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Abstract
Heat pumping through thermoelectric devices has many advantages over traditional cooling. However, their current efficiency 
is a limiting factor in their implementation. In this paper, we approach the non-convex topology optimization of thermoelectri-
cal elements for cooling applications through the method of moving asymptotes (MMA) to improve their cooling capabilities 
per watt usage. The optimization problem is defined for a given power budget, aiming for the minimum temperature with a 
known heat pumping need. The introduction of power as a constraint justifies the introduction of the voltage gradient across 
the thermocouple as a design variable to maintain the thermoelectrical device in its optimum power-to-heat extraction ratio. 
To better understand the convergence of this non-convex problem, we present a two-variable analytical thermoelectric opti-
mization model. This example provides information on how to select the penalty parameters used to scale the three material 
coefficients involved in the problem to obtain lower objective values and better convergence using MMA. The analytical 
model shows the non-convexity of the problem and provides the recommendation to use penalization coefficients of the form 
pk = p

𝜎
> p

𝛼
= 1 for the thermal conductivity, electrical conductivity, and Seebeck coefficients. We tested these penalization 

coefficients through optimizations of a model based on the 1MC10-031 commercial thermoelectric-cooler (TEC) using the 
finite element method (FEM). These penalization coefficients provided local minima without the need for volume constraints. 
With this procedure, we found designs that provided temperatures close to 10 degrees lower using 60% less semiconductor 
material volume compared to the initial design.

Keywords Topology optimization · Thermoelectric-cooler (TEC) · Power constraint · Temperature minimization · SIMP · 
Non-convexity

1 Introduction

The energy consumption for cooling and heating accounts 
for half of the global energy consumption and 40% of global 
energy-related CO2 emissions, respectively (IRENA et al. 
2020). Most heat-transfer related activities are carried out 
through compressor- and refrigerant-based systems for 
active thermal management. Conversely, thermoelectric 

modules offer an alternative thermal management solution 
with simpler static systems, higher reliability, lower main-
tenance cost, refrigerant-free operation (Liu et al. 2022b), 
miniaturization possibilities, and reverse heat-pumping 
capabilities (Riffat and Ma 2003). These advantages make 
thermoelectric-coolers (TECs) ideal for niche applications 
such as sustainable self-cooling, cryogenic applications, 
medical, food or building refrigeration, thermal cycling 
and electronic cooling of sensors, lasers, and chips (Zhao 
and Tan 2014). Despite their advantages over conventional 
systems, TECs have yet to see a significant adoption in 
applications where they compete against turbomachinery-
based cooling systems due to their low energy conversion 
efficiency and high system cost (approximately $75 W−1 
(LeBlanc et al. 2014) per TEC against $7 W−1 for liquid 
electronic cooling systems (Maurya 2020).

The static behavior and miniaturization possibilities of 
TECs arise from using the Peltier effect. First observed in 
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1834 (Peltier 1834), the Peltier effect dictates that when a 
current is passed through two dissimilar conductors, such 
as a p–n semiconductor junction, heat absorption occurs at 
the interface, arising from the elevation of the energy levels 
of electrical current electrons from the p-type to the n-type 
semiconductor. The Seebeck effect can also be harnessed 
through dissimilar conductor connections, called thermo-
couples, to generate an electrical potential gradient, which 
can be harnessed for applications such as heat recovery and 
power generation in remote or hard-to-reach locations. Pel-
tier and Seebeck effects exists within the same thermoelec-
tric device architecture based on thermocouples.

As the smallest unit of thermoelectric device architec-
ture, the thermocouple has captured significant attention 
in endeavors aimed at improving the efficiency of thermo-
electric devices. On the one hand, these efforts focus on 
reconciling the conflicting material properties of the often 
used semiconductor materials. To have high efficiency, we 
require high electrical conductivity, low thermal conductiv-
ity, and large Seebeck coefficient gradients—related by the 
Wiedemanne–Franz law—to maximize the figure of merit 
or ZT, directly associated with the device’s efficiency. These 
properties can be modified through the nanoscale constitu-
ents of semiconductors; however, the procedures required 
are limited by the available material composition and manu-
facturing technologies, with the largest ZT obtained being in 
the range of 1–3 (Zhao and Tan 2014). On the other hand, 
the electrical and thermal conductivities of the entire device 
also depend on the thermocouple topology. Numerical 
simulations show that thermocouples with variable cross-
sections can provide higher efficiencies and lower stresses 
than conventional constant section thermocouples (Ibeagwu 
2019). In particular, thermocouple design is highly interest-
ing for the standard thermoelectrical module architecture 
(flat-bulk) (He et al. 2018). Fabián-Mijangos et al. (2017) 
experimentally tested multiple thermocouple designs, show-
ing efficiency increases using asymmetric thermocouples for 
power recovery.

Topology optimization (TO) is a powerful tool for 
enhancing the efficiency of thermocouples without the 
need for extensive experimental testing and its associated 
costs. Since its inception with Bendsøe and Kikuchi (1988), 
the method has promoted different variations such as the 
commonly used solid isotropic material with penalization 
(SIMP) or level set (LS) approaches, among others (Yago 
et al. 2021; Sigmund and Maute 2013). TO is practical for 
designing thermoelectrical compliant microactuators, show-
ing promise with both SIMP and LS approaches (Mativo 
and Hallinan 2019; Furuta et al. 2017; Sardan et al. 2008). 
Additionally, TO can increase the efficiency of heat recov-
ery devices using novel thermocouple designs (Takezawa 
and Kitamura 2012) and multi-material optimizations (Xu 
et al. 2019). Finally, Soprani et al. (2016) delve into the 

optimization of thermal coupling materials for TECs and 
Lundgaard and Sigmund (2018) looks into the topology 
optimization of multi-material thermoelectrical devices for 
multiple objective criteria.

Despite research on TO applied to thermoelectric-com-
pliant mechanisms and heat recovery, current formulations 
fall short regarding cooling applications and specific work-
ing points. A more tailored TO formulation that takes TEC 
design considerations into account can provide a reduction 
of bulk-material costs (representing approximately 1/3 of 
the system cost according to LeBlanc et al. (2014)) and 
improved cooling performance. Furthermore, previous for-
mulations have overlooked important operational factors, 
such as the working points for electrical and power con-
sumption and their limitations. The lack of attention to these 
factors often leads to postprocessing at different operational 
points to understand the device’s actual performance, (Lund-
gaard and Sigmund 2018). Furthermore, the lack of study of 
the multiple electrical working points neglects the effect of 
the nonlinear Joule heating over the topology of the device. 
Previous results for heat recovery also tend to use volume 
constraints, which reduce the performance of the designs 
studied (Mativo et al. 2020; Takezawa and Kitamura 2012). 
Furthermore, in thermoelectrical devices, increasing the 
volumes of semiconductor material in the design does not 
necessarily lead to better performances (Shittu et al. 2020). 
This fact raises doubts about the optima found using vol-
ume constraints. Additionally, the absence of thermoelec-
trical optimization results based on 3D geometries in the 
literature raises questions about the influence of intricate 
geometries on the design of each semiconductor leg, or pel-
let, in a thermocouple.

This paper presents a novel approach to optimize three-
dimensional TEC thermocouples using topology optimization. 
First, we propose an analytical model with two design vari-
ables to study the design space and understand its non-convex-
ity. This model is studied concerning the material scaling used 
in SIMP to predict the optimization parameters to improve the 
convergence of an optimization problem with a larger number 
of design variables. Secondly, we apply TO to a finite element 
model of a thermocouple based on a commercial product, vali-
dating the insights from the lower-dimensionality problem. 
These models are studied with constant material properties 
to compare with the analytical solution of the thermoelectri-
cal equations. Using constant materials further reduces the 
computational complexity and cost of the models. We later 
study the error introduced by these assumptions in the results 
section. Furthermore, the design considerations of TECs are 
integrated into the optimization through the selection of a tem-
perature objective function subject to power consumption limi-
tations. In this model, the power consumption can be modified 
through the density design variables and the voltage gradi-
ent through the thermocouples. This voltage design variable 
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introduces an electrical control over the nonlinear Joule heat-
ing in the device. Finally, the results are studied for multiple 
electrical and thermal working points of the thermocouple.

