
 
 

Delft University of Technology

Real-Life Wheelchair Mobility Metrics from IMUs

de Vries, W.H.K.; van der Slikke, R.M.A.; van Dijk, M.P.; Arnet, Ursina

DOI
10.3390/s23167174
Publication date
2023
Document Version
Final published version
Published in
Sensors

Citation (APA)
de Vries, W. H. K., van der Slikke, R. M. A., van Dijk, M. P., & Arnet, U. (2023). Real-Life Wheelchair
Mobility Metrics from IMUs. Sensors, 23(16), Article 7174. https://doi.org/10.3390/s23167174

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/s23167174
https://doi.org/10.3390/s23167174


Citation: de Vries, W.H.K.; van der

Slikke, R.M.A.; van Dijk, M.P.; Arnet,

U. Real-Life Wheelchair Mobility

Metrics from IMUs. Sensors 2023, 23,

7174. https://doi.org/10.3390/

s23167174

Academic Editor: Hsin-Yi Kathy

Cheng

Received: 30 June 2023

Revised: 2 August 2023

Accepted: 9 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Life Wheelchair Mobility Metrics from IMUs
Wiebe H. K. de Vries 1,* , Rienk M. A. van der Slikke 2,3 , Marit P. van Dijk 2 and Ursina Arnet 1

1 Swiss Paraplegic Research, Guido A. Zächstrasse 4, 6207 Nottwil, Switzerland; ursina.arnet@paraplegie.ch
2 Department of Biomechanical Engineering, Delft University of Technology, 2628 Delft, The Netherlands;

r.m.a.vanderslikke@hhs.nl (R.M.A.v.d.S.); m.p.vandijk@tudelft.nl (M.P.v.D.)
3 Human Kinetic Technology, The Hague University of Applied Sciences, 2521 The Hague, The Netherlands
* Correspondence: wiebe.devries@paraplegie.ch

Abstract: Daily wheelchair ambulation is seen as a risk factor for shoulder problems, which are
prevalent in manual wheelchair users. To examine the long-term effect of shoulder load from daily
wheelchair ambulation on shoulder problems, quantification is required in real-life settings. In this
study, we describe and validate a comprehensive and unobtrusive methodology to derive clinically
relevant wheelchair mobility metrics (WCMMs) from inertial measurement systems (IMUs) placed
on the wheelchair frame and wheel in real-life settings. The set of WCMMs includes distance covered
by the wheelchair, linear velocity of the wheelchair, number and duration of pushes, number and
magnitude of turns and inclination of the wheelchair when on a slope. Data are collected from ten
able-bodied participants, trained in wheelchair-related activities, who followed a 40 min course over
the campus. The IMU-derived WCMMs are validated against accepted reference methods such as
Smartwheel and video analysis. Intraclass correlation (ICC) is applied to test the reliability of the IMU
method. IMU-derived push duration appeared to be less comparable with Smartwheel estimates, as
it measures the effect of all energy applied to the wheelchair (including thorax and upper extremity
movements), whereas the Smartwheel only measures forces and torques applied by the hand at the
rim. All other WCMMs can be reliably estimated from real-life IMU data, with small errors and
high ICCs, which opens the way to further examine real-life behavior in wheelchair ambulation with
respect to shoulder loading. Moreover, WCMMs can be applied to other applications, including
health tracking for individual interest or in therapy settings.

Keywords: IMU; wearable sensors; spinal cord injury; activities of daily living; wheelchair
propulsion; shoulder

1. Introduction

Manual wheelchair users often report persistent shoulder pain and problems. The
prevalence of shoulder pain is accordingly high, ranging from 39 to 71% [1–3]. Not only is
the pain itself a relevant problem. Since manual wheelchair users are dependent on their
upper extremities for many aspects of daily life, shoulder health is also highly correlated
with independence, social participation and quality of life [4–6].

Wheelchair users are 5.8 times more likely to suffer from shoulder pain than able-
bodied controls [1]. Due to the inability to use the lower extremities, wheelchairs users
may put increased load and repetitive stress on their shoulders during many activities
of daily life (ADL), such as during wheelchair propulsion [7], pressure relief lifts [8] and
transfers [9]. The shoulder is a very mobile joint, not built for the high and frequent loads
experienced in the daily life of a wheelchair user. If the demands of daily life exceed the
capacity of the shoulder, it will lead to acute or overuse injuries. Both are very frequent in
this population [10].

