∂θ
) = 0 (3)

Although the equations above are written and solved in the polar coordinate system, the Cartesian coordinate
system is used to present results (figures) for a clear description of relative position. The direction of the wind is
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west, or toward the positive x‐axis in the Cartesian coordinate system. In Equations 1–3, θ ∈ [0, 2π] (anti‐
clockwise from the east); r* ∈ [0, 1] is the dimensionless radius, with or without the superscript “*” denotes
dimensionless or dimensional values, respectively, consistently defined henceforth; r* = r/R, R = 67.5 km is the
radius of the circular basin; t* = t × f is the dimensionless time, and f = 10− 4s− 1 is the Coriolis parameter; (u*,v*)
are dimensionless velocities in (r,θ) directions, respectively, (u*,v*)= (u,v)/c, where c =

̅̅̅̅̅̅̅̅̅̅̅̅̅
g × H

√
= 27.125 m/s

is the speed of gravity waves, g = 9.81 m/s2, H = 75 m is the total water depth (Figure 1a); ζ∗ = z∗ − ẑ is the
combination of dimensionless water depth and dimensionless wind stress term, where z* = z/H is the dimen-
sionless disturbed height of the free surface, ẑ = τ0r cos θ/λ4, τ0 = gτ∗

R3f 4ρ, τ* = 0.013 N/m
2 is the magnitude

of the uniform wind stress (with respect to the wind speed of 3 m/s, consistent in all cases of this study),
ρ = 103 kg/m3, λ = c/(Rf) = 4.019. The initial and boundary conditions (IC and BC) are given as:

(z,u,v)|t=0 = 0 (4)

u|r=R = 0; (z,u,v)|r=0 → f inite (5)

Analytical solutions for Equations 1–5 are given as (Birchfield, 1969; Chen et al., 2007):

z∗ (θ, r∗, t∗) =
τ0
λ4
{A0 (r∗) cos(θ) +∑

∞

k=1
akAk (r∗) cos(θ − σkt∗) } (6)

u∗ (θ, r∗, t∗) =
τ0
λ3
{[
A0 (r∗)

r∗ − 1] sin(θ) − ∑
∞

k=1
bk Fk (r∗) sin(θ − σkt∗) } (7)

v∗ (θ, r∗, t∗) =
τ0
λ3
{[
dA0 (r∗)

dr∗ − 1] cos(θ) − ∑
∞

k=1
bkGk (r∗) cos (θ − σkt∗) } (8)

The detailed calculation of A0(r
*), Ak(r

*), Fk(r
*), Gk(r

*) can be found in Appendix A of Supporting Informa-
tion S1. Solutions Equations 6–8 consist of two parts, namely the steady fluid motion (time‐independent) and the

Figure 1. Schematic diagram of the defined large circular basin and the constant wind (a), and surface water elevations derived from the analytical solutions at t= 0 (b), 6
(c), 12 (d), 18 (e), and 24 (f) hours. The color indicates surface fluctuations from z = 75 m.
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Poincare waves from t= 0 (time‐dependent). Surface water elevations at different times are presented in Figure 1,
and obvious water fluctuations and rotations can be found. Both AS (Csanady, 1968b) and numerical simulations
using various models (Chen et al., 2007) demonstrate that the water elevation fluctuates within a range of several
millimeters, indicating tiny fluid motions induced by gentle wind forces.

The AS are used to generate the pseudo‐observational data for model training, and validation data for evaluating
model performance. Although the PINNmethod has been demonstrated for its capability in solving PDEs without
any real data, it is currently difficult to train such a model designed for the compound fluid motions. Moreover,
due to the high complexity of time dependence, PINN still encounters great challenges in non‐stationary problems
(Dong et al., 2023; Meng et al., 2020). We have therefore developed a data‐physics hybrid ML model (PINN‐
SWEP) that combines governing equations and sparse, limited, pseudo‐observational data.

2.2. PINN for SWEs in a Polar Coordinate System (PINN‐SWEP)

Conventional ML techniques learn and determine patterns between the input and output data (Ellenson
et al., 2020). By computing and optimizing a loss function that compares the current NN model output with the
desired output (namely the ground truth data), ML techniques can capture the non‐linear relationships as universal
approximators (Chen & Chen, 1993; Mhaskar & Hahm, 1997; Rossi & Conan‐Guez, 2005). In contrast to a
traditional ML model, which is solely driven by data, PINN incorporates the deviation from PDEs into the loss
function. By minimizing the total loss toward zero, the PDEs are also approximately solved. Specifically, a PINN
based physics‐data hybrid model usually finds a solution for the PDEs through the following steps (taking the
SWEs introduced before as an example):

Step (1): Define a NN model and calculate its output

Define the architecture of a NN model. Randomly sample the input variables (θ, r, t) within the computational
domain; then output the variables (z̃, ũ, ṽ) using the predefined NN (with the tilde representing the output of NN)

and exploit auto‐differentiation to obtain the corresponding derivatives ( ∂̃∂θ,
∂̃
∂r,

∂̃
∂t).

