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Summary
The practice of software engineering involves the combination of existing software com-
ponents with new functionality to create new software. This is where an Application
Programming Interface (API) comes in, an API is a definition of a set of functionality that
can be reused by a developer to incorporate certain functionality in their codebase. Using
an API can be challenging. For example, adopting a new API and correctly using the func-
tionality can be challenging. One of the biggest issues with using an API, is that the API
can evolve, with new features being added or existing features being modified or removed.
Dealing with this challenge has led to an entire line of research on API evolution.

In this thesis, we seek to understand towhat extent API evolutionmore specifically API
deprecation affects API consumers and how API consumers deal with the changing API.
API producers can impact consumer behavior by adopting specific deprecation policies,
to uncover the nature of this relationship, we investigate how and why the API producer
deprecates the API and how this impacts the consumer. Deprecation is a language feature,
i.e., one that language designers implement. Its implementation can vary across languages
and thus the information that is conveyed by the deprecation mechanism can vary as well.
The specific design decisions taken by the language designers can have a direct impact on
consumer behavior when it comes to dealing with deprecation. We investigate the lan-
guage designer perspective on deprecation and the impact of the design of a deprecation
mechanism on the consumer. In this thesis, we investigate the relationship between API
consumers, API producers, and language designers to understand how each has a role to
play in reducing the burden of dealing with API evolution.

Our findings show that out of the projects that are affected by deprecation of API
elements, only a minority react to the deprecation of an API element. Furthermore, out
of this minority, an even smaller proportion reacts by replacing the deprecated element
with the recommended replacement. A larger proportion of the projects prefer to rollback
the version of the API that they use so that they are not affected by deprecation, another
faction of projects is more willing to replace the API with the deprecated element with
another API. API producers have a direct impact on this behavior with the deprecation
policy of the API having a direct impact on the consumer’s decision to react to deprecation.
If the API producer ismore likely to clean up their code i.e., remove the deprecated element,
then the consumers are likely to react to the deprecation of the element. This shows us that
even for non-web-based APIs, the API producers can impact consumer behavior. We also,
observe that the nature and content of the deprecation message can have an impact on
consumer behavior. Consumers prefer to know when a deprecated feature is going to go
away, what its replacement is and the reason behind the deprecation (informing them of
the immediacy of reacting to the deprecation). The design of the deprecation mechanism
needs to reflect these needs as the deprecation mechanism is the only direct way in which
API producers can communicate with the consumer.
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Samenvatting
De praktijk van software engineering omvat het combineren van bestaande softwarecom-
ponentenmet nieuwe functionaliteit om nieuwe software temaken. Hierbij wordt de notie
van een Application Programming Interface (API) van belang: een interface voor vooraf
gedefinieerde set functionaliteit, die door een ontwikkelaar kan worden hergebruikt om
bepaalde functionaliteit in de codebase op te nemen. Het gebruik van een API is niet tri-
viaal; het moeten aanpassen aan een nieuwe API, of het daadwerkelijk correct gebruiken
van de functionaliteit van eenAPI kunnen bijvoorbeeld uitdagingen zijn. Een van de groot-
ste problemen bij het gebruik van een API is dat de API kan evolueren, waarbij nieuwe
functies worden toegevoegd of bestaande functies worden gewijzigd of verwijderd. De
uitdaging om hier goed mee om te gaan heeft geleid tot een volledige onderzoekslijn naar
API-evolutie.

In dit proefschrift proberen we te begrijpen in hoeverre API-evolutie (meer specifiek,
API-deprecatie) van invloed is op API-consumenten, en hoe API-consumenten omgaan
met een veranderende API. API-producenten kunnen consumentengedrag beïnvloeden
door een specifiek deprecatiebeleid te voeren. Om de aard van deze relatie te ontdekken,
onderzoeken wij hoe en waarom de API-producent de API afschrijft en hoe dit de consu-
ment beïnvloedt. Afschrijving is een taalkenmerk: een kenmerk dat wordt geïmplemen-
teerd door de ontwerpers van een taal. De implementatie ervan kan per taal verschillen.
Als gevolg kan de informatie die door het deprecatiemechanisme wordt overgedragen ook
variëren. De specifieke ontwerpbeslissingen van de taalontwerpers kunnen een directe in-
vloed hebben op het consumentengedrag als het gaat om het omgaanmet afschrijving. We
onderzoeken het perspectief van de taalontwerper op deprecatie en de impact van het ont-
werp van een deprecatiemechanisme op de consument. In dit proefschrift onderzoeken
we de relatie tussen API-consumenten, API-producenten en taalontwerpers om te begrij-
pen hoe elk van deze partijen een rol kan spelen bij het verminderen van problemen in
het omgaan met API-evolutie.

Onze bevindingen tonen aan dat van de projecten die worden beïnvloed door de de-
precatie van API-elementen, slechts een minderheid op de deprecatie van het API-element
reageert. Binnen deze minderheid reageert een nog kleiner deel van deze projecten door
het verouderde element te vervangen door de aanbevolen vervanging. Een groter deel
van de projecten geeft er echter de voorkeur aan om de versie van de gebruikte API terug
te draaien, zodat ze niet worden beïnvloed door deprecatie. Een ander deel van de pro-
jecten is meer bereid de API te vervangen door een andere API. API-producenten hebben
een directe invloed op dit gedrag, waarbij het deprecatiebeleid van de API een directe in-
vloed heeft op de beslissing van de consument om op de deprecatie te reageren. Als de
API-producent eerder geneigd is om de code op te schonen door het verouderde element
te verwijderen, dan zullen de consumenten met grotere waarschijnlijkheid reageren op
de deprecatie van het element. Dit laat ons zien dat zelfs voor niet-webgebaseerde API’s,
de API-producenten invloed kunnen hebben op consumentengedrag. We merken ook op
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dat de aard en inhoud van het deprecatiebericht van invloed kan zijn op het gedrag van
de consument. Consumenten willen bij voorkeur weten wanneer een verouderde func-
tie verdwijnt, wat de vervanging ervan is, en de reden van de afschrijving (waarmee de
consument geïnformeerd wordt over de onmiddellijke noodzaak om op de afschrijving
te reageren). Het ontwerp van het deprecatiemechanisme moet deze behoeften weerspie-
gelen, aangezien het deprecatiemechanisme de enige rechstreekse manier is waarop API-
producenten met de consument kunnen communiceren.
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1
Introduction

The discipline of Software Engineering revolves around the reuse of pre-existing functionality
combined with the development of new features to produce a piece of software. This is where
Application Programming Interfaces (APIs) come in. An API is a definition of functionality
that a developer can reuse within their code. APIs aim to make the entire development process
smoother and eliminate the need to reinvent the wheel. However, using an API comes with
its own set of challenges. Adopting API features can often prove to be tricky and the incorrect
usage of APIs can introduce bugs in the API consumer’s code. The changing of an API can
have an adverse impact on the consumer code, as this would require the consumer to learn
a new interface and go through the aforementioned adoption cycle all over again. These
circumstances have led to a line of research on API evolution.

In this thesis, we deal with API deprecation, which is a sub-case of API evolution. When an
API producer deprecates an API element, it indicates that this element is now obsolete and
should no longer be used by the consumer. This is often the precursor to the removal of this
element from the API, thus providing the consumer with some time to transition away from
the element. We study the impact of API evolution on a consumer and how an API producer
and language designers can help to keep the cost of dealing with API evolution at a minimum.
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A pplication Programming Interfaces (APIs) are as close to a “silver bullet” as we have
found in Software Engineering [1]. Brooks acknowledges as much while revisiting

“The Mythical Man-Month” after two decades [2]. APIs provide a contract that defines
a set of reusable functions, actions, and communication protocols that can be integrated
directly by a developer. APIs are not so dissimilar to traditional software systems, APIs
evolve and this evolution can have a large impact on the projects that depend on it [3, 4].

Keeping up with the evolution of software is costly. According to Lehman [5], almost
70% of the developmental cost is focused on software maintenance to keep up with evolv-
ing software systems. This figure has been reiterated in 2003 by Grubb and Takang [6]. In
actual cost terms, the Dutch government spends 3.5 billion euros on software costs, which
implies that roughly 2.45 billion euros are spent on just maintaining software. This large
cost highlights the need for a more cost-efficient way of dealing with software evolution.

Software evolution is necessitated by the ever-changing requirements placed on devel-
opers. This is similar in the case of APIs where the interface or contract between systems
can evolve in three different ways: (1) an existing API element can be removed from the
API as it is no longer needed or because its implementation is defective, (2) an API ele-
ment’s signature can be changed because the original signature did not fulfill all demands,
(3) an API element’s behavior can be changed due to the presence of a bug in the original
behavior.

API evolution (changes made to an API) can have a widespread impact. In 2016, the
npm ecosystemwas severely crippled as one developer removed the leftpad packagewhich
had been downloaded 2,486,696 times. APIs can evolve for serious reasons, for example: in
2014 it was discovered that the OpenSSL library suffered from a serious vulnerability that
compromised over 17% of the world’s servers. This bug, referred to as the Heartbleed bug,
was introduced in 2012 and publicly disclosed in 2014. It was patched immediately after
discovery, however, projects that used OpenSSL had to be made aware of the vulnerability
and then forced to change how they interacted with the API as the semantics of the API
element had changed. If some projects did not react to the API evolution, their code would
be vulnerable to attack.

Research has focused on understanding the impact of an APIs’ evolution (specifically
breaking changes introduced in the API) on its consumers. Wu et al. [7] analyzed the
Eclipse ecosystem to see how an API change would affect its consumers. They found that
11% of API changes produce a ripple effect; meaning that, apart from the projects that
depend on the Eclipse API being affected, projects that depend on these aforementioned
affected projects would also be affected, thus causing a ripple in the ecosystem. From
this study, we have evidence that the impact of an API change reached beyond just the
immediate dependent project. Laerte et al. [8, 9] found that for a median library 14.78% of
changes are breaking changes, whose frequency only increases over time. However, only
a minority of projects are affected by these changes. This could be because APIs introduce
breaking changes by taking the client’s usage into account. Bogart et al. [4] analyzed
the introduction of breaking changes in the npm, Eclipse and R/CRAN ecosystems. They
found that the policies adopted by the API can vary across ecosystems, in Eclipse breaking
changes are avoided, in R/CRAN the consumers are directly contacted so that they can fix
the issue and in npm, the major version of the API is simply incremented. Which shows
that in certain ecosystems, the API developers care about introducing a breaking change,
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but this is not always the case.
As an alternative to directly introducing breaking changes in the API, programming

language designers provide a deprecation mechanism. Deprecation is a precursor to a
breaking change being introduced in the API, whereby API developers can indicate that
a feature is obsolete and will be removed in a future release of the API. API developers
can indicate in the documentation as to how a project using the API should replace a
deprecated API element. Software development tools also provide extensive support for
the deprecation mechanism: compilers emit warnings when deprecated code is used [10]
and IDEs (e.g. Eclipse [11]) visualize the usages of deprecated methods by putting a strike
through the call point of the method.

Since deprecation of an API element occurs before its actual removal i.e., the introduc-
tion of a breaking change, we can study from the API consumer perspective as to what the
decision-making process is on the consumer side when it comes to reacting to API evolu-
tion. In the case of a breaking change, the consumer has no option but to react to the API
change, however, with deprecation, consumers can take their time to decide on making a
change. This allows us to determine at what point the consumer decides to change, how
the consumer makes the change in the codebase (i.e., does the consumer use the recom-
mended replacement) and determine other factors that could influence a consumer when
it comes to reacting to API evolution. This can better inform a solution that targets specific
pain points associated with keeping up API evolution and over time bring down the cost
of API consumer code maintenance.

In this Ph.D. thesis, we investigate the impact of API evolution through the lens of
deprecation of API features, from two different perspectives:

• API consumer. These are the developers that depend on an API’s features. The
projects developed/maintained by these developers are directly affected by API evo-
lution. These developers decide whether and how to keep up with the evolution of
the API.

• API producer. These developers actively develop and maintain the API. They are
responsible for evolving the API.

In addition to studying the API producer and consumer perspective, we analyze as to
how programming language design can have an impact on the API consumer behavior
regarding API evolution. Language designers can introduce ways in which the burden of
dealingwith API evolution is lessened on the consumer. For example, Java’s Project Jigsaw
allows API producers to divide large APIs into smaller logically connected segments, thus
narrowing the search space for the consumer when it comes to selecting the appropriate
API element to use and include in their project [12].

Several existing studies on API deprecation have shown that both consumers and pro-
ducers may not behave as expected when it comes to the deprecation mechanism. The
reaction of the consumers may be overdue or not happen [3, 13, 14]; also, the API producer
may not provide clear instructions for replacement or even fail to provide a rationale for
the deprecation [15–17]. Producers may eschew from removing deprecated methods from
the API to retain backward compatibility or, oppositely, remove API elements without
first deprecating them [18]. They may do so between major versions, or, breaking seman-
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tic versioning practices, do it betweenminor versions of the APIs [19]. Certain deprecation
policies adopted by producers might have an adverse impact on the consumers [14].

We have seen that similar to traditional software systems, APIs evolve as well. API
evolution can have a direct impact on the consumers that depend on the API and there
is a need to ease the burden of dealing with API evolution. However, there is a lack of a
thorough understanding of how consumers choose to deal with API evolution and why
they make certain choices. This leaves dealing with API evolution as an open question.
Furthermore, the influence of the API producers and language designers on consumer
behavior remains unexplored. This brings us to our central thesis:

By knowing the impact of API evolution on consumers, we can ascertain the
role that API producers and language designers can play in keeping the impact
of API evolution at a minimum.

In this introductory chapter, we first present background onAPI evolution, followed by
API deprecation in Java and its history. We then present an outline the research goal and
questions answered in this thesis and then we outline the various chapters in the thesis.
Finally, we describe the methodology utilized in this thesis and round off by describing
the various contributions made during this Ph.D.

1.1 API Evolution
In 1969 Meir M. Lehman at IBM [20] found that developers spend the majority of their
time performing software maintenance and dealing with software evolution. In a follow-
up study, Lehman identified that 70% of the developmental cost was spent on dealing
with software evolution. Lehman and Belady [21] proceeded to define the laws of soft-
ware evolution (known as Lehman’s Laws of Software Evolution). The eight laws defined
by Lehman apply to E-type (systems that perform some real-world behavior) software sys-
tems. APIs, which are software systems that expose reusable functionality, also adhere to
the same eight laws.

While software can evolve to meet increasing demands or needs, it can also decay.
David Parnas first spoke about software aging in 1994 [22], where he stated that over time
the design of the software can become obsolete. Reasons from this obsolescence vary from
developers patching every bug in the system using unstructured methods to the incorrect
upgrade of certain sections of the system that causes failures. Analog to this, API design
can increasingly become obsolete over time.

Being software systems, APIs evolve and this phenomenon is referred to as API evolu-
tion. An API can evolve due to a large number of factors, including: (1) there is a better/-
faster implementation of a feature, (2) the existing feature has a security or performance
issue, (3) the API would like to use a standardized design pattern and (4) new language
features have been released.

From the API consumer perspective, it is not ideal (except in certain extenuating cir-
cumstances, such as when an API element changes due to the fixing of a functional defect)
that an API they are using changes. If a feature changes or is removed, the consumer code
can break, thereby necessitating an unforeseen/unplanned maintenance effort on the part
of the consumer. When consumers would like to upgrade to a new version of the API,
their code may no longer compile due to the API change.
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An example of this can be seen in Figure 1.1, Here we see an example from Guava
where the return type of an API element in Guava is changed from the superclass (List)
to its sub-class (ArrayList). For the consumers who start using version 𝑛 + 1 (seen in
Figure 1.2), their code will not compile with older versions of the API. On the other hand,
consumers that use version 𝑛 of the API (seen in Figure 1.3) and then choose to upgrade
to version 𝑛 + 1, would not be able to do so without making a change first as the return
type class is a sub-class and thus needs to be explicitly declared (this is due to a failure of
the Java type inference system).

     
     // Method in version n of an API
     public static List<Integer> newList () {
         …
     }

     // Method in version n+1 of an API
     public static ArrayList<Integer> newList () {
         …
     }

Figure 1.1: Example breaking change in an API

     
     // Consumer call for version n of an API
     List<Integer> myList = newList();

     // Consumer call for version n+1 of an API
     ArrayList<Integer> myList = newList();

Figure 1.2: Example call to API element by consumer

     
     // Consumer call for version n of an API
     Set<List<Integer>> myLists = ImmutableSet.of(newList());

     // Consumer call for version n+1 of an API
     Set<ArrayList<Integer>> myLists = ImmutableSet.of(newList());

Figure 1.3: Example call to API element by consumer when using parameterized data structure

The primary reason that API consumers choose not to upgrade the version of the API
being used is the cost of the upgrade [23, 24]. Research has investigated how the burden
to upgrade the version of the API can be lessened [25–29]. However, as of now, there is
no accepted solution in place just yet.
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1.2 API Deprecation
As an alternative to directly introducing breaking changes in the API, API producers can
use deprecation. This leads to an API→introduce→deprecate→remove cycle where be-
fore any removal of an API feature takes place, it is first deprecated to allow consumers
time to wean themselves off the feature with greater control of their scheduling [10].

Deprecation is a mechanism provided by most programming languages [17]. This is in
stark contrast to breaking API changes where consumers have no decision-making time
when encountered with an API element that no longer exists.

In the case of deprecation, the language mechanism enables the producer to commu-
nicate additional information to the consumer, which could aid the consumer in making
a transition away from a deprecated feature. As researchers, the usage of the deprecation
mechanism allows us to observe the decision-making process on the consumer side when
it comes to reacting to API evolution, see how such a reaction takes place, and understand
the factors that aid the consumer in making a change.

1.2.1 Deprecation in Java
In this thesis, we focus on deprecation in the Java language. We focus primarily on Java as
it was the first language to introduce an explicit deprecation mechanism in 1995, and it is
the second most popular language in the world (thus ensuring us an abundance of data).

In the original documentation of deprecation for Java 1.1, we read that: Deprecation
is a reasonable choice in all these cases “where the API is buggy, insecure, disappearing in
a future release, or encouraging bad coding because it preserves backward compatibility
while encouraging developers to change to the newAPI” [10]. Not all of these reasons may
have an equal weight e.g., it is reasonable to assume that when a feature is deprecated as it
is insecure, it is pivotal that the consumer reacts to this change, however, in the case that
feature is superseded by something newer then the need to react might not be as pressing.

The deprecation mechanism in Java was first introduced in the form of a Javadoc
@deprecated annotation in Java 1.1. This annotation indicates in the Javadoc that a fea-
ture is deprecated. Additionally, in the Sun JDK, the compiler would throw a warning
on encountering the usage of a feature that was deprecated using this annotation, this is
despite this behavior not being specified in the Java Language Specification (JLS). Once
source code annotations were introduced in Java 1.5, Java introduced a @Deprecated anno-
tation. The Java language designers intended that both the Javadoc annotations and the
source code annotation to be used in tandem to mark an API feature as deprecated both in
source code and documentation [30]. The advantage of this source code annotation was
that, as standard behavior, the compiler throws a warning every time it encounters the
usage of a feature annotated with this annotation.

1.2.2 Deprecation in other languages
There is no standard convention of providing the deprecation mechanism across program-
ming languages. For instance, deprecation messages are conveyed to the API consumer in
some cases as a part of the implementation of the deprecation mechanism itself (as in the
case of Java or C#) or in other cases in the form of additional documentation (in the case of
Python). The functionality of the deprecation mechanism varies too: For example, in C#,
the deprecation mechanism is exposed in the form of a class attribute and can have two
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Figure 1.4: Example Javadoc for deprecated API element

levels (in the first level the compiler only throws a warning when a deprecated feature is
used and in the second level it throws a compilation error). However, in languages such
as Java and Scala only a compiler warning is thrown, thus ensuring that deprecation is
not a breaking change.

1.2.3 Documentation of deprecated API elements
When an API element is marked as deprecated, it is considered good practice to provide
deprecation messages that act as an aid in the reaction to a deprecated feature [31]. This
‘good’ practice entails that a deprecationmessage should recommend a replacement of this
deprecated feature, however, this might not always be the case [15]. This is generally done
in Javadoc as seen in Figure 1.4; modern-day IDEs also show this warning as in Figure 1.5.
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Figure 1.5: Example IDE warning for deprecated API element

1.3 Research goal and questions
To provide evidence towards our thesis, we seek to answer the following four research
questions:

Research Question 1. How are API consumers affected by deprecation of an
API element?

Not all API consumers are affected by API deprecation. We would like to understand
the extent to which consumers are affected by deprecation. This will allow us to ascertain
how frequently API consumers are affected by this type of API evolution, which will give
us an insight into how much we can understand from it. This also helps us in determining
various API evolution policies adopted by the API producers and the impact that this can
have on the magnitude of consumers affected by API evolution.

Research Question 2. How and why do API consumers (not) react to depreca-
tion of an API element?

Wewould like to understand to what extent API consumers react to the deprecation of
an API element. This allows us to ascertain how consumers regard an APIs evolution and
whether they keep up with it and to gain a better understanding of how an API’s evolution
pattern can impact consumers.

For the API consumers that react to deprecation, we would like to understand as to
what motivated them to react in the way that they did. We would be able to isolate the
factors that impacted their decision to react to deprecation and this can be used as a tem-
plate for future API evolutions. For those consumers that did not react to deprecation, we
strive to ascertain as to what about the deprecated element prevented them from reacting.
This gives us insights into the API consumer decision process when it comes to dealing
with API evolution. It will allow us to observe the pain points that API consumers face
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when reacting to API evolution. This information can aid us in devising strategies to deal
with API evolution more effectively.

Research Question 3. How do API producers support API consumers when
reacting to deprecation?

API consumers require assistance when adopting new features of an API [32]. Dep-
recation, which indicates that an API element is obsolete, allows the API producers to
inform the consumer over how they should transition away from it. API producers could
also provide detailed transition guides or tooling support. With this question, we would
be able to ascertain as to how producers choose to support consumers and to what extent
this has an impact on the consumers.

Research Question 4. Can language designers improve the deprecation mech-
anism for both API producers and consumers?

The deprecation mechanism acts as a means of communication between the API pro-
ducer and the consumer, where the producer informs the consumer that a feature is ob-
solete. The behavior of this mechanism can have an impact on an API consumer’s choice
to react to deprecation. We would like to investigate whether this mechanism fulfills the
needs of both API producers and consumers, and how this compares across programming
languages.

After answering these four research questions, we will be able to establish how API
consumers are affected by API evolution (in this specific case API deprecation), how they
choose to react when encountered with a deprecated API element, and what factors affect
this behavior. We will be able to understand the role that API producers and language
designers can play in reducing the burden of reacting to API evolution. This allows us to
answer the central question in this thesis, and allow us to design specific solutions that
will aid consumers to keep up with API evolution.

1.4 Research outline
Table 1.1 illustrates the connection between the various chapters in this thesis and the
research questions that we have defined.

1.4.1 Background
In the first part of the thesis, we discuss the overall research goal and the fine-grained
research questions that this thesis answers. Following this, we provide background infor-
mation on how API consumer usage is mined from GitHub on a large scale. Finally, we
ascertain the degree to which API consumers are affected by API evolution.

Chapter 2 outlines the technique used to mine API usage from GitHub based Java proj-
ects. We call this technique fine-GRAPE (fine-Grained APi usage Extractor). To
perform any study that seeks to understand how API consumers deal with API evo-
lution, we need to understand how the API is being used by a client. Previous work
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Table 1.1: Relation between research questions and chapters

Research question Chapters
How are API consumers affected by deprecation of an API element? 3 and 4
How and why do (not) API consumers react to deprecation of an API
element?

5

How can API producers support API consumers when reacting to dep-
recation?

6

How can language designers improve the deprecation mechanism for
both API producers and consumers?

7

has sought to mine API usage from open source repositories such as Sourceforge
and the Eclipse repository. The techniques used range from text mining to byte-
code mining. All of these approaches suffer from issues that range from inaccuracy
(the API usages mined are not type resolved thus resulting in inaccuracies) to scal-
ability (compilation of projects is expensive and impossible to do on a large scale).
To overcome these shortfalls, we defined a new approach called fine-GRAPE, which
can type resolve the AST of the source code file and extract API usages on a large
scale from Java-based consumers on GitHub. We apply this approach to the con-
sumers of APIs to understand what features of an API are used and how they are
used. This work forms a basis for the rest of the thesis, where data mined using this
technique is used.

Chapter 3 describes two studies performed on large scale datamined from the consumers
of five mainstream Java APIs. The first study deals with understanding whether con-
sumers update the version of the API being used. This aids us in understandingwhat
proportion of consumers can be affected by API evolution. We show that consumers
typically do not upgrade to the latest version of the API. In our dataset, we see that
consumers of frequently releasing APIs tend to not upgrade their dependency ver-
sion. In the second study, we see what features and how much of the API is being
used. This allows us to establish whether the features being used are the same across
consumers. Our data shows that only 5 - 10% of the features exposed by an API are
used by consumers. This implies that large portions of the API are never adopted
by consumers on GitHub. Furthermore, we see that predominantly the original fea-
tures of the API (core features) have been adopted by consumers, which is startling
as it suggests that API producer effort is futile.

1.4.2 The perspective of the consumer
The second part of the thesis deals with the API consumers’ perspective. We analyze
the scale at which API consumers are affected by deprecation and how these consumers
react to deprecation. We investigate the motivation behind the consumers not reacting to
deprecation and how API deprecation policies can affect this.

Chapter 4 deals with the scale at which API consumers are affected by deprecation and
how this is affected by an APIs deprecation policy. We analyze the consumers of
five mainstream APIs - Guava, Guice, Spring, Hibernate and Mockito and the Java
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JDK. We focus on consumers that change versions of the API they use, as these con-
sumers are the only ones that can be affected by deprecation or API evolution. Only
in the case of Guava are more than 20% of the consumers affected by deprecation.
In the case of the Spring API, we find that the scale of affectedness of consumers is
very small and insignificant. We see from the API producer perspective that only
a maximum of 13% of deprecated elements affect consumers. This implies that 87%
of the deprecated features are not used by consumers. We also fast-forwarded con-
sumers to the latest version of the API to see whether they would be affected by
deprecation and found that for all APIs over 30% of the consumers would be af-
fected by deprecation. In the case of one consumer from Hibernate, the consumers
would have to change over 9,000 invocations in their source code. We also make a
lightweight analysis to see whether consumers react and how long it takes them to
do so. The median time to react is 200 days and only 2 consumers react by actually
replacing the deprecated feature with the recommended replacement. In the case of
the consumers of the JDK, we see that consumers are not affected by deprecation at
the same scale as that of the consumers of the third-party APIs. Finally, we try to
ascertain whether the deprecation policy adhered to by the API influences the scale
at which consumers of the API are affected. We determine the APIs policy based
on 9 characteristics. Using a k-means clustering algorithm we cluster 50 APIs to
based on the 9 characteristics and find 7 distinct policies. We see that the policy of
the API has a direct influence on the scale at which consumers are affected, thus,
implying that API producers can play a role in how API consumers are affected by
API evolution.

Chapter 5 explores how an API consumer reacts to a deprecated feature and how API
deprecation policies affect the chosen reaction. This helps us in gaining further in-
sight into the decision process on the consumers side when it comes to dealing with
API evolution. We focus on the top 50 Java APIs and their consumers for this study.
We start by manually analyzing 380 cases of API consumer code affected by depre-
cation. This manual analysis yields seven different reaction patterns that can take
place. We then proceed to benchmark the frequency of each of the reaction pat-
terns and find that ‘no reaction’ is by far the most popular way in which consumers
choose to react to deprecation. We survey consumer to understandwhy they choose
to not upgrade their dependency and why they do not react to deprecation. Gener-
ally, consumers do not upgrade due to the cost of upgrading, typically deprecation
does not hinder the upgrade process. To explain the non-reactions, we try to see
how the APIs deprecation policy affects the consumers. We base the deprecation
policy on the activeness of the API, frequency of removal of deprecated features,
the frequency of deprecating features and the frequency with which features are
broken. We find nine distinct policies adopted by API producers. In most cases, the
deprecation strategies are not strongly linked with the reaction patterns exhibited
by the consumers. To further investigate the scale of non-reactions, we ask API
consumers as to why they do not react to deprecation. Typically, consumers do not
react because they could not find a suitable alternative to the deprecated feature and
because the cost of reacting was often too high and not worth it. Also, in the cases
where the API releases infrequently, the need to react is not pressing. Overall, we
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see that consumers do not react to deprecation due to lack of help that has been
provided to them that would reduce the overall cost and effort related to reacting to
deprecation.

1.4.3 The perspective of the producer and the language designer
In the third part of the thesis, wewould like to ascertain from the API producer perspective
whether they would like to improve the entire process of deprecation in any way. We
investigate whether API producers provide their consumers with all the help they need
to react to the deprecation. Finally, we see what the shortfalls of the Java deprecation
mechanism are and how we can address them.

Chapter 6 analyzes to what extent the rationale behind the deprecation of a feature is
communicated with the API consumer. This goes to show how API producers sup-
port their consumers when it comes to dealing with API evolution. Studies have
shown that API producers typically document deprecated features with the replace-
ment feature that the consumer can use. However, the rationale behind the dep-
recation is rarely found in this documentation. We observe that uncovering the
rationale behind deprecation is not as straight forward as it would seem. To find
the rationale, an API consumer would have to look at either the commit message
of the commit where the feature is deprecated, the issue tracker post which is ad-
dressed in the commit which deprecates a feature and the code itself. We manually
analyze 380 deprecations from five APIs and find that there are ten different rea-
sons behind deprecating a feature. Some of the reasons to deprecate a feature are
off-label usage of the deprecation mechanism. This prompts the question as to how
a programming language can prevent this behavior. We then try to see whether
there is an automated way to classify the reason behind deprecation by using one
or more of the data sources at our disposal. We see that typically for one API, an
automated approach can classify the rationale behind deprecation in an accurate
manner. However, when trying to cross-project validate this model, the accuracy
suffers. We postulate that an automated method can be devised to uncover the ra-
tionale behind deprecation and automatically augment existing documentation for
deprecated features.

Chapter 7 investigates the deprecation mechanism in Java and whether it fulfills the
needs of both API producers and consumers. With this chapter, we gain a thorough
understanding of how language designers can play a role in enabling consumers to
deal with API evolution. We interview 17 API producers from both open source and
industrial contexts to understand how they perceive the deprecation mechanism in
Java. In their opinion, the deprecation mechanism is a communication medium be-
tween the API producer and the consumer. They explained that they there seven
reasons for them to deprecate a feature, withmarking a feature as beta being the only
standout. Producers do not feel that it is always imperative that their consumers re-
act to deprecation. However, there are certain instances where a reaction is needed,
but Java does not allow the producers to indicate this. We surveyed consumers to
understand what they felt were the shortfalls of the deprecation mechanism. Con-
sumers indicate that they also needed to know as to when a deprecated feature was
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going to be removed so that they could then choose to react. All these findings led
us to propose three enhancements to the deprecation mechanism - (1) a way to in-
dicate removal timeline of a deprecated feature, (2) a generic warning mechanism
to prevent off-label usage of deprecation and (3) a severity indicator for the dep-
recation.We validate these enhancements with the Java language designers to see
whether Java would benefit from these changes. The language designers support
two out of the three proposals, they did not feel that the generic warning mech-
anism would be an ideal solution. However, there was support for the other two
proposals.

1.4.4 Reflection
We conclude the thesis summarizing the findings and proposing future work.

Chapter 8 summarizes the findings in this thesis. We discuss the implications of this
thesis and elaborate on future work that can be conducted to take the work done in
this thesis forward.

1.5 Research methodology
The work in this thesis belongs to the discipline of Empirical Software Engineering [33].
This field aims to provide analytical insights into the software development process and
suggest improvements in the form of tooling or practices by gathering data on open-source
software systems and development practices by mining software repositories, interview-
ing developers, surveying developers and performing controlled experiments.

In this thesis, we employ a mixed-method approach [34] to answer our research ques-
tions. We explain the various techniques used and their applicability in the following:

1.5.1 Mining software repositories
In the last 15 years, Empirical Software Engineering research has often involved the anal-
ysis data from software repositories [33]. This line of research has been boosted by the
advent of platforms such as GitHub, which have allowed for the analysis of source code on
a large scale, and the interaction between developers during the development process due
to the presence of a public issue tracker and pull request system. Which in turn has led to
the creation of large scale analytics platforms that provide in-depth insights to developers.