Wheelchair propulsion as a risk factor for shoulder problems has been the focus of
previous investigations. Several studies have been conducted to address the amount of
shoulder load in wheelchair propulsion [8,11,12] or the relationship between wheelchair
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propulsion characteristics and shoulder pathologies [13,14] or shoulder pain [1,14–16].
Usually, these studies evaluate wheelchair propulsion in a cross-sectional design during a
standardized protocol in a laboratory setting, which provides a very detailed understanding
of the amount of shoulder load during this specific task. The amount of shoulder load is
one of the three factors needed to evaluate the risk for shoulder problems, along with the
frequency and duration of the exposure. It is essential that these factors are assessed over a
longer period (days or weeks) in the daily lives of the wheelchair users where shoulder
problems are emerging.

IMUs are ideal for monitoring wheelchair propulsion unobtrusively over a long period
of time. In comparison with measurement wheels, such as the Smartwheel, which have
been used to quantify wheelchair propulsion in a laboratory setting [17–19], IMUs have the
advantages of being lightweight, easily attached wheelchairs, able to measure over a longer
time and less costly. IMUs measure three-dimensional acceleration and angular velocity.
Therefore, the disadvantage of IMUs is that propulsion variables are not measured directly
on the wheel but must be deduced from the (raw) IMU signals. To use IMUs for tracking
physical activity and wheelchair propulsion, methodologies have been developed for use
in both daily life [20–36] and sports settings [37–42]. Regarding wheelchair propulsion
in daily life, most of the literature is published on methods for quantifying a manual
wheelchair user’s energy expenditure or activity levels during physical activity [27,30,31,34].
However, methods for quantifying wheelchair propulsion itself, and thus quantifying the
wheelchair user’s exposure to one of the risk factors for shoulder problems, are scarce.
Nevertheless, in general, one or two variables of propulsion quantification are addressed in
previous publications, (such as speed [26,29,36], distance covered [26,29,33,35,36], number
of pushes [20,24,25,28,32], duration of movement [23,36], direction of movement [23] or
propulsion style [21,22]); a methodology combining several of the relevant variables is
still missing.

In addition to quantifying wheelchair propulsion for studying the risk of shoulder
overload in research, wheelchair users also wish to use such technologies for self-care.
Unlike other chronic health conditions, health-tracking solutions for shoulder health man-
agement are not yet commercially available [16]. Li et al. showed that such health-tracking
technologies are desired and can support manual wheelchair users’ self-care. The acces-
sibility of tracking devices or applications can provide motion awareness, support the
understanding of one’s own capacity and can facilitate communication with therapists.
The knowledge of wheelchair propulsion data and their trends can further inform activity
planning to prevent overuse injury [16] or analyze the outcome of health-related interven-
tions in the domain of activity and participation [43,44]. The tracking features desired
by wheelchair users and therapists are the measurements of push speed, distance and
duration, stroke efficiency and propulsion patterns [16]. Preferably, tracking devices will
be unobtrusive, easy to handle and not interfere with performing the activities of daily life.

Summing up, the methods for quantifying wheelchair propulsion in daily life are
still scarce and usually only address some of the features desired by wheelchair users and
therapists or some of the features needed for evaluating wheelchair use as a risk factor for
shoulder problems. In this study, we aim to describe and validate a comprehensive and
unobtrusive methodology to derive a full set of wheelchair mobility metrics (WCMMs)
from one or two IMUs placed on the wheelchair while collecting data in a real-life setting.
The described WCMMs include distance covered by the wheelchair, linear velocity of
the wheelchair, number and duration of pushes, number and magnitude of turns and
inclination of the wheelchair when on a slope.

2. Materials and Methods
2.1. Study Sample

Ten able-bodied participants (3 male, 7 female, age 39 ± 9.4 years, height 169 ± 9.1 cm,
weight 66 ± 12.0 kg) were invited to participate in the experiment. The participants were
first trained in the wheelchair-related tasks of interest for several hours. Such an able-bodied
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study sample cannot be representative of the manual wheelchair user population in all of
its aspects, for instance considering trunk stability, which in the SCI case might be affected
by the lesion level but is still available in the able-bodied case. However, as indicated by
Vegter et al. [45], several aspects, such as wheelchair propulsion characteristics, do converge
to patterns observed in manual wheelchair users within the first 12 min of training in
novice wheelchair users. The study was approved by Ethikkommission Nordwest- und
Zentralschweiz (EKNZ, Project-ID: 2020-01961). Informed consent was obtained from all
subjects involved in the study.