Step (2): Calculate the loss terms induced by physics

Rearrange the equations to ensure that the right sides are all zero, then compute the loss (L) of PDEs, IC, and BC

according to the equations; for instance, for Equation 1, LPDE1 =
∂̃u∗

∂t∗ − ṽ∗ +
̃λ ∂ζ

∗

∂r∗ (with the superscript “*”
denoting dimensionless); note that these physics related loss terms exactly follow the left side of the corre-
sponding equations.

Step (3): Calculate the loss terms induced by data

The data‐induced loss is defined as LOBS = F((z̃, ũ, ṽ), ( ẑ, û, v̂)) . F is a function used to quantify the deviation
between the model output and data; the circumflex indicates the ground truth values.

Step (4): Minimize the total loss and update the model

Use the gradient descent algorithms to minimize the total loss function toward zero, therefore each term of the
total loss approaches zero; in particular, ‘LPDEs → 0’ means the equations are approximately solved.

For a simple PDE, no real data is needed; Step (3) can be omitted and the model is fully driven by physical
constraints. However, for complex equations (sets), it is difficult to design and train a suitable NN model without
any guidance of real data, as is the case in this study. Therefore, a data‐physics hybrid PINN model was
established (Figure 2) to solve SWEs in Polar Coordinate Systems (PINN‐SWEP). In addition to physics and data,
the model also incorporates extra BCs to alleviate the boundary discontinuity problem due to the polar coordinate
system, which will be introduced in detail later in the text.

To clarify the difference of imposing physical constraints, the pseudo‐observational data, and the extra boundary
conditions, here we define three operators, representing the error arising from the PDEs (Q1), from the data‐model
comparison (Q2), and from self‐output comparison (Q3), respectively:

Q1 : MSE(PDE(θ,r,t), 0) (9)
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ZHOU ET AL. 4 of 17

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
037490 by T

u D
elft, W

iley O
nline L

ibrary on [28/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Q2 : MSE(NN(θ,r,t),GT(θ,r,t)) (10)

Q3 : MSE(NN(0,r,t),NN(2π,r,t)) (11)

whereMSE is the mean squared error function, an option for the function F in Step (3); PDE(θ,r,t) is the residual of
equation at (θ,r,t); NN(θ,r,t) means the PINN‐SWEP output, therefore NN(0,r,t) and NN(2π,r,t) in Equation 11 are
model output when θ = 0 or 2π; GT(θ,r,t) denotes the ground truth values, that is, the pseudo‐observational data.
The NN andGT functions can output all z, u, and v as needed. With these three operators, all terms in the total loss
function can be calculated as:

Loss = λ1LPDE1 + λ2LPDE2 + λ3LPDE3 + λ4LIC + λ5LBC
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Physics

+ λ6LOBS⏟⏞⏞⏟
Data

+ λ7LBC f
⏟⏞⏞⏟
Extra BCs

(12)

where λi represents the weighting coefficients of each loss term. The weighting coefficients need to balance the
contribution of each term, especially the main contributors, that is, the loss of physics and the loss of data. These
two loss terms should have a similar order of magnitude, thus avoiding the training process being dominated by
only part of the loss function. According to this concept, the model has undergone initial tests to determine the
appropriate coefficients.

The total Loss can be classified as three categories (Equation 12), that is, physics including initial and boundary
conditions (PDEs + IC + BC), data (assuming we have limited observations), and extra BCs due to the use of a
polar coordinate system (referred to as fictitious BCs, BCf). The detailed calculations for each category are
outlined below.

2.2.1. Loss of Physics

The physical constraints are described as λ1LPDE1 + λ2LPDE2 + λ3LPDE3 + λ4LIC + λ5LBC. Among them,
LPDE1, LPDE2, LPDE3 are deviations between (the left side of) Equations 1–3 and zero, respectively. These three

Figure 2. The architecture of PINN‐SWEP to solve shallow water equations in a polar coordinate system. θ, r, t are input channels, z, u, v are the outputs of neural
network for water elevations (z) and velocities (u,v) in (r, θ) directions. The loss function mainly contains three parts, loss of physics, loss of data, and loss of extra
boundary conditions, calculated by three operators (Q1, Q2, Q3), respectively.
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terms are calculated with the operator Q1. Usually, in a concrete problem, the initial and boundary conditions are
more explicit compared to the dynamics described by PDEs. For example, in this study, the boundary condition
“u|r=R = 0” indicates the boundary is impermeable, meaning that the along‐radius velocity u has a specific value
(zero) on the boundary. This information is inherently provided by the problem definition, like real data, but at no
observational cost. Consequently, the operators Q1 (for PDEs) has the same function as Q2 (for data) in terms of
the calculation of LIC and LBC. λ1, λ2, λ3 are specified as 5 × 10

9, λ4 = 100, λ5 = 1 according to the initial tests.