In this thesis, we leverage techniques from the mining software repositories field to
develop an understanding of what features of an API are used and how they are used. We
can isolate active, non-forked, Maven-based, Java repositories on GitHub to understand
how developers deal with API evolution and whether they upgrade the version of the API
that they use. We target a broad set of actively developed Java projects for this analy-
sis, thus allowing us to get an accurate impression of developer behavior on a large scale.
Another advantage of using data from GitHub is that we have fine-grained commit infor-
mation, thus allowing us to analyze the entire history of every project. Chapter 2 outlines
the exact technique developed to achieve this. In chapters 3, 4 and 5, data collected using
this technique has been used for the studies conducted in those chapters.

Aside from GitHub, the Maven central repository is a rich source of data. Over a
million Java JAR files are hosted on the central Maven repository. Each JAR file relates to
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a version of a Java-based API/project that has been released on Maven central. While this
data does not possess the fine-grained commit level information as in the case of GitHub,
it does contain compiled source code that has been developed and released by professional
Java-based developers. Chapter 4 uses the data collected using this methodology.

1.5.2 Interviews with developers
Mining data from open source repositories is one way to understand what and how devel-
opers are doing things. Understanding why developers make certain choices is another
matter altogether. Commit messages, issue tracker discussions and pull request data can
all give us an indication to a certain extent as to what the decision-making process of
developers is and why certain choices were made. However, these sources can often be
unreliable as the rationale behind a change might not be documented [35].

Interviewing developers allows us to infer from a developer as to why a certain change
has been made. We can also ask developers for their opinions on certain behavior and
understand in depth the decision-making process behind a change. One pitfall for this
approach is that our interviewees provide socially desirable responses which are not in
sync with reality. We mitigate this bias by interviewing a diverse set of developers who
work in different contexts. To explore several possible avenues, we only stop interviews
once we hit saturation [36] i.e., when we hear the same responses to our questions without
uncovering any new perspectives.

Once the interviews have been conducted, we leverage techniques from grounded
theory [37] to analyze the interview transcripts. Specifically, we use an interpretive-
description [38] approach which originates from the social sciences. This is an inductive
approach to analyze interview transcripts by breaking each part of the transcript into
smaller parts and assigning codes to each part based on content. Codes are then clustered
based on similarity, allowing us to infer the emergent themes from all the interviews.
Based on these themes, we can define a theory which leads us to results found in Chapter
7.

1.5.3 Surveying developers
Data from open source repositories and interviews with developers provide us a view of
what is going on in the code, what decisions have been taken by developers and why.
However, the themes that emerge from the combination of this data might not be gener-
alizable. To challenge and validate our findings we reach out to a larger set of developers
and ask them to confirm our findings.

Surveys help with generalizing results as they can reach a broader audience of devel-
opers. Developers can either confirm phenomena that we uncover using open source data
or qualitative data, however, in the cases that this data is not exhaustive, developers that
respond to the survey can augment our existing knowledge with a new perspective. This
can allow generalizing to a larger set of developers aside from only our interviewees.

In this thesis, we employ surveys to ask developers to rate their opinion on a variety of
themes that emerge from qualitative and quantitative data. We ask developers to indicate
on a Likert scale their agreement with certain statements. If a list of statements is not
exhaustive, we ask the developer to indicate what else can be added.
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We spread our surveys to a diverse set of developers by utilizing personal and profes-
sional contacts, mailing lists, and Java code forums. This makes it hard to ascertain an
exact response rate, however, we do know exactly how many developers start the survey
and what proportion of these developers complete the survey.

1.6 Origins of the chapters
All chapters of this thesis have been published in peer-reviewed journal and conferences.
As a result, each chapter is self-contained with its background, related work, and implica-
tions section. In the following, the origin of each chapter is explained:

• Chapter 2 was published in the paper “A dataset for API usage” by Sawant and Bac-
chelli at Mining Software Repositories (MSR) 2015 Data Track. This chapter is a
background section, which was also part of a masters thesis by Sawant is not an
original contribution of this thesis.

• Chapter 3 was published in the paper “fine-GRAPE: fine-Grained APi usage Extrac-
tor An Approach and Dataset to Investigate API Usage” by Sawant and Bacchelli
published in Empirical Software Engineering (EMSE) 2017.

• Chapter 4 was published in the paper “On the reaction to deprecation of 25,357 clie-
nts of 4 + 1 popular Java APIs” by Sawant, Robbes and Bacchelli at International
Conference on Software Maintenance and Evolution (ICSME) 2016. This chapter
also contains content from the extension of this paper titled “On the reaction to
deprecation of clients of 4 + 1 popular Java APIs and the JDK” by Sawant, Robbes
and Bacchelli published in Empirical Software Engineering (EMSE) 2018.

• Chapter 5 was published in the paper “To react, or not to react: Patterns of reac-
tion to API deprecation” by Sawant, Robbes, and Bacchelli in Empirical Software
Engineering (EMSE) 2019.

• Chapter 6 was published in the paper “Why are features deprecated? An investiga-
tion into the motivation behind deprecation” by Sawant, Huang, Vilen, Stojkovski,
and Bacchelli at International Conference on Software Maintenance and Evolution
(ICSME) 2018.

• Chapter 7 was published in the paper “Understanding developers’ needs on dep-
recation as a language feature” by Sawant, Aniche, van Deursen and Bacchelli at
International Conference on Software Engineering (ICSE) 2018.

1.7 Other publications
In addition to the publications that form this thesis, work was performed that does not
make it into this thesis:

• The paper “Visualizing code and coverage changes for code review” published at FSE
2016 Tool track by Oosterwaal, van Deursen, Coelho, Sawant, and Bacchelli. This
paper presents a tool that publishes a comment on a pull request with the change
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in test coverage when the pull request is issued. It aids the contributor in under-
standing the impact a change will have on the test coverage of the project and also
informs the code reviewer what kind of impact the change on the project’s testing
practices/standard.

• The paper “Miningmotivated trends of usage of Haskell libraries” published atWAPI
2017 in the ICSE 2017 companion proceedings by Juchli, Krombeen, Rao, Yu, Sawant,
and Bacchelli. In this work, we infer the version of a package that a Haskell client
uses. Thenwe use a combination of manual analysis and automated analysis to infer
the reasons behind an API consumer changing the version of the API being used.

• The paper “What makes a code change easier to review: an empirical investigation
on code change reviewability” published at FSE 2018 by Ram, Sawant, Castelluccio,
and Bacchelli. We analyze what about a change contributes to its reviewablity i.e.,
the ease with which a reviewer can perform the code review.

1.8 Open Science
Data collected for the various chapters in this thesis has been made publicly available. An
overview of the datasets and where to find them can be found in Table 1.2.

Dataset Chapter Host
API usage databases 2, 3, 4 Figshare
Large scale API Usage dataset 5 4TU Datacenter
Deprecation annotation interviews 7 4TU Datacenter

Table 1.2: Data storage locations

http://dx.doi.org/10.6084/m9.figshare.1320591
https://doi.org/10.4121/uuid:cb751e3e-3034-44a1-b0c1-b23128927dd8
https://doi.org/10.4121/uuid:23752f31-91b0-4c04-b070-c603541e1e90
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2
Fine grained API usage mining

An Application Programming Interface (API) is a set of functionalities provided by a third-
party component (e.g., library and framework) that is made available to software develop-
ers. APIs are extremely popular as they promote reuse of existing software systems [39].

The research community has used API usage data for various purposes such as measur-
ing of popularity trends [40], charting API evolution [26], and API usage recommendation
systems [41].

For example, Xie et al. have developed a tool called MAPO wherein they have at-
tempted to mine API usage for the purpose of providing developers API usage patterns
[42, 43]. Based on a developers’ need MAPO recommends various code snippets mined
from other open source projects. This is one of the first systems wherein API usage recom-
mendation leveraged open source projects to provide code samples. Another example is
the work by Lämmel et al. [44] wherein they mined data from Sourceforge and performed
an API usage analysis of Java clients. Based on the data that they collected they present
statistics on the percentage of an API that is used by clients.

One of the major drawbacks of the current approaches that investigate APIs is that
they heavily rely on API usage information (for example to derive popularity, evolution,
and usage patterns) that is approximate. In fact, one of the modern techniques considers
as “usage” information what can be gathered from file imports (e.g., import in Java) and
the occurrence of method names in files.

This data is an approximation as there is no type checking to verify that a method
invocation truly does belong to the API in question and that the imported libraries are
used. Furthermore, information related to the version of the API is not taken into account.
Finally, previous work was based on small sample sizes in terms of number of projects
analyzed. This could result in an inaccurate representation of the real world situation.

With the current work, we try to overcome the aforementioned issues by devising
fine-GRAPE (fine-GRained APi usage Extractor), an approach to extract type-checked API
method invocation information from Java programs and we use it to collect detailed his-
torical information on five APIs and how their public methods are used over the course of
their entire lifetime by 20,263 client projects.
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In particular, we collect data from the open source software (OSS) repositories on
GitHub. GitHub in recent years has become the most popular platform for OSS devel-
opers, as it offers distributed version control, a pull-based development model, and social
features [45]. We consider Java projects hosted on GitHub that offer APIs and quantify
their popularity among other projects hosted on the same platform. We select 5 repre-
sentative projects (from now on, we call them only APIs to avoid confusion with client
projects) and analyze their entire history to collect information on their usage. We get
fine-grained information about method calls using a custom type resolution that does not
require to compile the projects.

The result is an extensive dataset for research on API usage. It is our hope that our
data collection approach and dataset not only will trigger further research based on finer-
grained and vast information, but also make it easier to replicate studies and share analy-
ses.

For example, with our dataset the following two studies can be conducted:
First, the evolution of the features of the API can be studied. An analysis of the evo-

lution can give an indication as to what has made the API popular. This can be used to
design and carry out studies on understanding what precisely makes a certain API more
popular than other APIs that offer a similar service. Moreover, API evolution information
gives an indication as to exactly at what point of time the API became popular, thus it can
be studied in coordination with other events occurring to the project.

Second, a large set of API usage examples is a solid base for recommendation systems.
One of the most effective ways to learn about an API is by seeing samples [23] of the code
in actual use. By having a set of accurate API usages at ones’ disposal, this task can be
simplified and useful recommendations can be made to the developer; similarly to what
has been done, for example, with Stack Overflow posts [46].

In our previous work titled “A dataset for API Usage” [47], we presented our dataset
along with a few details on the methodology used to mine the data. In this chapter, we go
into more detail into the methodology of our mining process and conduct two case studies
on the collected data which make no use of additional information.

The first case is used to display the wide range of version information that we have at
our disposal. This data is used to analyze the amount of time by which a client of an API
lags behind the latest version of the API. Also, the version information is used to calculate
as to what the most popular version of an API is. This study can help us gain insights into
the API upgrading behavior of clients.

The second case showcases the type resolved method invocation data that is present
in our database. We use this to measure the popularity of the various features provided
by an API and based on this mark the parts of an API that are used and those that are
not. With this information an API developer can see what parts of the API to focus on for
maintenance and extension.

The first study provided initial evidence of a possible distinction between upgrade
behavior of clients of APIs that release frequently compared to those that release infre-
quently. In the former case, we found that clients tend to hang back and not upgrade
immediately; whereas, in the latter case, clients tend to upgrade to the latest version. The
results of the second case study highlight that only a small part of an API is used by clie-
nts. This finding requires further investigation as there is a case to be made that many
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new features that are being added to an API are not really being adopted by the clients
themselves.

This chapter is organized as follows: Section 2.1 presents the approach that has been
applied to mine this data. For the ease of future users of this dataset an overview of the
dataset and some introductory statistics of it can be found in section 2.2.

2.1 Approach
We present the 2-step approach that we use to collect fine-grained type-resolved API us-
age information. (1) We collect data on project level API usage from projects mining
open source code hosting platforms (we target such platforms due to the large number
of projects they hosted) and use it to rank APIs according to their popularity to select
an interesting sample of APIs to form our dataset; (2) apply our technique, fine-GRAPE,
to gather fine-grained type-based information on API usages and collect historical usage
data by traversing the history of each file of each API client.

2.1.1 Mining of coarse grained usage
In the construction of this dataset, we limit ourselves to the Java programming language,
one of the most popular programming languages currently in use [48]. This reduces the
types of programs that we can analyze, but has a number of advantages: (1) Due to the
popularity of Java therewould be a large source of API client projects available for analysis;
(2) Java is a statically typed language, thus making the collection of type-resolved API
usages easier; (3) it allows us to have a more defined focus and more thoroughly test and
refine fine-GRAPE Future work can be to extend it to other typed-languages, such as C#.

To ease the collection of data regarding project dependencies on APIs, we found it
useful to focus on projects that use build automation tools. In particular, we collect data
from projects using Maven, one of the most popular Java build tools [49]. Maven employs
the use of a Project Object Model (POM) files to describe all the dependencies and targets
of a certain project. POMfiles contain artifact ID and version of each project’s dependency,
thus allowing us to know exactly which APIs (and version) a project uses. The following
is an example of a POM file entry:

1 <dependency >
2 <groupId >junit</groupId >
3 <artifactId >junit</artifactId >
4 <version >4.8.2</version >
5 </dependency >

In the dependency tag from a sample POM file pictured above, we see that the JUnit
dependency is being declared. We find the APIs name in the artifactId tag. The groupId
tag generally contains the name of the organization that has released the API, in this case
it matches the artifactId. However, there are other cases such as the JBoss-Logging API
for which the groupID is org.jboss.logging and the artifactId is jboss-logging. The
version of JUnit to be included as a dependency is specified in the version tag and in this
case it is version 4.8.2.
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2.1.2 Fine-grained API usage
To ensure that precise API usage information is collected, one has to reliably link each
method invocation or annotation usage to class in the API to which it belongs. This can
be achieved in five ways:

Text matching: This is one of the most frequently used techniques to mine API usage.
For example, it has been used in the investigation into API popularity performed by
Mileva et al. [40]. The underlying idea is to match explicit imports and correspond-
ing method invocations directly in the text of source code files.

Bytecode analysis: Each Java file produces one ormore class files when compiled, which
contain Java bytecode that is platform independent. Another technique to mine
API usage is to parse byte code in these class files to find all method invocations
and annotation usages along with the class to which they belong to. This approach
guarantees accuracy as the class files contain all information related to Java program
in the Java file in question.

Partial program analysis: Dagenais et al. have created an Eclipse plugin called Partial
Program Analysis (PPA) [50]. This plugin parses incomplete files and recovers type
bindings on method invocations and annotations, thus identifying the API class to
which a certain API usage belongs.

Dynamic analysis: Dynamic analysis is a process by which the execution trace of a pro-
gram is captured as it is being executed. This can be a reliablemethod of determining
the invocation sequence in a program as it can even handle the case where type of an
object is decided at runtime. Performing dynamic analysis has the potential of be-
ing highly accurate as the invocations in the trace are type-resolved being recovered
from running of bytecode.

AST analysis: Syntactically correct Java files can be transformed into an Abstract Syntax
Tree (AST). An AST is a tree based representation of code where each variable dec-
laration, statement, or invocation forms a node of the tree. This AST can be parsed
by using a standard Java AST parser. The Java AST parser can also recover type
based information at each step, which aids in ensuring accuracy when it comes to
making a connection between an API invocation and the class it belongs to.

All five of the aforementioned approaches can be applied for the purpose of collecting
API usage data, but come with different benefits and drawbacks.

The text-matching-based approach proves especially problematic in the case of im-
ported API classes that share method names, because method invocations may not be
disambiguated without type-information. Although some analysis tools used in dynamic
languages [51] handle these cases through the notion of ‘candidate’ classes, this approach
is sub-optimal for typed languages where more precise information is available.

The bytecode analysis approach is more precise, as bytecode is guaranteed to have the
most accurate information, but it has two different issues:

1. Processing class files requires these files to be available, which, in turn, requires
being able to compile the Java sources and, typically, thewhole project. Even though
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all the projects under consideration use Maven for the purpose of building, this does
not guarantee that they can be built. If a project is not built, then the class files
associated with this project cannot be analyzed, thus resulting in a dropped project.

2. To analyze the history of method invocations it is necessary to checkout each ver-
sion of every file in a project and analyze it. However, checking out every version
of a file and then building the project can be problematic as there would be an ultra-
large number of project builds to be performed. In addition to the time costs, there
would still be no warranty that data would not be lost due build failures.

The partial program analysis approach has been extensively tested by Dagenais et
al. [50] to show that method invocations can be type resolved in incomplete Java files.
This is a massive advantage as it implies that even without building each API client one
can still conduct a thorough analysis of the usage of an API artifact. However, the imple-
mentation of this technique relies on Eclipse context, thus all parsing and type resolution
of Java files can only be done in the context of an Eclipse plugin. This requires that each
and every Java file is imported into an Eclipse workspace before it can be analyzed. This
hinders the scalability of this approach to large number of projects.

Dynamic analysis techniques result in an accurate set of type resolved invocations.
However, they require the execution of the code to acquire a trace. This is a limitation as
not all client code might be runnable. An alternative would be to have a sufficient set of
tests that would execute all parts of the program so that traces can be obtained. This too
might be unfeasible as many projects may not have a proper test suite[52]. Finally, this
technique would also suffer from the same limitations as the bytecode analysis technique;
where analyzing every version of every file would require a large effort.

2.1.3 fine-GRAPE
Due to the various issues related to first four techniques, we deem the most suitable tech-
nique to be the AST based one. This technique utilizes the JDT Java AST Parser [53], i.e.,
the parser used in the Eclipse IDE for continuous compilation in background. This parser
handles partial compilation: When it receives in input a source code file and a Java Archive
(JAR) file with possibly imported libraries, it is capable of resolving the type of methods
invocation and annotations of everything defined in the code file or in the provided jar.
This will allow us to parse standalone files, and even incomplete files in a quick enough
way such that we can collect data from a large number of files and their histories in a time
effective manner.

We created fine-GRAPE that, using the aforementioned AST parsing technique, col-
lects the entire history of usage of API artifacts over different versions. In practice, we
downloaded all the JAR files corresponding to the releases of the API projects chosen.
Although this has been done manually in the study presented here, this process of down-
loading the JAR files has been automated in the current version for the ease of the user.
Then, fine-GRAPE uses Git to obtain the history of each file in the client projects and runs
on each file retrieved from the repository and the JAR with the corresponding version of
the API that the client project declares in Maven at the time of the commit of the file. The
fine-GRAPE leverages the visitor pattern that is provided by the JDT Java AST parser to
visit all nodes in the AST of a source code file of the type method invocation or annotation.
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These nodes are type resolved and are stored in a temporary data structure while we parse
all files associated with one client project. This results in accurate type-resolved method
invocation references for the considered client projects through their whole history. Once
the parsing is done for all the files and their respective histories in the client, all the data
that has been collected is transformed into a relational database model and is written to
the database.

An API usage dataset can also contain the information on the method, annotations,
and classes that are present in every version of every API for which usage data has been
gathered such that any kind of complex analysis can be performed. In the previous steps
we have already downloaded the API JAR files for each version of the API that is used by
a client. These JAR files are made up of compiled class files, where each class file relates
to one Java source code file. fine-GRAPE then analyzes these JAR files with the help of
the bytecode analysis tool ASM [54], and for each file the method, class and annotation
declarations are extracted.

2.1.4 Scalability of the approach
Theapproach that we have outlined runs on a large number of API client projects in a short
amount of time. In its most recent state, all parts of the process are completely automated,
thus needing a minimum of manual intervention. A user of the fine-GRAPE tool has to
just specify the API which is to be mined, and this will result in a database that contains
type-resolved invocations made to an API.

We benchmarked the amount of time it takes to process a single file. To run our bench-
mark, we used a server with two Intel Xeon E5-2643 V2 processors. Each processor con-
sists of 6 cores and runs at a clock speed of 3.5 GHz. We ran our benchmark on 2,045 files
from 20 client projects. To get an accurate picture, this benchmark was repeated 10 times.
Based on this we found that the average amount of time spent on a single file was 165
milliseconds, the median was 31 milliseconds, the maximum was 1,815 ms for a large file.

2.1.5 Comparison to existing techniques
Previous work mined API usage examples, for example in the context of code completion,
code recommendation, and bug finding. We see how the most representative of these
mining approaches implemented in the past relate to the one we present here.

One of the more popular applications of API usage datasets is in the creation of code
recommendation tools. In this field one of the more known tools is MAPO by Xie et
al. [42, 43]. The goal of MAPO is to recommend relevant code samples to developers.
MAPO runs its analyzer on source code files from open source repositories. MAPO uses
the JDT compiler to compile a file and recover type-resolved API usages. These fine-
grained API usages are then clustered using the frequent itemset mining technique [55].
In more recent developments tools such as UP-Miner [56] have been developed to mine
high coverage usage patterns from open source repositories by using multiple clustering
steps. Differently from fine-GRAPE, none of the approaches used here take version of the
various APIs used into account. Moreover, our approach as opposed to theirs does not
require the building of the files and has no need for all dependencies to the resolved to
run.

Mining of API usage patterns has also been done to detect bugs by finding erroneous us-
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age patterns. To this end, researchers developed tools such as Dynamine [57], JADET [58],
Alattin [59] and PR-Miner [60]. All these tools rely on the same mining technique i.e., fre-
quent itemset mining [55]. The idea behind this technique is that statements that occur
frequently together can be considered to be a usage pattern. This technique can result in
a high number of false positives, due to the lack of type information. fine-GRAPE tackles
this problem by taking advantage of type information.

The earliest technique that was employed in mining API usage was used by the tool
CodeWeb [61] that was developed by Amir Michail. More recently it has been employed
in the tool Sourcerer [62] as well. This technique employs a data mining technique that is
called generalized association rule mining. An association rule is of the form (⋀𝑥𝜖𝑋 𝑥) ⇒
(⋀𝑦𝜖𝑌 𝑦). This implies that for an event 𝑥 that takes place, then an event 𝑦 will also take
placewith a certain confidence interval. The generalized association rule takes not just this
into account but also takes a node’s descendants into account as well. These descendants
represent specializations of that node. This allows this technique to take class hierarchies
into account while mining reuse patterns. However, just like frequent itemset mining this
can result in false positives due to the lack of type information.

Recently, Moreno et al. [63] presented a technique to mine API usages using type
resolved ASTs. Differently from fine-GRAPE, the approach they propose builds the code
of each client to retrieve type resolved ASTs. As previously mentioned in the context of
bytecode analysis, this could result in the loss of data, as some client projects may not
build, and low scalability.

2.2 A Dataset for API Usage
Using fine-GRAPE we build a large dataset of usage of popular APIs. Our dataset is con-
structed using data obtained from the open source code hosting platform GitHub. GitHub
stores more than 10 million repositories [64] written in different languages and using a
diverse set of build automation tools and library management systems.

2.2.1 Coarse-grained API usage: The most popular APIs
To determine the popularity of APIs on a coarse-grained level (i.e., project level), we parse
POM files for all GitHub based Java projects that use Maven (ca. 42,000). The POM files
were found in the master branch of approximately 250,000 active Java projects that are
hosted on GitHub.¹ Figure 2.1 shows a partial view of the results with the 20 most popular
APIs in terms of how many GitHub projects depend on them.

This is in-line with a previous analysis of this type published by Primat as a blog
post [65]. Interestingly, our results show that JUnit is by far the most popular, while
Primat’s results report that JUnit is just as popular as SLF4J. We speculate that this dis-
crepancy can be caused by the different sampling approach (he sampled 10,000 projects
on GitHub, while we sampled about 42,000 on GitHub), further research can be conducted
to investigate this aspect more in detail.

¹As marked by GHTorrent [64] in September 2014
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Figure 2.1: Popularity of APIs referenced on Github

2.2.2 Selected APIs
We used our coarse-grained analysis of popularity as a first step to select API projects to
populate our database. To ensure that the selected API projects offer rich information on
API usage and its evolution, rather than just sporadic use by a small number of projects,
we consider projects with the following feature: (1) have a broad popularity for their pub-
lic APIs (i.e., they are in the top 1% of projects by the number of client projects), (2) have
an established and reasonably large code base (i.e., they have at least 150 classes in their
history), (3) and are evolved and maintained (i.e., they have at least 10 commits per week
in their lifetime). Based on these characteristics, we eventually select the five APIs summa-
rized in Table 2.1, namely Spring, Hibernate, Guava, and Guice and Easymock. We decide
to remove JUnit, being an outlier in popularity and having a small code base that does
not respect our requirements. We keep Easymock, despite its small number of classes and
relatively low amount of activity in it’s repository (ca. 4 commits per week) to add variety
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to our sample. The chosen APIs are used by clients in different ways: e.g., Guice clients
use it through annotations, while Guava clients instantiate an instance of a Guava class
and then interact with it through method invocations.

In the following, a brief explanation of the domain of each API:

1. Guava is the new name of the original Google collections and Google commons
APIs. It provides immutable collections, new collectsion such as multiset and mul-
timaps and finally some new collection utilities that are not provided in the Java
SDK. Guava’s collections can be accessed by method invocations on instantiated
instances of the classes built into Guava.

2. Guice is a dependency injection library provided by Google. Dependency injection
is a design pattern that separates behavioral specification and dependency resolu-
tion. Guice allows developers to inject dependencies in their applications with the
usage of annotations.

3. Spring is a framework that provides an Inversion of Control(IoC) container. This
allows developers to access Java objects with the help of reflection. The Spring
framework comprises of a lot of sub projects, however we choose to focus on just
the spring-core, spring-context and spring-test modules due to their relatively high
popularity. The features provided by Spring are accessed in a mixture of method
invocations and annotations.

4. Hibernate Object Relational Mapping (ORM) provides a framework for map-
ping an object oriented domain to a relational database domain. It is made up of a
number of components that can be used, however we focus on just two of the more
popular one i.e., hibernate-core and hibernate-entity manager. Hibernate exposes
its APIs as a set of method invocations that can be made on the classes defined by
Hibernate.

5. Easymock is a testing framework that allows for themocking of Java objects during
testing. Easymock exposes its API to developers by way of both annotations and
method invocations.

2.2.3 Data Organization
We apply the approach outlined in Section 2.1 and store all the data collected from all the
client GitHub projects and API projects in a relational database, precisely PostgreSQL [66].
We have chosen a relational database because the usage information that we collect can
be naturally expressed in forms of relations among the entities. Also we can leverage SQL
functionalities to perform some initial analysis and data pruning.

Figure 2.2 shows the database schema for our dataset. On the one hand we have infor-
mation for each client project: The Projects table is the starting point and stores a proj-
ect’s name and its unique ID. Connected to this we have ProjectDependency table, which
stores information collected from the Maven POM files about the project’s dependencies.
We use a date_commit attribute to trace when a project starts including a certain depen-
dency in its history. The Classes table contains one row per each uniquely named class in
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Table 2.1: Subject APIs

Unique EntitiesAPI & GitHub repo Inception Releases Classes Methods
Guava
google/guava Apr 2010 18 2,310 14,828

Guice
google/guice Jun 2007 8 319 1,999

Spring
spring-framework Feb 2007 40 5,376 41,948

Hibernate
hibernate/hibernate-orm Nov 2008 77 2,037 11,625

EasyMock
easymock/easymock Feb 2006 14 102 623

ProjectDependency
pd_id INT

name VARCHAR(45)

version VARCHAR(45)

date_commit DATE

pr_id INT

Indexes

Projects
pr_id INT

project_name VARCHAR(45)

Indexes

Classes
cl_id INT

class_name VARCHAR(45)

pr_id INT

Indexes

Class_history
ch_id INT

change_date DATE

author_name VARCHAR(45)

log_message VARCHAR(45)

actual_file LONGTEXT

cl_id INT

Indexes

Method_invocation
mi_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Annotation
an_id INT

name VARCHAR(45)

parent_class VARCHAR(45)

ch_id INT

Indexes

Api
api_id INT

api_name VARCHAR(45)

Indexes

Api_version
v_id INT

version VARCHAR(45)

date_created DATE

api_id INT

Indexes

Api_class
c_id INT

package_name VARCHAR(45)

class_name VARCHAR(45)

is_deprecated BOOLEAN

v_id INT

Indexes

Api_method
m_id INT

method_name VARCHAR(45)

is_deprecated VARCHAR(45)

c_id INT

Indexes

Figure 2.2: Database Schema For The Fine-grained API Usage Dataset

the project; in the table Class_history we store the different versions of a class (includ-
ing its textual content, actual_file) and connect it to the tables Method_invocation
and Annotation where information about API usages are stored. On the other hand,
the database stores information about API projects, in the tables prefixed with Api. The
starting point is the table Api that stores the project name and it is connected to all its
versions (table Api_version, which also stores the date of creation), which are in turn
connected classes (Api_class) and their methods (Api_method) that also store informa-
tion about deprecation. Note that in the case of annotations we do not really collect them
in a separate table as annotations are defined as classes in Java.

A coarse-grained connection between a client and an API is done with a SQL query
on the tables ProjectDependency, Api and Api_version. The finer-grained connection
is obtained by also joining Method_invocation/Annotation and Api_class on parent
class names & Method_invocation/Annotation and Api_method on method names.

The full dataset is available as a PostgreSQL data dump on FigShare [67], under the

https://github.com/google/guava
https://github.com/google/guice
https://github.com/spring-projects/spring-framework
https://github.com/hibernate/hibernate-orm
https://github.com/easymock/easymock
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CC-BY license. For platform limitations on the file size the dump has been split in various
tar.gz compressed files, for a total download size of 51.7 GB. The dataset uncompressed
requires 62.3 GB of disk space.

2.2.4 Introductory Statistics
Table 2.2 shows an introductory view about the collected usage data. In the case of Guava
for example, even though version 18 is the latest (see Table 2.1), version 14.0.1 is the most
popular among clients. APIs such as Spring, Hibernate and Guice predominantly expose
their APIs as annotations, however we see also a large use of themethods they expose. The
earliest usages of Easymock and Guice are outliers as GitHub as a platform was launched
in 2008, thus the repositories that refer to these APIs were moved to GitHub as existing
projects.

Table 2.2: Introductory usage statistics

Most popular Usage across historyAPI release Invocations Annotations
Guava 14.0.1 1,148,412 —
Guice 3.0 59,097 48,945
Spring 3.1.1 19,894 40,525
Hibernate 3.6 196,169 16,259
EasyMock 3.0 38,523 —

2.2.5 Comparison to existing datasets
The work of Lämmel et al. [68] is the closest to the dataset we created with fine-GRAPE.
They target open source Java projects hosted on the Sourceforge platform and their API
usage mining method relies on type resolved ASTs. To acquire these type resolved ASTs
they build the APIs client projects and resolve all of its dependencies. This dataset contains
a total of 6,286 client projects that have been analyzed and the invocations for 69 distinct
APIs have been identified.

Our dataset as well as that of Lämmel et al. target Java based projects, though the
clients that have been analyzed during the construction of our dataset were acquired from
GitHub as opposed to Sourceforge. Our approach also relies on type resolved Java ASTs,
but we do not build the client projects as fine-GRAPE is based on a technique able to
resolve parsing of a standalone Java source file. In addition, the dataset by Lämmel et
al. only analyzes the latest build. In terms of size this dataset is comprised of usage
information gleaned from 20,263 projects as opposed to the 6,286 projects that make up
the Lämmel et al. dataset. However, this dataset contains information on only 5 APIs
whereas Lämmel et al. identified usages from 69 APIs.
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3
Understanding API consumer

upgrade behavior
We present two case studies to showcase the value of our dataset and to provide examples
for others to use it. We focus on case studies that require minimal processing of the data
and are just on basic queries to our dataset.

3.1 Case 1: Do clients of APIs migrate to a new version
of the API?

As with other software systems, APIs also evolve over time. A newer version may replace
an old functionality with a new one, may introduce a completely new functionality, or may
fix a bug in an existing functionality. Some infamous APIs, such as Apache Commons-IO,
are stagnating since long time without any major changes taking place, but to build our
API dataset we took care of selecting APIs that are under active development, so that we
could use it to analyze as to whether clients react to a newer version of an API.

3.1.1 Methodology
We use the lag time metric, as previously defined by McDonnell et al. [69], to determine
the amount of time a client is behind the latest release of an API that it is using. Lag time is
defined as the amount of time elapsed between a client’s API reference and the release date
of the latest version. A client lags if it uses an old version of an API when a newer version
has already been released. For example, in Figure 3.1, client uses API version 7 despite
version 8 being already released. The time difference between the client committing code
using an older version and the release date of a newer version of the API is measured as
the lag time.