2  Governing equations

The bulk-flat thermoelectrical architecture depicted in Fig. 1 
uses alternating p- and n-type pellet-shaped thermoelectric 
materials connected electrically in series and thermally in 
parallel. Copper layers on the top and bottom of each ther-
moelectric leg serve as electrical contacts, and two ceramic 
plates provide thermal contacts. Although all the materials in 
the thermoelectrical modeling should account for all three ele-
ments, the Seebeck coefficients of the copper layers are often 
neglected due to symmetry conditions, with only thermal 
degrees of freedom. However, the bulk properties of the semi-
conductors are subject to nonlinear thermoelectric coupling.

Goupil et al. (2011) provides the balance and constitutive 
equations representing the thermoelectrical coupling. We can 
write down the balance equations in stationary conditions for 
the electric charge and energy flux as

where j is the current density, q is the heat flow, q
�

 is the 
heat generated in the volume, and � is the electrical poten-
tial across the semiconductor material. These equations then 
express—within a given volume—the conservation of inter-
nal charge and energy given their flow through the volume 
boundary without magnetic fields.

The Ohm and Fourier equations,

complete the thermoelectrical coupling. Where � is the 
electrical conductivity, � is the Seebeck coefficient, k is the 

(1)
�j = 0,

�q + j ⋅ �� = q
�
,

(2)j = −�(�� + ��T),

(3)q = �Tj − k�T ,

thermal conductivity of the semiconductor material, and T 
is its temperature. Equations (2) and (3) provide the con-
stitutive equations and a relation between the temperature, 
heat flux, electrical potential and current flow. Although we 
can analytically solve these equations for simple configura-
tions, complex geometries or nonlinear material properties 
can only be solved numerically.

2.1  Finite element modeling

The thermoelectric equations’ finite element formulation 
makes it possible to solve complex semiconductor topologies. 
With Eqs. (1)–(3) as the strong formulation of the thermoelec-
tric problem, we need to introduce the required boundary con-
ditions to solve it. We can write these boundary conditions as

where V
�V

 and T
�V

 define the prescribed degrees of free-
dom in the domain, and qc and jc represent the exter-
nally prescribed heat flows and current densities, respec-
tively. The defined boundaries satisfy the conditions 
�V ∪ �j = � ,�V ∩ �j = 0 where �  represents the entire 
boundary. Similarly, the thermal boundaries satisfy 
�T ∪ �q = � ,�T ∩ �q = 0.

The thermoelectrical system can now be transformed into 
the weak form of the Eqs. (1)–(3), using an approximation 
function � and the divergence theorem,

We can now discretize Eq. (5) to reach the Garlekin formula-
tion using the approximation shape functions as,

where V and T are the temperature and voltage degrees of 
freedom and N contains the shape functions. Combining 
Eq. (6) with Eq. (5) and creating a homogeneous equation 
system, we obtain the residual ( R ) for a given nodal value 
solution,

(4)
V = V

�V
in�V ,

j ⋅ n = jc in�j,

T = T
�V

in�V ,

q ⋅ n = qc in�q,

(5)

− ∫
�

��q d� + ∫
�

�j ⋅ �� d� + ∫
�q

�qc d�

= ∫
�

�q
�
d�,

− ∫
�

�� ⋅ j d� + ∫
�j

� ⋅ �� d� = 0.

(6)
T = N⊺T,

� = N⊺V,

Fig. 1  Flat-bulk thermoelectric-cooler (TEC) schematic exemplify-
ing the electrical contacts between the semiconductor pellets and the 
thermal contact plates
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We can separate this residual into its components related to 
the temperature, �� , and voltage, �� , degrees of freedom. 
PérezAparicio et al. (2007) provides a more detailed devel-
opment of the thermoelectric finite element method (FEM) 
equations with benchmark tests concerning analytical solu-
tions and nonlinear material properties.

To obtain the solution of this system, we use the New-
ton–Raphson algorithm with the tangent system matrix, �� , 
calculated for each iteration and equal to the derivative of 
the residual concerning the problem degrees-of-freedom;

We can expand the derivatives of the residual to an integral 
form for any given iteration,

 These equations depend on the heat and current flow deriva-
tives. Using constant material properties with the tempera-
ture, we can write the equations as follows:

Notice that simplifying the material description using non-
temperature-dependent material properties reduces the 

(7)

R =

[
��

��

]
,

�� = − ∫
�

N�q d� + ∫
�

Nj ⋅ �N⊺V d�

+ ∫
�q

Nqc d� − ∫
�

Nq
�
d� = 0,

�� = − ∫
�

�N ⋅ j d� + ∫
�j

N ⋅ �� d� = 0.

(8)�� =
�

���

��

���

��

�
=

⎡⎢⎢⎣

���
�

��

���
�

��
���

�

��

���
�

��

⎤⎥⎥⎦
.

(9)

���

�T
= − ∫

�

�N
�q

�T

⊺

d� + ∫
�

N(
�j

�T

⊺

�N⊺V)⊺ d�,

���

�V
= − ∫

�

�N
�q

�V

⊺

d� + ∫
�

N(
�j

�V

⊺

�N⊺V)⊺ d�

+ ∫
�

N(j⊺�N)⊺ d�,

���

�T
= − ∫

�

�N
�j

�T

⊺

d�,

���

�V
= − ∫

�

�N
�j

�V

⊺

d�,

(10)

�j

�V
= − �� N⊺,

�j

�T
= − ���N⊺,

�q

�V
=�(N⊺T)

�j

�V
,

�q

�T
=�(N⊺T)

�j

�V
+ �jN⊺ − k�N⊺.

complexity of the TO. However, the lack of material nonlin-
earities disregards the Thomson effect. The Thomson effect 
relates to the gradient of the Seebeck coefficient with the 
temperature and induces an extra component in the elec-
trical current flow. However, this effect is small compared 
to the other thermoelectric effects and can be ignored (Lee 
2013). Disregarding the Thomson effect implies that the 
results are inaccurate for large temperature deviations from 
the temperature point used to measure the material proper-
ties (Sandoz-Rosado et al. 2013).

The nonlinearities in the problem, arising from the strong 
coupling of the thermoelectrical equations and subsequent 
Joule heating, can produce convergence issues within the 
NR. Higher-order elements provide exact results for the 
second-order thermoelectric equations within each ele-
ment, improving convergence. Using higher-order elements 
also increases the overall computational complexity of the 
problem. However, the nanometer validity limit for the ther-
moelectrical equations and manufacturability limitations to 
micrometer level (Liu et al. 2022a) reduce the element and 
system size we need to solve. Using a filter to set a char-
acteristic length scale could also mitigate these effects at 
the cost of higher complexity. To reduce the computational 
cost of the higher-order element, we use 20 node serendip-
ity elements and a 14 point integration scheme based on 
integration locations in the corners and faces of a hexahe-
dron internal to the element. Hoit and Krishnamurthy (1995) 
describes the advantages and development of this integration 
scheme with benchmark examples, and the whole element 
and integration implementation can be found in Sect. A.

3  Optimization formulation

The optimization algorithm employed in this work follows 
that proposed first by Bendsøe and Kikuchi (1988). The 
design variables xe represent a variation of the density of 
the element associated with it,

where �e is the density of element e dependent on its design 
variable, and �0 is the nominal density of the material asso-
ciated with that element. We define the rest of the material 
properties with respect to the design variable xe with a pen-
alty coefficient as,

where we interpolate between the minimum allowed value, 
denoted by the subindex min , and the nominal value of the 
semiconductor material, denoted by the subindex 0. This 

(11)�e(xe) = xe�0,

(12)

�e = �min + xp�
e
(�0 − �min),

ke = kmin + xpk
e
(k0 − kmin),

�e = �min + xp�
e
(�0 − �min),
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interpolation helps to avoid numerical singularities at each 
linear solve of the Newton–Raphson iterations. Furthermore, 
the penalization coefficient pi for each material property 
helps to avoid intermediate-density results, rapidly decreas-
ing the influence of each variable at lower densities.