The set of 3‐D collocation points (θ, r, t) utilized for physical constraints consists of 8,000 interior sampling
residual points for PDEs, 100 points for IC, and 50 points for BC. It is important to note that these collocation
points are fully randomly sampled and are not relevant to any observational data. Furthermore, they will be
resampled every 20,000 epochs. This resampling method follows earlier PINN research (e.g., Iwasaki &
Lai, 2023; Li et al., 2023). The method ensures sufficient collocation points to train a NNmodel without any prior
knowledge of the solution to a problem. It should be noted that although this resampling method can enhance
model performance (Wu et al., 2023), it may also lead to some randomly sampled collocation points uninten-
tionally appearing in the validation set, negatively affecting the interpretation of the results. In this study, to
further minimize this effect, we applied two distinct random point generation functions for resampling collocation
points and creating the validation data set, respectively. In addition, we conducted 1,000 repetitive tests for
random point generation, and did not observe data overlap between interior sampling and the validation data set
caused by the resampling method.

2.2.2. Loss of Data

It is assumed that we have sparse observational data as training data, which are generated by the AS in this study.
We randomly generate 45 points (using the Sobol sequence (Bratley & Fox, 1988) to ensure the reproducibility of
the experiments) in the computational domain (white dots in Figure 3a), which amounts to 0.55% of the total
collocation points. We assume that data of z, u, v at 10‐min frequency are available at those 45 pseudo‐

Figure 3. The wind‐induced water fluctuation z (first column), velocity u in r‐axis (second column), velocity v in θ‐axis (third column), and errors (from fourth to sixth
columns) of (z, u, v) compared to Case 1 at t = 195 min derived from 3 methods, including the analytical solutions (Case 1, first row, also regarded as the benchmark
case), direct interpolation based on 45 sites (Case 2, second row), and a neural network method without governing equations (Case 3, third row). The white round dots in
panel (a) are the positions of the 45 assumed observational sites.
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observational sites, which is not difficult for present‐day ocean bottom‐mounted observation systems (Ge
et al., 2018; Zhou et al., 2019). The data distribution density (45 sites in 1.43 × 104 km2) is very low and
comparable to other data‐physics hybrid PINN model applications (e.g., Chen et al., 2023). In addition, a
sensitivity test on model performance using various numbers (20–60, with an interval of 5) of pseudo‐
observational sites is presented in Section 3.4. The data loss term LOBS is computed using Q2, that is,
comparing the NN model output with the ground truth observations. λ6 is set as (1, 10, 10) for (z, u, v) to balance
their different orders of magnitude, as the magnitude of z is apparently larger than that of the other two.

2.2.3. Loss of Fictitious BC

In a polar coordinate system, θ = 0 and 2π overlap, whereas the NN model treats θ = 0 and θ = 2π as different
realizations. The extrapolation toward two boundaries of θ results in a discontinuity of model outputs when θ = 0
or 2π. To mitigate this issue induced by the polar coordinate system, we enforce a fictious boundary condition
(BCf) for θ by incorporating an additional loss term to constrain the difference between NN(0,r,t) and NN(2π,r,t),
which are values at the same points in space but expressed using different values of θ. It is important to note that
this loss term does not rely on any data; it is just a self‐constraint of the NN model. The calculation of LBC f

is
conducted using the operator Q3:MSE(NN(0,r,t),NN(2π,r,t)).

For MLmodels, additional loss terms present optimization challenges, turning it into a more complex multi‐target
problem and increasing the difficulty of reducing the loss. The LBC f

as an additional loss term can include all (z, u,
v), or consider only one or some combinations of them by adjusting the weighting coefficients λ7 (depending on
which variables are important for a specific problem). Therefore, this BCf loss term can be incorporated into the
PINN‐SWEP model in a flexible way. For instance, in this study, the boundary problems are more prominent in
variable u and v, so a BCf for v (λ7 = (0, 0, 40) for (z, u, v)) is introduced and presented as the main results to
demonstrate the effectiveness of this method. Another scenario applying a different BCf is included (Appendix C
in Supporting Information S1).