In practice, we consider the commit date of each method invocation (this is done by
performing a join on the method_invocation and class_history tables), determine the
version of the API that was being used by the client at the time of the commit (the proj-
ect_dependency table contains information on the versions of the API being used by the
client and the date at which the usage of a certain version was employed), then consider
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API Version: 7
Release Date: August 2010

API Version: 8
Release Date: October 2010

Client Code
Commit Date: November 2010
Version Used: 7

Lag Time
API Timeline

Client Timeline

Figure 3.1: An example of the lag time metric inspired by McDonnell et al. [69]

the release date of the latest version of the API that existed at the time of the commit (this
data can be obtained form the api_version table in the database), and finally combine this
information to calculate the lag time for each reference to the API and plot the probability
density.

Lag time can indicate how far a project is at the time of usage of an API artifact, but it
does not give a complete picture of the most recent state of all the clients using an API. To
this end, we complement lag time analysis with the analysis of the most popular versions
of each API, based on the latest snapshot of each client of the API (we achieve this by
querying the project_dependency table to get the latest information on clients).

3.1.2 Results
Results are summarized in four figures. Figure 3.2 shows the probability density of lag
time in days, as measured fromAPI clients, and Figure 3.3 shows the distribution of this lag
time. Figure 3.3 shows frequency of adoption of specific releases: the three most popular
ones, the latest release (available at the creation of this dataset), and all the other releases.
Table 3.1 further specify the dates in which these releases were made public and provides
absolute numbers. Finally, Figure 3.5 depicts the frequency and number of releases per API.
The data we have ranges from 2004 to 2014, however for space reasons we only depict the
range 2009 to 2014. Each year is divided into 3 slots of 4 month periods, and the number
of releases in each of these periods is depicted by the size of the black circle.

Guava. In the case of the 3,013 Guava clients on GitHub the lag time varies between 1 day
and 206 days. Themedian lag time for these projects is 67 days. The average amount
of time a project lags behind the latest release is 72 days. Figure 3.2 shows the
cumulative distribution of lag time across all clients. Since Guava generally releases
5 versions on average per year, it is not entirely implausible that some clients may
be one or two versions behind at the time of usage of an API artifact.
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Figure 3.2: Probability density of lag time in days, by API
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Figure 3.3: Proportion of release adoption, split in the 3 most popular, the latest, and all the other releases, by
API

Although the latest (as of September 2014) version of Guava is 18, the most popular
one is 14 with almost one third of the clients using this version (as shown in Fig-
ure 3.3). Despite 4 versions being released after version 14 none of them figure in
the top 5 of most popular versions. Version 18 has been adopted by very few clients
(41 out of 3,013). None of the other newer versions (16 and 17) make it in the top 5
either.

Spring. Spring clients lag behind the latest release up to a maximum of 304 days. The
median lag time is 33 days and the first quartile is 15 days. The third quartile of the
distribution is 60 days. The average amount of lag time for the usages of various
API artifacts is 50 days. Spring is a relatively active API and releases an average of
7 versions (including minor versions and revisions) per year (Figure 3.5).
At the time of collection of this data, the Spring API had just released version 4.1.0
and only a small portion (30) of projects have adopted it. The most popular version
is 3.1.1 (2,013 projects) as is depicted in Figure 3.3. We see that despite the major
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Table 3.1: Publication date, by API, of the 3 most popular and latest releases, sorted by the number of their clients

API Release Release Date Num of clients (%)
14 03-2013 868 (29%)
13 08-2012 557 (19%)
11 02-2012 291 (10%)Guava

18 08-2014 41 (1%)
3.1.1 02-2012 2,013 (14%)
3.0.5 10-2010 1,602 (11%)
3.1.0 12-2011 1,489 (10%)Spring

4.1.0 10-2014 30 (0.2%)
3.6.10 02-2012 376 (6%)
4.1.9 12-2012 352 (6%)
3.3.2 06-2009 288 (5%)Hibernate

4.3.6 07-2014 32 (0.5%)
3.0.0 03-2011 536 (83%)
2.0.0 07-2009 53 (8%)
1.0.0 05-2009 14 (2%)Guice

4.0.0-b4 03-2014 3 (0.5%)
3.0.0 05-2010 211 (33%)
3.1.0 11-2011 190 (29%)
2.5.2 09-2009 55 (9%)Easymock

3.2.0 07-2013 42 (6%)
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Figure 3.4: Lag time distribution in days, by API

version 4 of the Spring API being released in December 2013, themost popularmajor
version remains 3. In our dataset, 344 projects still use version 2 of the API and 12
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Figure 3.5: Release frequency for each API from 2009 (the dataset covers from 2004)

use version 1.

Hibernate. The maximum lag time observed over all the usages of Hibernate artifacts is
271 days. The median lag time is 18 days, and the first quartile is just 10 days. The
third quartile is also just 26 days. The average lag time over all the invocations is 19
days. We see in Figure 3.2 that most invocations to Hibernate API do not lag behind
the latest release considerably, especially in relation to the other APIs, although a
few outliers exist. Hibernate releases 17 versions (including minor versions and
revisions) per year (Figure 3.5).
Version 4.3.6 of Hibernate is the latest release that available on Maven central at the
dataset creation time. A very small portion of projects (32) use this version, and the
most popular version is version 3.6.10, i.e., the last release with major version 3. We
see that a large number of clients have migrated to early versions of major version
4. For instance, version 4.1.9 is almost (352 projects versus 376 projects) as popular
as version 3.6.10 (shown in Figure 3.3). Interestingly, in the case of Hibernate, from
our data we see that there is not a clearly dominant version as all the other versions
of Hibernate make up about three fourths of the current usage statistics.

Guice. Among all usages of the Guice API, the largest lag time is 852 days. The median
lag time is 265 days and the first quartile of the distribution is 80 days. The average
of all the lag times is 338 days. The third quartile is 551 days, showing that a lot of
projects have a very high lag time. Figure 3.2 shows the cumulative distribution of
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lag times across all Guice clients. Guice is a young API and, relatively to the other
APIs, releases are few and far between (10 releases over 6 years, with no releases on
2010 or 2012, Figure 3.5).
The latest version of Guice that has been released, before the construction of our
dataset, is the fourth beta of version 4 (September 2014). Version 3 is unequivocally
the most adopted version of Guice, as seen in Figure 3.3. This version was released
in March of 2011 and since then there have been betas for version 4 released in 2013
and 2014. We speculate that this release policy may have lead to most of the clients
sticking to an older version and preferring not to transition to a beta version.

Easymock. Clients of Easymock display a maximum, median, and average lag time of
607, 280, and 268 days, respectively. The first quartile and third quartile in the dis-
tribution are 120 and 393 days, respectively. Figure 3.2 shows the large number of
projects that have a large amount of lag, relatively to the analyzed projects. Easy-
mock is a small API, which had 12 releases, after the first, over 10 years (Figure 3.5).
The most recent version of Easymock is 3.3.1, released in January 2015. However, in
our dataset we record use of neither that version nor the previous one (3.3.0). The
latest used version is 3.2.0, released in July 2013, with 42 clients. Versions 3.0.0 and
3.1.0 are the most popular (211 and 190 clients) in our dataset, as seen in Figure 3.3.
Version 2.5.2 and 2.4.0 also figure in the top three in terms of popularity, despite
being released in 2009 and 2008.

3.1.3 Discussion
Our analysis lets emerge an interesting relation between the frequency of releases of an
API and the behavior of its clients. By considering the data summarized in Figure 3.5, we
can clearly distinguish two classes of APIs: ‘frequent releaser’ APIs (Guava, Hibernate and
Spring) and ‘non-frequent releaser’ APIs (Guice and Easymock).

For all the APIs under consideration we see that there is a tendency for clients to
hang back and to not upgrade to the most recent version. This is especially apparent
in the case of the ‘frequent releaser’ APIs Guava and Spring: For these APIs, the older
versions are far more popular and are still in use. In the case of Hibernate, we cannot
get an accurate picture of the number of clients willing to transition because the version
popularity statistics are quite fractured. This is a direct consequence of the large number
of releases that take place every year.

For Guice and Easymock (‘non-frequent releaser’ APIs), we see that the latest version
is not popular. However, for Guice the latest version is a beta and not an official release,
thus we do not expect it to be high in popularity. In the case of Easymock, we see that
the latest version (i.e., 3.3.1) and the one preceding that (i.e., 3.3.0) are not at all be used.
In general, we do see that most clients of ‘non-frequent releaser’ APIs use a more recent
version compared to clients of ‘frequent releaser’ APIs.

By looking at Figures 3.2 and 3.4, we also notice how the lag time of ‘frequent releaser’
APIs’ clients is significantly lower than of ‘non-frequent releaser’ APIs’ clients. This rela-
tion may have different causes: For example, ‘non-frequent releaser’ APIs’ clients may be
less used to update the libraries they use to more recent versions, they may also be less
prone to change the parts of their code that call third-party libraries, or code that calls APIs
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that have non-frequent release policy may be more difficult to update. Testing these hy-
pothesis goes beyond the scope of this chapter, but with our dataset researchers can do so
to a significant extent. Moreover, using fine-GRAPE, information about more APIs can be
collected to verify whether the aforementioned relations hold with statistically significant
samples.

3.2 Case 2: How much of an API is broadly used?
ManyAPIs are under constant development andmaintenance. SomeAPI producers do this
to evolve features over time and improve the architecture of the API; others try to intro-
duce new features that were previously not present. All in all, many changes take place
in APIs over time [27]. Here we analyze which the features (methods and annotations)
introduced by API developers are taken on board by the clients of these APIs.

This analysis is particularly important for developers or maintainers to know whether
their efforts are useful and to decide to allocate more resources (e.g., testing, refactoring,
performance improvement) in more used parts of their API, as resulting returns on invest-
ment may be greater. Moreover, API users may have more interest in reusing popular API
features, as they are probably better tested through users [70].

3.2.1 Methodology
For each of theAPIs, we have a list of features in the api_method and api_class tables [67].
We also have the usage data of all features per API that has been accumulated from the
clients in the method_invocation and annotation tables. Based on this, we can mark
features of the API have been used by clients. We can also count how many clients use
a specific feature, thus classifying each feature as: (1) hotspot, in the top 15% of features
in term of usage; (2) neutral, features that have been used once or more but not in the
top 15% and (3) coldspot, if not used by any client. This is the same classification used
by Thummalapenta and Xie [70] in a similar study (based on a different approach) on the
usage of frameworks’ features.

To see which used features were introduced early in an APIs lifetime, we can use the
api_version table to augment the date collected above with accurate version information
per feature; then, for each of the used features, we see which version is the lowest wherein
that feature has been introduced.

3.2.2 Results
The overall results for our analysis are summarized in Figures 3.6, 3.7, and 3.8. The first
shows a percentage breakdown of usages of API features (left-hand side) and classes (right-
hand side); the second and third report the probability distribution of the logarithm of the
number of clients per API features, for ‘non-frequent releaser’ APIs and ‘frequent releaser’
APIs, respectively.

Generally, we see that the proportion of used features is never higher than 20% (Fig-
ure 3.6) and that the number of clients that use the features has a heavily right skewed
distribution, which is slightly flattened by considering the logarithm (Figures 3.7 and 3.8).
Moreover, we do not see a special behavior in this context of clients of ‘non-frequent
releaser’ APIs vs. clients of ‘frequent releaser’ APIs.
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In the following, we present the breakdown of the usage based on the definitions above.

Hotspots Normal Coldspots (unused)

Guava Spring Hibernate Guice Easymock Guava Spring Hibernate Guice Easymock
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Figure 3.6: Percentage breakdown of usage of features for each of the APIs
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Figure 3.7: Probability distribution of (log) number of clients per API features, by ‘non-frequent releaser’ APIs

Guava. Only 9.6% of the methods in Guava are ever used; in absolute numbers, out of
14,828 unique public methods over 18 Guava releases, only 1,425 methods are ever
used. Looking at the used methods, we find that 214 methods can be classified as
hotspots. The rest (1,211) are classified as neutral spots. The most popular method
from theGuavaAPI is newArrayList from the class com.google.common.collect.Lists
class and it has 986 clients using it.
Guava provides 2,310 unique classes over 18 versions. We see that only 235 (10%)
of these are ever used by at least client. Furthermore, only 35 of these classes can
be called hotspots in the API. A further 200 classes are classified as neutral. And we
can classify a total of 2,075 classes as coldspots as they are never used. The most
popular class is used 1,097 times and it is com.google.common.collect.Lists.
With Guava we see that 89.4% of the usages by clients of Guava relate to features
that have been introduced in version 3 that was released in April 2010. Following
which 7% of the usages relate to features that were introduced in version 10 that
was released in October 2011.
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Figure 3.8: Probability distribution of (log) number of clients per API features, by ‘frequent releaser’ APIs

Spring. Out of the Spring core, context and test projects, we see that 7.4% of the features
are used over the 40 releases of the API. A total of 840 features have been used out
of the 11,315 features in the system. There are 126 features that can be classified
as hotspots. Consequently, there are 714 features classified as neutral. The most
popular feature is addAttribute from the class org.springframework.ui.Model
and has been used 968 clients.
The Spring API provides a total of 1,999 unique classes. Out of these there are only
319 classes that are used by any of the clients of the Spring API. We can classify 48
of these classes as hotspot classes and the other 271 can be classified as neutral. We
classify 1,680 classes as coldspots as they are never used. The most popular class
has 2,417 clients and it is org.springframework.stereotype.Controller.
Looking deeper, we see that almost 96% of the features of Spring that are used by
clients are those introduced in Spring version 3.0.0 that was released in December
2009.

Hibernate. From the Hibernate core and entitymanager projects we see that only 1.8%
of the features are used. 756 out of the 41,948 unique public features provided over
77 versions of Hibernate have been used by clients in GitHub. Of these, 114 features
that can be classified as hotspots and a further 642 features can be classified as neu-
tral. The getCurrentSessionmethod from the class org.hibernate.SessionFactory
is the most popular feature, used by 618 clients.
Hibernate is made up of 5,376 unique classes. Out of these only 245 classes are used
by clients. We can classify 37 of these classes as hotspots. The rest 208 classes are
classified as neutral. We find that Hibernate has 5,131 coldspot classes. The most
popular class is org.hibernate.Session with 917 clients using it.
In the case of Hibernate over 82% of the features that have been used were intro-
duced in version 3.3.1 released in September 2008 and 17% of the features were in-
troduced in 3.3.0.SP1 released in August 2008.

Guice. Out of the unique 11,625 features presented by Guice, we see that 1.2% (138) of
the features are used by the clients of Guice. There are 21 features that are marked
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as being hotspots, 117 features marked as being neutral, and 11,487 classified as
coldspots. The most popular provided by the Guice API is createInjector from
class com.google.inject.Guice and is used by 424 clients.
The Guice API is made up of 2,037 unique classes that provide various features. Out
of these only 61 classes are of any interest to clients of the API.We find that 9 of these
classes can be classified as hotspots and the other 52 as neutral spots. This leaves
a total of 1,976 classes as coldspots. The most popular class provided by Guice is
com.google.inject.Guice and there are 424 clients that use it.
Close to 96% of the features of Guice that are popularly used by clients were intro-
duced in its first iteration which was released on Maven central in May 2009.

Easymock. There are unique 623 features provided by Easymock, out of which 13.4% (84)
are used by clients. This implies that 539 features provided by the API are never by
used by any of the clients and are marked as coldspots. 13 features are marked as
hotspots, while 71 features are marked as neutral. the The most popular feature is
getDeclaredMethod from the class org.easymock.internal.ReflectionUtils and

is used by 151 clients.
Easymock being a small API consists of only 102 unique classes. Out of these only 9
classes are used by clients. Only 1 can be classified as a hotspot class and the other 8
are classified as neutral spots. This leaves 93 classes as coldspots. The most popular
class is org.easymock.EasyMock and is used by 205 clients.
We observe that 95% of the features that are used from the Easymock API were
provided starting version 2.0 which was released in December 2005.

3.2.3 Discussion
We see that for Guava, Spring and Easymock, the percentage of usage of features hov-
ers around the 10% mark. Easymock has the largest percentage of features that are used
among the 5 APIs under consideration. This could be down to the fact that Easymock
is also the smallest API among the 5. Previous studies such as that by Thummalapenta
and Xie [70] have shown that over 15% of an API is used (hotspot) whereas the rest is
not (coldspot). However, the APIs that they analyzed are very different to the ones that
are here as they are all smaller APIs comparable to the size of Easymock, however none
of them are of the size of the other APIs such as Guava and Spring. Also, their mining
technique relied on code search engines and not on type resolved invocations.

In the case of Hibernate and Guice we see a much smaller percentage (1.8% and 1.2%
respectively) of utilization of features. This is far lower than that of other APIs in this
study. We speculate that due to the fact that the most popular features that are being used
are also those that were introduced very early in the APIs life (version 3.3.1 in the case of
Hibernate and version 1.0 in the case of Guice). These features could be classified as core
features of the API. Despite API developers adding new features, there may be a tendency
to not deviate from usage of these core features as these may have been the ones that made
the API popular in the first place.

This analysis underlines a possibly unexpected low usage of API features in GitHub
clients. Further studies, using our dataset, can be designed and carried out to determine
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which characteristics make certain feature more popular and guide developers to give the
same characteristics to less popular features. Moreover, this popularity study can be used,
for example, as a basis for developers to decide whether to separate more popular features
of their APIs from the rest and provide them as a different, more supported package.
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4
Scale of affectedness by deprecation
AnApplication Programming Interface (API) is a definition of functionalities provided by a
library or frameworkmade available to other developer, as such. APIs promote the reuse of
existing software systems [39]. In his landmark essay “No Silver Bullet” [1], Brooks argued
that reuse of existing software was one of the most promising attacks on the essence of the
complexity of programming: “The most radical possible solution for constructing software is
not to construct it at all.”

Revisiting the essay three decades later [71], Brooks found that indeed, reuse remains
the most promising attack on essential complexity. APIs enable this: To cite a single
example, we found at least 15,000 users of the Spring API [72].

However, reuse comes with the cost of dependency on other components. This is not
an issue when said components are stable. But evidence shows that APIs are not always
stable: The Java standard API for instance has an extensive deprecated API ¹. Deprecation
is a mechanism employed by API developers to indicate that certain features are obsolete
and that they will be removed in a future release. API developers often deprecate features,
and when replace them with new ones, changes can break the client’s code. Studies such
as Dig and Johnson’s [25] found that API changes breaking client code are common.

The usage of a deprecated feature can be potentially harmful. Features may be marked
as deprecated because they are not thread safe, there is a security flaw, or are going to
be replaced by a superior feature. The inherent danger of using a feature that has been
marked as obsolete may be good enough motivation for developers to transition to the
replacement feature.

Besides the aforementioned dangers, using deprecated features can also lead to re-
duced code quality, and therefore to increased maintenance costs. With deprecation be-
ing a maintenance issue, we would like to see if API clients actually react to deprecated
features of an API.

Robbes et al. conducted the largest study of the impact of deprecation on API clie-
nts [3], investigating deprecated methods in the Squeak [73] and Pharo [74] software
ecosystems. This study mined more than 2,600 Smalltalk projects hosted on the Squeak-

¹see http://docs.oracle.com/javase/8/docs/api/deprecated-list.html

http://docs.oracle.com/javase/8/docs/api/deprecated-list.html
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Source platform [75]. They investigated whether the popularity of deprecated methods
either increased, decreased or did not change after deprecation.

Robbes et al. found that API changes caused by deprecation can have a major impact
on the studied ecosystems, and that a small percentage of the projects actually reacts to
an API deprecation. Out of the projects that do react, most systematically replace the calls
to deprecated features with those recommended by API developers. Surprisingly, this was
done despite API developers in Smalltalk not documenting their changes as good as one
would expect.

The main limitation of this study is being focused on a niche programming commu-
nity i.e., Pharo. This resulted in a small dataset with information from only 2,600 projects
in the entire ecosystem. Additionally, with Smalltalk being a dynamically typed language,
the authors had to rely on heuristics to identify the reaction to deprecated API features.

We conduct a non-exact replication [76] of the previous Smalltalk [3] study, also striv-
ing to overcome its limitations. We position this study as an explorative study that has no
pre-conceived notion as to what is correct behavior with respect to reaction to deprecation.
To that end we study the reactions of more than 25,000 clients of 5 different APIs, using
the statically-typed Java language; we also collect accurate API version information. The
API clients analyzed in this study are open-source projects we collected on the GitHub
social coding platform [77].

Furthermore, we also investigate the special case of the Java Development Kit API
(JDK), which may present peculiarities, because of its role popularity and tailored integra-
tion with most IDEs. For example, due to these features developers might be more likely to
react to deprecation in the API of the language, as opposed to deprecations in an API that
they use. To perform this analysis, we collect data from Maven Central (which allows for
a more reliable way to collect JDK version data). We collected data from 56,410 projects
and their histories, out of which we analyze 60 projects (selected to reduce the size of data
to be processed) to see how they dealt with deprecated API elements in Java’s standard
APIs.

Our results confirm that only a small fraction of clients react to deprecation. In fact,
in the case of the JDK clients, only 4 are affected and all 4 of these introduce calls to dep-
recated entities at the time of usage. Out of those, systematic reactions are rare and most
clients prefer to delete the call made to the deprecated entity as opposed to replacing it
with the suggested alternative one. This happens despite the carefully crafted documenta-
tion accompanying most deprecated entities.

One of the more interesting phenomena that the we observed was that out of the 5
APIs for which we observed the reaction pattern, we see that each of the APIs has its
own way in which it deprecated features, which then has an impact on the client. APIs
such as Spring appear to deprecate their features in a more conservative manner and thus
impact very few clients. On the other hand, Guava appears to constantly making changes
to their API, thus forcing their clients to deal with deprecation in the API, at the risk of
having clients not upgrading to the latest version of the API. Given these patterns that
we observed, we investigate whether we can categorize APIs based on the strategy they
use when deprecating features. To this end we look at 50 popular Java APIs, and develop
heuristics characterizing how these APIs deprecate features.



4.1 Methodology

4

43

4.1 Methodology
We define the research questions and describe our research method contrasting it with the
study we expand upon [3].

4.1.1 Research Questions
To better contrast our results with the previous study on Smalltalk, we try to maintain the
same research questions as the original work whenever possible.

The aim of these research questions is similar to the original chapter and they aim
to determine (1) whether deprecation of an API artifact affects API clients, (2) whether
API clients do react to deprecation and (3) , and to understand if immediately actionable
information can be derived to alleviate the problem. To do this, we find out how often a
deprecated entity impacts API clients and how these clients deal with it.

Given the additional information at our disposal in this chapter, we add two novel
research questions (RQ0 and RQ6). RQ0 aims to understand the API version upgrade be-
havior of API clients and RQ6 looks at the impact of various deprecation policies on the
reaction of API clients. Furthermore, we alter the original order and partially change the
methodology we use to answer the research questions; this leads to some differences in
the formulation. The research questions we investigate are:

• RQ0: What API versions do clients use?

• RQ1: How does API method deprecation affect clients?

• RQ2: What is the scale of reaction in affected clients?

• RQ3: What proportion of deprecations does affect clients?

• RQ4: What is the time-frame of reaction in affected clients?

• RQ5: Do affected clients react similarly?

• RQ6: How are clients impacted by API deprecation policies?

4.1.2 Research Method, Contrasted With the Previous Study
Robbes et al. analyzed projects hosted on the SqueakSource platform, which used theMon-
ticello versioning system. The dataset contained 7 years of evolution of more than 2,600
systems, which collectively had over 3,000 contributors. They identified 577 deprecated
methods and 186 deprecated classes. The results were informative, but this previous study
had several shortcomings that we address. We describe the methodology to collect the
data for this study by describing it at increasingly finer granularity: Starting from the se-
lection of the subject systems to detecting the use of versions, methods, and deprecations.
In this work, the methodologies for the collection of Third-party API usage and JDK API
usage is different, and these differences are reflected in Figure 4.1 and Figure 4.2.

For Third-Party APIs, we select candidate APIs based on their popularity (Figure 4.1,
top left); we then build the list of their clients (Figure 4.1, bottom left), keeping only ac-
tive projects; finally, for each project, we locate the usages of individual API elements in
successive version of these projects (Figure 4.1, right).



4

44 4 Scale of affectedness by deprecation

Historical analysis of API usage
Conducted on each API client

Analysis of API popularity
Computed on each Java project in GitHub

GitHub -
Social coding platform

Java project 

POM file
POM

Dependency
Analyzer

Database

Dependencies
per project

Selection of APIs
and their clients

Selected APIs and their clients

EasyMockEasyMockEasyMockEasyMockEasyMock

5 Java APIs
popular on GitHub 

EasyMockEasyMockEasyMockAPI Client A

25,357 Java clients
of the APIs

API Client

versioning 
system

POM filePOM fileSource 
code fileSource 

code file POM
Dependency

Analyzer

Maven 
Central

Query for
specific API

version

JAR file

fine-GRAPE

Database

Historical
API usage

Computed for
each commit

Figure 4.1: Methodology used to mine data from Third-party API clients

Analysis of Projects in Maven Central
Computed on each Java project on Maven Central

Download
each JAR file

JAR store

Java project

Version 1

Version 2

…

Version N

JAR file 1

JAR file 2

…

JAR file N

Analysis of JAR files
Computed on each JAR file

JAR file

unzip

Database

Detailed
invocation
informationPOM fileSource 

code fileJava .class 
file

Parse with
ASM
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For the JDK, every Java project is essentially a client. We first select a diverse sample
of Java projects fromMaven Central to study. We then download successive compiled ver-
sion of these systems from Maven Central (Figure 4.2, left), before analyzing the bytecode
to infer both the JDK version used to compile it, and the use of JDK features (Figure 4.2,
right).

System Source
The original study was conducted on the Squeak and Pharo ecosystems found on Squeak-
Source, thus the set of systems that were investigated was relatively small. To overcome
this limitation, we focus on a mainstream ecosystem: Java projects hosted on the social
coding platform GitHub and in Maven central. Java is the most popular programming
language according to various rankings [48, 78], GitHub is the most popular and largest
hosting service [79] and Maven Central is the largest store of JAR files [19].

• Third-party APIs (Figure 4.1, top left).
Our criteria for selection of APIs includes popularity, reliability, and variety: We
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measure popularity in terms of number of clients each API has on GitHub and select
from the top 20 as identified by the fine-GRAPE dataset [47]. We ensure reliability
by picking APIs that are regularly developed and maintained i.e., those that have at
least 10 commits in a 6 week period before the data has been collected. We select
APIs pertaining to different domains. These criteria ensure that the APIs result in a
representative evolution history, do not introduce confounding factors due to poor
management, and do not limit the types of clients.

We limit our study to Java projects that use the Maven build system because Maven
based projects use Project Object Model (POM) files to specify and manage the API
dependencies that the project refers to. We searched for POM files in the master
branch of Java projects and found approximately 42,000 Maven based projects on
GitHub. By parsing their POM files, we obtained all the APIs they depend on. We
then created a ranking of the most popular APIs, which we used to guide our choice
of APIs to investigate.

This selection step results in the choice of 5APIs, namely: Easymock [80], Guava [81],
Guice [82], Hibernate [83], and Spring [84]. The first 6 columns of Table 4.1 provide
additional information on these APIs.

• JDK APIs.
Clients of the JDK are not necessarily hard to find, GitHub alone contains 879,265
Java based projects. However, we are interested in accurately inferring the version
of the JDK being used and whether these clients react to the deprecation of features
in various versions of the JDK. This is not a trivial endeavor, given that Java source
code files do not specify the version of Java that they are meant for. To overcome
this challenge, we use the Java Archive (JAR) files of projects that were released to
Maven Central.

Maven Central is the central repository for all libraries that can be used by Maven
based projects. It is one of the largest stores of JAR files, where most small and large
organizations release their source code in built form. JAR files consist of class files,
which are a result of compiling Java source code. These class files contain metadata
on the version of the JDK being used. Thus, making JAR files an appropriate source
of data for JDK clients, given that version resolution can be done in it.

Selection of main subjects
We select the main subjects of this study:

• Third-party APIs (Figure 4.1, bottom left).
To select the clients of APIs introducing deprecated methods, we use the afore-
mentioned analysis of the POM files. We refine our process using the GHTorrent
dataset [85], to select only active projects. We also remove clients that had not
been actively maintained in the 6 months preceding our data collection, to elimi-
nate ‘dead’ or ‘stagnating’ projects. We totaled 25,357 projects that refer to one or
more of 5 aforementioned popular APIs. The seventh column in Table 4.1 provides
an overview of the clients selected, by API.
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Table 4.1: Summary information on selected clients and APIs

API
(GitHub repo) Description Inception Releases

Unique entities Number of 
clients

Usage across history

Classes Methods Invocations Annotations

EasyMock        
(easymock/
easymock)

A testing framework that allows for the mocking of 
Java objects during testing. Feb 06 14 102 623 649 38,523 -

Guava          
(google/guava)

A collections API that provides data structures that are 
an extension to the datastructures already present in 
the Java SDK. Examples of these new datastructures 
includes:  multimaps, multisets and bitmaps.

Apr 10 18 2,310 14,828 3,013 1,148,412 -

Guice            
(google/guice) A dependency injection library created by Google. Jun 07 8 319 1,999 654 59,097 48,945

Hibernate       
(hibernate/

hibernate-orm)

A framework for mapping an object oriented domain to 
a relational database domain. We focus on the core 
and entitymanager projects under the hibernate 
banner.

Nov 08 77 2,037 11,625 6,038 196,169 16,259

Spring                 
(spring-projects/

spring-framework)

A framework that provides an Inversion of Control(IoC) 
container, which allows developers to access Java 
objects with the help of reflection. We choose to focus 
on just the spring-core, spring-context and spring-test 
modules due to their popularity.

Feb 07 40 5,376 41,948 15,003 19,894 40,525

• JDK APIs (Figure 4.2, left).
At the time of data collection, Maven Central included 1,297,604 JAR files pertaining
to 150,326 projects that build and release their code on the central repository. Ana-
lyzing all these projects would pose serious technical challenges, thus, we produced
a selection criterium to reduce the number of projects, while preserving representa-
tiveness.
As a first step to filter our project list, we decide to eliminate those projects that
have 4 or fewer releases on Maven Central. Projects that have had so few releases
are not likely to have changed the version of the JDK that they use to compile their
codebase, thus rendering them uninteresting to our current purpose. Performing
this elimination step leaves us with 56,410 projects and 1,144,134 JARs that we can
analyze. All these JAR files for each of the projects is downloaded, unzippped and
all method invocations is stored in a database.
Despite having this amount of data, we cannot process all projects for the purpose
of this chapter, thus, as a further step of filtering we use the technique outlined by
Nagappan et al. [86] to sample our set of projects, creating a small and representa-
tive dataset of diverse projects to analyze. The technique allows for the creation of
a diverse and representative sample set of projects that likely cover the entire spec-
trum of projects. They define coverage as:
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = |𝑈𝑝𝜖𝑃 {𝑞|𝑠𝑖𝑚𝑖𝑙𝑎𝑟(𝑝,𝑞)}|

|𝑈 |
Here 𝑈 is the universe of projects from which a selection is to be made. 𝑃 is the
set of dimensions along which these projects can be classified. A similarity score
is computed for all projects based on the defined dimensions of the entire universe.
The algorithm keeps adding projects to the subset that increases the similarity score
until a coverage of 100% is achieved.
For our analysis, we define the following dimensions to model the projects:

– Number of versions released: The higher the number of versions released
by a project, the more likely the project has made a change in the version of
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the JDK (or any other API) that it uses.
– Median version release time: Projects with a lower median release time, re-

lease new versions more often than those with a high inter-release period. This
distinction is important because projects that release often might not actually
react to deprecation due to the cost involved, on the other hand, projects with
long inter-release time spans might have a lot of time at their disposal to fix
their code.

– Lifespan of the project: Projects that have lasted a long time (e.g., Spring
which has been around for 13 years) have more of a chance of having used
multiple versions of Java and being affected by deprecation due to upgrading
the version of the JDK being used, as opposed to those projects that are young.

– Number of classes: Projects that are larger (those that have more classes)
might have a different reaction pattern to those that are smaller, measuring
the number of classes allows us to make this distinction.

– Starting version: Projects that start with a more recent version of the JDK
might not be affected by deprecation as opposed to those that use an old ver-
sion of Java.