2.2. Data Collection

A standard active wheelchair (Küschall K-Series 2005, Küschall AG, Witterswil,
Switzerland) was equipped on the right side with a 24-inch Smartwheel (SW, Three Rivers
Holdings, Inc., Mesa, AZ, USA; measuring wheel rotation and the forces and torques
exerted at the rim at 240 Hz) and 2 Shimmer IMUs (IMU, Shimmer3 IMU unit, Shimmer,
Dublin, Ireland; measuring acceleration and angular velocity at 100 Hz) on the wheelchair
frame and the right wheel, as depicted in Figure 1. The Shimmer IMUs were configured as
follows: wide-range accelerometer range 8 g at 16-bit resolution, having an RMS noise value
of 27.5 × 10−3 m/s2. The gyroscope range was set at 2000 degrees/s, at 16-bit resolution,
having an RMS noise value of 0.0481 degrees/s.

Figure 1. Equipment used. A standard active wheelchair with a Smartwheel on the right side, a
Shimmer IMU attached to the wheel in such a way it did not hinder propulsion and another IMU
attached to one of the horizontal bars of the wheelchair frame (not visible here).

While following a course around the campus, the participants implemented a variety
of speeds, turns and slopes and completed a figure-8 maneuver 3 times. All trials were
recorded on a consumer-grade video recorder for the referencing of activities. Data were
synchronized by a specific procedure: “the mechanical IMU sync”. For that procedure,
all the IMUs were attached to a rigid beam that was rotated around the longitudinal axis
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10 times before and after the actual measurements. This delivers a clear recognizable pattern
in the gyroscope signals that can be synchronized by cross-correlation. Visual inspection
of the peaks of the synchronized signals indicated an accuracy of one to two samples
(which equals 10–20 ms). While using simple and straightforward signal processing
and calculations, the next seven WCMMs were derived from the acquired IMU data for
comparison with reference methods:

1. Distance covered;
2. Linear velocity of the wheelchair;
3. Number of pushes;
4. Duration of pushes;
5. Number of turns;
6. Magnitude of turns;
7. Wheelchair inclination.

The IMU-derived WCMMs were validated against appropriate reference methods
(Smartwheel data, video analysis, inclinometer) as described below. All data were collected
in real-life conditions.

2.3. Preprocessing of IMU Data

We aimed for a minimum of preprocessing for the IMU data; however, besides basic
filtering of noise (2nd order Butterworth bidirectional lowpass filter with a cut-off frequency
of 5 Hz) [46], two corrections were required for proper calculation of most of the variables:
the alignment of the frame IMU with respect to gravity and the determination of the
alignment of the wheel IMU with respect to the wheel axis.

The IMU mounted on the frame of the wheelchair was manually aligned with one of
the horizontal lateral pointing tubes of the frame; however, vertical alignment with gravity
proved to be hard. For that reason, a period of 10 s of complete standstill (on level floor)
was selected from the recorded data (both frame and wheel). Averaging the measured
acceleration over these 10 s delivered a steady measure of gravity, which was used to align
the IMU’s frame of reference with gravity.

Similarly, the IMU mounted on the wheel could not be accurately aligned with the
wheel axis. Therefore, a period of 10 s of straightforward wheelchair ambulation was
selected from the recorded data for every participant. This track of straightforward ambula-
tion was selected from the video recordings and was the same trajectory for all participants.
Averaging the measured angular velocity over these 10 s delivered a steady measure of
the rotation around (and a definition of the vector of) the wheel axis in the IMU frame
of reference. Concurrently, the angular velocity around the wheel axis can be calculated
conform Equation (1).

IMU_AV_axis = cos (α) × IMU_AV_tot (1)

where:
IMU_AV_axis = angular velocity around the wheel axis from wheel IMU;
α = angle between vector of the wheel axis in IMU reference system and the currently

measured angular velocity vector;
IMU_AV_tot = total angular velocity as 3D-vector sum.

2.4. Derivation of WCMM Variables from Reference Methods and IMU Data
2.4.1. Distance Covered

The Smartwheel contains an optical rotary encoder measuring wheel angle (SW_A),
accumulated over time. This variable was reset to zero at the start of measurement. Con-
currently, the distance covered can be calculated following Equation (2).