2.2.4. Model Implementation and Scenarios

The PINN‐SWEP model is established based on the multi‐layer perceptron (MLP) architecture, one of the most
widely used artificial neural networks (Gracia et al., 2021). The MLP contains an input layer, an output layer, and
hidden layers in between (Figure 2). Each hidden layer consists of some neurons, and each neuron is connected to
all neurons from the previous layer. These connections are modeled with weights and biases. The activation
function is also operated on these neurons to enable their non‐linear expression ability. The PINN‐SWEP model
contains 4 hidden layers of 100 neurons per layer. A hyperbolic tangent is used as the activation function (Huang
et al., 2022; Jin et al., 2021; Tarbiyati & Nemati Saray, 2023). The gradient decrease is performed using an Adam
optimizer (Kingma & Ba, 2014). For all scenarios, the model is trained for 600,000 epochs (i.e., iteration steps).
The learning rate (lr) is determined by lr= lri /(1+ dr × epochs/100), lri= 8 × 10

− 3 is the initial lr, dr= 5 × 10− 3

is the decay rate. During the 600,000 epochs, lr decreases from 8 × 10− 3 to 2.58 × 10− 4.

During the training process, the model performance is evaluated synchronously using a validation data set. The
validation data are also generated by the AS. Concretely, a 104× 3matrix is generated using the Sobol sequence to
provide a reproducible random sampling of (θ, r, t). With these 104 scattered points of (θ, r, t), corresponding
output (z, u, v) can be generated using the AS, forming a validation data set that randomly distributed in the
computational domain and period. The root mean squared errors (RMSE) between the validation data set and the
results of the NN model are used to evaluate model performance. For model development, this validation data set
is designed to be random, abundant, and widely distributed in the entire computational domain to demonstrate the
generalization of the model. In real applications, the model can also be validated using individual observational
site, an example of which is given in Section 3.3 (Figure 5). The information on all training data, including
methods to obtain or generate them, is summarized in Table 1. Only the validation data set directly samples from
(θ, r, t), while others sample from (θ, r) with a default temporal resolution of 10 min. In Table 1, LPDEs follow
Equations 1–3 and include (z, u, v) and their derivatives, LIC specifies (z, u, v) at the initial time, LBC only specify u
at the boundary of calculation domain, LOBS involves the comparison of all (z, u, v) between the NNmodel output
and the ground truth data.
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The PINN‐SWEP is developed with MATLAB® R2023b, applying GPU acceleration for ML. The training is
performed on an NVIDIA RTX 3090 GPU and an Intel Core i9‐13900K processor. The training process takes
approximately 18 hr to complete 600,000 epochs for 4 cases simultaneously, providing simulated results of wind‐
induced hydrodynamics over the first 24 hr with acceptable accuracy. Concretely, the RMSEs of (z, u, v) of the
validation data set are controlled under 5.0 × 10− 5 m, 2.0 × 10− 5 m/s, and 2.0 × 10− 5 m/s (two orders of
magnitude smaller than the variation ranges of the variables). Information on the main scenarios is summarized in
Table 2. Case 1 provides the results of the AS, and there is no limit on data resolution in space, which is regarded
as a benchmark scenario. Case 2 is the result of data interpolation based on the aforementioned 45 pseudo‐
observational sites. From Case 3 to Case 6, the results of the basic PINN‐SWEP model and the optimized
models are presented.

3. Results and Discussion
3.1. Significance of Physics

Taking advantage of the prior knowledge of hydrodynamics (i.e., governing equations) is at the core of the PINN
methodology. Therefore, the significance of PDEs is first investigated. In Case 1, patterns of z, u, v at t= 195 min
generated by the AS are shown in Figures 3a–3c. This moment is not part of the pseudo‐observational data, which
is generated every 10 min (i.e., at 190 and 200 min). For an area with a radius of 67.5 km, 45 observational sites
are insufficient to describe the fluid dynamics, especially for u and v. This has been demonstrated by a direct linear
interpolation based on the 45 pseudo‐observational sites (Case 2, Figures 3d–3i). Since the water fluctuation z
indicates a linear pattern (Figure 3a), it is therefore possible to be decently resolved by direct interpolation using
limited data (Figures 3d and 3g). However, simple interpolation is insufficient to resolve the more complex
distributions of u and v (Figures 3e, 3f, 3h and 3i). Using the 45 samples to train a fully data‐driven NN without
physics by omitting loss terms LPDE1 − LPDE3, LIC, and LBC (Case 3, Figures 3j–3o) results in a poorer repre-
sentation of z, u and v compared to Case 2. As a result, the significance of physical constraints and PDEs is
highlighted, and the value of PINN is further demonstrated by Case 4 (in the following section) which signifi-
cantly improves the model performance by including the physical constraints.