Nagappan et al. provide R scripts implementing their project selection technique.
We ran these scripts with our dimensions of interest as input and collected a list of
60 diverse projects that cover the entire space of projects (100% coverage). We thus
use these 60 projects for our analysis of client’s reactions to deprecation in entities
of the JDK API.

API version usage.
Explicit library dependencies are rarely mentioned in Smalltalk. There are several ways
to specify these dependencies, often programmatically and not declaratively (for instance,
Smalltalk does not use import statements as Java does). Thus, detecting and analyzing de-
pendencies between projects requires heuristics [87]. In contrast, Maven projects specify
their dependencies explicitly and declaratively: We can thus determine the API version a
project depends on. Hence, we can answer more questions, such as if projects freeze or
upgrade their dependencies. This is more complicated in the case of JDK clients, as the
version definition is not explicit. To overcome this flaw, we use an alternative data source
(Maven Central) such that all information at our disposal can be considered accurate.

• Third-party APIs.
We only consider projects that encode specific versions of APIs, or unspecified ver-
sions (which are resolved to the latest API version at that date). We do not consider
ranges of versions because very few projects use those (84 for all 5 APIs, while we
include 25,357 API dependencies to these 5 APIs). In addition, few projects use un-
specified API versions (269 of the 25,357, which we do include).

• JDK APIs. (Figure 4.2, right)
Accurate resolution of the version of the Java API is a challenge on its own, since
there is no easy way to find out the version of the JDK being used by a Java project
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by only inspecting the source code. However, there are three techniques that can
be used and these are outlined below:

1. Projects that use maven sometimes use the maven compiler plugin in the POM
file. This plugin allows the specification of the version of Java that is being used
in the source code and the bytecode version to which this source code is to be
compiled. Often these versions can be the same, there is no hard requirement
for them to be different. One can download all the POM files and parse them
to find the usage of this plugin and see what version of Java is being used.

2. The Java JDK has evolved over time. With every new version, new features
have been introduced. These features are incompatible with older versions of
the JDK. However, these features are forward compatible, thus ensuring that
anyone using that feature must either use the version of the JDK in which the
feature was introduced or a later version. Thus, based on the language features
being used one can ascertain a range of JDKs that may have been used to
compile a certain file. Also, cross-referencing the date of usage of the feature
with the date of JDK releases could allow us to narrow the range. Overall, this
would give us a small range of versions that might have been used.

3. The previous two approaches both rely on parsing the source code to extract
the usage of the Java features and to estimate the version of the JDK being
used. However, the most reliable way to infer the version of Java being used is
to look at the compiled class files of the source code. These class files contain
a two-digit integer header that specifies the version of the JDK that was used
to compile it, e.g., a class header could be 50, which implies that the class was
compiled using JDK 1.6.

We tried the first method outlined above to resolve the version of the JDK being used.
However, when we looked at 135,739 POM files that we managed to download from
GitHub, we found that only 7,722 files used the maven compiler plugin. In the larger
context, this was a very small number of files that specified the version of the JDK.
Thus, we found this option nonviable.
The second method can at times result in an inaccurate resolution of the version
being used. This would make it hard to answer the research questions we have with
the same accuracy as for the clients of the 5 Java APIs, hence we decided against
using it.
Reading the compiled version of a class is the most accurate way to infer the version
of the JDK being used by a Java project. However, this would imply that we would
have to compile all the Java based project at our disposal. Even with these projects
using the Maven build tool, this task is problematic. First, there is a chance that the
dependencies specified in the POM file might relate to certain internal dependencies
that are hosted by the project’s developers and are not publicly available. Second,
some of these POM files might use a PGP key to verify the authenticity of the depen-
dencies being used, and this key is not available to us. Third, often the projects on
GitHub do not ship with tests that work in all environments and they might need a
certain testing environment to work properly, without which the Maven build fails.
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Fourth, it is very time-consuming to compile every version of every file to get its
class file.
With the limitations of compiling GitHub based Java projects, we found an alter-
native source of Java based data; Maven central. Maven Central is the standard
repository host for Java projects. Here developers release their projects as libraries
such that others can use them. These projects are in the form of Java Archive (JAR)
files that contain class files. We find this to be an appropriate source of data, given
that there are 150,326 distinct projects released on Maven Central with 1,297,604
JAR files associated with them. These JAR files can be unpacked to parse the usage
of Java features and at the same time ascertain the version of the JDK that was used
to compile the source code.

Fine-grained method/annotation usage
Due to the lack of explicit type information in Smalltalk, there is no way of actually know-
ing if a specific class is referenced and whether the method invocation found is actually
from that referenced class. This does not present an issue when it comes to method in-
vocations on methods that have unique names in the ecosystem. However, in the case of
methods that have common names such as toString or name or item, this can lead to some
imprecise results. In the previous study, Robbes et al. resorted to a manual analysis of the
reactions to an API change but had to discard cases which were too noisy.

• Third-party APIs. (Figure 4.1, right)
In this study, Java’s static type system addresses this issue without the need for
a tedious, and conservative manual analysis. On the other hand, Java APIs can
be used in various manners. In Guava, actual method invocations are made on
object instances of the Guava API classes, as one would expect. However, in Guice,
clients use annotations to invoke API functionality, resulting in a radically different
interaction model. These API usage variabilities must be considered.
While mining for API usage we must ensure that we connect a method invocation
or annotation usage to the parent class to which it belongs. There are multiple
approaches that can be taken to mining the usage data from source code. The first
uses pattern matching to match a method name and the import in a Java file to find
what API a certain method invocation belongs to. The second uses the tool PPA [50]
which can work on partial programs and find the usage of a certain method of an
API. The third builds the code of a client project and then parse the bytecode to find
type-resolved invocations. Finally, the fourth uses the Eclipse JDT AST parser to
mine type-resolved invocations from a source code file. We created a method, fine-
GRAPE, based on the last approach [47, 72] that meets the following requirements:²
(1) fine-GRAPE handles the large-scale data in GitHub, (2) it does not depend on
building the client code, (3) it results in a type-checked API usage dataset, (4) it
collects explicit version usage information, and (5) it processes the whole history of
each client.

• JDK API. (Figure 4.2, right)
In the case of JDK clients, we look at class files that are retrieved from JAR files.

²More details on fine-GRAPE can be found in Chapter 2.
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These class files contain accurate API usage information. This information can be
parsed using the ASM [88] library, which uses the visitor pattern to visit a class
file. For each class, we extract information on the version of the JDK being used,
the annotations used in the class, and the method invocations made. For each of
the method invocations, we have accurate information on the class that the method
belongs to, the parameters and type of parameters being passed to the method, and
what the expected return value is. Overall, we ensure that while parsing the JDK
clients we obtain an accurate representation of usage of the JDK.

4.1.3 Detect deprecation
In Smalltalk, users insert a call to a deprecation method in the body of the deprecated
method. This call often indicates which feature replaces the deprecated call. However,
there is no IDE support. The IDE does not indicate to developers that the feature being
used is deprecated. Instead, calls to deprecated methods output runtime warnings.

In contrast, Java provides two different mechanisms to mark a feature as deprecated.
The first is the @deprecated annotation provided in the Javadoc specification. This annota-
tion is generally used to mark an artifact as deprecated in the documentation of the code.
This feature is present in Java since JDK version 1.1. Since this annotation is purely for
documentation purposes, there is no provision for it to be used in compiler level warnings.
This is reflected in the Java Language Specification(JLS). However, the standard Sun JDK
compiler does issue a warning to a developer when it encounters the usage of an artifact
that has been marked as deprecated using this mechanism. More recently, JDK 1.5 intro-
duced a secondmechanism tomark an artifact as deprecatedwith a source code annotation
called @Deprecated (The same JDK introduced the use of source code annotations).

This annotation is a compiler directive to define that an artifact is deprecated. This
feature is part of the Java Language Specification; as such any Java compiler supports it.
It is now common practice to use both annotations when marking a certain feature as
deprecated. The first is used so that developers can indicate in the Javadoc the reasons
behind the deprecation of the artifact and the suggested replacement. The other is now
the standard way in which Java marks features as deprecated.

To identify the deprecated features, we first download the different versions of the
APIs used by the clients from the Maven central server. These APIs are in the form of
Java Archive (JAR) files, containing the compiled classes of the API source. We use the
ASM [88] class file parsing library to parse all the classes and their respective methods.
Whenever an instance of the @Deprecated annotation is found we mark the entity it refers
to as deprecated and stores this in our database. Since our approach only detects compiler
annotations, we do not handle the Javadoc tag. See the threats to validity section for
a discussion of this. We also do not handle methods that were removed from the API
without warning, as these are out of the scope of this study.
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Figure 4.3: Exemplification of the behavior of an API and its clients

4.2 RQ0: What API versions do clients use?
Our first research question seeks to investigate the popularity of API versions and to un-
derstand the behavior of the clients towards version change. This sets the ground for the
subsequent research questions.

We start considering all the available versions of each API and measure the popularity
in terms of how many clients were actually using it at the time of our data collection. In
the example in Figure 4.3, we would count popularity as 1 for v7, 2 for v6, and 2 for v4.
The column ‘number of clients’ in Table 4.1 specifies the absolute number of clients per
each API and Figure 4.4 reports the version popularity results, by API.

• Third-party APIs.

The general trend shows that a large number of clients use different versions of the
APIs and that there is significant fragmentation between the versions (especially in
the case of Hibernate, where the top three versions are used by less than 25% of
the clients). Further, the general trend is that older versions of the APIs are more
popular.
This initial result may indicate that clients have a delayed upgrading behavior, which
could be related with how they deal with maintenance and deprecated methods. For
this reason, we analyze whether the clients updated or never updated their depen-
dencies. In the example in Figure 4.3, we count three clients who upgraded version
in their history. If projects update we measure how long they took to do so (time
between the release of the new version of the API in Maven central and when the
project’s POM file is updated).
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Figure 4.4: Popularity breakdown of versions, by API

Table 4.2: Update behavior of clients, by API

update time (in days)updated clients mean median Q1 Q3
Easymock 63 10% 404 272 103 592
Guava 610 20% 140 72 32 139
Guice 49 8% 783 909 251 1,150
Hibernate 2,454 41% 245 63 33 368
Spring 11,112 74% 195 69 37 186
JDK 19 33% 745 1,507 996 1,738

Table 4.2 summarizes the results. Most clients freeze to one version of the API they
use. This holds for all the APIs except for Spring, whose clients have at least one
update in 74% of the cases. In terms of time to update, the median is lower for clients
of APIs that have more clients updating, such as Hibernate and Spring. In general,
update time varies considerably—we will come back to this in RQ3.

• JDK API.
When doing this analysis, we notice one anomaly: two of the projects we analyzed
have no bytecode associated with it. This is because the developers who released
these projects to Maven central, released them only as Javadoc JAR files, without
source code files. During our data collection process, we ensured that anything
marked as Javadoc was not downloaded, however, in the case of these projects they
were not marked as Javadoc but as source files. This seems to indicate that a non-
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negligible amount of Maven Central JAR files are not particularly useful or do not
provide source code in some way. From this point forward, we discard the two
projects made only of Javadoc and continue focusing on the 58 projects for which
we do have the source code.
The clients are evenly distributed among versions 1.6, 1.7, and 1.8. Java 1.5 lags be-
hind these three other versions, but despite being more than 13 years old, 11 clients
adopt it. The number of clients using Java 1.6 is 18; despite that, there have been
several years for Java clients to update to Java 1.7 (released in 2011) or Java 1.8 (2014).
Only 19 out of the 58 clients ever change the version of Java that is being used. The
median time to update is almost 5 years; this is to be expected since Java has few
major releases in any given timespan.

4.3 RQ1: How does API method deprecation affect clie-
nts?

Answering RQ0, we found that most clients do not adopt new API versions. We now
focus on the clients that use deprecated methods and on whether and how they react to
deprecation.

Affected by deprecation. From the data, we classify clients into 4 categories, which
we describe referring to Figure 4.3:

• Unaffected: These clients never use a deprecated method. None of the clients in
Figure 4.3 belong to this category.

• Potentially affected: These clients do not use any deprecatedmethod, but should they
upgrade their version, they would be affected. Client 1 in Figure 4.3 belongs to this
category.

• Affected: These clients use a method which is already in a deprecated state, but do
not change the API version throughout their history. It happens in the case of Client
2.

• Affected and changing version: These clients use at least one method which gets
deprecated after updating the API version being used. Clients 3, 4, and 5 belong to
this category.

Figure 4.5 reports the breakdown of the clients in the four categories.

• Third-party APIs.
Across all third-party APIs, most clients never use any deprecated method throughout
their entire history. This is particularly surprising in the case of Hibernate, as it dep-
recated most of its methods (we discuss this in RQ3). Clients affected by deprecation
vary from more than 20% for Easymock and Guava to less than 10% for Hibernate
and almost 0% for Spring. Of these clients, less than one third also change their API
version, thus highlighting a stationary behavior of clients with respect to API usage,
despite our selection of active projects.
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Figure 4.5: Deprecation status of clients of each API

Common reactions to deprecation. We investigate how ‘Affected and changing
version’ clients deal with deprecation. We exclude ‘Affected’ clients, which do not
have strong incentives to fix a deprecation warning if they do not update their API,
as the method is still functional in their version.

71% and 65% of ‘Affected and changing version’ clients of Easymock and Guava react
to deprecated entities. For Hibernate and Spring, we see 31% and 32% of clients that
react. For all the APIs, the number of clients that fix all calls made to a deprecated
entity is between 16% and 22%. Out of the clients that react, we find that at the
method level, the most popular reaction is to delete the reference to the deprecated
method (median of 50% to 67% for Easymock, Guava and Hibernate and 100% for
Spring). We define as ‘deletion’ a reaction in which the deprecated entity is removed
and no new invocation to the same API is added.

Some Hibernate and Guava clients roll back to a previous version where the entity
is not yet deprecated. Easymock, Guava, and Hibernate clients tend to replace dep-
recated calls with other calls to the same API, however, this number is small. In
contrast to what one would expect as a reaction to deprecation (due to the seman-
tics of the deprecation warning), a vast majority of projects (95 to 100%) add calls
to deprecated API elements, despite the deprecation being already in place. This
concerns even clients that migrate all their deprecated API elements later on.
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The strange case of Guice. We analyzed all the Guice clients and looked for
usage of a deprecated annotation or method, however, we find that none of the
projects have ever used deprecated entities. The reason is that Guice does not
have many methods or annotations that have been deprecated since it follows a
very aggressive deprecation policy. In Guice, methods are removed from theAPI
without being deprecated previously. We observed this behavior in the Pharo
ecosystem as well and studied it separately [89]. In our next research questions
(RQ2 - RQ5), thus, we do not analyze Guice, as the deprecations are not explicitly
marked. However, we do not remove Guice from our study to keep it organic
and contrast the deprecation policy it uses with that of other APIs in RQ6.

• JDK API.
We see a surprising trend in the case of the Java clients, as also reported on the
rightmost bar in Figure 4.5. Only 4 out of 58 projects are affected by deprecation.
Also, none of these projects are among those that change the version of the API that
they use; this implies that at the time of usage of the deprecated feature, the client
already knew that it was deprecated.

4.4 RQ2: What is the scale of reaction in affected clients?
The work of Robbes et al. [3] measures the reactions of individual API changes in terms
of commits and developers affected. Having exact API dependency information, we can
measure API evolution on a per-API basis, rather than per-API element. Hence, we can
measure themagnitude of the changes necessary between twoAPI versions in terms of the
number of methods calls that need to be updated between two versions. Another measure
of the difficulty of the task is the number of different deprecated methods one must react
to: It seems reasonable to think that adapting to 10 usages of the same deprecation is easier
than reacting to 10 usages of 10 different deprecated methods.

• Third-party APIs.
We consider both ‘actual reactions’ and ‘potential ones’.
Actual reactions. We measure the scale of the actual reactions to API changes.
We count separately reactions to the same deprecated method and the number of
single reactions. In Figure 4.3, client 3, after upgrading to v5 and before upgrading to
v6, makes two modifications to statements including the deprecated method ‘boo’.
We count these as two reactions to deprecation but count one unique deprecated
method. We consider that client 5 reacts to deprecation when rolling back from v5
to v4: We count one reaction and one unique deprecated method.
We focus on the upper half of the distribution (median, upper quartile, 95th per-
centile, and maximum), to assess the critical cases; we expect the effort needed in
the bottom half to be low. Table 4.3 reports the results. The first column reports the
absolute number of non-frozen affected clients that reacted. The scale of reaction
varies: Most of the clients react to less than a dozen of statements with a single
unique deprecated method involved. Spring stands out with 31 median number of
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statements with reactions and 17 median number of unique deprecated methods in-
volved. Outliers invest more heavily in reacting to deprecated methods. As seen
next, this may explain the reluctance of some projects to update.

Table 4.3: Scale of actual clients’ reaction to method deprecation

non-frozen 
affected 

clients that 
reacted

statements with reaction 
(unique deprecated methods involved)

median Q3 95th perc. max

Easymock 17 11 (1) 21 (2) 109 (3) 109 (3)

Guava 161 3 (1) 8 (2) 127 (5) 283 (10)

Hibernate 40 5 (1) 20 (16) 41 (27) 59 (40)

Spring 10 31 (17) 54 (21) 104 (27) 131 (27)

Potential reactions. Since a large portion of projects do not react, we investigated
how much work was accumulating should they wish to update their dependencies.
We thus counted the number of updates that a project would need to perform to
render their code base compliant with the latest version of the API (i.e., removing
all deprecation warnings). In Figure 4.3, the only client that is potentially affected
by deprecation is client 1, which would have two statements needing reaction (i.e.,
those involving the method ‘foo’) and one unique deprecated method is involved.
As before, we focus on the upper half of the distribution. Table 4.4 reports the re-
sults. In this case, the first column reports the absolute number of clients that would
need a reaction. We notice that most of the clients use two or less unique deprecated
methods. However, they would generally need to react to a higher number of state-
ments, compared to the clients that reacted reported in Table 4.3, except for those
using Spring.
Overall, if the majority of projects would not need to invest a large effort to upgrade
to the latest version, a significant minority of projects would need to update a lot of
methods. This can explain their reluctance to do so. However, this situation, if left
unchecked—as is the case now—can and does grow out of control, especially if these
APIs start removing the deprecated features. If there is a silver lining, it is that the
number of unique methods to update is generally low, hence the adaptations can be
systematic. Outliers would have several unique methods to adapt to.

• JDK API.
We consider only ‘potential reactions’ in the case of the JDK API, as there can be no
‘actual reactions’. We analyzed all the 58 clients, fast-forwarding them through all
the JDK APIs version to see whether they would be affected by deprecation, should
they upgrade. We found that none of these clients would be affected in the event
that they would all upgrade to the latest version of the JDK. In other words, none
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Table 4.4: Scale of potential clients’ reaction to method deprecation

clients 
potentially 

needing 
reaction

statements potentially needing reaction 
(unique deprecated methods involved)

median Q3 95th perc. max

Easymock 178 55 (1) 254 (1) 1,120 (5) 4,464 (7)

Guava 917 12 (1) 42 (2) 319 (7) 8,568 (44)

Hibernate 521 15 (1) 35 (1) 216 (2) 17,471 (140)

Spring 41 3 (1) 4 (1) 51 (2) 205 (55)

of the analyzed clients use features that have been deprecated in newer versions of
Java.
Overall, reflecting on the reasons why deprecation has almost zero impact on these
clients (answers to RQ0, RQ1, and RQ2), we can hypothesize that the tight integra-
tion of the JDK API in the most popular IDEs and the amount of documentation
available to aid a developer in selecting the most appropriate API feature play a role
on the facts we encountered. For the purpose of this study, we cannot continue
with the other research questions (except for RQ6, in which we cluster the API dep-
recation behavior of JDK API) given that there is no reaction data to be analyzed;
however, we discuss (Section 4.10.2) on why we found such a low number of clients
affected by deprecation in the case of the JDK API.

4.5 RQ3: What proportion of deprecations does affect
clients?

The previous research question shows that most of the actual and potential reactions of
third-party API clients to method deprecations involve a few unique methods. This does
not tell us how these methods are distributed across all the deprecated API methods. We
compute the proportion of deprecated methods clients use.

In Figure 4.3, there is at least one usage of deprecated methods ‘boo’ and ‘foo’, while
there is no usage of ‘goo’. In this case, we would count 3 unique deprecated methods, of
which one is never used by clients.

Table 4.5 summarizes the results, including the proportion of deprecated methods per
API over the total count of methods and the count of how many of these deprecated meth-
ods are used by clients. APIs such as for Guava, Spring, or Hibernate have more than 1,000
deprecations. For Hibernate, 65% of unique methods get eventually deprecated, indicat-
ing that this API makes a heavy usage of this Java feature. The proportion of deprecated
methods that affect clients is, around 10% in all 4 of the APIs.
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Table 4.5: Deprecated methods affecting clients, by API

unique deprecated methods
defined by API used by clients

count % over 
total count % over all 

deprecated

Easymock 124 20% 16 13%

Guava 1,479 10% 104 7%

Hibernate 7,591 65% 487 6%

Spring 1,320 3% 149 11%

4.6 RQ4: What is the time-frame of reaction in affected
clients?

We investigate the amount of time it takes for a method to become deprecated (‘time to
deprecation’) and the period of time developers take to react to it (‘time to react’) to see
if developers react as soon as they notice that a feature they are using is deprecated. The
former is defined as the interval between the introduction of the call and when it was
deprecated, as seen in client 3 (Figure 4.3); the latter is the amount of time between the
reaction to a deprecation and when it was deprecated (clients 3 and 5).

Time to deprecation. We analyzed the ‘time to deprecation’ for each of the instances
where we found a deprecated entity. The median time for all API clients is 0 days: Most of
the introductions of deprecated method calls happen when clients already know they are
deprecated. In other words, when clients introduce a call to a deprecated entity, that they
know a priori that the entity is already deprecated. This seems to indicate that clients do
not mind using deprecated features.

Time to react. Figure 4.6 reports the time it takes clients to react to a method depre-
cation, once it is visible. We see that, for most clients across all APIs, the median reaction
time is 0 days for Guava, Hibernate, and Spring, while for Easymock it is 25 days. A re-
action time of 0 days can indicate that most deprecated method invocations are reacted
upon on the same day the call was either introduced or marked as deprecated. To confirm
this, we looked a little deeper at 20 of these cases to see why the reaction time is 0 days.
We see that in all of the cases the developers have upgraded a version of the API they use,
this leads to them noticing that a feature they use is now deprecated. They react to this
deprecation immediately after the upgrade in version, thus resulting in a reaction time of
0 days.

Barring outliers, reaction times for Hibernate and Spring are in the third quartiles,
being at 0 and 2.5 days. Reaction times are longer for clients of Guava and Easymock,
with an upper quartile of 47 and 200 days respectively. Outliers have a long reaction time,
in the order of hundreds of days. We looked individually at the 9 outliers that have a
reaction time in excess of 300 days. Distilling the actual rationale behind a change is non-
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Figure 4.6: Days taken by clients to react to a method deprecation once visible.

trivial. We look at the commit messages and any kind of code comments that might exist.
Only one commit message actually references the fact that a deprecated entity was being
reacted to. The other 8 commit messages do not add any information. We also do not see
any code comments that might explain the rationale. We can at best speculate that the
reaction to deprecation takes place as part of a general code cleanup act.

4.7 RQ5: Do affected clients react similarly?
This research question seeks to investigate the behavior of third-party API clients when it
comes to replacement reactions.

Such an analysis allows us to ascertain whether an approach inspired by Schäfer et al.’s
[90] would work on the clients in our sample. Their approach recommends API changes
to a client based on common, or systematic patterns in the evolution of other clients of
the same API.

4.7.1 Consistency of replacements.
There is no definite way to identify if a new call made to the API is a replacement for the
original deprecated call, so we rely on a heuristic: We analyze the co-change relationships
in each class file across all the projects; if we find a commit where a client removes a us-
age of a deprecated method (e.g., add(String)) and adds a reference to another method in
the same API (e.g., add(String, Integer)), this new method invocation is a possible re-
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placement for the original deprecated entity. A drawback is that in-house replacements or
replacements from other competing APIs cannot be identified. Nonetheless, we compute
the frequencies of these co-change relationships to find whether clients react uniformly
to a deprecation.

We found that Easymock clients show no systematic transitions: There are only 3 dis-
tinct methods for which we see replacements and the highest frequency of the co-change
relationships is 34%. For Guava, we find 23 API replacements; in 17% of the cases there is
a systematic transition i.e., there is only one way in which a deprecated method is replaced
by clients. Spring clients only react by deleting deprecated entities instead of replacing
them, resulting in no information on replacements of features. In the case of Hibernate
clients, we find only 4 distinct methods where replacements were made. There were no
systematic replacements and the maximum frequency is 75%.

Since API replacements are rather uncommon in our dataset, with the exception of
Guava clients, we find that while an approach such as the one of Schäfer et al. could
conceptually be quite useful, we would not be able to implement it in our case due to the
small amount of replacement data.

4.7.2 Quality of documentation.
Very few clients react to deprecation by actually replacing the deprecated call with one
that is not deprecated. This led us to question the quality of the documentation of these
APIs. Ideally one would like to have a clear explanation of the correct replacement for
a deprecated method, as in the Javadoc reported in Figure 4.7. However, the results we
obtained made us hypothesize otherwise. We systematically inspected the Javadoc to see
whether deprecated features had documentation on why the feature was deprecated and
whether there was an indication of appropriate replacement (or if a replacement is needed).

We perform a manual analysis to analyze the quality of the API documentations. For
Guava, we investigate all 104 deprecated methods that had an impact on clients; for Easy-
mock, we look at all 16 deprecated methods that had an impact on clients; for Spring and
Hibernate, we inspected a sample of methods (100 each) that have an impact on the clients.

In Easymock, 15 of the 16 deprecated methods are instance creation methods, whose
deprecation message directs the reader to use a Builder pattern instead of these methods.
The last deprecation message is the only one with a rationale and is also the most problem-
atic: the method is incompatible with Java version 7 since its more conservative compiler
does not accept it; no replacement is given.

In Guava, 61 messages recommend a replacement, 39 of which state that the method
is no longer needed and hence can be safely deleted, and 5 deprecated methods do not
have a message. Guava is also the API with the most diverse deprecation messages. Most
messages that state a method is no longer needed are rather cryptic (“no need to use
this”). On the other hand, several messages have more precise rationales, such as stating
that functionality is being redistributed to other classes. Others provide several alterna-
tive recommendations and detailed instructions and one method provides as many as four
alternatives (although this is because the deprecated method does not have exact equiva-
lents), Guava also specifies in the deprecation message when entities will be removed (e.g.,
“This method is scheduled for removal in Guava 16.0”, or “This method is scheduled for
deletion in June 2013.”).
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Figure 4.7: Example of Javadoc associated with deprecated API artifact

For Hibernate, all the messages provide a replacement, but most provide no ratio-
nale for it. The only exceptions are messages stating the advantages of a recommended
database connection compared to the deprecated one.

For Spring, the messages provide a replacement (88) or state that the method is no
longer needed (12). Spring is the only API that is consistent in specifying in which version
of the API the methods were deprecated. On the other hand, most of the messages do not
specify any rationale for the decision, except JDK version testing methods that are no
longer needed since Spring does not run in early JDK versions anymore.

Overall, maintainers of popular APIs provide their clients with sufficient support to
clients concerning deprecation. We found rationales as to why a method was deprecated,
but not systematically. Replacement is the most commonly suggested solution; this is
in contrast to the actual behavior of clients who instead prefer removing references to
deprecated entities as opposed to replacing them, as reported in 5.3.1.

4.8 RQ6: How are clients impacted by API deprecation
policies?

During this study, we noticed that each API has its own way to deprecate features. It
seems reasonable to think that this deprecation policy of features may impact a clients’
decision to adopt and react to these deprecated features. We thus decided to look at this
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particular issue in more detail.

4.8.1 Methodology
To see what different kind of policies of deprecation exist, we first aimed to look at the
top 50 APIs that are popularly used by GitHub based Java projects, to get a sufficiently
diverse set of APIs, with a sufficient number of clients that may react differently. However,
looking at only the top 50 most popular APIs might have one downside: Given that many
of the APIs have the same vendor, the deprecation policy adopted by the APIs from the
same vendor may be similar. To overcome this limitation, we looked at the top 200 APIs in
terms of popularity (ranked based on usage of the API among Java projects on GitHub) and
selected the first 50 that had different vendors, this resulted in the APIs listed in Table 6.1.

Once the APIs had been selected we defined certain criteria to categorize their depre-
cation behavior on:

Number of deprecated: Number of unique features deprecated during the entire history
of the API. The larger the number of features that are deprecated by an API, the
larger the chance is that a client using that API will be affected by deprecation.

Percentage of deprecated: Percentage of total features deprecated during the entire his-
tory of the API. When an API deprecates a large portion of its features, there is a
higher chance that it might deprecate features that are being used.

Time to deprecate: Median time, in days, taken to deprecate a feature from the moment
it was introduced in the API. A long time to deprecate can indicate that API devel-
opers do not change their API at a fast pace. This fact can be reassuring to clients
who are ensured the stability of the API and its features.

Time to remove: Median time, in days, taken to remove a deprecated feature after the
moment at which it was deprecated. A short removal time gives API clients a very
short window within which they can react to the deprecation of the feature, after
which the change becomes a breaking change. A longer removal time may indicate
that the API does not perform regular cleanup of its code.

Rollbacks: Number of times a deprecated method was marked in a future release as non-
deprecated. A rollback may be performed because the API developers changed their
mind about deprecating a feature. This would send a confusing signal to the API
client as they cannot be sure about the future of the feature that they are using.
Ideally, this behavior should be avoided, because it gives no clear indication about
the future of a feature.

Percentage of removed: Percentage of deprecated features eventually removed from
the API. A high percentage suggests that the API performs a lot of cleanup of its
deprecated features. On the other hand, a low percentage indicates that the API is
lax about removing deprecated features, thus allowing clients to assume they do not
have to react to deprecation.

Number of never-removed: Number of deprecated features that were never removed
from the API and that are still present despite being deprecated. An API leaving a
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Table 4.6: List of 50 APIs selected for RQ6

API Artifact ID Domain Popularity Rank
junit Testing 67,954 1
slf4j-api Logging 18,521 2
log4j Logging 17,421 3
spring-core Dependency injection 15,086 4
mysql-connector-java Database 14,333 6
servlet-api Server 12,044 8
jstl Server 12,007 9
commons-io IO utility 10,821 12
guava Collections 9,542 14
hibernate-entitymanager Object relational mapper 8,413 16
logback-classic Logging 7,597 20
mockito-all Testing 7,010 22
commons-lang Utility 6,485 26
jackson-databind JSON handling 5,905 28
httpclient Server 5,584 32
commons-dbcp Database 5,486 34
joda-time Time utility 5,045 36
commons-logging Logging 4,947 37
aspectjrt Aspect oriented 4,685 38
testng Testing 4,485 40
commons-codec Codec utility 4,337 41
commons-fileupload Fileupload utility 4,001 45
h2 Database 3,952 46
postgresql Database 3,816 47
hsqldb Database 3,633 49
validation-api Bean validation 3,509 52
commons-collections Collections 3,406 54
json JSON handling 2,952 56
hamcrest-all Testing 2,867 57
cglib Bytecode generation 2,816 60
selenium-java Browser 2,694 61
lombok Eclipse 2,472 65
javassist Bytecode generation/manipulation 2,466 66
jsoup HTML parser 2,333 67
mybatis Database 2,199 72
standard Tagging library 2,150 74
commons-beanutils Java beans 2,147 75
mongo-java-driver Database 2,077 78
poi File format manipulation 1,940 83
commons-cli Command line utility 1,855 84
jersey-client Server 1,844 85
dom4j HTML parser 1,798 87
c3p0 Database 1,782 88
commons-httpclient HTTP Client 1,676 91
primefaces UI building 1,608 95
commons-pool Object pooling 1,583 96
guice Dependency injection 1,556 97
freemarker Java beans 1,531 98
assertj-core Testing 1,527 99
easymock Testing 1,484 100
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lot of its deprecated features never-removed may signal that the client should not
worry about their code breaking in the near future. Ideally, this number should be
quite high given that the traditional pattern of deprecation is to first deprecate a
feature and then after an interval remove it from the API.

Average deprecations per version: Average number of features deprecated per version
of the API. A high average number of deprecations per version tells us that the API
is very volatile, which might factor into a client’s decision on upgrading the version
of the API being used.