Once we have defined the material properties concerning 
our design variables, we can define the objectives and con-
straints of our optimization from the problem’s governing 
equations. Traditionally, the objective function for thermo-
electric devices is their efficiency, which involves the ratio 
of the heat extracted against the power consumption, defined 
as the coefficient-of-performance (COP) for a heat pumping 
device,

where Q is the heat extracted by the TEC and P is its power 
consumption, whose ratio will always be higher than 1. 
Knowing the power dissipation of the electronic system we 
want to cool down, we know the heat extracted Q. Fixing 
Q limits a COP maximization objective to reduce power 
consumption and increase device efficiency. However, 
reducing power consumption for a known heat extraction 
does not necessarily correlate to a lower temperature in our 
electronics, which is critical for specific applications (Born-
heim et al. 2023). Defining the electronics temperature as 
our optimization objective means that we must include the 
power limitation—or power budget—of the thermoelectric 
system as a constraint, as it is no longer present in our objec-
tive function.

As we can easily modify the power consumption by exter-
nal operational inputs—applied voltage or current through 
the device—to work on more efficient states, we must 
include this operation in the optimization to compare to the 
initial design. For this purpose, we introduce an externally 
applied voltage boundary condition as a design variable. 
This voltage allows us to compare the optimum working 
point of the non-optimized designs without postprocessing. 
Furthermore, the voltage gradient design variable consid-
ers the system’s nonlinear behavior concerning the applied 
electrical load.

In some cases, reducing the volume does not improve 
the TEC’s performance. If we still want to limit the mate-
rial used and associated costs, we must introduce a volume 
constraint to the problem.

The optimization shall take into account the objective 
and constraints as 

(13)COP =
Q[W]

P[W]
,

(14a)x =argmin ∶
x

Tavg(�,�) =
1

nn

nn∑
i=1

(Ti) = L⊺U,

where the objective function, Tavg , is defined as the aver-
age temperature value of the specified nodal values. Only 
the nodal values of the surface of the thermocouple in con-
tact with the device to cool down—in this case, one of the 
copper interfaces—need to be taken into account for the 
objective value, with nn being the total number of nodes in 
this surface. This summation can then be represented as a 
matrix product of a vector of constant values ( L)—equal to 
1

nn
 for the nodal temperature values within the surface to cool 

down and zero otherwise—by the vector U that contains the 
nodal degrees of freedom (DOFs). For this calculation to be 
accurate, after the optimization has converged, we need to 
ensure that the temperature DOFs at the copper surface tem-
perature have a uniform value.

Furthermore, the established limit volume for optimiza-
tion, vobj , and design variables, x , are scaled between 0 and 
1. The volume constraint, Eq. (14c), is calculated depend-
ent on each element design variable, xe , related to the total 
initial design volume, v0 , and the desired maximum volume 
percentage, vobj . While the power consumption constraint, 
Eq. (14d), can surpass a value of 1, it is made dimensionless 
with the limiting power budget, Pobj . If both values are of 
the same order of magnitude, the optimization should not 
be affected.

To calculate the overall power consumption, we need to 
define the power differential as the current density multi-
plied by the differential of the voltage gradient at a given 
point. We can calculate the total power consumption of the 
thermocouple through the sum of the volume integral of this 
power differential for each element as

where ne is the total number of elements in the FEM model, 
�e the volume associated with a given element with e denot-
ing element-based properties, and the minus sign takes 
into account the opposite sense of the current and voltage 
differentials.

To be able to maintain the optimal power consumption 
for any xe density design space, within our power budget 

(14b)subject to:�� = 0,

(14c)cv =

ne∑
e=1

vexe

v0vobj
− 1 ≤ 0,

(14d)cP =
P

Pobj

− 1 < 0,

(14e)Vf = Vmin + xne+1(Vmax − Vmin),

(15)P =

ne∑
e=1

Pe =

ne∑
e=1

(
−∫

�e

j⊺�N⊺�� d�e

)
,
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limitations, we introduce an extra design variable xne+1 
stored in the last index of the design variable vector x of size 
ne + 1 . This variable is related to the voltage boundary con-
dition ( Vf  ) through a linear interpolation, Eq. (14e), between 
user-selected voltage values ( Vmax,Vmin ). As stated in the 
objective and design variable discussion, this variable intro-
duces the nonlinear dependency of the power consumption 
and Joule heating into the problem. Using xne+1 as a design 
variable allows, the thermoelectrical pellet, to work at the 
optimum electrical load during the optimization, reducing 
the postprocessing needs to study different working points 
and avoiding lower efficiencies due to high current density 
concentrations at higher electrical loading.

We can now solve this problem with the method of mov-
ing asymptotes (MMA) (Svanberg 1987) optimization algo-
rithm. MMA is popular in the structural optimization field 
due to its robustness, flexibility, and ability to handle mul-
tiple constraints even if other optimization algorithms pro-
vide better computational efficiency (Yang and Yang 2010; 
Fanni et al. 2013). MMA is based on specific convex func-
tions’ local approximation of the nonlinear problem. These 
approximations require the derivative of the objective and 
constraint equations concerning the design variables xe that 
are calculated in each iteration of MMA.

Subsequently, each MMA step needs to recalculate the 
FEM solution running an NR algorithm from a given initial 
point. Using the linearized equations concerning the nodal 
degrees of freedom, Eqs. (8)–(10), we find that certain con-
ditions for the NR initial point can improve the convergence 
of the method:

– For the first step of the MMA algorithm, without infor-
mation on previous NR solutions, 

 provides convergent solutions if the boundary conditions 
are not electrically or thermally disconnected.

– Having a solution from a previous MMA step, we can 
improve the NR convergence rate using the initial point, 

 where t represents the ith step of the MMA procedure.

3.1  Sensitivity calculation

In this section, we separate the problem, Eq. (14), into each 
of its objectives and constraints to calculate their derivatives 
concerning the design variables. We can use these sensitivi-
ties to find an optimum thermocouple design through gradi-
ent descent optimization algorithms.

(16)T = 0, V = 0,

(17)Tt+1 = Tt, Vt+1 = Vt
Vt+1
f

Vt
f

.

3.1.1  Objective function

The objective function defined in Eq. (14a) defines the average 
temperature from the surface of the thermocouple in charge of 
extracting heat from the environment. From this equation, we 
can apply the adjoint theorem to calculate its derivatives using 
an equivalent objective defined as,

where we include the residuals from the thermoelectric sys-
tem solution, which tends to zero for convergence conditions 
of the Newton–Raphson algorithm, multiplied by a vector 
of unknown constants � . We can write the derivative of 
this new expression of the objective function concerning 
the design variables as,

Considering the dependencies of each variable and the val-
ues of the prescribed degrees of freedom ( Ū ), we can write

and applying the chain rule to the residual derivative, we get

We can then write the derivative of the average temperature 
as

and we obtain the adjoint equation so that the components 
multiplying a derivative of U concerning a design variable 
is zero,

Substituting Eq. (22) into Eq. (21), we can now calculate the 
derivatives concerning the design variables,

where this solution can be reduced to the element level tak-
ing into account that each element depends only on each 
density design variable xe , and we can treat xne+1 , which 

T∗
avg

= L⊺U + �⊺Rk,

(18)
dT∗

avg

dx
= L⊺ d�

d�
+ �⊺

(
dRk

dx

)
.

(19)

Rk = R(U, Ū, x)

U = U(x,Vf );Ū = Ū(Vf ),

Vf = Vf (xne+1),

(20)
dRk

dx
=

𝜕Rk

𝜕x
+��

(
𝜕Ū

𝜕Vf

dVf

dx
+

dU

dx

)
.

(21)

dT∗
avg

dx
=(L⊺ + �⊺��)

dU

dx

+ �⊺

(
𝜕Rk

𝜕x
+�� 𝜕Ū

𝜕Vf

dVf

dx

)
,

(22)� = −(��)−⊺�.