Table 1
Summary of Different Types of Sampling Points for Training and Validating

Type Number of points Sampling methods Update frequency

LPDE1 , LPDE2 , LPDE3 8,000 purely random 20,000 epochs

LIC 100 purely random 20,000 epochs

LBC 50 purely random 20,000 epochs

LBC f
50 purely random 20,000 epochs

LOBS (observational) 45 Sobol sequence /

Validation 10,000 Sobol sequence /

Table 2
Scenario Summary

Case number Number of samples With BCf or not Descriptions

1 / / Analytical solutions

2 45 / Interpolation (linear) based on 45 observational sites

3 45 / No physics (equations, IC, and BC excluded)

4 45 N Basic PINN‐SWEP

5 45 Y PINN‐SWEP with BCf for v only

6 45 N PINN‐SWEP with data arrangement strategy: 5 sites on the θ boundary, 40 from the Sobol
sequence
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3.2. PINN‐SWEP, Boundary Problem, and Solutions

The performance of the model greatly improves by imposing PDEs (PINN‐SWEP cases, Figure 4). The results of
the basic PINN‐SWEP model and the optimized models bear far greater resemblance to the analytical solution
(Case 1, Figures 3a–3c) than the cases without PDEs (Case 3, Figures 3j–3o), and are also much better than the
interpolated data (Case 2, Figures 3d–3i). This is also proved by the RMSEs calculated based on the difference
between each case and the benchmark Case 1 (Table 3).

A drawback of NN models used in polar coordinate systems is the discontinuity (magenta box in Figure 4c) at
θ = 0 = 2π (white dashed line in Figure 4a), which is even more apparent in Case 3 (Figures 3j–3o). The pro-
nounced discontinuity at θ = 0 (2π) in all ML‐based cases results from the overlap of two ends of θ dimension in
the polar coordinate system. Small errors during the extrapolation toward these two ends can lead to serious
discontinuity problem. This discontinuity does not exist for the AS‐interpolation case because both the inter-
polation and figure plotting are conducted in the rectangular (non‐polar) coordinate system. Among the three
output variables, this problem is most serious for v at t = 195 min, as pattern conversion can be found within the
magenta box in Figures 4c and 4f. Taking variable v as an example, the boundary problem can be resolved by

defining a loss term LBC f
along the θ = 0 (2π) line (Case 5) using Q3:MSE

(NN(0,r,t),NN(2π,r,t)) for variable v. This extra loss term LBC f
significantly re-

duces the coordinate‐induced discontinuity problem (Figures 4g–4l). Even
though the RMSE in Table 3 is based on information about the whole basin
rather than focusing on the θ boundary, the RMSE of v has been significantly
improved from 5.3 × 10− 6 m/s to 2.9 × 10− 6 m/s due to the additional BCf. On
the other hand, although the BCf only involves variable v, the RMSE of u has
also been improved from 5.7 × 10− 6 m/s to 3.7 × 10− 6 m/s. Moreover, an
extra test case which includes the BCf for variable u is presented (Appendix C)

Figure 4. The wind‐induced water fluctuation z (first column), velocity u in r‐axis (second column), velocity v in θ‐axis (third column), and errors (from fourth to sixth
columns) of (z, u, v) compared to Case 1 at t = 195 min derived from 3 methods, including the basic PINN‐SWEP method (Case 4, first row), PINN‐SWEP with a
fictious BC for variable v (Case 5, second row), and PINN‐SWEP using specifically arranged observational sites (Case 6, third row, 5 sites on θ = 0). The white dashed
line in panel (a) is the boundary of θ. The magenta box in panel (c) shows the discontinuity when θ= 0 (2π). White round and squared dots in panel (m) are the positions
of the assumed observational sites, and the pentagram is selected to perform a time‐series validation.

Table 3
The RMSEs of Case 2–6 Compared to the Benchmark Case 1 at
t = 195 Minutes

Case 2 Case 3 Case 4 Case 5 Case 6

z(×10− 5 m) 3.7 17.3 1.3 1.4 1.3

u(×10− 6 m/s) 16.1 33.2 5.7 3.7 4.9

v(×10− 6 m/s) 14.7 31.2 5.3 2.9 2.8
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in Supporting Information S1, providing similar results, that is, these two cases both improve the overall model
performance on the (u, v) simulation at θ= 0 (2π) while the performance on z remains similar. This is related to the
inner relationship between u and v, as they are both components of flow velocities, more information
on one component can simultaneously improve the simulation of the other, indicating the effectiveness of
imposing a simple fictitious BC. As explained in Section 2.2, more complicated BCf that includes all or com-
binations of (z, u, v) can be applied as needed, but a new balance of weighting coefficients should be achieved as
the model complexity is enhanced.