SW_Dis = (SW_A/360◦) × WD × π (2)
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where:
SW_Dis = distance covered according to Smartwheel;
SW_A = Smartwheel angle accumulated;
WD = Wheel diameter in meters.
From the wheel IMU data, integration over time of the angular velocity around the

wheel axis delivers the accumulated wheel angle over time, from which the distance covered
can be calculated in the same fashion as for the Smartwheel, following (Equation (2)). ICC
was applied to test the reliability of the estimation of the distance covered for both systems
across participants (two-way mixed, single measures, participants as random factor).

2.4.2. Linear Velocity

The angular velocity can be obtained from the Smartwheel by differentiating the
Smartwheel angle accumulated over time. For both the Smartwheel and IMU data, angular
velocity around the wheel axis (expressed in ◦/s) can be used to calculate the linear velocity
in the same fashion as distance covered (Equation (2)), by replacing accumulated angle with
angular velocity. The linear velocities from both systems were compared by calculating the
RMS value over the complete signals.

2.4.3. Number and Duration of Pushes

There are several methods for push detection from Smartwheel data, ranging from
simply applying a threshold above noise level [2] at the propulsive torque signal to a
more elaborated four-phase push detection defining hand contact from the measured force
and discerning between braking and propulsive force [3,4]. For the sake of simplicity in
comparing the two systems used (Smartwheel and IMUs), the basic approach for push
detection was followed for the Smartwheel data. We applied a threshold of 2 Nm on the
propulsive torque measured for positive rolling velocities.

For push detection from IMU data, the following basic assumption was made: in
all-day wheelchair propulsion, when propulsive force is exerted at the rim, the angular
velocity will increase. When there is no longer a force exerted, the angular velocity will
decrease due to resistive forces. A basic peak detection algorithm (standard Matlab routine
from the Signal Toolbox, R2021a, Mathworks, Natick, MA, USA) was used to first detect the
valleys in the signal of angular velocity around the wheel axis (AV-axis) and concurrently
the peaks in between the valleys. This was applied for forward propulsion at those time
instances where the angular velocity was positive. The difference between the start and
end of each push determined the push duration. The same assumption was the basis for
push detection from the angular acceleration (AA), where a push-start is detected when
the AA is positive and a push-end is detected when the AA is negative.

For both systems (Smartwheel and IMU data), a push was counted as a push when
it resulted in a more than 30◦ rotation of the wheel. Furthermore, pushes with a push
duration of more than 2 s were excluded.

ICC was applied to test the reliability of the estimations of the number of pushes and
the average push duration across participants (two-way mixed, single or average measures
where applicable, participants as random factor).

2.4.4. Number and Magnitude of Turns

All participants performed a figure-8 maneuver like those in Bossuyt et al. [5] and
Collinger et al. [6]; however, this maneuver was only completed three times as fatigue
induction was not aimed for. Since the Smartwheel cannot measure the amount of turn
around the global vertical (WC_turn), another reference method was applied here. Using
the video recordings of the figure-8 maneuver and a 2D-DLT method [7], the 2D orientation
of the wheelchair was calculated at the start and end of the figure-8 maneuver and compared
with the IMU data.

From the wheelchair frame IMU (after alignment with gravity), the angular velocity
around the vertical was time integrated and the continuous angle of turn (either positive or
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negative depending on left or right turns) accumulated from the start to end of the protocol.
The resulting WC_turn from the wheelchair frame IMU was compared with the difference
in 2D orientation of the wheelchair obtained from the 2D-DLT method. WC_turn was
compared between systems by applying ICC (two-way mixed, single measures, participants
as random factor).

The continuous angle of turn from the wheelchair frame IMU served as a reference for
the number and magnitude of the WC_turn for the whole of the course measured. WC_turn
can be derived from the wheel IMU’s angular velocity signal in a simple fashion based
on the following two assumptions: (1) daily wheelchair use does not include sidewards
tipping of the wheelchair; (2) the number and inclinations of sidewards-oriented slopes
are ignorably small compared with the total amount of vertical turn a wheelchair user
encounters on a daily base. Any deviation from the actual measured angular velocity from
the wheel axis can then be attributed to a rotation around the global vertical (a WC_turn)
and can be calculated using Equation (3). However, the direction of turn (left or right) is
lost in this way. Time integration of the signal delivers a continuous angle of turn around
the global vertical (but absolute values only).