(23)
dT∗

avg

dx
= +�⊺

(
𝜕R⊺

𝜕x
+�� 𝜕Ū

𝜕Vf

dVf

dx

)
,
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modifies the voltage boundary conditions separately. We 
can calculate the sensitivity concerning a xe density design 
variable as,

where the derivatives of the residual can be written in an 
integral form using the element densities,

 We can also reduce the derivatives of the heat and current 
densities to the element level as

where Ve and Te refer to the nodal values relative to the asso-
ciated element. To conclude the formulation, we can write 
the dependence of the material properties on the density 
variables, [Eq. (12)],

for the SIMP method.
Nevertheless, we still have an extra design variable con-

trolling the voltage across the thermocouple that is not con-
sidered in the previous density derivatives, xe . We store this 
design variable in the same vector that stores the density 
design variables with index ne + 1 . If we do not apply the 
boundary conditions to any element with an associated xe , 
we can calculate its sensitivity as the matrix product

and the derivative of Rk with respect to the vector of pre-
scribed nodal values Ū is equal to the rows of the Rk matrix 
corresponding to the fixed degrees of freedom in Ū . Now, 

(24)
dT∗

avg

dxe
= �⊺

e

�Rk

�xe
,

(25)

���
�

�xe
= − ∫

�e

�N
�q

�xe

⊺

d�e + ∫
�e

N(
�j

�xe

⊺

�N⊺V)⊺ d�e,

���
�

�xe
= − ∫

�e

�N
�j

�xe

⊺

d�e.

(26)

�j

�xe
= −

��e

�xe

(
�N⊺�� + �e�N

⊺��

)
+ �

��e

�xe
�N⊺��,

�q

�xe
=

��e

�xe

(
N⊺��

)
j + �e

(
N⊺��

) �j

�xe
−

�ke

�xe
�N⊺��,

(27)

��e

�xe
= p

�
xp�−1
e

(�0 − �min),

�ke

�xe
= pkx

pk−1
e

(k0 − kmin),

��e

�xe
= p

�
xp�−1
e

(�0 − �min),

(28)
dT∗

avg

dxne+1
= +�⊺�� 𝜕Ū

𝜕Vf

dVf

dxne+1
,

the partial derivative of the prescribed degrees of freedom 
concerning Vf  equals one in the prescribed values and zero 
otherwise. Given the interpolation of the voltage boundary 
condition, Eq. (14e), its derivative with respect to the ne + 1 
design variable is,

which provides all the information needed to calculate the 
derivative of the objective function.

3.1.2  Volume constraint

For an isotropic material, we calculate the derivative of the 
volume constraint element-wise using the volume of each ele-
ment. Starting from the formulation in Eq. (14c), the derivative 
of the constraint concerning each density variable is,

From this formulation, we can also appreciate that the deriv-
ative from any external boundary condition, including volt-
age, Vf  , will be zero,

3.1.3  Power constraint

Using the definition of the power consumption in Eq. (15), 
we can calculate its derivative concerning the density design 
variable xe with e ≤ ne,

The current density in the previous equation depends on the 
nodal voltages and temperature values given by Eq. (2). The 
derivative of the current density can be written as,

In this equation, we can separate the components that multi-
ply the derivatives of the system nodal degrees of freedom, 
���� , from the rest of the integrator, LUe , element-wise,

(29)
dVf

dxne+1
= Vmax − Vmin

(30)dcv

dxe
=

�
∑ne

e=1

�
xeve

v0vobj

�

�xe
=

ve

v0vobj
.

(31)
dcvol

dVf

= 0.

(32)
dPe

dxe
= −∫

�

(
dj

dxe

)⊺

�N⊺�� d� − ∫
�

j⊺�N⊺
d��

dxe
d�.

(33)

dj

dxe
= −

��

�xe
(�N⊺�� + ��N⊺��)

− �

(
�N⊺

d��

dxe
+

��

�xe
�N⊺�� + ��N⊺

d��

dxe

)
.
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We can observe that the first term LUe is a constant value 
within the element, and we can extract this term outside the 
integral,

Applying the summation from Eqs. (15) and (35) we can 
assemble both terms, LUe and ���� , for the full system nodal 
values into �� and ��� , respectively. The result taking the 
derivative for all density values, xe with e ≤ ne is,

Introducing the derivative of the power, Eq. (36), in the con-
straint derived in Eq. (14d) and using an equivalent formula-
tion with an adjoint vector, �� , multiplied by the residuals 
we obtain,

The derivative of this new c∗
pow

 can be re-written as,

where we can substitute Eq. (36),

Finally, we can select the adjoint vector �� imposing that the 
components of the derivative of the system nodal degrees of 
freedom, dU

dx
 , are removed from the equation as,

Equation (40) can now be used with Eq. (39) to calculate the 
derivatives concerning the density variables, reducing it to 
the element level as,

(34)

LUe =��
⊺�N

��

�xe
�N⊺��

+ ��
⊺�N

(
��

�xe
� + �

��

�xe

)
�N⊺��,

���� =

[
��

⊺�N���N⊺

��
⊺�N��N⊺ − j⊺�N⊺

]
,

(35)
dPe

dxe
= LUeve + ∫

�

(
����

⊺
d��

dxe

)
d�.

(36)
dP

dx
=�� + ���

⊺ dU

dx
,

�� =
[
LU1v1 LU2v2 ⋯ LUNvN

]
,

(37)c∗
pow

=
P

Pobj

− 1 + ��
⊺Rk,

(38)
dc∗

pow

dx
=

dP

dx

Pobj

+ ��
⊺ dR

k

dx
,

(39)

dc∗
pow

dx
=

1

Pobj

(
�� + ���

⊺ dU

dx

)

+ ��
⊺

(
𝜕Rk

𝜕x
+�� dU

dx
+

𝜕��

𝜕Ū

𝜕Ū

𝜕Vf

dVf

dx

)

(40)�� = −(��)
−⊺
(

1

Pobj

���

)
.

where Eq. (25) provides the derivative of the residual con-
cerning the element density.

The calculation of the derivative concerning the xne+1 
design variable controlling the voltage gradient across the 
thermocouple, Eq. (14e), can be calculated by noticing 
that the material properties do not depend on the voltage 
( �, �, k ≠ f (Vf ) ), LUe = 0 . We can calculate the derivative as

where the conclusion and procedure from Eq. (28) can still 
be applied with the new adjoint vector, ΛP.

4  Results

SIMP shows excellent results in mechanical problems with 
penalty factors, pi , higher than 1 and usually equal to 3. 
However, for high nonlinear or ”multi-physics” problems, 
these coefficients might need to be re-evaluated empirically 
to improve the convergence of TO (?).

In this section, we study the use of an analytical problem 
of low dimension that can help to provide insight into the 
larger FEM problem. Notably, we want to understand the 
influence of the parameters introduced in the optimization—
material penalty coefficients—and the starting points of the 
MMA algorithm over the optimized designs.

Finally, the proposed method in Sect. 4.2 is applied to a 
FEM thermocouple model using the insight obtained from 
the analytical model and with the application of different 
heat extraction and power consumption requirements, study-
ing their effects over the optimized designs.

4.1  Landscape study through analytical models

For a thermocouple optimization, a parallel semiconduc-
tor problem with two pillars per thermoelectric leg and two 
design variables, x1 and x2—associated with each one of the 
two pillars of each thermoelectric leg, see Fig. 2—provides 
one of the smallest problems that we can solve analytically, 
providing insights into the problem and avoiding electrical 
and thermal disconnections.