The discontinuity can be further reduced by imposing a stronger constraint on the boundaries of θ by defining
observational sites along the θ= 0 (2π) line. The previous fictitious BCmethod only proposed a constraint that the
output values of θ= 0 should be equal to those of θ= 2π, but without specific ground truth data. However, the data
arrangement measure steps up to specify the exact values of the output on the θ boundary. Based on Case 4, which
uses 45 randomly distributed observational sites, we can spare 5 of these sites specifically on θ= 0, resulting in 40
remaining random sites (Case 6, Figures 4m–4r). A slight discontinuity in Case 5 is further eliminated by only 5
specified observational sites, indicated by the comparison of errors (Figures 4j–4l and 4p–4r). This strategy has
two advantages compared to the fictitious boundary method. Firstly, it does not impose any new loss term,
therefore does not enhance model complexity, benefiting the training. Secondly, since more pseudo‐observational
data are distributed at the θ boundary and are incorporated into the model as hard constraints which are stronger
than self‐constraints, a better simulation of this high‐deviation region can be achieved, potentially improving the
overall performance of the model. The second advantage is reflected by the RMSEs of the validation data set, as
the RMSEs of (z, u, v) are 3.76 × 10− 5 m, 1.26 × 10− 5 m/s and 8.8 × 10− 6 m/s for Case 5 (with fictitious BC,
averaged results of three runs), and are 2.86 × 10− 5 m, 1.05 × 10− 5 m/s and 8.97 × 10− 6 m/s for Case 6 (data
arrangement, averaged results of three runs). Even though the fictitious BC method in Case 5 mainly targets at
improving model accuracy of v, these two cases have close RMSEs of v, while the data arrangement strategy
obviously improves model performance on solving z and u. Thus, the data arrangement strategy helps to better
address the boundary problem at the expense of enhancing the request (on sampling site selection rather than data
size) for observations. Although this strategy has higher demand for observations, it can be adopted in appli-
cations where the observational positions are flexible, and the fluid dynamics near θ = 0 are important.

Figure 5. A time‐series validation for Case 5 at θ= π/2, r= R/2 (pentagram in Figure 4m); panels (a–c) are results of z, u, and
v, respectively.
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3.3. Time‐Series Validation

The PINN‐SWEP model (Case 5) has been additionally validated in the time domain using the same position as
Chen et al. (2007) (θ= π/2; r= R/2, corresponding to the pentagram in Figure 4m). This site is not included in the
45 training points. The PINN‐SWEP model outputs the result every 10 min, starting at minute 5 to avoid overlap
with the training data set (starting at minute 0). The wind‐induced fluid motions in the basin are relatively tiny
compared to the geometric scale of the domain which is therefore difficult to accurately resolve. Nevertheless, the
RMSEs are 2 orders of magnitude smaller than the small variation ranges of z, u, v (Figure 5). The PINN‐SWEP
method shows excellent performance for time‐series reproduction, proving its capability to resolve fluid dy-
namics based on limited data.

3.4. Sensitivity Test on the Training Data Volume

The results presented in Figures 4 and 5 are based on 45 assumed observational sites. To analyze how PINN‐
SWEP is sensitive to the observational data volume, we conducted a sensitivity test in which the number of
observational sites increased from 20 to 60 (with an interval of 5). For each scenario of the test, three runs of
PINN‐SWEP simulations are conducted and the results are averaged. The remaining RMSE of the validation data
set computed after 600,000 training epochs is used to quantify the model's sensitivity to the observational data
volume (Figures 6a–6c). For all cases, the positions of the observational sites follow the Sobol sequence to ensure
repeatability.

Clear inflection points of all three output variables (z, u, v) appear when applying 25 assumed observational points
(Figures 6a–6c). The remaining RMSE increases noticeably as the data volume is downsized to less than 25.
However, after 25, the benefit of using more data points reduces, and reduces to near‐zero after 50. When 10, 25,
and 40 assumed observational sites are applied, counterpart time‐series validations similar to Figure 5 were also
conducted (Figures 6d–6f). To better visualize the deviations of each simulation, results in the period t= 16–24 hr
are presented. The time‐series validation for using 25 pseudo‐observational sites shows that the model can well
simulate the hydrodynamics at θ = π/2, r = R/2, as the red lines with pentagrams in Figure 6 keep great
resemblance to the analytical solution. Meanwhile, an increase or decrease of 15 pseudo‐observational sites based
on 25 sites causes significant difference in model performance. The improvement of accuracy from using 25 to 40
sites is not significant while the accuracy reduction from 25 to 10 sites is apparent, especially for the velocity in
radius direction (u, Figure 6e).

The sensitivity test indicates that the recommended minimum data volume is from at least 25 observational sites.
In this study, we assume the temporal frequency is 10 min. In real observations, for water elevation and velocity
measurements, the frequency can surpass the 10‐min assumption easily. In that case, more abundant data in
dimension t may further improve the model performance.