IMU_AV_turn = sin (α) × IMU_AV_tot (3)

where:
IMU_AV_turn = angular velocity of wheelchair turning around the global vertical;
α = angle between the vector of the wheel axis in IMU reference system and the

currently measured angular velocity vector;
IMU_AV_tot = total angular velocity as 3D-vector sum.
From the continuous angle of turn, the number of turns and the magnitude thereof can

be extracted for both IMUs (frame and wheel). To enable comparison of the magnitude, the
continuous angle of turn derived from the frame IMU was rectified. Only turns larger than
30◦ were included. The absolute number of turns was compared with the ICC between
the frame- and wheel-IMU-derived values across participants (two-way mixed, average
measures, participants as random factor).

Comparison of the calculation of the magnitude of WC_turn between the frame
and wheel IMUs was performed by calculating the intersection of the two normalized
histograms of the turn [8] according to Equation (4).

I(y, ŷ) =
∑n

i=1 min(yi, ŷi)

∑n
i=1 yi

(4)

2.4.5. Wheelchair Inclination

The different inclines of the course were measured with a digital inclinometer (SPI-
Tronic Pro 360) at 5 equidistant locations, for which the values were averaged. As the frame
IMU was aligned with gravity, the angle between the actual acceleration measured and
the vertical axis of the IMU contains information on incline besides horizontal acceleration
due to wheelchair propulsion. To separate these two types of information, a 4th-order
bidirectional low-pass Butterworth filter with a cut-off frequency of 0.2 Hz was applied
to the frame IMU’s acceleration signal. This cut-off frequency was determined by exper-
imentation and considering the average time needed to propel over the inclination. The
inclination was calculated from IMU data as the angle between the filtered acceleration
signal and the IMU’s vertical axis in the sagittal plane, averaged over the course of the
slope. The calculated inclinations from the IMU data were compared with the (digital level)
measured inclination by ICC (two-way mixed, average measures).

3. Results
3.1. Study Sample

In total, 302 min of wheelchair activities by the 10 participants was analyzed. The
summed distance covered on campus was around 6.5 km. The overall qualitative perfor-
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mance of the participants was highly variable. Some participants, even after several hours
of wheelchair training, were still careful and slow in propelling their wheelchair on flat
surfaces, on slopes and in making turns, whereas other participants were clearly more
experienced and showed much more dynamic behavior. This variation in performance is
comparable with the variation in propulsion patterns in the target population of wheelchair
users when including persons with paraplegia and tetraplegia. As mentioned before, the
able-bodied study sample cannot be seen as representative of the manual wheelchair user
population in all of its aspects, for instance considering trunk stability. However, the
exerted forces at the rim from the current study sample followed very similar patterns to
those observed in data obtained from studies with persons with SCI. Furthermore, in the
current study, the movements of the wheelchair are measured and compared using two
different devices and methodologies. Despite the variation in, for instance, the propulsion
patterns observed in the study sample, the two methods showed good comparability.

3.2. Derivation of WCMM Variables from Smartwheel and IMU Data

The results of the comparisons of the derived WCMM variables, according to error
measures and ICC (where applicable) are summarized in Table 1. The reference and IMU
values are depicted as group averages in the table; however, error measures were derived
from, and ICC were applied to, individual values across participants. Most WCMMs show
good agreement, except for push detection from wheel IMU angular acceleration and push
duration detection from both angular velocity and acceleration of the wheel IMU.

Table 1. WCMM variables, averaged across participants, with error measures and ICC where
applicable (two-way mixed, single measures, absolute agreement), across participants.

Variable Reference Value IMUs Value Error Error Measure 1 ICC p-Value

Distance covered (m) 647.6 646.1 −0.2% MAND 1.000 <0.001
Linear velocity (m/s) - - 0.02 RMS -
Number of pushes AV 429.6 428.6 4.1% MAND 0.989 <0.001
Number of pushes AA 429.6 510.9 19.1% MAND 0.869 <0.001
Push duration AV (s) 0.41 0.65 59.5% MAND 0.030 0.159
Push duration AA (s) 0.41 0.54 33.1% MAND 0.129 0.048
Cumulated WC turn (figure-8) (◦) 1604 1600 0.65% MAND 1.000 <0.001
Number of WC turns 86 88 3.4% MAND 0.977 <0.001
Magnitude of turns 95.9% % overlap -
Inclination long slopes 2 1.6, 1.8, 2.2 1.65, 1.9, 1.8 0.3 MAND 0.975 3 0.000

AV = derived from angular velocity, AA = derived from angular acceleration, WC = wheelchair. 1 Error measures.
MAND = mean absolute normalized difference, absolute difference normalized to reference value per participant;
RMS = root mean square difference of the AV signals; % overlap = overlap of normalized histograms of wheelchair
turns from frame and wheel IMU data. 2 Slope up and down; positive and negative values were compared.
3 ICC on averaged slope measures.