The schematic in Fig. 2 describes a problem with two 
legs for each pellet with two different density variables, x1 
and x2 , in each electrical connection to the copper layers—
elements shaded in gray—to avoid disconnected designs 
unless both density variables are equal to zero. The heat 
injection, qin , ground voltage level, V0 , with the voltage 

(41)
dc∗

pow

dxe
=

1

Pobj

LUe�� + ���
⊺ �R

k

�xe
,

(42)
dc∗

pow

dxn+1
= +��

⊺ 𝜕R
k

𝜕Ū

𝜕Ū

𝜕Vf

dVf

dxn+1
.
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gradient Vf  and constant temperature sink T0 represent the 
boundary conditions for the problem. Finally, A and L pro-
vide each column’s cross-sectional area and height, with z 
representing a certain height along the legs starting from 
the heat sink.

Notice that we apply the boundary conditions at the 
bottom and top of each leg or semiconductor column in 
the copper layers connections, providing the compatibility 
equations between the legs, which we can write using Eqs. 
(1)–(3) and Fig. 2 as

where p and n indices refer to the p or n-type semiconduc-
tors—positioned in series through a copper connection—and 
xi to the design variable associated with each parallel leg, 
Fig. 2. Finally, Tc and Vc represent the unknown values in the 
top cold connection at location z == L according to Fig. 2.

The solution of the integration of Eqs. (1)–(3) along the 
length, z, of a constant cross-section leg provides,

(43)

∑
xi

qp,xi(L) +
∑
xi

qn,xi(L) = −
qin

A
,

∑
xi

jp,xi(L) +
∑
xi

jn,xi(L) = 0,

Tp,xi(L) = Tn,xi(L) = Tc,

�p,xi(L) = �n,xi(L) = Vc,

Tp,xi(0) = Tn,xi(0) = T0,

�p,xi(0) = V0 = 0,

�n,xi(0) = Vf ,

(44)
T(z) = −

j2

k�

z2

2
+ C1z + C2,

�(z) = +
�j

�k

z2

2
−

j

�

z + �C3z + C4,

where the Ci are constants that need to be solved using the 
boundary conditions Eq. (43). The voltage and temperature 
distributions of Eq. (44) are quadratic functions across the 
bulk material with constant material coefficients.

The semiconductor material properties for each of the 
p − Bi2Te3 and n − Bi2Te3 pellets are available from the 
manufacturer and taken from Hu et al. (2015) where the data 
from ULVAC-Riko Co. Ltd is fit to polynomials of the form,

where each subindex refers to p-type or n-type semiconduc-
tors, respectively. We ignore the copper Seebeck coefficient 
due to symmetry, with its effects counteracted in the full 
thermoelectric circuit. To simplify the problem to constant 
material properties, we fix the values at 300 K as summa-
rized in Table 1.

To solve the system, we require the Ci constants for four 
different legs leading to a system of 11 equations, plus an 
additional equation for the power,

for constant values of the material coefficients ( �, �, k).
To solve the system, we select a given operational point, 

defined by all the parameters needed to solve the problem, 
given by,

and the parametric solution to Eqs. (43) and (44) found in 
Sect. B. Notice that in this solution, we set all minimum 
material properties—�min , kmin and �min from Eq. (12)—to 
zero for simplification purposes.

The quadratic nature of the system provides two different 
solutions. We look for a solution with temperatures above 
absolute zero to evaluate which one has a physical mean-
ing. For the material properties, we use the values of the 
p-semiconductor from Table 1. Notice that, to account for an 
n-type semiconductor using a given direction of the current 
and a constant positive � , we need to provide a negative sign 
to the Seebeck coefficients using Eq. (44).

In Fig. 3, we represent the objective temperature, Tc , for 
multiple combinations of the material penalty coefficients. 

(45)

�p =8.33e−12T
3 − 1.32e−8T2 + 6.3e−6T − 7.04e−4,

�p =−7.36e−13T
3 + 6.14e−10T2 − 6.35e−8T − 1.78e−6,

kp =1.59e−8T
3 − 3.32e−6T2 − 2.177e−3T + 1.5775,

�n = − 3.98e−12T3 + 7.34e−9T2 − 3.82e−6T + 3.95e−4,

�n = − 6.83e−13T3 + 6.66e−10T2 − 1.55e−7T + 1.81e−5,

kn =2.19e−8T
3 − 4.60e−6T2 − 4.51e−3T + 2.48,

(46)P = −A
(∑

jli(Vc − V0) +
∑

jri(Vf − Vc)
)

T0 = 298.15K, qin = 0.01Wm−2,

L = 1.2mm, A = 1mm2, Vf = 0.05V,

Fig. 2  Thermocouple analytical problem schematic with four col-
umns and two density design variables, x1 and x2 . We define the 
geometry of the design through a constant cross-section area A and 
height L, with the height dimension represented by the z coordinate. 
The boundary conditions are represented by a heat injection qin , a 
heat sink temperature T0 and two voltages, V0 and Vf
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The unfeasible region of the power constraint, given by Eq. 
(46), is superposed to Tc as a gray-shadowed region limited 
by a red line. We represent this power consumption with 
a darker gray color the higher the power consumption to 
visualize its landscape. The path followed by the MMA opti-
mizer, drawn with gray arrows that grow darker with succes-
sive iterations, starting from a full-density design—xi = 1 for 
both design variables—provides information on the conver-
gence of the problem.

We find 3 different possible landscapes depending on the 
material penalty coefficients, which will affect the conver-
gence of the problem. Except for Fig. 3f, all penalty coeffi-
cients present an objective temperature global minima in the 
full-density design point, and local minima at the locations 
with one single design variable with full density, i.e., x1 = 0 
and x2 = 1 or x1 = 1 and x2 = 0 . With regards to the power 
constraint, it can either present a negative slope in all the 
unfeasible design regions (Figs. 3a, e, f) or set the full-
density design point in a valley region, having a maximum 
within the non-feasible region (Figs. 3b, d).

These landscapes affect the convergence of MMA. 
The landscapes where the power presents a maximum in 
the unfeasible design space do not move from the initial 
point, chosen as the full-density design, as all directions 
increase the constraint value. This non-convexity leads to 
results within the non-feasible design space in the cases in 
Figs. 3b, d. From the remaining cases, we want to avoid 
global minima in gray design areas that lead to equivalent 
non-manufacturable porous materials, such as Fig. 3f.

To further identify the best combination of penalty coef-
ficients for this problem, we look into the convergence prop-
erties and final results of Fig. 3a, e, which show convergence 
from the full-density design to local minima in the feasible 
design space. Between both cases, Fig. 3e shows a steeper 
design space and lower achieved objective values. However, 
different initial design points might influence these results. 
Figure 4 studies these two cases for multiple initial points, 
x0
i
 , represented on the horizontal and vertical axis, and plot-

ting in color the final temperature values, number of itera-
tions until convergence, nit , and x1−opt or optimal x1 design 
variable. We do not represent the design variable x2−opt due 
to the symmetry of the problem.

Fig. 3  Material penalization coefficient cold temperature isolines for a 4-column TEC problem with two design variables and a power constraint, 
shadowed in black. The MMA optimization starting with the point (1, 1) is reflected with gray to black lines turning darker until convergence
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Figure 4a, d shows that both penalty coefficients can 
reach similar values for Tc depending on the initial cho-
sen point. However, the case pk = 5, p

�
= 5, � = 1 shows a 

lower dispersion in the results from different initial points. 
There is no better configuration regarding the number of 
iterations until convergence. Still, it does suggest that val-
ues slightly off the full-density design might reduce the 
number of iterations until convergence. Both combinations 
of penalty coefficients show numerical errors at low initial 
density values for both design variables due to the discon-
nection between the boundary conditions, which leads to 
values close to infinity in Tc.