3.5. Training Process and Model Convergence

The convergences of the loss function and the RMSE of Case 5 (PINN‐SWEP with BCf) are shown in Figure 7,
and similar training processes (Appendix D) in Supporting Information S1 of other cases (Appendix B) in
Supporting Information S1. The loss function gradually decreased and reached smaller values at the end of every
20,000 epochs. As introduced before, except for the pseudo‐observational data, other collocation points were
resampled every 20,000 epochs. The resampling measure was conducted by randomly sampling new points and
did not increase the dependence on data volume. It also explains the fluctuations that occurred every 20,000
epochs in Figure 7. However, the fluctuations caused by the resampling measure became weaker as the training
went on, indicating overall convergence during the whole training process. In other words, the resampling
measure helps to avoid overfitting and increase the generalization of the PINN‐SWEP model. After the training
process, loss of data (LOBS) remained the largest among all loss terms (title of Figure 7a), also suggesting the
model was not overfitted with the limited data.

An example of typical overfitting can be found in the training process of Case 3 (no physics case). As the loss
function continued to decrease in the whole 600,000 epochs, while the RMSE increased on the contrary after
hitting a low point within the first 20,000 epochs (Figure S2 in Appendix D in Supporting Information S1). The
significance of physical information is once again emphasized because the limited information from 45 pseudo‐
observational sites can be easily overfitted, according to Case 3.
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3.6. Model Robustness

In this study, we apply AS as pseudo‐observational data. However, both systematic and random errors typically
exist in real measurements. Therefore, we conducted a test for different levels of noise to evaluate the robustness
of our model. In this test, the noise was added to the pseudo‐observational data by setting different maximum
noise percentages. Specifically, the noise‐contaminated data was generated as:

Data = DataAS +MaxNoise × |DataAS|⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟
noise amplitude

× p (13)

where MaxNoise is a percentage that specifies the noise amplitude together with the absolute value of the pseudo‐
observational data (|DataAS|), and p is a random probability in (0,1), that creates the randomness of noise. Case 5,
which involves 45 pseudo‐observational sites, is used as a benchmark case, and the noise is added based on
Case 5. The MaxNoise is specified at 2%, 5%, 10%, 15%, 20%, 25%, and 40%.

Figure 6. The remaining RMSEs of z (a), u (b), and v (c) of the validation set after 600,000 training epochs using different numbers of assumed observational sites. Time‐
series validations at θ = π/2, r = R/2 (the pentagram in Figure 4m) using 10 (d), 25 (e), and 40 (f) pseudo‐observational sites.
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A 2%‐maximum noise does not affect the model performance (Figures 8a–8c). On the contrary, such small noise
can act as a form of regularization and enhance model generalization (Shen, 2018), resulting in a decrease of
RMSEs when including this 2%‐maximum noise. Model performance is significantly weakened by noise from
10% onward. For a 20%‐maximum noise, the RMSEs of the validation set double the 0‐ and 2%‐maximum noise
cases. When the maximum noise percentage reaches 40%, the RMSE of water elevation z is an order of magnitude
larger compared to other cases (Figure 8a).

In addition, we conducted a time‐series validation, in consistent with the preceding validation position in
Figures 5 and 6. This time‐series validation visually demonstrates the deviations induced by different levels of
noise. The 2%‐ and 10%‐maximum noise leads to comparable results, which are acceptable in terms of both time‐
series resemblance to the analytical solution (Figures 8d–8f), and the overall RMSEs (Figures 8a–8c), under
5.0 × 10− 5 m, 2.0 × 10− 5 m/s, and 2.0 × 10− 5 m/s, as mentioned in Section 2.2). However, a 40%‐maximum noise
leads to obvious deviations in all variables (z, u, v). As a result, when the noise is less than 10% of the data
magnitude, the model is able to simulate the hydrodynamics in the system with sufficient accuracy. In real ob-
servations, a 10% measurement error is a relatively low (poor) standard. For instance, the typical bias of Acoustic
Doppler Current Profiler (ADCP) is about 1.5%–3.5% (Huang, 2018), indicating that the bias tolerance of our
model (10% of the data magnitude) holds great potential for practical applications based on in‐situ observations.

Figure 7. Training process of Case 5 (PINN‐SWEP with BCf); (a) the total loss, the text above panel (a) is the model status after 600,000 epochs; panels (b–d) show the
variation of remaining root mean squared errors (after 600,000 epochs) of z, u, and v of the validation data set, respectively.
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3.7. General Discussion and Future Work

Although PINN models can simulate dynamic processes, they have substantial distinctions from numerical
models (which are most widely used to model dynamic processes). PINN models are not constrained by the
“output time step” present in numerical models. They can output all information within the spatial and temporal
domains extremely fast (on the order of seconds or even less) without requiring the model to be re‐run. This
highlights a significant advantage of PINNs—their flexible usage after training. The success of the PINN method
in solving SWEs strongly suggests that this method has the potential to solve other problems that can be described
by the same or similar PDEs. Especially for PDEs in polar coordinate systems, our method provides implications
for handling boundary discontinuity issues.