Average removals per version: Average number of deprecated features removed per
version of the API. If the removals per version are high, then this adversely impacts
a client’s decision to change the version being used as making a change ensures that
their code would break.

4.8.2 Clustering
Using these dimensions, we can run a clustering algorithm on the APIs to see whether
clusters emerge and their nature. The most widespread clustering algorithm which fits
our model is 𝑘-means [91]. The 𝑘-means clustering algorithm aims to partition a set of
elements into 𝑘 clusters where each element in the set belongs to a cluster with the nearest
mean. One issue with this clustering technique which is unsupervised, is the estimation of
the number of clusters to be produced. To do so we choose to use the elbow method [92],
that allows for a visual estimation of the value of 𝑘.

The elbow method looks at the percentage of variance explained as a function of the
number of clusters. After a point, adding more clusters in the 𝑘-means algorithm should
not result in a better estimation of the data. Using this technique, we calculated the sum
of squares within each cluster for each number of clusters (where the number of clusters
varied from 1 to 15) provided to 𝑘-means algorithm and plotted these sums. Looking at
the plot, we determined that the number of clusters that best describes our data is 7. Using
this value as our input for the 𝑘-means algorithm, we could establish what the clusters are,
what are the characteristics of these clusters, and which APIs belongs to them.

In Figure 4.8, we see a silhouette plot of the clusters that we have obtained from our
data. A silhouette plot essentially provides a succinct graphical representation of how
well each object lies within its cluster. The silhouette value is a measure of how similar
an object is to its own cluster (cohesion) compared to other clusters (separation). The
silhouette ranges from -1 to 1, where a high value indicates that the object is well matched
to its own cluster and poorly matched to neighboring clusters. If most objects have a high
value, then the clustering configuration is appropriate.

Looking at Figure 4.8 we see that our clusters are separate from each other. In most
cases, the silhouette values are positive and high. There are only 4 negatives in each cluster,
thus indicating that most objects in each cluster are matched with the others. We see that
there are two clusters with just one API each (Apache commons-collections and Java),
these APIs appear to be outliers in our dataset, in particular, this was expected in the case
of the JDK API.
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Silhouette width

Cluster
ID | Size | Avg width

 1 |    2 |      0.97

 2 |    1 |      0.00

 3 |   15 |      0.31

 4 |   1 |      0.00

 5 |  21 |      0.92

 6 |   7 |      0.46

 7 |   6 |      0.35

Figure 4.8: Silhouette plot of the 7 clusters

4.8.3 Results
We use the dimensions listed above to characterize an API’s policy of deprecating its fea-
tures. The goal is to create a categorization of the APIs that are under consideration. An-
alyzing the clusters, we derive the defining characteristics of a project that falls in each
cluster, and how the clients of such a project might potentially react. A summary of this
can be found in Table 4.7. To not bias ourselves, we choose to not look at the APIs that we
have already studied so that we do not allow our previous results to dictate the properties
of each cluster. In the following we describe the characteristics of each cluster and discuss
their potential implications:

1. Cluster 1: In this cluster (2 elements), the deprecation times and the removal times
are both more than 10 years, as opposed to cluster 7 where the deprecation and
removal times were less than 3 years. This implies that in this case when the APIs
in this cluster deprecate or remove a feature, it is often those features that were
introduced early in the API that are affected. However, these APIs also deprecate
very few features in total and less than 6 features per version. Thus, the scope of a
client being affected by deprecation is minimal at best.

2. Cluster 2: This cluster has only one element. ThisAPI (ApacheCommons-collections)
is the one out of all 50 APIs that deprecates the largest percentage (30%) of its API
in its history. The median times for deprecation and removal are also really low for
this API, and in many instances, features are introduced in a deprecated state. This
API is also very good at cleaning up its code base by removing 83% of all deprecated
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Table 4.7: Summary of clusters

Cluster Characteristic Number of APIs
1 Very high deprecation time and removal

time
2

2 Large portions of the API are deprecated 1
3 Deprecated features are removed with ur-

gency
15

4 Deprecate very little and take a very long
time to do so

1

5 Deprecate a lot at the time of introduction,
most likely for experimental features

21

6 Deprecates a lot of features, many of
which that are not too old

7

7 Features are not deprecated or removed
very easily

6

features at some future release. Given the large usage of deprecation in this API, we
can conclude that clients have to be wary about what feature they use.

3. Cluster 3: The APIs that fall into this cluster (15 elements) usually have a high
median time to deprecate a feature (more than 2 years), but on the other hand have
a short period to remove the feature (less than 30 days). This gives a client limited
opportunity to react to a deprecation as the deprecated entity will likely be removed
in an upcoming release. This might influence a client to not upgrade the version of
the API being used.

4. Cluster 4: There is just one element in this cluster: The JDK API. This cluster is
characterized by the fact that a very small percentage of the API is deprecated (less
than 1%), and for the features that have been deprecated, there are 621 rollbacks
in deprecation in its lifetime. The median time to deprecate is less than 3 years,
and in the event there are removals of a deprecated entity, then the time to remove
is very long, more than 6 years. The number of deprecations per version is high
in comparison to other clusters, so is the number of features removed per version.
Given that a very small percentage of the API is deprecated and the removal time
being high, we suppose that clients of this API are not affected by deprecation to a
large extent and those that are affected do not react at all.

5. Cluster 5: In this cluster (21 elements), we see the most number of APIs. All these
APIs in general do not deprecate a large percentage of their APIs. However, when
they do, it is generally done immediately after the introduction of the feature. This
generally affects only those features that have been introduced later in the API’s life.
Thus, only those clients that adopt the latest feature are going to be the ones that are
affected to a great extent. But given the fact that very few features are deprecated,
we assume the number of affected clients to be very low for these APIs.
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6. Cluster 6: In this cluster (7 elements), the APIs have a lowmedian deprecation time
and median removal time both under 40 days. At the same time, the projects in this
cluster deprecate quite a lot of methods per version. Many features that are new
and introduced in one release are generally deprecated and rendered obsolete in
the immediate future. This kind of behavior may discourage a client from adopting
new features of the API, due to the fear of being forced to update in the near future.
Thus, for the APIs here we should see minimal clients affected by deprecation as
most might not even adopt the features that get deprecated.

7. Cluster 7: This cluster (6 elements) is characterized by median removal and depre-
cation times higher than 3 years, thus giving the clients of the APIs in this category
the safety of not having to worry about their code breaking in any manner. This
policy may not incentivize clients of the API to react to a deprecated feature.

Based on the cluster definitions we make the following hypotheses, which can be
tested in future work:

1. Hypothesis 1:
Clients of cluster 1, 4 and 7 do not react to deprecated entities as opposed to clients
of APIs that belong to other clusters.

2. Hypothesis 2:
Clients of cluster 3 will react to deprecation with a low reaction time, otherwise,
their code will break.

3. Hypothesis 3:
Clients of cluster 6 will not adopt newer features since these features are the ones
that are generally deprecated.

4. Hypothesis 4:
Clients of cluster 5 will not be affected by deprecation due to the fact a lot of features
are experimental and marked as deprecated due to this.

5. Hypothesis 5:
Clients of cluster 2 will be affected by deprecation regularly due to the fact that the
API deprecates a lot.

In Table 4.8 we see in the category into which each of the APIs that we study fits into.
In the case of Guava and Hibernate, both fall into cluster 3. We expect to see their clients
not upgrading to the latest version of the API in most cases. This is reflected in the results
of RQ0 as well, where we see that both for Guava and Hibernate the latest releases has
very minimal adoption, whereas older releases have been adopted to a much larger extent.

Spring fits into the seventh cluster, where the clients are not expected to be impacted
by deprecation. We see that reflected in the results of RQ1, where Spring has the least
number (and percentage) of clients affected by deprecation. This is to the credit of the
Spring developers who have adopted a policy that does not have any adverse impact on
its clients.
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Table 4.8: API deprecation characteristics

API Spring Hibernate Guava Easymock Java
Number dep-
recated

551 110 529 95 1,910

Percentage
deprecated

11% 1% 3% 4% 1%

Time to dep-
recate

1,454 1,043 620 0 927

Time to
remove

1,456 698 228 1,557 3,456

Rollbacks 10 0 47 2 629
Percentage re-
moved

45% 100% 60% 90% 59%

Number unre-
moved

295 0 172 7 152

Average dep-
recations per
version

4 0 11 7 239

Average re-
movals per
version

2 0 6 6 141

Cluster 1 2 2 3 7

Easymock falls into cluster 6, and here we expect to see a minimal number of clients
to be affected, given that only new features are deprecated, whereas the ones that were
originally introduced are not necessarily deprecated by the API. However, we see from
RQ1 that there are many clients affected by deprecation. This might indicate that it is not
only new features that are being deprecated in Easymock. This result makes Easymock an
imperfect fit for the cluster. Looking at Figure 4.8, this does indeed appear to be the case,
all elements in cluster 6 do not appear to fit with each other to make it a homogeneous
cluster. Given that we did not allow our cluster definition to be defined by the data that
we already had in place, it is to be expected that for some of these APIs, the cluster fit
would be imperfect.

4.9 Summary of findings
We first investigated how many API clients actively maintain their projects by updating
their dependencies. We found that, for all the APIs including the JDK API, only a minority
of clients upgrade/change the version of the API they use. As a direct consequence of this,
older versions of APIs are more popular than newer ones.

We then looked at the number of projects that are affected by deprecation. We focused
on projects that change version and are affected by deprecation as they are the ones that
show a full range of reactions. Clients of Guava, Easymock, and Hibernate (to a lesser
degree) were the ones that were most affected, whereas clients of Spring were virtually
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unaffected by deprecation. For Guice, we could find no data due to Guice’s aggressive
deprecation policy. In the case of the JDK API, we found very few clients to be affected,
but none of them changed versions, thus we could not analyze their reaction data. We also
found that for most of the clients that were affected, they introduced a call to a deprecated
entity, despite knowing that it was deprecated.

Looking at the reaction behavior of these clients, we saw that ‘deletion’ was the most
popular way to react to a deprecated entity. Replacements were seldom performed, and
finding systematic replacements was rarer. This is despite the fact that these APIs provide
excellent documentation that should aid in the replacement of a deprecated feature. When
a reaction did take place, it was usually almost right after it was first marked as deprecated.

As a final step, we looked at how the different APIs deprecate their features and how
such a deprecation policy can impact a client. We clustered 50 APIs based on certain
characteristics (such as the number of deprecated API elements, and the time to remove
deprecated API elements), and documented the patterns that emerged in seven clusters.
For each cluster, we define its primary characteristic and predict the behavior of a client
that uses an API that belongs to the clusters, leading to five hypotheses that can be con-
firmed or infirmed in future work. We see that in the case of Guava, Hibernate and Spring
clients our clusters fit perfectly. However, in the case of Easymock, the fit is not as good.
This suggests that further investigation is needed in this case.

4.10 Discussion
We now discuss our main findings and contrast them with the findings of the Smalltalk
study we expand upon. Based on this, we give recommendations on future research direc-
tions.

4.10.1 Comparison with the deprecation study on Smalltalk
Contrasting our results with those of the study we partially replicate, several interesting
findings emerge:

Proportion of deprecated methods affecting clients
Both studies found that only a small proportion of deprecated methods affects clients. In
the case of Smalltalk, this proportion is below 15%, but in our results we found it to be
around 10%. Considering that the two studies investigate two largely different ecosystems,
languages, and communities, this similarity is noteworthy. Even though API developers
do not know exactly how their clients use the methods they write and would be interested
in this information [93], the functionalities API developers deprecate are mostly unused
by the clients, thus deprecation causes few problems. Nevertheless, this also suggests
that most effort that API developers make in properly deprecating some methods and
documenting alternatives is not actually necessary: API developers, in most of the cases,
could directly remove the methods they instead diligently deprecate.

Not reacting to deprecation
Despite the differences in the deprecation mechanisms and warnings, most of the clients
in both studies do not react to deprecation. In this study, we could also quantify the impact
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of deprecation should clients decide to upgrade their API versions and find that, in some
cases, the impact would be very high.

By not reacting to deprecated calls, we see that the technical debt accrued can grow
to large and unmanageable proportions (e.g., one Hibernate client would have to change
17,471 API invocations).

One reason behind the non-reaction to deprecation might be that some of these dep-
recated entities find themselves in dead-code regions of API client code as opposed to
essential parts. This might impact the client’s decision to react. However, the impact
of this is hard to determine given that the cost of executing thousands of API clients in
representative execution scenarios is prohibitive (assuming it is even possible in the first
place).

We see that in many cases the preferred way to react to deprecation is by deleting the
invocation. This reaction pattern might be due some APIs advising that the deprecated
feature need not be used anymore and can be safely deleted with no replacement. The
impact of this might be quite high given our findings in Section 4.7.

We also found more counter-reactions (i.e., adding more calls to methods that are
known to be deprecated) than for Smalltalk clients. This may be related to the way in
which the two platforms raise deprecationwarnings: In Java, a deprecation gives a compile-
time warning that can be easily ignored, while in Smalltalk, some deprecations lead to
run-time errors, which require intervention.

Systematic changes and deprecation messages
The Smalltalk study found that in a large number of cases, most clients conduct systematic
replacements to deprecated API elements. In our study, we find that, instead, replacements
are not that common. We deem this difference to be extremely surprising. In fact, the
clients we consider have access to very precise documentation that should act as an aid in
the transition from a deprecated API artifact to one that is not deprecated; while this is not
the case for Smalltalk, where only half of the deprecation messages were deemed as useful.
This seems to indicate that proper documentation is not a good enough incentive for API
clients to adopt a correct behavior, also from a maintenance perspective, when facing
deprecated methods. As an indication to developers of language platforms, we have some
evidence to suggest more stringent policies on how deprecation impacts clients’ run-time
behavior.

Clients of deprecated methods
Overall, we see in the behavior of API clients that deprecation mechanisms are not ideal.
We thought of two reasons for this:(1) developers of clients do not see the importance of
removing references to deprecated artifacts, and (2) current incentives are not working to
overcome this situation. Incentives could be both in the behavior of the API introducing
deprecated calls and in the restriction posed by the engineers of the language. This situa-
tion highlights the need for further research on this topic to understand whether and how
deprecation could be revisited to have a more positive impact on keeping low technical
debt and improve maintainability of software systems. In section 4.10.4 we detail some of
the first steps in this direction, clearly emerging from the findings in our study.
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4.10.2 Comparison between Third-party APIs and the JDK API
We observe that deprecations in the JDK do not affect the JDK clients to a large degree.
Only 4 out of 58 projects are affected by deprecation and all these 4 introduced a call to
the deprecated artifact despite knowing that it was deprecated. Such a low proportion of
JDK clients being affected was an unexpected finding, we rationalize it with the following
hypotheses:

Early deprecation of popular JDK features
Some of the more popular or used features of the JDK that have been deprecated, were
deprecated in JDK 1.1 (e.g., the Java Date API). For these features, replacement features
have been readily available for a long time. As a sanity check, we looked for the usages
of the Date class in our database on API usages that was mined from GitHub based data.
There we see that only 47 projects ever use this class out of 65,437 Java based projects.
This indicates that almost all clients already use the replacement features instead of the
features that have been deprecated a long time ago.

Nature of deprecated features
Manually analyzing the list of features deprecated in the JDK, we found that many of
these features belong to the awt and swing sub-systems. Both these sub-systems provide
GUI features for developers. The nature of the projects hosted on Maven Central is such
that most of these projects do not provide a graphical interface as they are, in most cases,
intended to be used as libraries. Nevertheless, the analysis of the 65,437 GitHub clients
also shows the same behavior, thus mitigating the risk of a sample selection bias. Other
than just GUI features, the JDK also has internal features and security features that have
been deprecated. These are not intended for public use, hence, we do not see these among
the projects that we investigate.

Nature of projects
Our dataset contains all the projects fromMaven Central. The fact that a project is released
in an official site such as Maven Central indicates that high level of adherence to Software
engineering practices among its developers. Given that these projects are in the public eye,
and free for all to reuse, developers of these projects must havemade every effort to ensure
high code quality. This might have resulted in us seeing such low usage of deprecated
features. Moreover, our dataset contains information on over 56,000 projects, and for
each project, we have data on each release. However, we do not have any information at
commit level. This might prevent us from detecting real time usage of a deprecated artifact
and any reaction that might take place. All usages of deprecated features might have been
taken out by the time the release is made to Maven Central. Thus, we might miss some
deprecation information. Nevertheless, results from the 65,437 GitHub clients are in line
with the findings from Maven Central.

Documentation of the JDK
The JDK API is the best-documented API out of the ones that we have studied in this chap-
ter. They have detailed reasons behind every deprecation, thus allowing a developer to
make an informed choice on reacting to the deprecation. This documentation also men-
tions the replacement feature that should be used in the event that a developer would
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like to react to the deprecated feature. Java is also one of the most popular languages in
the world [48, 78], thus leading to the generation of a large amount of community-based
documentation (e.g., Stackoverflow, blog posts, and books) that provide a developer with
every aid imaginable to use the Java API in the right manner. Also, Java is one of Oracle’s
most important projects and the company ensures that there are plenty of programming
guides available on its own website. This amount of developer support could be one of the
reasons why we see very few projects who are affected by deprecation.

Deprecation policy in JDK
The Java developers have made a commitment to not removing deprecated features in any
current or future release [94]. However, the JDK developers recommend removing all the
deprecated features as soon as possible. The main reason they keep deprecated features is
to ensure backward source code compatibility with previous versions. This does not act as
an incentive for a developer to change the version of the JDK being used, hence, it might
result in fewer projects changing the JDK version and being affected by deprecation.

4.10.3 Impact of deprecation policy
We see in RQ6 that different APIs deprecate their features in different manners. They all
differ in terms of time taken to deprecate a feature or remove a feature or the number of
features that are removed from the API. Based on different characteristics that we define,
we find that we can cluster 50 APIs into 7 distinct clusters, each with their own defining
characteristic.

We see that in the case of Guava, Spring, and Hibernate, the clients react as predicted
by the clusters in which these APIs found themselves. However, in the case of Easymock,
we do not see the expected behavior among its clients. This tells us that the clusters are
not perfect in every case and may have to be expanded upon by studying more APIs.
However, what we do see is that the deprecation policy adopted by an API does indeed
have an impact on its clients, thus providing API developers with an insight into how the
deprecation policy they adopt affects a client and what policy they should adopt in the
event they want to minimize the impact on their client.

4.10.4 Future research directions
Below we enumerate a couple of promising future lines of research worth pursuing:

If it ain’t broke, don’t fix it
We were surprised that so many projects did not update their API versions. Those that
often do it slowly, as we saw in the cases of Easymock or Guice. Developers also routinely
leave deprecated method calls in their code base despite the warnings and even often add
new calls. This is despite all the APIs providing precise instructions on which replace-
ments to use. As such the effort to upgrade to a new version piles up. Studies can be
designed and carried out to determine the reasons for these choices, thus indicating how
future implementations of deprecation can give better incentives to clients of deprecated
methods.
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Further investigating the deprecation polices
We see that different APIs do actually adopt different deprecation strategies and this ap-
pears to have an impact on the clients of these APIs. However, we have been only able to
discuss this for the APIs in our analysis. As a further step, one could assess the impact of
deprecation policies on the clients for all the APIs that were used to make the clustering.
This would reinforce the idea of deprecation policies and their impact on a client.

Impact of deprecation messages
We also wonder if the deprecation messages that Guava has, which explicitly state when
the method will be removed, could act as a double-edged sword: Part of the clients could
be motivated to upgrade quickly, while others may be discouraged and not update the
API or roll back. In the case of Easymock, the particular deprecated method that has no
documented alternative may be a roadblock to upgrade. Studies can be devised to better
understand the role of deprecation messages and their real effectiveness.

Volume of available documentation
In the case of popular APIs such as the JDK API or JUnit, there is a large amount of doc-
umentation that is available. This might impact the reaction pattern to deprecation given
that there is likely some document artifact that addresses how to react to a deprecated en-
tity. On the other hand, for smaller or less popular APIs which do not have as much com-
munity documentation or vendor based documentation, support for the developer might
not be available. Overall, the volume of API documentation might impact the reaction
pattern to deprecation, a fact that warrants future investigation.

4.11 Related Work
4.11.1 Studies of API Evolution
Several works study or discuss API evolution, the policies that regard it, and their impact
on API developers and clients.

When it comes to an API, one of the first decisions is what to leave out. Many proj-
ects have so-called internal APIs, that, despite being publically accessible, are reserved for
internal usage by the project [95]. They are not intended to be used by clients and may
change without warning from one release to the next. Businge et al. [95] found that 44%
of 512 Eclipse plugins that they analyzed used internal Eclipse APIs, a finding echoed in
a larger study by Hora et al. [96], that found that 23.5% of 9,702 Eclipse client projects on
GitHub used internal APIs. Shedding more light on the issue, a survey by Businge [97]
found that 70% of 30 respondents used internal APIs because they couldn’t find a public
API with the equivalent functionality, and re-implementation of the functionality would
be too costly. Hora et al. [96] observed that some internal APIs were later promoted to
public APIs, and presented an approach to recommend internal APIs for promotion. These
findings agree with our study, in that they also show that maintainability often takes a
back to functionality, a fact reflected in the unwillingness to update APIs, which can lead
to considerable technical debt.

Studies closely related to this chapter (i.e., [3] and [89]), that deal with deprecation
policies of APIs and their impact on API clients have been performed on the Pharo ecosys-
tem. The first study focused on API deprecations and their impact on the entire Pharo
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ecosystem. The second study focused on API changes that were not marked as depreca-
tions beforehand. They look at the APIs policy to change features and the impact these
changes have on the client.

Brito et al. [98] analyze deprecation messages in more than 600 Java systems, finding
that 64% of deprecated methods have replacement messages. This implies that API clients
are provided with support when reacting to deprecation.

While neither Brito’s study nor ours look extensively into the reasons why API ele-
ments are deprecated, other works did. Hou and Yao [99] studied release notes of the
JDK, AWT and Swing APIs, looking for rationales for the evolution of the APIs. In the
case of deprecated API elements, several reasons were evoked: Conformance to API nam-
ing conventions, naming improvements (increasing precision, conciseness, fixing typos),
simplification of the API, coupling reduction, improving encapsulation, or replacement of
functionality. Of note, a small portion of APIs elements was deleted without replacements.
Our manual analysis of deprecation messages found that was also the case in the APIs that
we studied. We found relatively few rationales for deletion of API elements, with the most
common reason being that the method concerned was no longer needed.

The versioning policy adopted by an API might give an API client an indication as to
what kind of changes could be expected in that version. To that end, Raemaekers et al. in-
vestigated the relation among breaking changes, deprecation, and the semantic versioning
policy adopted by an API [100]. They found that API developers introduce deprecated ar-
tifacts and breaking changes in equal measure across both minor and major API versions,
thus not allowing clients to predict API stability from semantic versioning.

The evolution policy of Android APIs has been extensively studied. McDonnell et
al. [101] investigate stability and adoption of the Android API on 10 systems; the API
changes are derived from Android documentation. They found that the Android API’s
policy of evolving quickly leads to clients having troubles catching up with the evolution.
Linares-Vásquez et al. also study the changes in Android, but from the perspective of
questions and answers on Stack Overflow [102], not API clients directly. Bavota et al. [103]
study how changes in the APIs of mobile apps (responsible for defects if not reacted upon)
correlate with user ratings: successful applications depended on less change-prone APIs.
This is one of the few large-scale studies, with more than 5,000 API applications.

Web based API evolution policies have also been studied. Wang et al. [104] study
the specific case of the evolution of 11 REST APIs. Instead of analyzing API clients, they
also collect questions and answers from Stack Overflow that concern the changing API
elements. Among the studies considering clients of web APIs, we find for example the
one by Espinha et al. [105], who study 43 mobile client applications depending on web
APIs and how they respond to web API evolution.

APIs also break. Dig and Johnson studied and classified the API breaking changes in
4 APIs [26]; they did not investigate their impact on clients. They found that 80% of the
changes were due to refactorings. Cossette and Walker [106] studied five Java APIs to
evaluate how API evolution recommenders would perform in the cases of API breaking
changes. They found that all recommenders handle a subset of the cases, but that none of
them could handle all the cases they referenced.

In a large-scale study of 317 APIs, Laerte et al. [9] found that for the median library,
14.78% of API changes break compatibility with its previous versions and that the fre-
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quency of these changes increased over time. However, not that many clients were im-
pacted by these breaking changes (median of 2.54%). On the topic of breaking APIs, Bogart
et al. [107] conducted interviews with API developers in 3 software ecosystems: Eclipse,
npm, and R/CRAN. They found that each ecosystem had a different set of values that
influenced their policies and their decisions of whether to break the API or not. In the
Eclipse ecosystem, developers were very reluctant to break APIs, strongly favoring back-
ward compatibility; some methods were still present after being deprecated for more than
10 years. The R/CRAN ecosystem places emphasis on the ease of installation of packages
by end-users, so packages are extensively tested to see if they work. As a result, API de-
velopers notify their clients of the coming API changes, and may also coordinate with
them to quickly resolve issues, a finding also echoed by Decan et al. [108]. Finally, the
npm ecosystem values ease of change for API developers. Following semantic versioning,
breaking the API can be done by changing the major version number of the package. Since
packages stay in the repository, clients are free to upgrade or not when this happens.

Regarding the clusters of APIs that we found, APIs in clusters 1, 4, and 7 seem wary of
imposing toomuchwork on their clients, and as such seem closer to the strategy employed
in the Eclipse ecosystem. APIs in Cluster 5 behave somewhat similarly, at least for older
API elements. On the other hand, the APIs in clusters 2, 3, and 6 are much less wary of
deprecating entities, similarly, to the npm and R/CRAN ecosystems.

Bogart et al. [107] also detail some strategies clients use to cope with change, including
actively monitoring APIs for changes, doing so reactively, and limiting the number of
dependencies to APIs. The latter can go to the extreme of keeping a local copy of the API
to avoidmigrating to a newer version in the case of R/CRAN. Another behavior is observed
by Decan et al. [109] in the case of R/CRAN: the rigid policy of forcing all packages to work
together can become burdensome. Indeed, since packages have to react to API changes,
the coordination and reaction costs can be excessive. As a result, an increasing number of
R packages are now primarily found on GitHub, not CRAN, meaning that the developers
are not affected by R/CRAN’s strict policies.

Decan et al. [108] also investigated the evolution of the package dependencies in the
npm, CRAN, and RubyGems ecosystems. An interesting finding in the context of this
chapter is the increasing tendency in the npm and (to a lesser extent) RubyGems packages
to specify maximal version constraints. This means that some package maintainer speci-
fies a maximal version number of the packages they depend on, to shield themselves from
future updates that might force them to react to breaking changes. This strategy is comple-
mentary to the strategies documented by Bogart et al. mentioned above. They note that
this behavior was not observed in R/CRAN, where a single version of each package—the
latest—is stored at any given time, so specifying a specific version is of limited usefulness;
package maintainers have to update anyways. In this study, we found that a large number
of API clients did not update their API version (the exception being Spring), which seems
to go along the lines of the behavior observed by Decan.

4.11.2 Mining of API Usage
Studies that present approaches to mining API usage from client code are related to our
work, especially with respect to the data collection methodology.

One of the earliest works done in this field is the work of Xie and Pei [42], where they
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developed a tool called MAPO (Mining API usage Pattern from Open source repositories).
MAPO mines code search engines for API usage samples and presents the results to the
developer for inspection.

Mileva et al. [40] worked in the field of API popularity; they looked at the dependencies
of projects hosted on Apache and Sourceforge. Based on this information they ranked the
usage of API elements such as methods and classes. This allowed them to predict the
popularity trend of APIs and their elements.

Hou et al. [110, 111] used a popularity based approach to improve code completion.
They developed a tool that gave code completion suggestions based on the frequency with
which a certain class or method of an API was used in the APIs ecosystem.

Lämmel et al. [44] mine usages of popular Java APIs by crawling SourceForge to create
a corpus of usage examples that form a basis for a study on API evolution. The API usages
are mined using type resolved Java ASTs, and these usages are stored in a database.

4.11.3 Supporting API evolution
Beyond empirical studies on API evolution, researchers have proposed several approaches
to support API evolution and reduce the efforts of client developers. Chow andNotkin [112]
present an approach where the API developers annotate changed methods with replace-
ment rules that will be used to update client systems. Henkel and Diwan [113] propose
CatchUp!, a tool using an IDE to capture and replay refactorings related to the API evo-
lution. Dig et al. [114] propose a refactoring-aware version control system for the same
purposes.

Dagenais and Robillard observe the framework’s evolution to make API change recom-
mendations [24], while Schäfer et al. observe the client’s evolution [90]. Wu et al. present
a hybrid approach [7] that includes textual similarity.

Nguyen et al. [115] propose a tool (LibSync) that uses graph-based techniques to help
developers migrate from one framework version to another.

Finally, Holmes and Walker notify developers of external changes to focus their atten-
tion on these events [116].

4.12 Conclusion
We have presented an empirical study on the effect of deprecation of Java API artifacts on
their clients. This work expands upon a similar study done on the Smalltalk ecosystem.
The main differences between the two studies is in the type systems of the language tar-
geted (static type vs dynamic type), the scale of the dataset (25,357 vs 2,600 clients) and
the nature of the dataset (third- party APIs vs third-party and language APIs).

We found that few API clients update the API version that they use. In addition, the
percentage of clients that are affected by deprecated entities is less than 20% for most
APIs—except for Spring where the percentage was unusually low. In the case of the JDK
API, we saw that only 4 clients were affected, and all of them were affected by depre-
cation because they introduced a call to the deprecated entity at the time it was already
deprecated, thereby limiting the probability of a reaction from these clients.

Most clients that are affected do not typically react to the deprecated entity, but when a
reaction does take place it is—surprisingly—preferred to react by deletion of the offending
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invocation as opposed to replacing it with recommended functionality. When clients do
not upgrade their API versions, they silently accumulate a potentially large amount of
technical debt in the form of future API changes when they do finally upgrade; we suspect
this can serve as an incentive not to upgrade at all.

The results of this study are in some respects similar to that of the Smalltalk study.
This comes as a surprise to us as we expected that the reactions to deprecations by clients
would be more prevalent, owing to the fact that Java is a statically typed language. On the
other hand, we found that the number of replacements in Smalltalk was higher than in
Java, despite Java APIs being better documented. In this study, we also studied how clients
of a language API (JDK API) are affected by deprecation, and we see that in contrast to
Smalltalk APIs, clients are rarely affected by deprecation. We also went further and looked
at the impact of deprecation policies on the reactions of clients, and found that an API’s
policy on deprecation may have a major role to play in a client’s decision to react. This
leads us to question as future work what the reasons behind this are and what can be
improved in Java to change this.

This study is the first to analyze the client reaction behavior to deprecated entities
in a statically-typed and mainstream language like Java. The conclusions drawn in this
study are based on a dataset derived from mining type-checked API usages from a large
set of clients. From the data we gathered, we conclude that deprecation mechanisms as
implemented in Java do not provide the right incentives for most developers to migrate
away from the deprecated API elements, even with the downsides that using deprecated
entities entail.
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The most radical possible solution for constructing software is not to construct it at all.

Frederick P. Brooks Jr., 1975

Application Programming Interfaces (APIs) are as close to a “silver bullet” as we have
found in Software Engineering [1]; Brooks acknowledges as much while revisiting his
seminal essay “The Mythical Man-Month” after two decades [2]. However, just as like
other software systems, APIs have to evolve and this evolution can have a large impact on
its consumers if not done carefully [3, 4].

To smoothen the evolution of their API, producers can rely on the mechanism of dep-
recation. Whenever an API element is found to be inadequate, this element can be marked
as deprecated to signal the consumers that its use is discouraged. A message can be added
to the deprecation, for example, to suggest a replacement, to encourage consumers to mi-
grate their code to the new version of the API, and to provide a rationale for the change.
Software development tools support the deprecation mechanism: Compilers emit warn-
ings when deprecated code is used and IDEs (e.g., Eclipse [11]) visualize the usages of
deprecated methods struck through. The API evolution is completed when, after a suit-
able period of time, the deprecated API element is removed from the API. At this point,
any consumer that still uses the deprecated element would be unable to compile their code
against the latest version of the API without first removing the calls to this element.