3.2.1. Distance Covered

The total distance covered by both the Smartwheel and wheel IMU appeared to be
close to equal and cumulated equally over time, as indicated for one of the participants by
Figure 2.

3.2.2. Linear Velocity

In a similar fashion, the linear velocity of the wheelchair, as derived from the Smartwheel
data, appeared to be close to equal to the linear velocity derived from the wheel IMU data,
with an average RMS value of 0.02; a typical example is depicted in Figure 3.
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Figure 2. Distance covered as derived from Smartwheel data (blue) and from an IMU mounted on
the wheel (green). Typical example from one participant. The blue line is hardly visible as the lines
overlap, indicating equal performance over the complete trajectory.

Figure 3. Linear velocity as derived from Smartwheel data (blue) and from an IMU mounted on the
wheel (green). The graph represents a typical example from one participant.
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3.2.3. Number and Duration of Pushes

Push detection was performed on propulsive (positive) torque from the Smartwheel
at positive velocities only, as most studies examine wheelchair propulsion characteristics
on forward ambulation. Similarly, push detection from the IMU data was defined for
increasing, positive velocities. Push detection from IMU_AV_axis appeared to be the most
robust in comparison with the basic threshold-based algorithm on propulsive torque for
Smartwheel data, with an average MAND of 4% (Table 1). A typical example is depicted in
Figure 4.

Figure 4. Typical example of the push detection for one participant using about two minutes of data.
The top graph depicts the pushes detected from propulsive torque as measured with a Smartwheel;
the lower graph depicts the results from push detection on angular velocity from an IMU attached
to the wheelchair wheel. The number of pushes indicated in the titles of the graphs are for the full
duration of the measurement, in this case around 40 min. A green circle indicates the start and a red
circle the end of a push.

Push detection from the IMU_AA_axis signal resulted in around a 20% higher number
of pushes than from the Smartwheel data, although it delivered a shorter push duration
than from the IMU_AV_axis signal (Table 1). However, the push durations derived from
the IMU data were longer than those from the Smartwheel data: about 60% for AV and
around 30% for AA-derived push duration. Consequently, the overlap of the normalized
histograms comparing the Smartwheel- and IMU-derived push durations showed lower
values of 51% and 60% for the AV and AA signals, respectively, as depicted in Figure 5.

3.2.4. Number and Magnitude of Turns

As the total turn from the figure-8 maneuver from the frame IMU data differed by less
than 1% from the 2D-DLT derived total turn, it seemed appropriate to use the frame IMU
as a reference for the wheel-IMU-derived amount of turn. The overlap of the normalized
histograms on magnitude of turns was, on average, 95.9%; this is shown for one participant
in Figure 6.



Sensors 2023, 23, 7174 10 of 16

Figure 5. The normalized histograms show the overlap of push duration derived from the Smartwheel
(SW, blue) and (A) IMU angular velocity (green) or (B) IMU angular acceleration (green) for one
participant. Dark green areas visualize the overlap of the blue and green bars.

Figure 6. Normalized histograms for the magnitude of turns as derived from the data from the frame
IMU (blue) and the wheel IMU (green) according to Equation (3). The percentage overlap (visualized
in dark green) is calculated according to Equation (4); it is 95% for this specific participant.

3.2.5. Wheelchair Inclination

Wheelchair inclination on longer slopes was detected with a small error (0.3◦) and
high reliability (ICC = 0.975).
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4. Discussion
4.1. Study Sample

Despite the high variation in performance of participants, the derivation of most
WCMM variables was robust and consistent in comparison with the values from the respec-
tive reference systems; all data were collected in real-life conditions. This is a promising
result, enabling the future application of the described methodology for collecting WCMMs
from IMU data in real-life settings.

4.2. Derivation of WCMM Variables from the Smartwheel and IMU Data
4.2.1. Distance Covered

The distance covered shows a low error of −0.2% between methods and a high
reliability, with ICC of 1.00. Therefore, the distance covered derived from an IMU on the
wheel of the wheelchair can be considered equal to the distance derived from a Smartwheel.
This variable can be used as a primary measure of mobility assessment, a simple but robust
variable for life space assessment, as described by Giannouli et al. [47]. Although only a
one-sided measurement was performed, this gives a good estimate of distance traveled.
Such a measurement is not the same as the distance covered for the center of the wheelchair
when making turns, which happens frequently in real-life settings. When an accurate
measurement of the distance covered by the wheelchair and its user is required, it is usually
defined as the distance that the center of the wheelchair has traveled and a method with
two IMUs should be applied [42]. The daily distance covered can be used as a rudimentary
measure for wheelchair mobility, in the same fashion as a step counter for the general
population.