The previous study only considered the power con-
straint. We now introduce the volume constraint through 
the definitions in Eq. (30) to study the entire landscape. 
The new landscape in Fig. 5 uses a power constraint of 

0.05 W in addition to a volume constraint of 85 %. This 
volume constraint appears as a straight line at 135 ◦ , and 
its location gives rise to 3 distinct cases depending on the 
constraint limit. We can find that both constraints, volume 
and power, cross each other Fig. 5, with the possibility of 

Fig. 4  Graphs exemplifying the final convergence values of a cold 
temperature Tc MMA optimization of a 2D analytical thermocou-
ple with a power constraint of 0.065    W for different initial design 
variables in the horizontal and vertical axis. The top figures repre-

sent the results of Tc , total iterations until convergence and the opti-
mal x1 found ( x1−opt ) for a combination of penalty coefficients of 
pk = p

�
= 5, p

�
= 1 while the bottom row uses the penalty coeffi-

cients pk = p
�
= 1, p

�
= 5

Table 1  TEC semiconductor material properties at 300 K

� ( Ωm) k ( WK−1) � ( vK−1)

p − Bi2Te3 1.45e-05 1.054963 2.17e-04
n − Bi2Te3 1.30e-05 1.305023 −1.99e-4
Cu 1.67e-08 385 0

Fig. 5  Temperature landscape for a 2D analytical thermocouple opti-
mization with a power constraint of 0.05 W and 85 % initial volume 
with the non-allowed design space shadowed in gray
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either of them being active at convergence or finding one 
of them being the most limiting, in which case it will be 
the only constraint to be active at convergence.

Figure 6 represents the value for the optimal x1 design 
variable found, x1−opt , for a maximum of 85 iterations with 
respect the initial design variables, x0

1
 and x0

2
 , represented in 

the horizontal and vertical axis using the previously defined 
problem, with power and volume constraints. Compared to 
Fig. 4, this graph shows that the algorithm removes inter-
mediate-density values from the converged results, and only 
2 solutions remain. These remaining solutions are the local 
minima with one of both design variables equal to one and 
the other one equal to zero.

As a last consideration, Fig. 7 shows the convergence of 
the objective function for different penalty values for the 
case p

𝛼
< p

𝜎
= pk starting from a full-density design. While 

higher values of pk = p
�
 provide lower objective values, the 

higher these values, the higher the nonlinearities introduced 
in the problem. The case with a nonlinear penalty coefficient 
for p

�
 shows worse convergence and final results and should 

be avoided.
Notice that Figs. 3b–c cases did not converge starting 

from a full-density design. However, these study cases might 
converge from different initial design locations. Neverthe-
less, lacking information on the optimized design, a homo-
geneous density equal to the full density as a starting point 
is desirable for larger problems.

The results and reasoning in this section lead to the rec-
ommendation of penalty coefficients of pk = p

𝜎
> p

𝛼
= 1 

and initial density values of xe = 1.

4.2  Thermocouple optimization examples 
through FEM

This section showcases optimization examples using the pro-
posed TO methodology based on the 1MC10-031 TEC from 
RMT Ltd. The data sheet of the 1MC10-031 TEC provides 
the dimensions of 1.2 × 1 × 1mm3 separated by an air-gap of 
0.4 mm which we reduce in 0.1 mm to have a larger feasible 
semiconductor design volume.

In this model, we assume a uniformly distributed heat 
input along the top surface of the thermocouple. We also 
model the heat sink as having a constant temperature at its 
bottom. We consider the TEC to consist of 32 pairs of pel-
lets, Np , considered for the calculation of the boundary con-
ditions as,

where PT and Pc represent the TEC’s total heat extraction 
and power consumption, assuming each pair extracts equal 
heat. Additionally, a voltage gradient is imposed between 

qin = qT∕Np,

Pc = PT∕Np,

Fig. 6  Design variable, x1−opt , of the obtained local minima in the 
analytical problem for 85 MMA iterations of a 2D analytical thermo-
couple optimization with a power constraint of 0.05 W and 85 % ini-
tial volume

Fig. 7  Convergence of the objective function for several penalty coef-
ficients in a thermocouple analytical model

Fig. 8  Front and side view of the thermocouple mesh with the 
applied boundary and symmetry conditions
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both copper slabs, with a value of 0 close to the p-type semi-
conductor and the desired electrical potential, Vf  , at the other 
electrical contact, see Fig. 8. This Vf =0.05 V is modified 
through the design variable xne+1 with limits between 0.5Vf  
and 2Vf  , equivalent to Vmin and Vmax in Eq. (14e).

We represent the mesh and boundary conditions in Fig. 8 
where we use symmetry boundary conditions, simplifying 
the thermocouple model and imposing no heat or current 
fluxes through this surface. The copper is a non-design 
domain used to apply the surface boundary conditions. We 
should consider additional terms to the previously calculated 
sensitivities if the copper is within the design domain.

We can now run the FEM optimization with multiple 
boundary conditions and constraints using the material prop-
erties specified in Table 1. To avoid numerical singularities, 
following Eq. (12), all material properties have a minimum 
scaling value of 1e-9. To compare to the analytical model, 
we first select a constant value of 5333Wm−2 as heat injec-
tion and 0.011 W as power constraint with different penalty 
coefficients.

In the previous Sect. 4.1, we predict the behavior of the 
thermoelectrical optimization problem for multiple penaliza-
tion coefficients. In particular, the combination pk = p

𝜎
> p

𝛼
 

shows the most promise, while the rest of the combinations 
lead to higher minima values and non-feasible results. If 
we repeat this study with the unsatisfactory penalty coef-
ficients using the FEM problem, we obtain Fig. 9. In this 
figure, we observe the convergence of the objective value 
and constraints using the rejected penalization coefficients. 
In all these cases, we observe that, while there is no volume 
constraint—it is set to 100% of the original volume—most 
optimizations get stuck at full volume. We can correlate this 
issue to the cases studied in analytical form, where we find 
a maximum value in the power constraint close to the full 
volume, which makes it difficult to achieve convergence in 
MMA. Furthermore, we can also appreciate that the combi-
nation pk > p

𝜎
= p

𝛼
 leads to a disconnection of the electri-

cal circuit, leading to heating of the objective surface and 
an eventual non-convergence of the Newton–Raphson FEM 
solver. The prediction from the analytical model also leads 

Fig. 9  Convergence of the objective and constraint functions—constrained limit in red—for discarded penalization coefficients combinations fol-
lowing the development in Sect. 4.1, starting with a full-density design

Fig. 10  Convergence of the objective and constraint functions—constrained limit in red—for three combinations of penalization coefficients fol-
lowing the approach that showed good convergence in Sect. 4.1, pk = p

𝜎
> p

𝛼
 , starting with a full-density design
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us to think that the combination pk = p
𝜎
> p

𝛼
 can remove 

the convergence issues found with the other combinations.
Figure 10 shows the convergence history of three dif-

ferent configurations of penalty coefficients with the objec-
tive and constraint values using the penalization coefficient 
format, pk = p

𝜎
> p

𝛼
 . Furthermore, the limiting values in 

both constraint plots, vobj and Pobj , are drawn as red dotted 
lines. In Fig. 10, we observe from the temperature objective 
path that higher penalty factors with a linear p

�
 lead to large 

oscillations until the algorithm provides a solution close to 
the minima. Furthermore, the model with higher order p

�
 

demonstrated a smoother convergence, but the final result 
was 8 ◦C higher compared to the linear penalty coefficient 
case. Finally, the increased p

�
= pk = 6 model only achieved 

a 1 ◦C improvement compared to p
�
= pk = 4 . These results 

imply that larger coefficients can lead to improved designs, 
but the gains might not compensate for the convergence 
deterioration. Nevertheless, all combinations of penalty 
coefficients using pk = p

𝜎
> p

𝛼
 converge to optimal values 

volumes with lower minima than all other tested combina-
tions as predicted in Sect. 4.1.

Looking at the constraint convergence results, we further 
observe that while the power constraint always becomes 
active—the TEC uses all available power—the volume con-
straint does not always remain active, with a total volume 
under the imposed vobj . Furthermore, the volume continues 
to increase after the convergence of the objective tempera-
ture value, which remains constant with less than 0.001 ◦C 
variation from the 20th iteration. This increase in volume 
after the objective convergence introduces low intermediate-
density values electrically disconnected to the rest of the 
system and, as such, are not relevant for the final manufac-
turable design and are visualized in the resulting design in 
Fig. 11.