Several studies have shown that both consumers and producers may not behave as
expected when it comes to the deprecation mechanism. The reaction of the consumers
may be overdue or not happen [3, 13, 14]; also, the API producer may not provide clear
instructions for replacement or even fail to provide a rationale for the deprecation [15–
17]. Producers may eschew from removing deprecated methods from the API to retain
backward compatibility or, oppositely, remove API elements without first deprecating
them [18]. They may do so between major versions, or, breaking semantic versioning
practices, do it between minor versions of the APIs [19]. Certain deprecation policies
adopted by producers might have an adverse impact on the consumers [14].
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The current implementation of the deprecation mechanism in Java 8 has been changed
for Java 9 [117]. The Java language designers who made the call to change the mechanism
cite a lack of credibility surrounding the deprecation mechanism as the driver behind the
change. According to the Java language designers, API consumers are unaware of whether
a deprecated feature they use is going to be ever removed. All this has led API consumers
to not taking deprecation seriously, thereby continuing with their use of the deprecated
entities.

In this study, we seek to ascertain the scale of reactions or non-reactions to deprecated
entities and the diversity of these reaction patterns. There is no current understanding
as to how an API consumer can react to a deprecated feature or what the frequency of
these reactions and the rationale behind them is. An in-depth understanding of whether
consumers react to deprecation would allow us to understand whether consumers take
deprecation seriously or whether they allow technical debt to accrue over time by not
reacting. Concurrently, we would be able to assess if Java’s deprecation mechanism is
achieving its stated goal. Additionally, knowing the different kinds of reactions and their
frequency allows API producers to understand whether their effort with evolving the API
is worthwhile.

• We first conduct a qualitative study (presented in Section 5.3.1) to analyze the diver-
sity [118] of how consumers react to API deprecation. We manually track a sample
of 380 deprecated API elements in consumers’ code across their lifetime and we
observe the following patterns (beyond the expected pattern of replacing with the
recommended replacement): non-reaction, deletion, replacement by another API,
replacement with an in-house solution, and rollback to a previous API version.

• We then gather quantitative information (Section 5.3.2) about the frequencies of the
reaction patterns we previously observed, by means of mining software repositories.
Specifically, we quantify the reaction to API deprecation of 50 popular Java APIs,
with a process that analyzed 297,254 Java projects on Github. The prevalent find-
ing is that the most common reaction, which constitutes the 88% of the consumers’
reactions, is to not react.

• We analyze if and how the reaction patterns vary depending on the considered API
(Section 5.3.3). This also allows us to analyze if certain deprecation strategies are
associated with specific reaction patterns (Section 5.3.4). We find that 20 of the
APIs affect no consumers with deprecation, a further 18 APIs deprecate elements
that they know have limited impacts on the consumers, and APIs that release rarely
have fewer reactions than ones that release often.

• Since most consumers do not react to deprecation, we report on a survey of the
reasons for non-reaction to deprecation (Section 5.3.4). We analyze 79 responses,
and find that the top three reasons reported by respondents are: (i) the lack of a
suitable alternative, (ii) the too high cost of reacting, and (iii) no perceived incentive
to react since the API does not release frequently.

We conclude discussing the implications of our findings (Section 5.4), in particular,
that deprecation seems to be viewed not seriously by consumers, who rarely react to it.
This is in line with the view of the Java language designers.
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5.1 Background: Deprecation in Java
Deprecation as a language feature exists to give API producers a way in which they can
indicate that a feature should no longer be used. According to the official Java documen-
tation: “A deprecated class or method is … no longer important. It is so unimportant, in
fact, that you should no longer use it, since it has been superseded and may cease to exist
in the future” [10].

The principal idea of having a deprecation mechanism is to allow API consumers to
take their time in adapting to API changes [10]. As the API evolves, some features might
be replaced by newer features that are better, faster or more secure. However, simply
removing the obsolete functionality would break API consumer code and allow them no
transition period. During this transition period, the consumer is given ample indication in
the IDE that the feature being used is deprecated, as seen on lines 3 and 4 of Example 5.2.

Example 5.1: Example of deprecated usage and reaction to it

1 public class DateCalculator {
2 public static void main(String [] args) {
3 − Date date = new Date();

4 − int day = date.getDay ();

5 + Calendar calendar = Calendar.getInstance ();

6 + int day = calendar.get(Calendar.DAY_OF_WEEK);
7 System.out.println(”Today is the ” + day + ”th of the

week.”);
8 }
9 }

Figure 5.1: API documentation for deprecated entity

Java first introduced deprecation in Java 1.1 as a @deprecated Javadoc annotation. This
allowed API producers to indicate in the documentation that a feature is deprecated, give
a reason behind the deprecation, and possibly indicate an alternative feature to use as seen
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in Figure 5.1. Additionally, some APIs even provided a recommended course of action to
deal with the deprecated feature. Subsequently, with the release of Java 5, annotations
were added to the Java language, including a source code annotation @Deprecated. When
a feature is marked with this annotation, the Java compiler throws a warning.

The Java documentation states that deprecation allows API producers to keep obsolete
functionality around for a certain period of time to preserve “backward compatibility” [10].
Once this period is passed, the obsolete feature can be removed as it would be likely that
API consumers already transitioned away from using this obsolete feature. Hence, it is
recommended that API consumers react to a deprecated API feature, unless they want to
encounter a breaking change later in the evolution of the API. The consumer can react in
a number of ways, one such example can be seen on lines 5 and 6 of Example 5.2.

However, according to the Java JDK developers, API consumers do not appear to be
taking deprecation seriously [117]. By not removing deprecated features from an API after
a transition period has passed, API producers and the Java JDK developers themselves
have cheapened the meaning of deprecation. This behavior has prompted few consumers
to react to a deprecated feature. Java would like to change this in the upcoming release of
Java 9 by enhancing the deprecation mechanism with information about future removal
of a deprecated feature.

5.2 Methodology
In this section, we present the research questions and the research method.

5.2.1 Research Questions
The overall goal of this work is to understand the nature of reaction to a deprecated API ar-
tifact. This involves understanding how developers react to deprecation, observe the most
popular way to react to deprecation, and how API policies are associated with reaction
patterns. We structure our work along the following research questions:

RQ1: How do API consumers react to deprecation? We only know that replacing the
deprecated feature with its recommended replacement is something that the Java
documentation on deprecation recommends. However, there is currently no empir-
ical knowledge on the diversity [118] of how consumers react to API deprecation.
To that end, we question as to what the possible reaction patterns are.

RQ2: HowdoAPI consumers deal with deprecation? Based on the observed reaction
patterns, we seek to uncover their frequency in an open source setting. This helps us
understand as to how on a large scale API consumers prefer to react to deprecated
features. To gain this understanding, we ask two sub-questions. The first attempts
to establish the overall upgrade behavior of the consumers with respect to their
dependencies and the second benchmarks the frequency of each reaction pattern.

• RQ2𝑎 : How often do consumers upgrade their dependencies?

• RQ2𝑎 : How often does each reaction pattern occur?
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RQ3: How do reaction patterns vary across APIs? Once we know the frequency of
the observed reaction patterns, we seek to uncover if there is any dominant pattern
for the consumers of any of the analyzed APIs. If themajority of the consumers react
to deprecation in just one way for an API, we may hypothesize that the behavior of
the API producer may influence this. Furthermore, an insight into the distribution
of the reaction pattern for an API can help this API’s producer understand how its
consumers react to deprecations.

RQ4: What are the reasons behind API consumers not reacting to deprecation?
Finally, the results to our previous research questions showed that not reacting is the
most common reaction pattern across all consumers of all APIs. With this research
question, we would like to investigate this lack of reactions to deprecation. By not
reacting, consumers are theoretically allowing technical debt to accrue over time;
we would like to uncover the reasons behind this.

5.2.2 Subject selection
To understand how API consumers react to the deprecation of features in APIs, we select
a set of 50 popular Java APIs and their consumers to study. The popularity of an API is de-
fined by the number of Maven-based Java projects on GitHub that use that API.We restrict
ourselves to the Maven ecosystem among Java projects on GitHub because: (1) projects
that use Maven can be considered to adhere to the most basic of software engineering
principles and (2) Maven-based projects explicitly declare their dependencies in a project
object model (POM) file that allows us to establish the API being used and the exact version
in use.

We download the POM files of all Maven-based Java projects on GitHub. To ensure
that all POM files are unique, we do not include forks of projects in our dataset, relying on
the aid of GHTorrent [119]. This results in a total of 135,729 POM files. Subsequently, we
parse each one of these POM files to determine the list of APIs being used in the project.
With this data, we classify the most popular Java-based APIs among GitHub clients; for
example, JUnit is the most popular API, with 67,954 client Java projects.

We select the top 50 APIs—from different vendors—ranked by popularity in GitHub.
Concerning the vendors, we see, for example, that the APIs spring-core, spring-context,
and spring-test are all in the top 10 in terms of popularity and that they are all released
by the same vendor (i.e., org.springframework). By analyzing clients that use APIs from
the same vendor, it is harder to isolate factors stemming from API policies on deprecation
when it comes to reaction patterns to deprecation. Hence, we consider at most one API
from each vendor.¹

This selection process results in 50 APIs (a complete list can be found in Appendix B)
where the most popular API (JUnit) is used by 67,954 Java projects and the least popular
API (jetty-server) is used by 1,362 projects. By targeting these 50 APIs, the total number
of API consumers that we analyze in this is 297,254.

¹We have more API producers from Apache because Apache is an ecosystem and not a vendor in the traditional
sense.



5

84 5 Scale of reaction to deprecation

5.2.3 API usage data collection
To understand what features of an API consumers use, one can select from different
proposed approaches that collect API usage data, e.g., MAPO by Xie and Pei [42] and
SOURCERER by Bajracharyaet al. [62]. We lean on the technique fine-GRAPE developed
by Sawant and Bacchelli [120]. This technique gives us three advantages: (1) it usesMaven-
based Java projects, (2) it results in a type-checked API usage dataset, (3) it determines the
API usages over the entire history of a given project.

fine-GRAPE only focuses on projects that are under active development ² i.e., those
that have been actively committed to in the last 6 months. We download all 297,254 active
projects for the 50 APIs under study and then run the fine-GRAPE analyzer on the source
code of each project. This results in a dataset which contains 1,322,612,567 type-checked
API usages across the entire history of the selected API consumers. The usage data we
have collected spans from 1997 to 2017. The overall size of the dataset on disk is 604GB
and it can be found at http://doi.org/10.4121/.

5.2.4 Determining the reaction patterns
There is no empirical knowledge on how API consumers react to deprecated features in
an API they use. For example, a consumer might react to deprecation by replacing the
deprecated feature with the recommended replacement or by rolling back the version of
the API being used so that the feature is no longer deprecated.

Our aim is to create a taxonomy of possible reactions to deprecation. For this purpose,
we perform a manual analysis of how an API consumer behaves when a deprecated usage
is encountered. We select a sample of 380 usages of deprecated features and manually
analyze these in depth. A sample size of 380 ensures a 95% confidence interval and 5%
margin of error.

For each usage of a deprecated feature from our sample, we isolate the commit in
which the method was originally marked as deprecated, and the consumers’ file that uses
it. We then look at all commits to the file from the point to see what happens to that usage.
To see what changes in the entire project, we isolate the git diffs for each commit.

We analyze each usage and how it evolves over time. We try to decipher the reason
behind the introduction of the deprecated usage and the nature and purpose of the API
feature being used. Then we look at the documentation of the API to understand the API
producers’ recommendation (if any) as a reaction to the deprecated feature. We look at the
entire history of the file to see what happens to that deprecated usage. If there is a change
to it, we note down the nature of the change (a reaction pattern), if there is no change till
the end of history we mark it as a non-reaction. The result of this analysis is an empirical
understanding of what the API consumer does and the reasons behind the change, which
we distill into a taxonomy of reactions to deprecated methods in APIs.

5.2.5 Quantifying the reaction patterns
Once we have an understanding of the various types of reaction patterns that API con-
sumers can adopt, we seek to quantify these patterns. For this, we look at the clients of all

²As indicated by the GHTorrent dataset [119]

http://doi.org/10.4121/
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50 APIs and see how those that are affected by deprecation react to deprecation by looking
for the reaction patterns found during the manual analysis.

For each API client, we have the method invocations for each file and information on
how these invocations evolve over time in each file. This allows us to automatically infer
what happens to a deprecated invocation over time. In Section 5.3.2, we detail the method
we apply to automatically recognize and count each reaction pattern.

5.2.6 Associating API evolution to reactions
We want to see whether and how the evolution policies of APIs are associated with the
way in which clients react to deprecation. An API might have a policy to deprecate very
few features, thus impacting very few clients; or an API might remove deprecated features
very often and this may persuade clients to react to a deprecation just to keep up with the
APIs evolution.

We use four dimensions to benchmark the APIs along:

1. Actively releasing: This determines if the API has released a version of the API in the
recent past and if it has a history of releasing frequently. APIs that change regularly
are more likely to affect a consumer with deprecation as opposed to those that rarely
or never release a new version due to the high volatility of features.

2. Deprecated feature removal: This benchmarks if the API has a tendency to remove a
deprecated feature or not. APIs that frequently remove deprecated features aremore
likely to force consumers to react to deprecation due to the risk of a new version
introducing breaking changes.

3. Percentage deprecated: This indicates the percentage of the API that has been dep-
recated on average over each version of the API. We take the average as opposed to
the median as we believe that it provides a balanced figure over the entire lifetime
of the API. Furthermore, we expect the number of deprecated features in the major
version to remain constant in the minor versions of the API [19]. When a larger pro-
portion of an API is deprecated there is a higher chance that consumers are affected
by deprecation as opposed to APIs that deprecate few to none of the features.

4. Breaking changes: This indicates the number of breaking changes the API intro-
duces without first deprecating the feature being removed. If an API has a propen-
sity to introduce breaking changes as opposed to first deprecating a feature and
then removing it, fewer consumers are likely to be affected by deprecation as the
API does not follow the deprecation protocol.

For each of the dimensions, we define thresholds such that each API can be placed in
one bin among the thresholds. Then, we hold a card sort session [121] where we cluster
APIs with similar evolution traits. The first two authors of the article perform the card
sort.

5.2.7 Understanding developer perceptions regarding deprecation
Our goal is to gain an understanding as to why we observed certain reaction phenomena.
To address this goal we designed a survey made up of 6 questions to send to developers.
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Thequestions asked in the survey are based on the observationsmade during the empirical
investigation. We ask developers to rate the frequency (on a five-point Likert scale) with
which they have reacted to deprecation in one of the ways identified, and to explain the
rationale behind adopting this reaction behavior.

We aimed to reach as many Java developers who work on both industrial projects and
open source projects. To achieve this goal, we spread the survey on Java developer forums
(e.g., Java code ranch), Reddit communities and Twitter. The survey was in the field for
a period of 6 months. We obtained 79 responses and a further 88 developers started the
survey but did not see through to completion.

28% of developers in our survey work on open source projects, the rest work on indus-
trial/proprietary projects. Our respondents are primarily developers, with 4 respondents
who also work on research. All our respondents are experienced, with the average num-
ber of years of experience being 12. The origin of our respondents is not limited to one
geographical location, we have responses from Europe, North America, South America,
Australia, and Asia.

5.3 Results
5.3.1 RQ1: Reaction patterns to deprecation
We manually analyze 380 usages of deprecated API artifacts across consumers of 50 APIs.
Based on this analysis, we observed seven reaction patterns (RPs) to deprecation. We
describe these patterns, following the same order in which we discovered them in the
manual analysis:

1. RP1: No reaction – API consumers do not do anything with the reference to the
deprecated feature in their code base. The reference remains in the source code till
the latest available version of the consumer code.

2. RP2: Delete invocation – API consumers react by removing the invocation to the
deprecated feature, without replacing it with the replacement recommended by the
API producers or any other functionality.

Example 5.2: Example of deprecated usage and reaction to it

1 public class DateCalculator {
2 public static void main(String [] args) {
3 − Date date = new Date();

4 − int day = date.getDay ();

5 + Calendar calendar = Calendar.getInstance ();

6 + int day = calendar.get(Calendar.DAY_OF_WEEK);
7 System.out.println(”Today is the ” + day + ”th of

the week.”);
8 }
9 }
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Example 5.3: Deletion of deprecated usage

1 − if (JdkVersion.isAtLeastJava15 ()) {

2 − editor =
descriptor.createPropertyEditor(this.targetObject);

3 − } else {

4 − Class editorClass =
descriptor.getPropertyEditorClass ();

5 − if (editorClass != null) {

6 − editor = (PropertyEditor)
BeanUtils.instantiateClass(editorClass);

7 − }

8 − }

3. RP3: Replace with recommended replacement – API consumers replace the
deprecated API element with the alternative proposed by the API producers.

Example 5.4: Replace with recommended replacement

1 ImmutableList$<$String$>$ list = ImmutableList.of(”hello”);
2 − list.add(”world”);

3 + ImmutableList <String > list2 = new
ImmutableList.Builder <String >()

4 + .addAll(list)

5 + .add(”world”)

6 + .build();

7 + list = list2;

4. RP4: Replace with in-house replacement – API consumers remove the invo-
cation made to a deprecated feature and replace it with a functionality that they
themselves create.

Example 5.5: Replace with in-house replacement

1 − ImmutableList <String >list = ImmutableList.of(”hello”);

2 − list.add(”world”);

3 + MyImmutableList <String > list =
MyImmutableList.of(”hello”);

4 + list.add(”world”);
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5. RP5: Replace with Java replacement – API consumers replace the deprecated
invocation with an equivalent functionality provided by the Java Development Kit
(JDK).

Example 5.6: Replace with Java replacement

1 − ImmutableList$<$String$>$list =
ImmutableList.of(”hello”);

2 − list.add(”world”);

3 + List<String > list = new ArrayList <String >();

4 + list.add(”hello”);

5 + Collections.unmodifiableList(list);

6 + List<String > list2 = new ArrayList <String >();

7 + list2.addAll(list);

8 + list2.add(”world”);

9 + Collections.unmodifiableList(list2);

6. RP6: Replace with other third-party API – API consumers choose to switch API
and replace the deprecated invocation with a non-deprecated one from the API to
which they switch.

Example 5.7: Replace with other third-party API

1 − ImmutableList <String >list = ImmutableList.of(”hello”);

2 − list.add(”world”);

3 + List<String > stringList = new ArrayList <String >();

4 + stringList.add(”hello”);

5 + UnmodifiableList <String > list = new
UnmodifiableList <String >(stringList);

6 + list.add(”world”);

7. RP7: Rollback version of the API – API consumers rollback the version being
used such that the used feature is no longer marked as deprecated.

Example 5.8: Rollback version of the API

1 <dependency >
2 <groupId >com.google.guava</groupId >
3 <artifactId >guava</artifactId >
4 − <version >14.0</version >

5 + <version >13.0</version >
6 </dependency >
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RQ1. The manual inspection of 380 usages of deprecated API artifacts across con-
sumers of 50 APIs lead to the discovery of six reaction patterns, in addition to
‘Replace with recommended replacement’.

5.3.2 RQ2: Dealing with the deprecation of a feature
After having identified the possible reaction patterns (RPs), we investigate their occurrence
among all the clients.

RQ2a: Version upgrade behavior
We begin our investigation by looking into howmany of the API consumers in our dataset
have changed the version of the library that they use.

We compute the percentage of consumers that upgrade the version of the dependency
in our dataset. Overall in our dataset we see that not many consumers upgrade the version
of the API. None of the APIs has more than 13% of its consumers upgrade their dependency
version. For APIs such as ‘standard’ and ‘dom4j’ the percentage of consumers upgrading
version is less than 5%. For the widely popular APIs such as ‘slf4j-api’ and ‘junit’, only
12% or less of the consumers upgrade.

To triangulate this unexpected finding with another source, we asked to our survey
respondents (see Section 5.2.7) whether they upgrade the version of the API that they use.
Among the respondents, 31% of the API consumers indicated that they always upgrade
the version of the API being used, while a majority of 69% indicate that they only do
this occasionally or never. We asked this 69% to rank (on a five point likert scale) the
frequency with which one or more motivations behind not upgrading the version of the
API has applied to them. These motivations are a result from previous work, literature
on deprecation and documentation on deprecation. The results of this can be seen in
Figure 5.2.

The upgrade cost, in terms of time or money, is the most common reason (42% of con-
sumer rating it as ‘almost always’ to ‘always’) for not having upgraded. A 41% of the
consumers reported not having upgraded (‘almost always’ to ‘always’) when everything
in the current version of the API worked just fine. This is in line with what Sawantet
al. [18] found. Breaking changes in the new version only stopped 32% of consumers from
upgrading; in fact, 48% of the API consumers are neutral about this. Conversely, depreca-
tion is seen as an even smaller barrier to upgrading, with only 9.7% consumers indicating
that it has stopped them from upgrading the version of the API. A 22% of the responding
consumers indicate that they have a policy to freeze the version of the API that they use
(52% of consumers actually indicate that they have no such policy).

API consumers also provided us with additional reasons to not upgrade. One con-
sumer indicated that management in the company that he worked in did not allow for de-
pendency upgrades. Additionally, when a project reached a stable point it was no longer
needed to upgrade the dependency.
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Figure 5.2: Reasons behind not upgrading a dependency

RQ2b: Frequency of reaction patterns
After having investigated the overall upgrading behavior of API consumers, we look into
how API consumers react to deprecation by analyzing how frequently they adopt one or
more of the reaction patterns that we found in RQ1.

For each RP, we present: (1) the results gathered during the manual analysis conducted
to answer RQ1 (in terms of both RP occurrence and the qualitative description of clients’
behavior), (2) the dedicated heuristic we devised to automatically detect whether the RP
takes place,³ and (3) the number of overall occurrences and unique consumers of the RP
across the 297,254 API consumers pertaining to the 50 considered Java APIs.

We test the validity and accuracy of our heuristics by running them on the source code
files of the 380 samples that were manually analyzed in Section 5.3.1. Our heuristics are
able to identify the correct reaction pattern in 100% of the cases. Moreover, this analysis
also confirmed the exhaustiveness of the patterns created in RQ1: None of the analyzed
cases let emerge new patterns.

We then analyze the fallibility of our heuristics to see whether they incorrectly classify
a pattern (i.e., establish the false positive rate). We manually analyze 100 cases of the
automated classification for each of RP1, RP2, RP4, RP6 and RP7. For RP3 and RP5, we
analyze all the cases since there is a limited number. For RP1–3, RP5, and RP7 we do not
see any false positives. In the case of RP4 we see 7 instances where the replacement of
deprecated feature with an in-house replacement did not make sense as the functionality
being replaced was not the same. In the case of RP6 we observed 18 instances where
the third-party API replacement does something completely different to the original API.
However, looking deeper at these 18 cases we found that in 4 of these cases the developers

³To automatically infer if a reaction pattern takes place, we start by going through the history of every file that
uses a deprecated feature, every time we see that the number of deprecated features being used is decreasing, we
attempt to see why the number of deprecated features being used has gone down, using the specific heuristic.
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Table 5.1: Breakdown of number of reactions per reaction pattern

Reaction pattern number of
overall occurrences

number of
unique consumers

No reaction 146,076 8,910
Delete invocation 1,015 218
Replace with recommended replacement 36 7
Replace with in-house replacement 702 31
Replace with Java replacement 17 3
Replace with other third-party API 15,236 641
Rollback version of the API 2,134 193

had made a conscious choice to change functionality hence a one to one mapping was not
needed. For the other 14 cases we could not precisely establish a rationale.

Overall, over 297,254 API consumers, we see a total of 9,317 projects that are affected
by deprecation and react in one of the ways we have found. Over these 9,317 projects, we
see 165,216 usages of deprecated methods to which reactions take place. The occurrence
of each reaction pattern is summarized in Figure 5.3 and Table 5.1.

Rollback version of the API

Replace with other third−party API

Replace with Java replacement

Replace with in−house replacement

Replace with recommended replacement

Delete invocation

No reaction

0 20 40 60 80 100

Figure 5.3: Percentage distribution of reaction patterns

1. RP1: No reaction
Qualitative analysis:
Total occurrences: 290 (76%) Unique consumers: 221 (88%)
In the manually analyzed sample set, not reacting to a deprecated functionality is
the most popular reaction pattern. On the one hand, this behavior may be explained
by the fact that the cause of deprecation was not severe (we inspected the cause and
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there were no security or performance issues); on the other hand, this behavior
is also unexpected, since all the deprecated entities that were not reacted to had
recommended replacements and were well documented.

Detection heuristic: We look at the first version of a file that contains a deprecated
feature and then the last version of the file, we see if the references to deprecated
features have been removed in the last version. In the event that these have not
been removed, we mark it as a ‘non reaction’.

Quantitative analysis:
Total occurrences: 146,076 (88%) Unique consumers: 8,910 (95%)
Also in the large scale analysis, we found that the most frequent pattern is to not
react to deprecation (88% of the time, for the majority of the projects–8,910 out of
9,317). This is despite the fact that the APIs that we consider are all popular and
well documented mainstream Java APIs. Looking deeper at these non-reactions we
notice that in 55% of the cases the files containing invocations to deprecated features
not being reacted to do not change. This might be due to the fact that the file is
already stable and requires no more changes. We cannot ascertain whether this
code is being executed currently, however, given the active nature of the projects
selected we do expect that the code is still being used in some manner. Due to
this behavior, consumers simply might not notice that they are using a deprecated
feature.

2. RP2: Delete invocation
Qualitative analysis:
Total occurrences: 23 (6%) Unique consumers: 4 (1.5%)
Deleting a deprecated invocation occurs frequently among the API consumers, in
the manually analyzed dataset. We investigated the deprecated methods that have
been removed: In two cases the deprecated feature was supposed to be removed,
since its usage was no longer needed; in the rest, the feature has a recommended
replacement, however, the consumers delete the reference. In none of the cases do
developers give any rationale behind the deletion.

Detection heuristic: When going through the different versions of a file containing a
reference to a deprecated feature, if the number of references to deprecated features
reduces and no new invocation is added in the same location in its place either from
the same API or any third-party API, we mark it as a ‘deleted invocation’ with no
replacement.

Quantitative analysis:
Total occurrences: 1,015 (0.6%) Unique consumers: 218 (2%)
Deleting and not replacing the invocation is also seen in over 1,000 cases in the large
scale analysis. Some of these deletions with no cause might stem from the fact that
the API required the deprecated method to be handled in that manner (as we have
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seen in the qualitative analysis), however, it is reasonable to expect that this might
not always be true (as we have also seen in the qualitative analysis).

3. RP3: Replace with recommended replacement
Qualitative analysis:
Total occurrences: 12 (3%) Unique consumers: 2 (0.8%)
Replacing a deprecated invocation with its recommended replacement is unpopular
amongst API consumers. In our manually analyzed sample set, all the deprecated
methods are documented and provide clear instructions as to how the deprecation
should be handled. This makes it all the more surprising that we see very few re-
actions of this nature. Looking at the commit message for those API consumers
that have actually replaced the deprecated invocation with the recommended re-
placement, they simply state that some changes were made due to the upgrade in
the API version being used. In fact, in many cases, the reaction to deprecation was
performed at the same time as the upgrade to the version of the library. Some API
consumers react to deprecation immediately after noticing the deprecation.

Detection heuristic: For the API in question, we create a set of package names in
the API over the entire history of the API, to verify whether an invocation added to
a file belongs to one of these packages. In a version of a file in which a deprecated
feature is removed, we check whether a new invocation is added to the same API
in its place. If there is a new invocation made to the same API, we mark it as a
‘replacement’.

Quantitative analysis:
Total occurrences: 36 (0.02%) Unique consumers: 7 (0.07%)
Replacing a feature with its recommended replacement is the second least frequent
way in which API consumers reacts. In practice, only 7 API consumers choose to re-
act in this manner. These 7 API consumers have replaced the deprecated feature in
36 (0.02%) cases and they do not react in any other manner to deprecation; further-
more, they replace all invocations beingmade to deprecated features. Thus, similarly
to the qualitative analysis, we observe that consumers that do react to deprecation
“as intended” tend to be systematic about it.

4. RP4: Replace with in-house replacement
Qualitative analysis:
Total occurrences: 2 (0.5%) Unique consumers: 1 (0.4%)
In two cases, the deprecated invocation is replaced by some functionality developed
by the API consumer itself. Both cases belong to the Hibernate API. The API con-
sumers have in each case replaced a database mapping invocation with their own
wrapper around the database. The reason we found evidence for is that the Hiber-
nate API was changing too much and it was not deemed worth keeping up with the
changing API.
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Detection heuristic: We start by looking at all the files and packages in a given
project and create a set of package names that the project itself has defined, this
is the list of packages from which a feature can be imported. When in a version
of a file we see that a deprecated feature is removed, we look to see if it has been
replaced by a feature pertaining to one of these in-house packages.

Quantitative analysis:
Total occurrences: 702 (0.4%) Unique consumers: 31 (0.3%)
Replacing with in-house functionality is done in 702 cases. Thus, in a non-negligible
number of cases, API consumers have taken the effort to implement functionality
that has been provided, yet deprecated by an external API.

5. RP5: Replace with Java replacement
Qualitative analysis:
Total occurrences: 6 (1.5%) Unique consumers: 1 (0.4%)
In our sample set, many of the APIs extend the functionalities of the Java API or
provide alternatives to existing Java libraries. These are seen in the case of the
Guava API’s consumers. The consumer replaced references to the Guava Map class
with those to the JavaMap class. There was no reasoning given by the API consumer
in the commit or in any pull request as to why the change was made. We speculate
that using functionality from the Java API was deemed to be easier and safer than
using deprecated features from the Guava API.

Detection heuristic: Java libraries start with one of three prefixes: java, sun and
javax. If we see a deprecated feature is removed and—in its place—we see a new
invocation being made to a method which belongs to a class whose package name
starts with one of the prefixes, we infer that this reference to a deprecated feature
has been replaced by a feature from Java and mark it as such.

Quantitative analysis:
Total occurrences: 17 (0.01%) Unique consumers: 3 (0.03%)
The least frequent way (17 cases or 0.01% of the time) for an API consumer to react is
to replace the deprecated functionality with an invocation to a Java API feature. This
could be explained by the fact that all third-party APIs seek to offer functionalities
beyond the Java API building on top of it.

6. RP6: Replace with other third-party API
Qualitative analysis:
Total occurrences: 28 (7%) Unique consumers: 13 (5%)
More than one API may provide the same functionality. For example, Easymock
and Mockito are both libraries that allow developers to mock objects in test cases.
We see in 5 cases, all of which pertain to consumers of commons-collections API,
deprecated features are replaced by functionality from the Guava API. The primary
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reason is that the commons-collections API had become obsolete, while Guava is
more modern and provides more updated functionality.

Detection heuristic: There is no way to determine a list of package names for third-
party replacement APIs as it is hard to understand which APIs can replace a certain
API, thus making a complete list of replacement packages a non-trivial endeavor.
Instead, we rely on data we have collected for all the aforementioned replacement
based reaction patterns as for each pattern we create lists of packages to which a
replacement method could belong to. When a replacement method does not belong
to a class from any of those packages, we infer that it belongs to another third-party
API.

Quantitative analysis:
Total occurrences: 15,236 (9%) Unique consumers: 641 (7%)
The second most frequent way (7%) in which API consumers (641 consumers out of
9,317) react to deprecation is by replacing a reference to a deprecated feature with
a third-party API feature. This behavior might be prevalent for the consumers of
some APIs as opposed to others as not all APIs have competitors.

7. RP7: Rollback version of the API
Qualitative analysis:
Total occurrences: 19 (5%) Unique consumers: 8 (3%)
Deprecations in an API are visible to API consumers when they upgrade the version
of the API being used. At this point, a consumer can choose to stick with this version
or rollback to the previous version. In one case (consumer of JUnit) in our sample set,
we see this to be the case. The reasoning was that the new version had deprecated
certain features being used. Needless to say, this defeats the purpose of deprecation.

Detection heuristic: When going through various versions of a file containing a ref-
erence to a deprecated feature ordered chronologically, if the file no longer contains
deprecated features, we check whether the API consumer has rolled back the ver-
sion of the API. We also ensure that the method invocation has not been removed
from the source code. If both conditions are met, we mark it as a rollback.

Quantitative analysis:
Total occurrences: 2,134 (1%) Unique consumers: 193 (2%)
Rolling back the version of the API being used is also seen 1.2% of the time. This
may indicate that several API consumers do not wish to take the effort to adapt to
a new version of an API, but prefer to stick with an older version.

To challenge our aforementioned findings concerning frequency of reaction patterns,
we ask in our survey (which targets API consumers from a different setting) which one of
these reaction patterns they have most frequently adopted. Figure 5.4 reports the results.