However, it should be noted that currently PINNs still face a wide variety of challenges that limit their application
in real‐world complex problems. One of the primary challenges is the computational efficiency during training.
To achieve accurate results, a PINN training process usually requires thousands or hundreds of thousands of
epochs, depending on the complexity of PDEs. For each epoch, the computational expense is largely determined
by the architecture (size) of the model and the number of sample points involved in the calculation (Nabian

Figure 8. The remaining RMSEs of z (a), u (b), and v (c) of the validation set after 600,000 training epochs considering different levels of noise. Time‐series validations
at θ = π/2, r = R/2 (the pentagram in Figure 4m) using 2% (d), 10% (e), and 40% (f) of the data magnitude as noise maximum.
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et al., 2021). On the other hand, an adequate number of sample points is important for ensuring model accuracy.
As a result, sampling techniques that balance the coverage of sample points and the computational efficiency are
important. In this study, the resampling method benefits the model accuracy but also increases computational
cost. Other strategies such as the clustered training points sampling method can help achieve a better trade‐off
although it needs priori knowledge of the solution (Mao et al., 2020). In our future work, more efficient sam-
pling methods, such as residual‐based adaptive sampling (Hanna et al., 2022; Wu et al., 2023) can be applied or
combined with the current resampling strategy to improve the training efficiency.

In addition, time‐dependent problems still remain significant challenges for the majority of PINN models (Dong
et al., 2023; Zhang et al., 2022). Typically, MLP‐based PINNs do not distinguish between the temporal and spatial
dimensions, resulting in the lack of information on temporal relationships (Wu et al., 2022). However, time‐
dependent processes are crucial in water research. In this study, the PINN‐SWEP model successfully solved
the time‐dependent SWEs but the simulation period was limited. The model requires improvement in terms of
capturing temporal relationships before realizing its potential for solving real‐world complex issues. Previous
efforts such as temporal domain splitting (Meng et al., 2020) and latent context generating (Jiang et al., 2020; Wu
et al., 2022) provide information of great value on our future work related to time‐space issues.

The architecture and hyperparameters of the model can be further optimized to enhance model generalization and
training efficiency. For parameters in the SWEs such as the wind speed in our case, their changes do not
significantly affect the model complexity and the loss function. Therefore, the current model architecture can be
easily applied to these scenarios. While boundary and initial conditions can be much more complicated and can
pose challenges for training the model. Dazzi (2024) provides an example for taking topography into consid-
eration using an augmented system of SWEs, which enlightens future development of the PINN‐SWEP model.
Other techniques, such as dynamic weights and adaptive sampling, will be explored in the future to accelerate the
training process. Despite the limitations identified here and, in the literature, PINNs successfully alleviate the
dependence on data volume and have attracted attention from various scientific fields. In this study, we focus
more on investigating their capability in hydrodynamics simulation but cannot ignore their advantages and
suitability in inverse and parametrized problems. As the model develops, we will seek to apply the model to
realistic applications and additional scenarios; for instance, resolving fluid dynamics in a rotating tank could be an
initial attempt as real observations can be conveniently obtained.

4. Conclusions
We developed a PINN model, PINN‐SWEP, which incorporates governing equations and sparse data to solve
SWEs in a polar coordinate system. Classic wind‐induced fluid motions in a circular basin were revisited with
PINN‐SWEP. The horizontal motions and water surface fluctuations were well resolved by PINN‐SWEP, sug-
gesting great potential for PINN‐SWEP as an alternative method for analytical or numerical solutions. The single‐
site time‐series validation further demonstrates the accuracy of our method to infer fluid dynamics, including
subtle wind‐induced motions.

The polar coordinate system may cause a discontinuity of NN model output at the overlapping boundaries of the
θ‐axis (θ = 0 or 2π). A v‐oriented fictitious boundary condition was imposed to equalize the model output for
points on θ‐axis boundaries. This measure helps to alleviate the discontinuity and pattern shift of v. A follow‐up
method to reduce discontinuity is also proposed, but at the cost of a higher data requirement. In that case, it is
suggested to allocate these data (or observation) resources based on concrete demands if these resources are
flexible.

This physics‐informed methodology can significantly reduce the amount of data required for a data‐only NN. The
sensitivity analysis suggests that for such a large area, the fluid dynamics of the entire basin can be simulated
based on data collected from only 25–45 observational sites using PINN‐SWEP. The noise tolerance test further
proves the robustness of the model, indicating the potential for being applied based on real observations. TheML‐
based model introduced here as well as the technique to deal with boundary‐related discontinuity could also be
applied to other geophysical systems, especially those with dynamical processes described in a polar coordinate
system.
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Data Availability Statement
All datasets (the pseudo‐observational data) used in this study, as well as the code and a training‐process video of
the PINN‐SWEP model are publicly available at: https://figshare.com/articles/dataset/2024_PINN‐SWEP/
25303330.
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