Figure 11 shows the result of an optimization where 
each element is colored from white to black depending on 
its associated density. We can appreciate that we obtained 
column-like structures with surrounding gray or intermedi-
ate-density regions in this plot. These gray regions are dis-
connected from the rest of the design, with densities under 
2% . However, these gray elements do not transmit heat or 
electrical current as we do not appreciate any effect over the 
objective function.

Maintaining a constant value for the penalty coefficient 
of pk = p

�
= 4 and p

�
= 1 , we can run the optimization for 

different heat injection, power, and volume constraint val-
ues to understand the effect of the boundary conditions and 
constraints on the final converged designs.

Figure 12 shows the effect, over the objective value, of the 
change in the heat injection and power constraint in succes-
sive blue lines. Furthermore, since we use the voltage as a 
design variable, we can compare it with the lowest tempera-
ture value achievable in the full-density design for the same 
power consumption, seen as purple lines in the same plot. 
The different curves show that a higher power constraint pro-
vides lower temperature values. However, there seems to be 
an asymptotic behavior with smaller gains for higher power 
constraint values. Furthermore, an increase in heat injec-
tion results in a vertical translation of the objective function 
toward higher temperature values, with smaller gains with 
respect to the initial design. This effect can be taken to the 
limit, where the optimal solution results in the full volume 
design at high enough heat injections. The overlap in the 
purple and blue lines in Fig. 12 confirms this statement.

Fig. 11  Element density, xe , for a converged thermo-
couple TO with for boundary conditions and constraints 
qin = 5333W

2
m−1,Pobj = 11mW and vobj = 0.3

Fig. 12  Change in the final average temperature Tavg with respect to 
the heat injection and power constraint. The figure compares the low-
est temperature achievable for each power in the full-density design, 
cv = 0 , to the optimal designs, cvopt . We provide the results for multi-
ple heat injections, detailed in the figure legend
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As we obtain the optimization results using constant 
material properties with temperature, it is convenient to 
post-process them using a nonlinear material property for-
mulation following PérezAparicio et al. (2007). The results 
plotted in Fig. 13 show the optimal designs found with con-
stant material properties, run using the material properties 
in Eq. (45). This plot shows the full-density results for non-
linear material properties in purple for comparison purposes. 
These results show that, while the results differ from the 
constant material properties, in all cases, the optimal still 
performs better than the original design at a lower compu-
tational cost and lower non-convexities.

We can also appreciate the effect of the loading condi-
tions over the optimal thermocouple volume. Figure 14 
shows the final volume of the designs against the power 
constraint and heat injection values, calculated as,

where nx>0.9 denotes only the elements with densities higher 
than 0.9, to account for the resulting intermediate-density 
elements. The higher the heat injection in Fig. 14, the higher 
the amount of semiconductor volume for the optimized 
geometry of the thermocouple. Indeed, at the highest stud-
ied heat injection values, the optimizer does not move from 
the initial full-density design. The optimizer can converge 
at lower thermocouple volumes for lower heat injection val-
ues, achieving a minimum objective value at a given power 
constraint.

While in the previous studied scenarios, the volume con-
straint was set to full volume and always satisfied, activating 
the constraint to limit the amount of semiconductor material 
and reduce material costs is interesting. Figure 15 shows in 
blue lines the effect of lower volume constraints for the larg-
est heat input studied of 20000Wm−2—whose converged 
design is always at full density—and increased power con-
straints relative to the obtained optimized temperature. This 
plot shows that for small volume reductions, there are small 
decreases in the objective function value, which is evidence 
that the design space is flat in this region of the landscape. 
However, Fig. 15 presents a critical value of the volume 
constraint—around 70% volume—where the objective value 

(47)v% =

∑nx>0.9
e

xe

v0
,

Fig. 13  Postprocessing of the optimal designs in Fig. 12 using a full 
nonlinear material formulation following Eq. (45) plotted in blue. In 
violet, we compare the optimal results to the full-density designs, 
cv = 0 , using nonlinear material properties in both cases

Fig. 14  Change in the final design volume percentage over the total 
initial volume concerning the heat injection and power constraint

Fig. 15  Change in the final average temperature, Tavg , with respect to 
the volume constraint vobj and the power constraint, Pobj for a constant 
heat injection. The results plotted include the temperature-dependent 
postprocessing of the optimizations following Eq. (45) in purple
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increases rapidly. This behavior is still present if we post-
process the results with nonlinear material properties Eq. 
(45), plotted as purple lines in Fig. 15. However, nonlinear 
material properties slightly decrease the objective function 
for lower volumes, in the order of 2 degrees, compared to the 
full volume design optimum. This result means that while 
the optimizations performed with constant material proper-
ties provide better designs with lower computational nonlin-
earities, the problem can present better minima running with 
nonlinear material properties.

All these simulations use an averaged temperature objec-
tive, taking as a hypothesis that there are no hot spots on the 
cold surface. In all the resulting optimal designs, the change 

in the temperature distribution in the thermocouple cold side 
surface is lower than 0.2 ◦C . These results remain valid after 
postprocessing the optimal results using nonlinear material 
properties. This temperature change along the objective sur-
face is small enough to accept the initial hypothesis taken, 
stating that the temperature of this surface is homogeneous. 
If this difference were larger, an aggregation function rather 
than the average temperature of the surface would need to 
be incorporated to take into account the higher sensitivity 
of the hot spots.

Once we understand the effect of the different parameters 
on the optimization, we can look into the resulting designs. 
Figure 16 shows the geometry and temperature field of the 

Fig. 16  Elements with densities xe > 0.99 resulting from TO of a 
thermocouple following Sect.  4.2 for several boundary conditions 
and constraints. The temperature plots comprise, from left to right, 

the side view of the entire thermocouple and isometric views of each 
n- and p+ semiconductors
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converged optimization for different boundary conditions 
and constraints with the penalty factors of pk = p

�
= 4 and 

p
�
= 1.
The results in Fig. 16 show a preference toward combi-

nations of column-like results for the lowest heat injection 
studied. These columns grow and merge with higher power 
constraints and heat injections. These shapes are related 
to the constant Peltier effect, which only depends on the 
material Seebeck coefficient gradient in the p–n connec-
tions and the decrease in overall thermal- and electrical 
conductivity with lower volume percentage. This ratio can 
be quantified through the figure-of-merit ( ZT =

�
2
�

k
T  ), 

related to the efficiency of TEC devices.
The power constraint effect on the design is not so evi-

dent, as it can either increase or decrease the final volume 
percentage, see Fig. 14. This can be explained through the 
competing desired effects of low thermal and high electri-
cal conductivity. For low power consumption, the Joule 
self-heating is not as important as providing good insula-
tion to the warmer heat sink, resulting in lower volume 
designs. At the same time, at higher current flows, the 
optimizer minimizes the electrical resistance to reduce the 
device self-heating.

Finally, we can look at the case in Fig. 16 where the vol-
ume constraint becomes active for a volume constraint of 
40 % and a power constraint of 30 mW. This result is dis-
similar to the previous ones, finding internal cavities, lower 
contact surface, and an acute difference between both leg’s 
thermal profiles, with the p-type leg noticeably warmer than 
its counterpart, given the worse electrical to thermal conduc-
tivity ratio of the p-type semiconductor.

5  Conclusion

This paper describes a procedure for the TO of thermocou-
ples for cooling applications. Power constraints maintain 
optimal operational conditions, and volume constraints limit 
the material used in the final design.

The problem results in a non-convex design space influ-
enced by the nonlinear thermoelectric equations, the power 
constraint,- and the material penalty coefficients. We pro-
pose an analytical model which allows us to visualize and 
understand the effect of different variables on the problem 
convergence with lower computational expense than FEM 
models. This study leads to the definition and recommenda-
tion of material penalty coefficients for SIMP TO of thermo-
electrical devices. We give a recommendation of penaliza-
tion coefficients following pk = p

𝜎
> p

𝛼
= 1 . The proposed 

combination of penalization coefficients allows for conver-
gence without the need of volume constraints. Furthermore, 
from the combination of penalization coefficients studied, 
our recommendation provides the smallest dispersion of 
optimal objective values concerning the starting point for 
the optimization algorithm. Higher values for pk = p

�
 lead to 

lower temperature objectives. However, these higher values 
also increase the nonlinearities affecting the problem conver-
gence. Given the study on the penalization coefficients, we 
find that pk = p

�
= 4 provides a good compromise.