69% of API consumers in our survey reported to always react by replacing the dep-
recated invocation with the recommended replacement from the API. This is in direct
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Figure 5.4: API consumers’ preferred way to react to deprecation

contradiction of the trends seen in GitHub data. While only 20% of consumers indicate
that they do no react to a deprecated entity, in fact, 44% actually indicate that not reacting
to deprecation is something that they would not consider as acceptable behavior. This
again contradicts the behavior observed on GitHub. However, this could be explained
by our survey respondents answer our questions to conform with what they perceive as
acceptable behavior (known as social desirability bias [122]).

The other 5 reaction patterns all receive less than 17% of support from consumers. In
all the cases, the majority of consumers indicate that they do not react in such a manner.
We see that rolling back the version of the API and deleting a deprecated call with no
replacement are by far the most negatively viewed reaction patterns with 80% and 75% of
consumers indicating that they would never adopt such a pattern.

RQ2. A small minority (less than 13%) of API consumers update their API ver-
sion. Furthermore, the most common (88%) reaction to deprecation in our sample
from GitHub is ‘No reaction’; this result is not confirmed by the answers collected
in our survey, whose respondent say to often (69%) ‘Replace with recommended
replacement’.

5.3.3 RQ3: Variance of reaction patterns across APIs
By answering RQ2, we have analyzed the distribution of reaction patterns across all the
consumer projects considered in our dataset, regardless of the API producer. Now we
move our attention to investigating whether the distribution of reaction patterns varies
across the consumers of different APIs. We differentiate between those APIs that affect
several consumers vs. those that do not.

In Figure 5.5 we see the percentage of consumers affected by deprecation. Based on
the logical groupings that we observe, we define the following thresholds:

Unaffecting consumers: 0% of consumers are affected by deprecations done by the API

Minimally affecting consumers: < 2% of consumers are affected by deprecations



5.3 Results

5

97

0

5

10

15

20

25

30

spr
ing
-co
re h2

co
mm

on
s-b
ea
nu
tils

jac
kso

n-d
ata
bin
d

pri
me
fac
es

co
mm

on
s-p
oo
l

log
4j

do
m4
j

co
mm

on
s-c
od
ec

po
stg
res
ql

jod
a-t
im
e

my
ba
tis

fre
em
ark
er

tes
tng

co
mm

on
s-l
an
g3

c3p
0

co
mm

on
s-c
l i

co
mm

on
s-c
oll
ec
tio
ns

ha
mc
res
t-a
ll

jav
ass
ist

co
mm

on
s-h
ttp
clie

nt

mo
cki
to-
all jun

it
gu
ava

an
dro

id po
i

co
mm

on
s-i
o

ea
sym

ock

hib
ern
ate
-co
re

mo
ng
o-j
ava
-dr
ive
r

Marginally 
affecting
consumers

Largely 
affecting
consumers

Figure 5.5: Percentage of consumers affected per API

Marginally affecting consumers: between 2% and 7% of consumers are affected by dep-
recations

Largely affecting consumers: > 7% of consumers are affected by deprecated features

Figure 5.6 shows a breakdown of the percentage of API producers belonging to each
of these categories. Predominantly APIs do not affect their consumers, with 20 (40%) APIs
never affecting any consumer and 18 (36%) APIs affecting less than 2%. Six (12%) APIs
affect between 2% and 7% consumers and a further six (12%) affect more than 7% of the
consumers.

Largely affected

Marginally affected

Virtually unaffected

Unaffected

0 20 40 60 80 100

Figure 5.6: Distribution of the sampled APIs based on degree to which their consumers are affected by depreca-
tion

Unaffecting consumers: For 20 APIs (40%), we observe that no consumer is affected by
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Figure 5.7: Frequency of reaction patterns for the ‘joda-time’, ‘mongo-java-driver’, ‘hibernate-core’, ‘commons-
pool’ and ‘commons-lang3’ APIs.

deprecation, because our sampled API consumers do not use any of the deprecated
features. For the other 30 APIs, consumers are affected to various degrees.

Minimally affecting consumers: Considering the distribution of reaction patterns across
the 18 APIs that minimally affect their consumers (< 2%), consumers of 12 of these
APIs predominantly do not react to deprecation. For other 3 APIs, replacing refer-
ences to deprecated entities with references to a third-party API (RP6) is the dom-
inant reaction pattern. In the case of ‘commons-lang3’ (seen in Figure 5.7), some
consumers react by replacing deprecated features with features from the same API
(RP3). Despite this fact, replacing with a third-party API is still the most common
reaction pattern amongst consumers of this API. For the ‘joda-time’ API we see four
different kinds of reaction patterns: no reaction (RP1), deletion (RP2), rollback and
replacing with third-party API (RP6), as seen in Figure 5.7. The consumers of the last
API from this set, i.e., ‘commons-pool’, always rollback the version of the API being
used (RP7), as visible in Figure 5.7. This seem to indicate that for the consumers of
this API, deprecation acts as a deterrent to upgrading the version of the API being
used.

Marginally affecting consumers: Among theAPIs thatmarginally affect their consumers,
the predominantly popular way to react to deprecation is by not reacting at all: For
all the APIs, in over 60% of the cases consumers do not react to deprecation (RP1).
There is a little bit of variance in terms of reaction patterns in the cases where a
reaction does actually take place. In the case of ‘guava’, ‘hamcrest-all’, and ‘junit’,
in 15-20% of the cases consumers have reacted by replacing a deprecated feature
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with a third-party API (RP6). In the case of the other 3 APIs that fall in category
(‘javassist’, ‘mockito’, and ‘commons-httpclient’), in over 25% of the cases features
are replaced with third-party API ones (RP7).

Largely affecting consumers: Among thoseAPIs that affect consumers themost, ‘hibernate-
core’ has affected 17% (1,391 out of 7,983) of its consumers and ‘mongo-java-driver’
affects 24% (496 out of 2,077) of its consumers; deprecations in ‘hibernate-core’ and
‘mongo-java-driver’ are more exposed to the consumers than the deprecations in
most other APIs. In the final set we see that for ‘android’, ‘poi’, ‘commons-io’, and
‘easymock’, consumers predominantly (∼80% of the cases) do not react (RP1). For
these APIs, the alternative reaction patterns is typically to react by replacing the
deprecated features with a feature from a third-party API (RP7). Out of this set of
APIs, only the consumers of ‘hibernate-core’ (in Figure 5.7) show cases of replac-
ing a deprecated feature with its recommended replacement (RP3). For this API
the consumers appear to display the most varied reaction patterns. This may be ex-
plained by the large number of consumers (over 1,000) affected by deprecation. For
‘mongo-java-driver’ (the API that affects the largest percentage of consumers seen
in Figure 5.7), in over 40% of the cases the consumers prefer to start using a new
API (RP6).

RQ3. Over 75% of the APIs marginally or don’t affect consumers with deprecation.
Only 2 APIs (hibernate-core and mongo-java-driver) affect more than 15% of their
consumers. For these APIs we see reactions, where consumers abandon the API in
favor of another.

5.3.4 RQ4: Explaining the non-reactions
We see that not reacting to deprecation is by far the most popular reaction pattern. This
is an unexpected finding and we delve deeper into our data and survey developers to gain
a thorough understanding behind this phenomenon.

We do this in two ways: (1) we analyze the impact of the API’s evolution strategy in
the consumers’ reaction pattern and (2) we ask API consumers what motivates them to
not react to deprecation.

Consumers’ reactions and API deprecation policies
In most cases, API consumers do not react to the deprecation of an API artifact; in some
instances where a reaction does take place, the nature of these reactions can be diverse.
We would like to investigate whether the API’s deprecation and evolution strategies are
associated with the consumer’s behavior toward deprecation.

In Section 5.2.6 we list the four dimensions along which we measure the behavior
concerning an API’s evolution; for each of the dimensions we define the thresholds for
specific categorization bymanually analyzing the graphs ⁴. We choose such amethodology
over using quartiles as it allows us to take into account large changes in values and assign

⁴https://www.xaprb.com/blog/2015/11/07/setting-thresholds-with-quantiles/
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appropriate buckets to these values as opposed to lumping all values within a quartile in
the same bucket. The thresholds are detailed in Table 5.2.
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Figure 5.8: Activeness of APIs, excluding inactive APIs.

We start by looking at the release activeness of the APIs. We notice that some APIs
have not been active for more than 5 years and denote these as inactive. For the rest, we
define thresholds based on the number of releases per months. A breakdown of this metric
per API along with the chosen threshold points can be seen in Figure 5.8.
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Figure 5.9: Removal of deprecated features, excluding APIs that never remove a deprecated feature.

We look at the percentage of deprecated features that an API removes in its lifetime.
For some APIs, no deprecated features are removed. For the rest, we define thresholds
based on the graph seen in Figure 5.9.

We also take into account the percentage of the API that is deprecated over its lifetime.
For all our APIs there is at least one feature that has been deprecated. We capture the
frequency with which features are deprecated in different bins, the thresholds for which
can be seen in Figure 5.10.
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Finally, we look at the number of breaking changes that an API introduces. The thresh-
olds defined for this can be seen in Figure 5.11. We scored each of the APIs based on the
categories defined in Table 5.2 and conducted a card sort (as described in Section 5.2.6).
This card sort resulted in nine API deprecation strategies (DSs), each with its own defin-
ing characteristic. In the following, we provide more details about each emerged DS, in
terms of its description along with the aforementioned dimensions, which APIs fit in the
pattern and an analysis of the behavior of the consumers of the APIs adapting this DS.

1. DS1: Inactive
Description:TheAPI is not actively releasing new versions, thus deprecated features
are not being removed.
APIs: log4j (�𝐴, 𝑅+, 𝐷, 𝐵), commons-dbcp (�𝐴, 𝑅−, 𝐷, 𝐵), hamcrest-all (�𝐴, �𝑅, 𝐷−, 𝐵),
standard (�𝐴, 𝑅, 𝐷−, 𝐵), dom4j (�𝐴, 𝑅++, 𝐷, 𝐵), c3p0 (�𝐴, 𝑅−, 𝐷, 𝐵), commons-httpclient
(�𝐴, 𝑅, 𝐷+, 𝐵), android (�𝐴, 𝑅−, 𝐷, 𝐵), commons-pool (�𝐴, 𝑅, 𝐷, �𝐵).
Expected reaction: APIs in this category are not at all active, i.e., they have not
released a new version in the last 5 years, hence there is no danger in using a depre-
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Table 5.2: Dimensions of API evolution and thresholds

Dimension A: Actively releasing
�𝐴: last release >5
years ago

𝐴−: releases ev-
ery >12 months

𝐴: releases every
4-12 months

𝐴+: releases ev-
ery 0-3 months

Dimension R: Removal of deprecated features (percentage)
�𝑅: no depre-
cated methods
removed

𝑅: 0-50% of depre-
cated methods re-
moved

𝑅+: 50-75% of
deprecated meth-
ods removed

𝑅++: >75% of dep-
recated methods
removed

Dimension D: Deprecated features (percentage)
𝐷−: 0 - 2% of
methods depre-
cated

𝐷: 3-9% of meth-
ods deprecated

𝐷+: 10-15%
of methods
deprecated

𝐷++: >16% of
methods depre-
cated

Dimension B: Breaking changes (cardinality)
�𝐵: 0 breaking
changes

𝐵: 1-90 changes
that break meth-
ods

𝐵+: >90 changes
that break meth-
ods

cated feature as there is no immediate danger of it being removed in the new release
of the API. Hence, here we expect no reactions to take place.
Analysis of consumers: This is the most common strategy with 9 out of 50 APIs
belonging to this category. Two of the APIs in this set never affect their consumers,
while for 5 APIs over 80% of the consumers never react, as expected. For the last two
APIs, some reactions do take place. Out of these APIs, ‘commons-pool’ is the only
outlier where 100% consumers affected by deprecation react and do so by rolling
back the version of the dependency being used.

2. DS2: Very little deprecation
Description: The API has no history of removing features, deprecated or otherwise.
APIs: slf4j-api (𝐴+, �𝑅, 𝐷−, �𝐵), aspect-jrt (𝐴+, �𝑅, 𝐷−, �𝐵), json (𝐴, �𝑅, 𝐷−, 𝐵), javassist
(𝐴, �𝑅, 𝐷−, 𝐵), jsoup (𝐴+, �𝑅, 𝐷−, 𝐵), jersey-client (𝐴+, �𝑅, 𝐷−, �𝐵).
Expected reaction: Here APIs deprecate features, however, they never remove dep-
recated features from their APIs. Thus they always remain backward compatible. In
this case, we expect no reactions.
Analysis of consumers: Six APIs appear to be backward compatible in all cases, this
implies that deprecated features are never removed. For 5 of these APIs, no clients
are affected (this is expected, since a defining trait of this strategy is that rare depre-
cations take place). However, for ‘Javassist’, in over 35% of the cases that a reaction
does take place by replacing a deprecated call with one to a third-party API (RP6).
Which implies that consumers of this API are not aware that there is no danger in
not reacting as no deprecated features are ever removed.

3. DS3: Little deprecation
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Description: The API does not deprecate a lot, but when it does, it does not remove
the deprecated features.
APIs: joda-time (𝐴, 𝑅−, 𝐷, �𝐵), postgresql (𝐴+, 𝑅−, 𝐷−, 𝐵), cglib (𝐴, 𝑅−, 𝐷−, 𝐵),
commons-beanutils (𝐴, 𝑅−, 𝐷, �𝐵), freemarker (𝐴, 𝑅−, 𝐷, 𝐵).
Expected reaction: These APIs remove very few deprecated features, thus most dep-
recated features remain in the API and there is very little danger that they will be
removed later. Here we expect no reactions.
Analysis of consumers: Five APIs that fall under this category. TheseAPIs aremostly
backward compatible, thus consumers do not need to react much as there is very
little inherent danger in a deprecated feature being removed. Consumers of two
APIs do appear to exhibit this behavior (RP1). However, for ‘joda-time’, we see
rollbacks (RP7, 40% of the cases) and for ‘postgresql’ we see migrations to another
API (RP6, 60% of the cases).

4. DS4: Never cleans up API
Description: The API deprecates a lot but never really removes any deprecated fea-
ture.
APIs: commons-io (𝐴, �𝑅, 𝐷, 𝐵), commons-lang3 (𝐴, �𝑅, 𝐷+, 𝐵), httpclient (𝐴+, 𝑅−,
𝐷 + +, 𝐵), commons-logging (𝐴, 𝑅−, 𝐷 + +, 𝐵), commons-fileupload (𝐴, �𝑅, 𝐷+, 𝐵),
commons-cli (𝐴−, �𝑅, 𝐷 ++, 𝐵).
Expected reaction: The APIs threaten a lot of breaking changes by deprecating a lot
of features, but none of these deprecated features are removed. Thus, no reaction has
to take place due to the lack of danger of using a deprecated feature. No reactions
are expected.
Analysis of consumers: Six APIs fall in this category. For three of these APIs, no
consumer is affected by deprecation. On the other hand for the consumers of the
other 3 APIs, we do see quite some reactions. For commons-cli (>50% of the cases),
commons-lang3 (>50% of the cases) and commons-io (20% of the cases) we see that
deprecated calls are replaced by another third-party API (RP6).

5. DS5: Rarely cleans up API
Description: The API deprecates several features, yet only removes a few of these
features.
APIs: junit (𝐴, 𝑅, 𝐷+, 𝐵), commons-codec (𝐴, 𝑅, 𝐷+, 𝐵), commons-collections (𝐴, 𝑅,
𝐷 ++, 𝐵+).
Expected reaction: These APIs deprecate a lot of features, however, also remove a
few of these deprecated features. Thus there is moderate danger in using a depre-
cated feature from this API. We expect a few reactions, but not too many.
Analysis of consumers: Three APIs belong to this category. Just like the previous
category we expect to see reactions as a lot of deprecations take place but few re-
movals. Consumers of two APIs out of this set do not react to deprecation in over
80% of the cases. However, consumers of commons-collections do follow the more
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expected pattern of reacting, by replacing deprecated invocations with those being
made to other third-party APIs (RP6, >60% of cases).

6. DS6: Directly breaks few methods
Description: The API removes the features sometimes, but not frequently.
APIs: mockito-all (𝐴+, 𝑅, 𝐷−, 𝐵), gson (𝐴, 𝑅, 𝐷−, 𝐵), h2 (𝐴+, 𝑅, 𝐷−, 𝐵), poi (𝐴+, 𝑅,
𝐷−, 𝐵), primefaces (𝐴, 𝑅, 𝐷−, 𝐵+).
Expected reaction: Not a lot of features are deprecated, instead, some breaking
changes are introduced directly. There is quite some danger to using a (deprecated
or otherwise) feature from an API in this set as the API can remove a feature at any
time. We expect to see reactions.
Analysis of consumers: Five APIs exhibit this strategy. We see that in the case of 3
APIs over 98% of the consumers do not react, and one does not affect consumers at
all. Only for mockito-all do consumers react by replacing deprecated calls with new
ones to a third-party API (RP6, 25% of the cases).

7. DS7: Directly breaks a lot of methods
Description: The API removes deprecated and non-deprecated features frequently.
APIs: mysql-connector-java (𝐴+, 𝑅+, 𝐷−, 𝐵+), guava (𝐴+, 𝑅+, 𝐷−, 𝐵), aspectjweaver
(𝐴+, 𝑅+, 𝐷−, 𝐵), hsqldb (𝐴, 𝑅+, 𝐷−, 𝐵+), guice (𝐴, 𝑅 ++, 𝐷−, 𝐵), assertj-core (𝐴+, 𝑅+,
𝐷−, 𝐵).
Expected reaction: Here APIs introduce breaking changes with regularity instead
of first deprecating a feature. We expect to see many consumers being affected by
deprecation.
Analysis of consumers: Surprisingly, this strategy is exhibited by 6 APIs. This im-
plies that 6 APIs choose to break their client code as opposed to evolving in a clean
manner and first deprecating a feature and only after that removing the feature.
Thus, these APIs are not too bothered by the thought of breaking their consumers’
code. This is apparent, given that consumers of 5 out of 6 APIs are unaffected by
deprecation at all. Only for guava do we see that consumers are affected and they
react. These reactions are either by migrating to another API or rolling back the
version of the API being used.

8. DS8: Removes deprecated features
Description: The deprecated features are sometimes removed in a future version.
APIs: jackson-databind (𝐴+, 𝑅, 𝐷, 𝐵), testng (𝐴+, 𝑅, 𝐷, 𝐵), selenium-java (𝐴+, 𝑅, 𝐷,
�𝐵).
Expected reaction: These APIs are quite active and they deprecate and remove dep-
recated features regularly. Given the danger of using these features, we expect re-
actions.
Analysis of consumers: 3 APIs exhibit this strategy. For testng, in over 60% of the
cases, there is no reaction seen. Whereas for selenium-java no API consumers are
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affected by deprecation. However, only for jackson-databind do we see that con-
sumers react in just under 40% of the cases by replacing with another API (RP6).

9. DS9: Actively cleans up deprecated features
Description: The API removes most deprecated features in future versions.
APIs: spring-core (𝐴+, 𝑅+, 𝐷, 𝐵), hibernate-core (𝐴+, 𝑅+, 𝐷, 𝐵), logback-classic (𝐴+,
𝑅+, 𝐷, 𝐵), mybatis (𝐴+, 𝑅+, 𝐷, 𝐵), mongo-java-driver (𝐴+, 𝑅+, 𝐷 ++, 𝐵), easymock
(𝐴, 𝑅 ++, 𝐷+, 𝐵), jetty-server (𝐴+, 𝑅+, 𝐷, 𝐵).
Expected reaction: Here APIs remove deprecated features with regularity, thus en-
suring that consumers will be confronted with breaking changes when upgrading
the version of an API. We expect to see reactions.
Analysis of consumers: This strategy is exhibited by 7 APIs. We see in the case of
spring-core, hibernate-core, mybatis, and easymock that no reactions actually take
place in over 80% of the cases. Only in the case of mongo-java-driver do we see that
in 35% of the cases do reactions take place, where consumers replace deprecated
invocations with those to another API (RP6). This counter-intuitive behavior of the
API consumers can be explained by the fact that majority of the consumers do not
upgrade the version of the API being used, thus minimizing the chance that they
will be affected by a breaking change in the API.

API consumer perspective on non-reaction
We asked API consumers to indicate whether one or more reasons for not reacting to
deprecation has applied to them in the past. Results from this survey can be seen in Fig-
ure 5.12.

The most common reason (53.4% of respondents) for not reacting is that the specified
replacement by the API is either too complicated to use or is not a good enough replace-
ment. This shows that API producers might not be making their replacement features
developer friendly. Furthermore, it also calls for API producers to invest in making de-
tailed upgrade guides or improving documentation. 49% of respondents also indicated
that they found reacting to deprecation time-consuming and not worthwhile. This might
be explained by the fact that our survey respondents work in industry thus not having
sufficient time to react to deprecation.

42% of respondents indicate that they do not react to a deprecated feature as they
would rather use another API that provides similar functionality. This is in line with the
earlier results where consumers found it hard to react to deprecation due to the convoluted
and time-consuming nature of the replacement. Consumers also indicate that they are
lax when it comes to reacting to deprecation as they do not feel particularly threatened
by the deprecation as the immediate danger of a new release of the API that removes
the deprecated feature being used is non-existent. This is reflected in the results seen in
Section 5.3.4.

Approximately the same percentage of consumers indicate that the fact that depreca-
tion is a non-breaking change has an impact on their decision to react (38%) as those that
indicate that this fact has no impact on their decision to react (37%). Thus, consumers
have diverging opinions over the effectiveness of the deprecation mechanism. However,
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Figure 5.12: API consumers reasons for not reacting to deprecation

the fact that the deprecated feature might never be removed thereby never becoming a
breaking change, does not act as motivation for non-reaction either.

The reason behind deprecation or lack thereof does not have amajor impact on the non-
reaction pattern observed according to 47% of consumers. This indicates that consumers
feel that the reason behind deprecation is a driving factor to react to deprecation, which
is in line with previous results[18].

Reasons to not react such as the ability to rollback the version being used or devel-
oping an in-house alternative to the deprecated API receive very little support from API
consumers. Most indicate that such reasons do not motivate non-reactions.

Consumers also mentioned other reasons that have motivated them to not react to
deprecation. One consumer mentioned that the fact that the feature had been deprecated
for a long time and never been removed, made it apparent that no reaction was needed.
In some cases in industry, the management does not want to invest time or money in
upgrading a dependency and reacting to deprecated/breaking changes in the API. Another
consumer indicated that upgrading the API binary sometimes leads to incompatibilities
with other binaries thus preventing reactions to deprecation.

We wanted to further understand the reasons behind reacting to deprecation, to see
what motivated consumers to react. Some of these reasons can be seen in Figure 5.13.

We see that the reason behind deprecation, the low cost of reaction, the seriousness of
the deprecation and the need to upgrade the library are all considered to be very important
(over 60% of consumers in each case) motivations behind reacting to deprecation. This is
in line with the responses that we obtained for non-reactions.
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RQ4. Deprecation strategies adopted by APIs are not strongly linked with the
reaction patterns seen. Further diving into the non-reactions, we observe that con-
sumers do not react to deprecation due to the cost and complexity of the required
change.

5.4 Discussion
5.4.1 Deprecation not considered
The deprecation mechanism is used to indicate that a certain API feature is now obsolete
and will be removed in the future. The aim of using such a dedicated mechanism is that it
allows API consumers a period of time to react to the deprecation and take the course of
action they deem most suitable for their use case.

In our study, we observe that consumers do not heed this deprecation warning. Over
95% of the cases in which a deprecated feature is used by a consumer, the depreaction is
never reacted to. In the other 5% of the cases, the nature of the reaction varies and we
have observed six different reaction patterns.

In 55% of the caseswhere no reaction has taken place, the file containing the deprecated
invocation is never modified. This could indicate that API consumers may not notice that
an API feature being used in their source code is deprecated. If confirmed, this situation
would strengthen the case that simple compiler warnings for deprecation might not be suf-
ficient in calling the consumers attention to this issue; this would call for another manner
in which the visibility of a deprecated feature can be promoted. Java language developers
have attempted to address this by introducing a dedicated tool called jdeprscan⁵, which
scans Java class files to detect the usage of deprecated features and warns the consumer.

The scale of the non-reactions is surprising and shows us that the deprecation mech-
anism is not achieving its stated goal. In fact, consumers claim that the reason behind
deprecation is what drives their decision to react. This is similar to what Sawant et al. [18]
found in their qualitative study. They recommend that the deprecation mechanism imple-
mentation in Java should make it explicit as to what the reason behind the deprecation is.

⁵https://docs.oracle.com/javase/9/tools/jdeprscan.htm



5

108 5 Scale of reaction to deprecation

Seeing the scale of non-reactions, we can speculate that this enhancement in deprecation
will entice more consumers to react to deprecation.

Overall, by increasing the overall awareness surrounding the deprecation of a feature,
there is a chance that more consumers may react. This would require providing the con-
sumer with more visibility of the deprecated feature and the motivation of the deprecation,
in addition to sufficient documentation that acts as a guide to reaction. Further studies
can be devised to verify whether and to what extent these three factors combined may
reduce the frequency of non-reactions (from the 88% it is at right now).

5.4.2 Lack of affectedness by deprecation
Deprecation is howAPI producers can indicate obsolete functionality andwarn consumers
to not use certain features. The principal stated use case for deprecation is when an old/ob-
solete feature is replaced by a new implementation, but the API producers do not want to
directly replace the existing feature as doing so would directly break consumer code, thus
making deprecation a compromise solution.

We would expect for the APIs in our dataset that several features would have gone
through the deprecation process and deprecation would have affected consumers signifi-
cantly. In fact, the APIs under consideration are mature, popular, large, and have evolved
significantly over time. However, we see that only 9,317 out of 297,254 (3%) Java projects
on GitHub are affected by deprecation. This is surprising as we would have expected API
evolution to have affected more consumers. Indeed, investigating the API deprecation be-
havior, we see that it is rare that an API deprecates large portions of the API. Furthermore,
we see that for some popular APIs such as Guava, breaking changes are introduced in con-
junction with deprecating a feature. Both these facts might explain the lack of affected
consumers that we observe.

On the other hand, our results may also be the result of consumers rarely updating the
APIs they use. We see that for most APIs only 5% of the consumers upgrade the depen-
dency that they use with none of the APIs having more than 13% of their consumers that
upgrade versions. This is in line with previous work by Sawantet al. [120] who reported
that a small number of consumers upgrade versions. The rare upgrading may contribute
to explain why few consumers are affected by deprecation.

5.4.3 API producers’ policies are not associated to consumers’ reac-
tions

API producers use deprecation to communicate with their consumers about the obsolete
nature of an API feature. They can use different evolution strategies when it comes to dep-
recating features: They might deprecate a lot of features, and never remove these depre-
cated features, or they could directly introduce breaking changes without first deprecating
a method.

We observe that the various deprecation strategies adopted by producers areminimally
associated with the consumers’ decision to react to deprecation. Even when it would be
imperative that a consumer reacted to deprecation due to the danger of that deprecated
method being removed by the API, we observe consumers not reacting.

The Java language designers in JEP277 [117] estimate that the variance in deprecation
strategies and having no singular convention has led to the confusion surrounding dep-
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recation. Consumers are unsure of whether they have to react or not. They are unaware
of the future of a deprecated feature. In the opinion of the Java language designers, this
confusion has led to consumers doing nothing with a deprecated feature.

5.4.4 Consumers do not keep up with API evolution
Most of the APIs that we study regularly release new versions, which contain a combina-
tion of improvements to existing features, addition of new features, and/or removal/dep-
recation of older features.

We observe that, for any of the studied APIs, only a maximum of 13% of consumers
move to the latest version of the API. In the survey, only 31% of developers indicate that
they always upgrade the version of the API being used. These numbers are aligned, albeit
less extreme, with previous studies, one of which reported that 81.5% of consumers do
not change the version [123] and another that less than 4% of library dependencies are
upgraded [124].

Considering the consumers that do upgrade, we observe that they tend to not react
to deprecation. They choose not to use the new features that replace obsolete features.
In fact, replacing with the recommended replacement is one of the least popular ways in
which we found consumers reacting to deprecation.

This evidence seems to indicate that consumers are not concerned with keeping up
with API evolution. Consumers pick the version that works best for them and stick to it
(a fact echoed by 41% of developers in the survey). This leads us to question whether APIs
should be evolved with great regularity or if API producers should invest time in mak-
ing minor improvements and releasing them. Concerning upgrading behavior, Bavotaet
al. [125] found that consumers are more likely to adopt a new version if it includes major
improvements.

5.4.5 Need for an automated tool to keep with API evolution
One of the principal reasons behind consumers not keeping up with API evolution, as
emerged from the survey, is the cost involved in upgrading dependencies and reacting to
deprecated or broken features. In the case of industry, this cost is too high a price to pay
to change something that is already working, as explicitly stated by one of our survey
respondents.

This hints at the usefulness of tools that can enable developers to deal with API evolu-
tion in a cost-effective manner. Some attempts at automatically dealing with deprecation
have already been made. Henkel and Diwan [27] proposed to capture refactoring oper-
ations made by API producers to their codebase when adapting to their own deprecated
features and then replaying these operations on the API consumers. Similarly, Xing and
Stroulia [28] developed an approach that recommends alternative features from an API
to replace an obsolete feature by looking at how the API’s own codebase has adapted to
change. These approaches rely on support from the API developers to aid the API con-
sumers in the transition. Attempts have been made to create automated tools that aid
developers in dealing with API evolution and not just specifically deprecation. Dagenais
and Robillard present a tool called SemDiff [29], which aids developers in dealing with
framework changes where a method they use is suddenly no longer provided. Schäferet
al. [90] mine framework usage rule changes from already ported usages of the framework
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and propose the same to a developer dealing with a breaking change. Kapur et al. [126]
created a tool call Trident that allowed developers to directly refactor obsolete API calls.
Savga and Rudolf created Comeback! [127], a tool that records framework evolution and
for each change creates an adapter so that a developer does not have to change his code.

The only tool that has been created specifically to support API consumers in transi-
tioning away from deprecated API features is that created by Perkins et al. [128]. This tool
replaces deprecated method invocations with the source code of the deprecated method
from the API itself. This has been shown to be effective in 75% of cases, although this
approach is not universal and introduces verbose code to the API consumers codebase.

One assumption that all these aforementioned approaches make is that consumers up-
grade the dependency version being used. As we see in this study, developers mostly do
not change the version of the API they use. This calls for the development of techniques
that actually incentivize the adoption of new versions by reducing the cost and time in-
volved in upgrading. Holmes and Walker [116] have made a start by creating a tool that
filters relevant change information from a library so that consumers are made aware of
the major changes made to the API. Furthermore, as our study has shown us, consumers
are very likely to take deprecation lightly as it is not a breaking change and does not re-
quire immediate attention. This calls for a tool that effectively aids an API consumer in the
transition away from deprecated API features. Both these tools are still an open research
challenge.

While in this context we only talk about the needs of Java developers, such kind of
tooling support in other languages would also go a long way in aiding API consumers in
dealing with API evolution.

5.4.6 Comparison with other languages
In this chapter, we focus on Java-based APIs and their consumers. We identify seven
different ways in which API consumers could react to deprecated API features in their
source code. However, we see that there is very little reaction to deprecated API features,
in fact, not reacting is the most popular way in which consumers choose to deal with
deprecated API features.

Java’s deprecation mechanism and deprecation policy have been blamed as the main
reason behind the lack of reaction to deprecated features. JEP 277 [117] mentions that
more information needs to be conveyed to the consumer, information that can prove piv-
otal in the decision-making process behind reacting to deprecation. Sawant et al. [18]
confirm this and suggest that Java’s deprecation mechanism be extended to inform the
consumer about the severity of the deprecation and the version in which the deprecated
feature is to be removed.

Languages such as C#, Kotlin and Visual Basic provide a way in which the severity
of the deprecation can be conveyed. Ruby and Dart allow API consumers to indicate the
version in which a deprecated feature is going to be removed. We postulate that given
the difference in the information that is conveyed by the API producer to the consumer
in such languages, the variety and scale of the reaction to deprecation is probably very
different to that what we have observed in Java. This hypothesis is strengthened when
we observe the results from a previous study by Robbes et al. [3] on the Smalltalk (whose
deprecation mechanism is similar to Java’s in terms of characteristics) ecosystem where
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the number of reactions is not that high either.
A study to compare reaction patterns to deprecation across the different programming

languages would allow us to confirm whether the implementation of a deprecation mech-
anism has an impact on consumer behavior. Such a study is out of scope for this paper,
however, we propose it as future work.