4.2.2. Linear Velocity

The linear velocity data from the IMU on the wheel had a low RMS of 0.02 when
compared with the values from the reference system. This variable can then be further
detailed into bouts of mobility or activity and rest times. Since this method measures
continuously, it allows for flexibility in the selection of bout durations for research or
treatment purposes.

4.2.3. Number and Duration of Pushes

The number of pushes detected from the wheel IMU’s angular velocity differs by about
4% in comparison with the propulsive-torque-based push detection from the Smartwheel.
With an ICC of 0.989, the methods can be considered equal. The number of pushes detected
from angular acceleration is, however, around 20% higher than from the Smartwheel
data and is not recommended. Furthermore, the underlying assumption or application
area for the described method is focused on counting pushes during active wheelchair
propulsion; being pushed is not discerned and probably needs more complex methods [33].
The number of pushes a day is an interesting measure in relation to general activity (such
as distance covered); however, since each push is delivered by the upper extremity, it is
also an interesting variable in relation to eventual shoulder problems, as a first indication
of the daily shoulder load. As such, the monitoring of daily wheelchair behavior in terms
of the WCMMs described in this publication can enrich the future research on shoulder
problems in MWUs.

The push duration values derived from the IMU data are, however, different from
the push duration values derived from the Smartwheel; this can be observed in Figure 5,
where the histograms shift to “longer duration”. This can be explained as follows: the
Smartwheel measures the torque exerted by the hands at the rim, whereas an IMU measures
the total wheelchair acceleration. The latter is also influenced by trunk and arm movement,
potentially leading to increased velocity/acceleration during the recovery phase [48] and
thereby lengthening the acceleration phase. The difference in push duration derived
from the two systems (Smartwheel and IMU) has consequences for the calculation of
combined variables such as power output, for which push duration is a required variable
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when expressed per push. Furthermore, the rolling resistance should be measured and
incorporated for proper calculation of power output. Time normalized profiles of applied
force at the rim (or an estimate thereof) depend on push duration detection to segment
and normalize the measured data. Such force profiles can give additional information
on wheelchair propulsion technique, as rate of rise or jerk are shown to be associated
with shoulder pain [15]. When the goal of data collection is purely focused on shoulder
load, for now it is preferable to use a Smartwheel for force exertion (or propulsive torque)
measurements. Future work might lead to the development of more advanced algorithms
for the detection of propulsive torque from IMU data.

As no clear definitions of a wheelchair push in real-life settings could be found in the
literature, we defined a threshold of a minimum of 30◦ of wheel rotation per push detected,
as well as a cut-off of a maximal push duration of 2 s. These thresholds and cut-offs were
applied to data from both the Smartwheel and IMUs but are in fact “food for discussion”:
what instance should be considered as a push in wheelchair propulsion in daily conditions,
in terms of minimal wheel rotation, increase in angular velocity, and/or duration of the
push? The cut-off of a maximum 2 s for push duration was based on visual inspection
of the data and the corresponding video for the longer pushes detected, which appeared
to be caused by acceleration of the wheelchair when going downhill. As the algorithm
used defines the end of a push when the angular velocity starts decreasing, the end of
the push was, in these instances, detected when braking or reaching the end of the ramp
or longer incline. The same discussion should be held regarding the definition of a turn
in wheelchair ambulation, in terms of minimal amount of turn or duration. For instance,
should a correction in driving direction of 5◦ count as a turn? It is expected that future
monitoring of WCMMs will add to increased knowledge on a clinically significant amount
of turn.

4.2.4. Number and Magnitude of Turns

The turning of the wheelchair can be reliably calculated from IMU data, either from a
IMU attached to the wheelchair frame or a wheel mounted IMU, under the assumptions
described. WC turning is an immature area of research in manual wheelchair propulsion,
where peak forces at the rim can double in comparison with straightforward propul-
sion [49]. Furthermore, Togni et al. identified 900 turns a day, on average, for a sample of
14 wheelchair users who were monitored for a week. Measuring WC_turn from real-life be-
havior can therefore further increase insight into the magnitude and frequency of shoulder
load in MWUs. In daily wheelchair use, a turn is usually made by pushing harder at one
side than the other. However, in wheelchair sports, a turn is more often initiated by braking
on one side. Different types of turning strategies could also be observed in the real-life data
collected in this study, based on a more extensive analysis of the push detection from the
Smartwheel data.