The use of quadratic elements in combination with the 
selected penalty coefficients removes the need for TO filter-
ing techniques to avoid checkerboarding. The use of quad-
ratic elements also improves the nonlinear solver’s FEM 
convergence for the thermoelectric equations at the cost 
of higher computational complexity. While filtering is not 
required, removing the optimizer’s tendency to increase the 
density in electrically and thermally disconnected design 
regions in the converged results could be helpful and intro-
duce a length scale. Following Lazarov and Sigmund (2011), 
these filters can be easily introduced into this formulation.

While the final converged solution results in full-density 
elements and disregards isolated material regions, we are 
still subject to manufacturing constraints. Historically, ther-
moelectric pellets are manufactured through sintering, limit-
ing the complexity of the inner structures in thermoelectric 
pellets. However, new technologies, such as emerging trends 
in thermoelectric additive manufacturing, could alleviate 
these limitations. Nevertheless, manufacturability con-
straints are crucial to streamline the geometry and mitigate 
stress concentrations that negatively impact the reliability of 
the bulk-TEC design.

The initial geometry for the optimization also car-
ries importance in the final optimized results. This study 
focuses on the bulk-TEC geometries due to their common 
use and previous experimental testing of the significance 
of their pellet geometry. However, this formulation could 
also benefit other current designs, including cylindrical, flat 
or wearable TEC designs with direct pn electrical connec-
tions without copper layers, see He et al. (2018). In some of 
these designs, introducing mechanical degrees of freedom 
can limit stresses due to differences in thermal expansion 
coefficients and allow for the design of elastic modules for 
wearable technologies. The use of multi-material formula-
tions can also be helpful for the design of stacked semicon-
ductors or meta-materials. Furthermore, the rise in porous 
thermoelectric materials research can improve TEC proper-
ties through microstructure optimization (Ijaz et al. 2024). 
These microstructures could be further integrated into the 
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formulation through homogenization techniques for future 
thermoelectric materials.

While microstructures might play a large part in future ther-
moelectric modules, the material coefficients used assume a 
homogeneous medium, which might no longer be valid at 
small feature scales. Despite the interest of �-TEC, this field 
still needs further research to facilitate device design and char-
acterization methods Zhang et al. (2022). Another reason for 
revising the discrete thermoelectric equations is the case of 
TEC use under magnetic fields, which are known to modify 
thermoelectric coefficients. Although the research on the inter-
play of thermoelectric transport and magnetism is in its infancy 
(Liu et al. 2023), introducing the Nernst effect could lead to 

more efficient devices. Furthermore, the material models used 
in this study keep the material coefficients constant with tem-
perature to better understand the equivalent analytical problem. 
The results are only accurate for small temperature variations 
from the point where the material coefficients are calculated. 
Given the postprocessing performed using temperature-
dependent material properties, we show that the optimization 
still provides better solutions than the original ones. However, 
we might still find better solutions with a formulation using 
temperature-dependent material properties during the optimi-
zation at the cost of higher computational costs and objectives 
with higher nonlinearities.

Overall, this paper provides solutions to convergence issues 
when attaining lower temperatures for TEC at lower volume 
geometries using TO. However, the material modeling and 
mechanical studies on the bulk- and other TEC designs should 
still be studied in further detail.

Serendipity 20 node element formulation

Serendipity 20 node elements are used in this work to reduce 
the complexity of the calculations while using second-order 
approximation polynomials. These elements and its reduced 
points of integration following a 14 point scheme developed 
in Hoit and Krishnamurthy (1995) are represented in Fig. 17.

In Fig. 17 we see the local coordinate system of the element 
in terms of �i , the numbering system of each node. The loca-
tion of each of these nodes and their associated shape function 
is represented in Table 2.

Finally, the integration of the element is performed in an 
internal hexahedron to the element. The integration points are 
then located in the internal hexahedron corners and face cent-
ers as defined in Table 3.

Analytical problem solution

The system of equations formed by Eqs. (43) and (44) can 
be solved, imposing a value of V0 = 0 , obtaining a value of 
Tc equal to,

Fig. 17  Hexahedral 20 node element and 14 point reduced integration 
points with the superposed element in dotted lines

Table 2  Node locations and shape functions for Hexahedral 20 node 
serendipity element

Node �1 �2 �3  Shape functions

1 −1 −1 −1 (1 − �2)(1 − �3)(1 − �1)(−�2 − �3 − �1 − 2)∕8

2 1 −1 −1 (1 + �2)(1 − �3)(1 − �1)(�2 − �3 − �1 − 2)∕8

3 1 1 −1 (1 + �2)(1 + �3)(1 − �1)(�2 + �3 − �1 − 2)∕8

4 −1 1 −1 (1 − �2)(1 + �3)(1 − �1)(−�2 + �3 − �1 − 2)∕8

5 −1 −1 1 (1 − �2)(1 − �3)(1 + �1)(−�2 − �3 + �1 − 2)∕8

6 1 −1 1 (1 + �2)(1 − �3)(1 + �1)(�2 − �3 + �1 − 2)∕8

7 1 1 1 (1 + �2)(1 + �3)(1 + �1)(�2 + �3 + �1 − 2)∕8

8 −1 1 1 (1 − �2)(1 + �3)(1 + �1)(−�2 + �3 + �1 − 2)∕8

9 0 −1 −1 (1 − �
2

2
)(1 − �3)(1 − �1)∕4

10 1 0 −1 (1 + �2)(1 − �
2

3
)(1 − �1)∕4

11 0 1 −1 (1 − �
2

2
)(1 + �3)(1 − �1)∕4

12 −1 0 −1 (1 − �2)(1 − �
2

3
)(1 − �1)∕4

13 −1 −1 0 (1 − �
2

2
)(1 − �3)(1 + �1)∕4

14 1 −1 0 (1 + �2)(1 − �
2

3
)(1 + �1)∕4

15 1 1 0 (1 − �
2

2
)(1 + �3)(1 + �1)∕4

16 −1 1 0 (1 − �2)(1 − �
2

3
)(1 + �1)∕4

17 0 −1 1 (1 − �2)(1 − �3)(1 − �
2)∕4

18 1 0 1 (1 + �2)(1 − �3)(1 − �
2)∕4

19 0 1 1 (1 + �2)(1 + �3)(1 − �
2)∕4

20 −1 0 1 (1 − �2)(1 + �3)(1 − �
2)∕4

Table 3  14 point integration scheme for a 20 node hexahedral ele-
ment

Type Integration point location Weight

Corner points �1 = ± 0.7587869106 0.3351800554
�2 = ± 0.7587869106
�3 = ± 0.7587869106

Center points �1 = ± 0.7958224257 �2 = �3 = 0 0.8864265927
�2 = ± 0.7958224257 �1=�3=0
�3 = ± 0.7958224257 �1 = �2=0
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with Tc providing 2 results to the system depending on the 
sign of the square root, Sq,

The other result we need to extract from the analytical for-
mulation is the power consumption of the device which can 
be written as,

(48)Tc =
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,
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where the Vc value is evident noting that both electrical con-
tacts, made by legs influenced by both xi , will always have 
the same material properties overall and is written as,

The current densities ji are then equal for each leg with the 
same density variable with opposite signs,

The results for these current densities can be written as,

with the equations,

and,
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characterizing all current density flow numerators and with 
common denominator for all current densities,
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 Replication of results The code used to generate the results of this 
paper can be provided upon request, as well as the data obtained. The 
results presented in Figs. 3, 4, 5 and 6 can be obtained through the ana-
lytical solution presented in Sect. B. The results presented in Figs. 10, 
12 and 14, 15 and 16 can be obtained through the implementation of 
the algorithm presented in Sect. 3.
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