In fact, six different push styles were observed in interaction with different turning
styles: application of propulsive torque when driving forward, changing driving direction
(from forward to backward or vice versa), which is usually the case when making a turn
from standstill, or applying propulsive torque when driving backward, which in fact is
braking of the wheelchair, or making a turn. The same can be observed for the application
of braking torque for the three driving directions described above. Figure 7 depicts the
above described for one participant. From this figure, it can be seen that 126 pushes
(26 + 2 + 75 + 12 + 11) out of 439 (total) were not propulsive when driving forward. This
stretches the need for clear definitions of pushing and braking, especially for the SCI
population, as some persons with SCI lack trunk stability, which complicates braking
actions. The inclusion of only able-bodied participants for this project had some limitations
towards the type of pushing/braking observed in the data, as all subjects had trunk function.
Future research should address the detection of these different types of pushing/braking
actions from IMU data.
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Figure 7. The graph depicts the different push styles that were observed in an extended analysis,
indicating the need for clear definitions of pushes and braking actions. AV is angular velocity, which
is positive when driving forward and negative when driving backward. The blue vertical lines
indicate propulsive torque when driving forward (313 pushes), the dashed green lines indicate
propulsive torque when driving backward and then forward during a push (26 pushes, making a
turn on the spot, then driving forward) or when driving backward (red dotted lines, 2 pushes, in fact
braking when driving backward); blue lines at negative angular velocity indicate negative torque
when driving backward (11, propelling backward), the dashed green lines indicate negative torque
when driving forward and backward during a push (12 times), the red dotted lines indicate negative
torque while driving forward (75 times, in fact braking when driving forward).

4.2.5. Wheelchair Inclination

The inclination on longer slopes on the campus could be measured accurately, with
an error of 0.3◦. Only three participants agreed to descend a ramp with an 11◦ inclination,
where two of them tipped the wheelchair backwards to control speed during the descent.
For those situations, wheelchair inclination is still measured correctly but is no longer repre-
sentative of the slope or ramp negotiated. Nevertheless, as propelling uphill usually occurs
without tipping for speed control and puts increased loads at the shoulder, wheelchair
inclination is an interesting variable to measure; however, this requires an extra IMU on
the wheelchair frame.

4.3. Future Research

The variation in pushes and braking actions observed from the real-life data collected
deserves further research and the development of appropriate calculations or algorithms
to detect the variety of pushes. Braking actions or turning by braking can put higher
loads on the shoulder, and proper execution of turns and training to do so could help
in reducing shoulder problems. Furthermore, detection of the mounting/descending
of roadside curbs or maneuvering over irregular surfaces or uneven terrain, as higher
shoulder loading activities, could provide additional insight and help to optimize shoulder
loading behavior from wheelchair ambulation. The monitoring of daily wheelchair use
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in terms of the described WCMMs could add valuable insight into daily shoulder load
on modifiable variables. For instance, the quantification of the daily distance covered or
the number of pushes a day deliver very clear variables on the mobility of MWUs. The
number of wheelchair turns in daily conditions and magnitude of them, might shed more
light on shoulder load from daily wheelchair ambulation as a potential undervalued risk
for shoulder problems. The amount and steepness of inclinations encountered on a daily
basis could increase the insight on environmental barriers that the MWU population must
deal with. All these variables and factors are suspected to have a certain relationship with
shoulder load and shoulder problems. Quantification of these WCMMs in real-life settings
for longer durations and their associations with shoulder problems should be examined.

One area of interest for future research will be the development of an accurate and
easy to use device or app for physical activity screening, health tracking for individuals or
meeting activity goals in discussion and agreement with clinicians and therapists.

5. Conclusions

Summarizing the above, most WCMMs can be reliably derived during real-life condi-
tions from one or two IMUs on a wheelchair. The distance covered, linear velocity, number
of pushes and number and magnitude of turns can be reliably derived from one IMU on the
wheelchair wheel. With an additional IMU on the frame, the inclination of the wheelchair
can be reliably obtained. This opens the way to further examine real-life behavior in daily
manual wheelchair ambulation.
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