5.4.7 Semantic versioning impacting deprecation reaction behavior
The practice of deprecation is related to the practice of semantic versioning. In semantic
versioning, package version numbers follow a specific scheme consisting of 3 numbers:
MAJOR.MINOR.PATCH. When releasing a new version, one of the numbers will be incre-
mented according to the following rules (from https://semver.org):

• The MAJOR number is incremented when a new version makes incompatible API
changes

• TheMINOR number is incremented when new functionality is added in a backward-
compatible manner

• The PATCH number is incremented when a backward-compatible bug fix is issued

On the other hand, the goal of deprecation is to provide an incentive for developers
to change their software, but without breaking backward compatibility. Thus, an API
deprecating even a large number of API elements does not need to increase its major
number to comply with semantic versioning. The actual breaking change would happen
when the deprecated API element is removed; only then would an API following semantic
versioning need to increase its major version number.

Both mechanisms can be seen as complementary. One could see deprecation as an
“advance warning” that an API element is likely to be removed in the future, such as a
future major version of the API. Indeed some APIs, such as Guava, explicitly note in their
deprecation message when a method is scheduled to be removed (e.g., “This method is
scheduled to be removed in Guava 16.0”). This strategy seems to be “the best of both
worlds”.

While such a strategy seems to be the best way to approach the problem, based on our
study and the studies of Raemaekers et al. [19, 129] on semantic versioning, our outlook
on the chances of such a mechanism leading to a desired behavior in practice (i.e., rapid
adaptation to deprecation and API changes) is pessimistic. The work of Raemaekers et al.
shows that many packages on Maven central do not follow semantic versioning, incur-
ring rework for their consumers. Our work shows that few API consumers actually react
to deprecation. Thus, it is unclear whether combining both approaches would be more
successful, although a specific study of this would be the best way to obtain concrete evi-
dence.

5.5 Related Work
5.5.1 Studies on API deprecation
Several studies investigate the deprecation of API features, its impact and its need to help
developers deal with deprecation.
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Robbes et al. [3] and Hora et al. [89] have studied the impact of deprecation of APIs
in the Pharo ecosystem. Robbeset al. focused on the deprecation of certain API features
and the effect that this deprecation has on the entire Pharo ecosystem. They found that
the deprecation of a single feature can have a large impact on the ecosystem, despite this
only a small proportion of consumers bother reacting to deprecation. Hora et al. looked at
changes to the API changes not marked as deprecated beforehand. They find that a larger
number of consumers react to API changes marked as deprecated as opposed to those not
marked as deprecated, thus showing that in the Pharo ecosystem a larger proportion of
consumers consider deprecation to be of importance.

Sawant et al. [13] performed a large-scale study on GitHub based consumers of 5 pop-
ular Java APIs to see how they are affected by deprecation and whether or not they make
a move to react to deprecated features. They found that only a small proportion of con-
sumers update dependency versions. Furthermore, the proportion of consumers affected
by deprecation varies per API, however, irrespective of the scale of affected consumers,
the number of reactions is minimal. Sawant et al. extended this study to look at con-
sumers of the Java JDK API [14]. They found that for the Java API consumers are rarely
affected by deprecation, dispelling the notion put forth by the Java developers themselves.
Furthermore, they theorized that an APIs deprecation policy would have an impact on the
consumers’ decision to react to deprecation, but did not show any conclusive evidence
in either direction. In this study, we show that the deprecation practices have a minimal
impact on the consumers’ reaction patterns.

Brito et al. [98] analyzed the documentation accompanying deprecated features in 661
Java systems. They found that in 64% of the cases, API producers had taken the effort
to recommend a replacement in the documentation. Brito et al.’s study does not look at
whether these replacement messages also mention the rationale behind the deprecation, a
facet of the documentation that the consumers find important as confirmed by our study.

Hou and Yao [130] studied release notes of the JDK, AWT and Swing APIs, looking
for rationales for the evolution of the APIs. They found that in the case of deprecated API
features, several reasons were evoked: Conformance to API naming conventions, naming
improvements (increasing precision, conciseness, fixing typos), simplification of the API,
reduction of coupling, improving encapsulation, or replacement of functionality. Many of
these rationales mirror those mentioned in the Java documentation on deprecation. They
also found that only a small portion of API features were deleted without a replacement
specified. Sawantet al. [18] asked API producers why they used the deprecation mecha-
nism. They also asked producers if they preferred that consumers would react to depre-
cation and what they did to support any kind of reaction. Based on their findings, they
propose some more changes that have to be made to the deprecation mechanism so that
it fulfills the needs of both API producers and consumers.

5.5.2 Studies on API evolution
API producers have to decide what part of an API they have to exclude from public access,
these are the so-called internal APIs. These parts of the API are reserved for use by the
API itself and not intended for public consumption. Businge et al. [95] found that out of
512 Eclipse plugins, 44% use internal Eclipse APIs. This finding is confirmed by Hora et
al. [96] who found that 23.5% of 9,702 GitHub based Eclipse client projects use an internal
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API. Businge et al. [97] dived deeper into the reasons behind developers using internal
APIs and they found that developers preferred to use an internal API as it provided them
with functionality that other public APIs did not, thus sparing them time and development
effort. Hora et al. [96] found that internal APIs are sometimes promoted to public APIs. To
aid API producers in the selection of what API should be promoted, Hora et al. presented
an approach for such promotion. The consumers’ propensity to use features that they are
not supposed to use, is reflected in our study as well, where consumers do not want to
transition away from deprecated features. This shows that maintainability takes a back
seat to functionality, which leads to technical debt.

Raemaekers et al. investigated the relationship between breaking changes, depreca-
tion, and the semantic versioning policy adopted by an API [100]. They analyzed a dataset
based on 100,000 JAR files onMaven central. They found that API producers introduce dep-
recated artifacts and breaking changes in equal measure across both minor and major API
versions, thus not allowing consumers to predict API stability from semantic versioning.
In a follow-up to this study, Raemaekerset al. [129] found that these breaking changes
induce a lot of rework in consumers. Furthermore, the deprecation tags used by these
Maven based projects are often used incorrectly.

APIs often introduce breaking changes that directly affect a consumer. Dig and John-
son studied and classified the API breaking changes in 4 APIs [26], however, they did not
investigate the impact of these breaking changes on consumers. They found that 80% of
breaking changes were due to refactorings performed by the API producers and released
without deprecating the original implementation. Wu et al. [131] analyzed the Eclipse
ecosystem to see how an API change would affect an API consumer. They found that
missing API classes affect consumers more frequently than breaking changes. They also
find that 11% of API changes can cause a ripple effect among API consumers. Wu et
al. [132] propose a tool called ACUA which would give API producers an overview of the
impact of the change that they would make to an API.

In a large-scale study of 317 APIs, Laerte et al. [9] found that for the median library,
14.78% of API changes break compatibility with its previous versions and that the fre-
quency of these changes increases over time. However, not many clients are impacted by
these breaking changes (median of 2.54%). Bogart et al. [107] conducted interviews with
API developers in 3 software ecosystems: Eclipse, npm, and R/CRAN. They found that
each ecosystem had a different set of values that influenced their policies and their deci-
sions of whether to break the API or not. In the case of R/CRAN both Decanet al. [109]
and Bogartet al. found that there is a policy of forcing packages to work with one another,
which is perceived to be a problem. Decan et al. [108] also investigated the evolution of
the package dependencies in the npm, CRAN, and RubyGems ecosystems. They found
that there is an increasing tendency in the npm and (to a lesser extent) RubyGems pack-
ages to specify maximal version constraints, thus allowing certain package maintainers to
protect themselves from package updates.

Bavota et al. [125] qualitatively investigated a Java subset of the Apache ecosystem to
see how their dependencies change over time. They observed that when an API adds a
lot of new features, consumers are more likely to adopt this new version, thus triggering
a change in the dependency. However, when the changes are small and insignificant or
if a removal of a feature takes place, then consumers prefer not to change versions of the
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dependency.
The policy of evolving the Android APIs has been studied as well. McDonnell et

al. [101] investigate stability and adoption of the Android API on 10 systems. They found
that the Android API’s policy of evolving frequently leads to the consumers being ad-
versely affected by breaking changes, thereby creating many issues when it comes to deal-
ing with API evolution. Linares-Vásquez et al. [102] also focus on the Android ecosystem,
however, they look to analyze StackOverflow posts to see how consumers deal with API
evolution. They found that there are more StackOverflow conversations when there is a
change in the Android API, thus further showcasing issues with dealing with API evolu-
tion. Bavota et al. [103] analyzed how changes in APIs being used by apps on the Google
Play Store affects app ratings. They show that when more breaking changes are intro-
duced, the rating of the app is lowered.

Web-based API evolution policies have also been studied. Wang et al. [104] study
the case of evolution of 11 APIs by analyzing questions and answers on StackOverflow
concerning the evolution of these APIs. study the specific case of the evolution of 11
REST APIs. They identify 21 change types to an API that affects consumers and spark a
discussion on StackOverflow. Espinhaet al. [133] analyze how major web API providers
evolve their APIs, and they find that there is no unified way in which web APIs are evolved
thus leading to confusion among consumers. Espinha et al. [105] also studied 43 mobile
consumer applications depending on web APIs and how they respond to mutations in the
web API. They show that in over 30% of the cases the mobile app fails when the web API
response is changed.

5.5.3 Supporting API evolution
Researchers have proposed many approaches to aid consumers in dealing with the evolu-
tion of an API. One of the first approaches was by Chow and Notkin [112], where they
require API producers to annotate changed methods with replacement rules that will be
used to update consumer code. Henkel and Diwan [27] propose CatchUp!, a tool that
captures refactorings in the IDE and replays the, on other unrefactored code in the con-
sumer’s code base. Xing and Stroulia [28] propose an approach that analyzes how an
API has itself handled changes to its features and then recommends these changes to the
API consumer. Dig et al. [114] propose MolhadoRef a refactoring-aware version control
system that works in a similar manner as CatchUp!.

Dagenais and Robillard present SemDiff [24, 29] a tool that observes the framework’s
evolution to make API change recommendations. Schäfer et al. mine the consumer’s
reaction to API evolution [90], and then propose these mined changes to other consumers
dealing with the same evolution issues. Wu et al. present a hybrid approach [7] that uses
call dependency and textual similarity to recommend adaptations to the API changes.

Kapur et al. [126] created a tool call Trident that allows consumers to directly refactor
obsolete API calls in the IDE. Savga and Rudolf created Comeback! [127] which records
framework changes and recommends ways to adapt to these changes to the consumer.

Nguyen et al. [115] propose a tool called LibSync that uses graph- based techniques to
help consumers migrate from one framework version to another. Holmes and Walker no-
tify developers of essential changes made to external dependencies to draw their attention
to these events [116].
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Cossette and Walker [106] studied five Java APIs to evaluate how API evolution rec-
ommenders would perform in the cases of API breaking changes. They found that all
recommenders handle only a subset of the cases, but that none of them could handle all
the cases.

Finally, Perkinset al. [128] created a tool that was specifically targeted to consumers
dealing with deprecated features in their codebase. This tool replaces the invocation made
to deprecated features with the code from the deprecated method itself, thereby aiding in
the removal of the deprecation warning message on the code.

5.6 Implications
The key implications that we distill from this study are:

• The majority of Java-based projects on GitHub do not show substantial reaction to
deprecation, this is reflected by the fact that there are very few reactions to depre-
cated features and API consumers choose to keep references to deprecated features
in their source code. This may suggest that a deprecation per se is not perceived
as a good enough reason to change one’s code. This result is in line with previous
research [18], which provided evidence that consumers would like to have more in-
formation (e.g., severity of the deprecation or version in which the feature will be
removed) to take a more informed decision when it comes to reacting to deprecation.

• API consumers need to be made more aware of the API’s evolution policy. We
notice that in cases where no reaction need take place a reaction does take place
and other cases where the need to react is more pressing (due to the APIs propensity
to remove deprecated features) we observe no reaction. This seems to indicate that
consumers do not know the exact evolution behavior of the API that they are using.
This information can either be composed in a new online platform or on the Maven
central website where the dependency is hosted, such that consumers have an early
warning mechanism at their disposal.

• The scale of non-reactions may also indicate that the effort to manually make every
single transition from a deprecated feature to a non-deprecated one may be not
trivial. This puts into focus the increasing need for an automated tool that aids in
API transition that would reduce developer burden on this front.

5.7 Conclusion
We have presented a large empirical scale study that analyzes how frequently an API
consumer reacts to deprecation in anAPI.This is the first work of its kind that identifies the
various possible reaction patterns that can take place. We identify seven reaction patterns
by way of manual analysis of API consumer code. We then quantify the frequency of
these reaction patterns by mining and analyzing API usages of 50 popular Java based and
their consumers. The overall size of the dataset under consideration encompasses 297,254
projects and over 1.3 billion API usages.

In ourmanual analysis we saw that the bulk of the consumers never react to deprecated
features. This fact is reflected in our large scale analysis as well. Surprisingly, replacing
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with the recommended replacement only happens in 0.02% of the cases, while non reac-
tions happen in 88% of the cases. This shows that API consumers are either unconcerned
with the fact that their code uses deprecated API features or have not noticed this fact.
Furthermore, when diving into they upgrade behavior of API consumers, we see that very
few consumers even change the version of the API that they use.

We asked developers as to why theywould not upgrade the version of the API that they
used. And the two major reasons behind this is that the cost involved with the upgrade
is often not worth it, and given that the version being used works, there is no pressing
need to upgrade. Developers were also asked to rank the reasons behind not reacting to
deprecation. Here the developers indicated that the replacementwas either too convoluted
to use or the cost of reacting was too high. It appears that all these consumers subscribe
to the “if it isn’t broken then why fix it?” theory.

One of the major contributing factors to this behavior is that deprecation is not viewed
as seriously as it should be. A fact that the Java JDK developers accede to as well. Mul-
tiple improvements and changes are needed for consumers to take deprecation warning
seriously. However, with this study we are able to confirm that issues with the current
implementation of deprecation do indeed exist.
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6
Why API producers deprecate

features
An Application Programming Interface (API) is a set of defined functionalities provided
by a programming library or framework.¹ APIs promote the reuse of existing software
components [39]. By integrating a third-party API in a code base, a developer can save
development time and effort and use a well-tested system.

To remain useful in a mutating environment [21], most APIs evolve by introducing
new features, removing older ones, and changing existing features. Some of the changes
due to API’s evolution can be breaking in nature and can have an adverse impact on the
API consumers [135]. One way for API producers to avoid directly introducing a breaking
change in their API first to deprecate the feature, thus communicating a warning to the
consumers. Deprecation is available in most mainstream languages such as C#, PHP, and
Java. Regarding a definition of deprecation, the official Java documentation states: “A
program element annotated @Deprecated is one that programmers are discouraged from
using, typically because it is dangerous, or because a better alternative exists” [10].

API deprecations are commonplace [14], however, to what extent is their motivation
clear? Recent research has reported that API consumers decide on whether to react to API
deprecation, based on the reason behind the deprecation [136], thus hinting at the several
possible purposes for deprecating a feature. Indeed, deprecation is a convenient way for
API producers to make sure that both popular IDEs and compiler inform API consumers
that something is not right—deprecation is a unique communication mechanism and, as
such, can be used for conveying different messages.

The goal of this study is investigating the reasons behind feature deprecation. The crit-
ical motivations for pursuing this goal include: (1) gaining a deeper understanding of a
popular language feature, from a new angle, (2) discovering unmet developers’ communi-
cation needs, by uncovering unorthodox usages of deprecation,² which may signal those
needs, (3) investigating what deprecation says regarding APIs’ evolution. The results can

¹In this chapter, with the term API we refer only to local APIs (e.g., frameworks and libraries), as opposed to
web-APIs [134].
²In the opinion of the Java language designers, developers often misuse the deprecation mechanism [117].
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inform and guide practitioners’ practices as well as future academic studies on this and
similar mechanisms, and on developers’ communication.

To this aim, we conduct an in-depth analysis of 374 deprecated features in four pop-
ular Java APIs: Spring [84] (15,086 users), Hibernate [83] (8,143 users), Guava [81] (9,542
users), and Easymock [80] (1,484 users). Our study is exploratory and we answer three
research questions: why are API features deprecated, what is the frequency of deprecation
rationales, and how well can we automatically classify the reason for a deprecation from
software repositories.

To uncover the various rationales for a deprecation we manually analyze over 1,100
documents relating to 374 deprecated features. Three authors conducted this analysis
and a fourth validated it. This effort results in the creation of a taxonomy of 12 ratio-
nales behind deprecation. We then investigate what rationales have been used most fre-
quently across the considered APIs. Finally, we employ a supervised machine learning
approach [137] to create an automated approach to infer the rationale behind a depreca-
tion. We evaluate the performance by using different cross validation [138] techniques.

We found that determining the reason for deprecating a feature is far from trivial: The
motivation is rarely mentioned in the accompanying Javadoc. Nevertheless, through the
analysis of software repositories (mainly, code versioning and issue tracking systems) we
could define a taxonomy of 12 high-level reasons. Of these, two are unorthodox uses of
deprecation (for temporary features and for incomplete implementations), thus indicating
unmet developers’ communication needs. Finally, we found that an automated approach
to classify the deprecation reasons based on machine learning reaches promising results,
but only if trained on project-specific instances.

6.1 Motivation
Figure 6.1 shows an example deprecation message from the Spring framework. We see
that the API producers have deprecated the feature in version 4.2.3 of the API and they
recommend that the consumer use an alternative feature. The Javadoc does not explain
the rationale behind this change. By recovering the commit (seen in Figure 6.2) in which
this feature was deprecated, we find that it contains no rationale behind the deprecation;
hence, we have to refer to the JIRA issue ID mentioned in the commit. From the Spring
issue tracker post (seen in Figure 6.3), we see that there is a performance slowdown when
using specific methods from the Annotation class. To rectify this, Spring introduced a
replacement feature to fix the issue and deprecated the original element.

This example shows that the deprecation of a feature itself does not necessarily carry
its reason, but uncovering (although complicated, as in this case) and understanding the
possible types of deprecation reasons is relevant from many perspectives, including those
we describe in the following.
(1) To guide practitioners and research tools. API consumers have indicated that
knowing the motivation behind deprecation is critical to decide whether to react [136].
Empirically uncovering the possible reasons for deprecation can suggest to practitioners
whether they should respond to a deprecation in principle, as well as whether the motiva-
tions are project-specific or can be mostly generalized. Knowing deprecation reasons can
inform the design of tools to better support the replacement of a deprecated feature, by
exploiting the deprecation reason.
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findMergedAnnotation 

@Deprecated 
public static <A extends 
Annotation> A findMergedAnnotation(AnnotatedElement element,                                                  
String annotationName) 
 
Deprecated. As of Spring Framework 4.2.3, 
use findMergedAnnotation(AnnotatedElement, Class) instead. 
 
Find the first annotation of the specified annotationName within the annotation 
hierarchy above the supplied element, merge that annotation's attributes 
with matching attributes from annotations in lower levels of the annotation hierarchy, and 
synthesize the result back into an annotation of the specified annotationName. 

@AliasFor semantics are fully supported, both within a single annotation and within the 
annotation hierarchy. 

This method delegates to findMergedAnnotationAttributes(AnnotatedElement, 
String, boolean, 
boolean) (supplying false for classValuesAsString and nestedAnnotationsAsMap) 
and AnnotationUtils.synthesizeAnnotation(Map, Class, AnnotatedElement). 

This method follows find semantics as described in the class-level javadoc. 

Since: 
4.2 

 Figure 6.1: Javadoc of a deprecated API feature from the Spring API [139].

(2) To uncover unmet communication needs. When Java was in the process of chang-
ing its deprecation mechanism for Java 9, a motivation was that API producers were mis-
using the deprecation mechanism. This misusage may signal that deprecation is used to
fulfill a communication need that is unmet by any other tool. Knowing the various rea-
sons behind deprecation allows us to understand how many different cases of misuse of
the deprecation mechanism have taken place and may let us discover what needs future
research should address to devise a more appropriate communication tool.
(3) Understand how an API evolves. APIs evolve and replace old features with new
ones. The older features are deprecated and not directly removed from the API tominimize
the number of breaking changes introduced. Knowing what reasons an API uses most
popularly can aid researchers in gaining a deeper understanding as to how and why APIs
evolve [4].
(4) Understanding to what extent API documentation is lacking. API documenta-
tion is an essential tool that aids API consumers in effectively and accurately using an
API’s features [32]. API producers must invest in the documentation for their API so that
they ease the burden of adoption of API features [142]. In the case of deprecated API fea-
tures, giving the consumers an indication as to what new feature should be used and how,
is essential [15, 143]. In addition to that, explaining the rationale behind the deprecation
and providing a timeline for the removal of the deprecated feature have been found to be
essential to an API consumer. We see in Figure 6.1 that the rationale is impossible to infer,
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Figure 6.2: The commit deprecating the feature, pointing to the JIRA issue [140].

Figure 6.3: Issue detailing the need for changing the deprecated method [141].

a consumer has to read the JIRA issue on the subject (seen in Figure 6.3). In this study,
we get an indication to what extent API documentation indicates the reason behind dep-
recation and conveys the same to the consumer, or where it can be found, thus informing
practitioners, as well as researchers investigating tools to support API documentation.

6.2 Methodology
The goal of the study is to empirically investigate and classify the reasons that triggered
the deprecation of features in popular APIs. The perspective is of researchers and prac-
titioners, interested in an empirical understanding of the reasons behind deprecation, to
guide practice and future research.

Our study revolves around three research questions:
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RQ1: How can reasons for deprecating features be categorized? With the first re-
search question, we seek to investigate and classify the diversity of reasons that trig-
gered API producers to deprecate a feature in their systems. We do this by manually
analyzing the information about these features and their deprecation as they are avail-
able in software repositories.

RQ2: How often does every reason for deprecation occur? After having categorized
the reasons triggering deprecation, we analyze their frequency to quantify the different
purposes of API producers.

RQ3: How effective is an automated approach in classifying the reason behind
a deprecation? Finally, we exploit the set of manually categorized reasons to investi-
gate how effectively we can automatically classify the rationale via standard machine
learning techniques, using the relevant data from the software repositories. Should the
results of this automatic classification be promising, future research could investigate
tools to automatically augment existing API documentation with the rationale behind
the deprecation, thus providing useful information [136] to the API consumers.

6.2.1 Subjects: Systems and Deprecated Features
In this study, we focus primarily on the Java ecosystem, because (1) Java is the most pop-
ular programming language [48], (2) this ecosystem has a large number of popular and
mature APIs for study, and (3) the deprecation mechanism in Java is very prominent and
widely used by API producers [14].

Systems. From the Java ecosystem, we select four third-party open-source software
APIs.³ Our goal and research methods dictate the choice of limiting ourselves to four APIs.
On the one hand, we strive to collect as many diverse reasons as possible to increase
our empirical understanding of this phenomenon; on the other hand, we can realistically
investigate no more than a few hundred deprecated features, because understanding the
reason of deprecation requires perusing a possibly large number of documents per feature
(as seen in the example in Figures 6.1–6.2). Given these requirements, investigating a large
number of systems is suboptimal: Keeping the number of features we can analyze equal, it
is reasonable to think that we are more likely to find a smaller diversity of reasons in more
systems (i.e., we find only the most occurring reasons per system), than in fewer systems
but studied more in-depth. Hence we limit ourselves to four systems.

As criteria for the choice of the four systems, we consider popularity (as defined by
the number of Java projects on GitHub that use the system; we use the dataset by Sawant
and Bacchelli to benchmark the popularity [47, 120]), size, length of history, number of
deprecated features, availability of software repositories, and diversity in producers (e.g.,
we would not consider two APIs from Google) as well as domain. Table 6.1 describes the
APIs we eventually selected (i.e., Guava, Spring, Easymock, and Hibernate).

Deprecated features. We focus on the latest available version of each API. Since
these are all Java-based projects, we use the Eclipse JDT AST parser [144] to identify all

³We do not consider the Java JDK API for our analysis because uncovering the rationale behind deprecation is
not always possible as tracing alternative sources of information (e.g., issue trackers and developers’ communi-
cation) is hindered by the closed nature of the Oracle JDK.
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Table 6.1: Overview of selected APIs

API Description Considered
Release

Number
of Consumers

Easymock Java object mocking framework 3.5.1 1,484
Guava Google’s collections library 23.0 9,542
Hibernate Object/relational mapping framework 5.2.12 8,143
Spring Dependency injection framework 5.0.0 15,086

the deprecated features. The resulting dataset contains almost 2,300 deprecated methods
from the four APIs. We randomly select the methods from each of the APIs to create our
sample investigation set. Considering that we want to estimate proportions of reasons
for RQ2, we choose a sample set size that leads to a 95% confidence level and a margin
error of no more than 5% on the computed proportions [145]; this resulted in a sample
of 374 deprecated features to manually investigate, together with information from other
relevant data sources.

6.2.2 RQ1. Manually determining the reasons for a deprecation
To answer RQ1, we follow a three-step method. Three authors of this chapter conducted
the first (S1) and second (S2) steps, while the fourth conducted the third step (S3). S1 re-
gards the determination of the rationale behind the deprecation of an individual feature,
S2 regards the grouping of individual deprecation reasons into high-level categories to cre-
ate a taxonomy of reasons, S3 validates the results of the first two steps. In the following,
we detail each step.

S1. Determining the reason of an individual deprecation. This step is conducted
by three authors of this chapter together. For each feature, they start by inspecting the
documentation that is supposed to contain the rationale and replacement for the depreca-
tion [10]: The Javadoc associated with the feature.

They found that (1) most Javadoc messages include the annotation@𝑙𝑖𝑛𝑘 that links to
the alternative feature that should be used instead of the deprecated feature, but (2) the
message seldom includes the rationale behind the deprecation. This lack of rationale made
it unfeasible to understand the reason from only the Javadoc. Thus, the investigation is
expanded to include data from other software repositories, which are then inspected by
the three authors:

1) Commit history. The commit message for a change can contain the rationale behind
it and the nature of the change. Thus, we use the JGit project to traverse the history of
each file in the master branch of the API. We then isolate the commit wherein one of the
deprecated entities was first deprecated. We, thus, inspect the accompanying commit
message.

2) Source code. Source code comments (not Javadoc) can often contain the rationale be-
hind changes made to a method. These comments are usually for the benefit of the
subsequent contributor to this method or file. For each of the deprecated methods, we
isolate the entire source code of the method.
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3) Issue tracker. Issue trackers contain discussions among developers and information
on issues in the API. The rationale behind a change can be understood from the discus-
sions and issues posted in the issue tracker if they pertain to the method under investiga-
tion. We manually isolate the issues (from JIRA or the GitHub issue tracker) mentioned
in the commit messages that deprecated a feature.

4) Other sources. We perform a cursory investigation of sources such as StackOverflow,
the Google search engine, developer blogs and mailing lists specific to each API. Each
of these sources, for example email [146, 147], contains API consumer-/producer-driven
content that can contain information on the rationale behind the deprecation of a fea-
ture. However, we found that sources are not always consistent and do not contain the
information that we require.

Through the analysis of the aforementioned sources, the three authors determine a
precise reason for the deprecation of each feature.

S2. A taxonomy of deprecation reasons. In the second step, the same three authors
conduct three iterative content analysis sessions [148] to group the individual rationales
used into higher level reasons. Iteratively, for each rationale found in the previous step,
the involved authors verify whether they have previously identified a reason of this nature
to which this rationale can be assigned or whether they need to create a new reason. This
iterative process resulted in a taxonomy of 12 reasons for the deprecation of features.

S3. Validation. As the third and last step, another author independently repeats
the analysis to verify both (i) the understandability of the category descriptions in the
taxonomy from the second step and (ii) the assignment of deprecated features to these
categories. The resulting inter-rater agreement between the two classifications was 93%;
the authors discussed the 7% that was not agreed upon until they reached a consensus. In
Section 6.3 we present the final taxonomy.

6.2.3 RQ2. Frequency of the deprecation reasons
In this research question, we aim at analyzing how frequently each category of our taxon-
omy appears. To this aim, we compute the frequency with which each high-level category
of deprecation reason is assigned to an individual deprecated feature during the iterative
content analysis. In Section 6.4 we present and discuss the results, overall and by API.

6.2.4 RQ3. Automatic classification of deprecation reasons
In our third research question, we investigate standard machine learning techniques to
automatically classify the reasons of a deprecation into the taxonomy identified in RQ1.
While employing a sophisticated method such as deep learning goes beyond the scope of
the current work we aim to create an automatic classification technique with a fair level
of accuracy.

Machine learning approaches. Weemploy a supervisedmachine learning approach [137]
to create our automated inference approach. With this approach, a set of features are used
to predict the value of a variable (in our case, the classification of the reason) using a ma-
chine learning classifier (e.g., Naive Bayes [137]). The role of the classifier is to determine
the importance and role of each feature in predicting the classification by learning from
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already classified examples. In particular, we consider two different kinds of supervised
classifiers: (1) probabilistic classifier (specifically, naive Bayes multinomial) and (2) deci-
sion tree algorithm (specifically, random forest).These classifiers make different assump-
tions on the underlying data, as well as have distinct advantages/drawbacks for execution
speed and overfitting.

Features. To classify the reason for deprecation, we have the textual data (Javadoc
comment, commit message, and issue tracker data) that describes the deprecated feature
at our disposal. For this reason, we reduce our task to a text classification problem [137],
which we tackle adapting the widespread Vector Space Model (VSM) [149]. VSM consid-
ers each document (i.e., the deprecated feature and all the relevant text) as a vector of
identifiers (i.e., in our case, all the terms that appear in the whole set of available texts in
our dataset) whose value is determined by the normalized number of occurrences of each
identifier in the document (e.g., 0 if the term never occurs). The identifiers given as output
from VSM represent the features for the machine learner and the normalized word counts
are the corresponding values.

To determine the terms to consider for VSM, we create a vocabulary by tokenizing
each textual resource. We split tokens on whitespace, special characters, and punctuation;
moreover, we split variable names that are CamelCased into individual entities. Finally,
we do not alter Javadoc tags such as ‘@deprecated’ and ‘@link’.

Dataset and Evaluation. To train and test the performance of the proposed machine
learning approach, we use the dataset produced in RQ1 and RQ2; then we mainly adopt
n-Fold Cross Validation [138]. This strategy randomly partitions (using stratified sampling
to maintain the proportion of classes) the data into n folds of equal size, then n-1 folds are
used as training and the last as testing. The process is repeated n times, using each time a
different fold as a test set. The performance of the experimented models is computed using
widespread classification metrics such as precision and recall; in our chapter, for space
reasons, we report the percentage of correctly classified instances, while the full results are
available in the accompanying replication package [150].

6.2.5 Threats to validity
Construct validity. In the manual analysis of the rationale behind deprecating specific
features, we may have misclassified or missed out on certain motivations behind depreca-
tion. We ensure the accuracy of our classification by having three authors simultaneously
manually analyze all the samples in our dataset and create an initial categorization of the
rationale, followed by another author repeating the manual classification process to en-
sure accuracy. To ensure that we uncover most motivations behind deprecation, we limit
ourselves to 4 mainstream Java APIs that pertain to different domains and have different
developers and characteristics.

Generalizability. Having focused only on the Java ecosystem, the rationales that we have
uncovered may apply only to the Java-based APIs and not to APIs in other languages. We
mitigate this by trying to ensure that the rationale we discover is not Java specific, rather
as abstract as possible. Furthermore, Java is the most popular language with a deprecation
mechanism and other object-oriented languages share similar development practices.
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6.3 RQ1 results: Diversity of Reasons
We describe each category in the taxonomy that resulted from our analysis, reporting ex-
amples from our dataset.

BC. Avoid bad coding practices

/**
  * Allow injection of the dialect to use.
  * @deprecated The intention is that Dialect should be required to be
  * specified up-front and it would then get ctor injected.
  * @param dialect The dialect
  */
  @Deprecated public void setDialect(Dialect dialect)

Example Javadoc

One of the principal goals of APIs is to provide a set of features to a consumer that can
be integrated without introducing issues or bad coding practices in the consumers’ code
base. There are certain cases where the API does not always achieve this goal. In the
example above, it is preferred that the Dialect should be specified up front as that would
allow the Dialect object to be injected directly in the constructor. Using a setter method
of a class implicitly means that the dependency is optional, constructor injection instead
is used when the class cannot function without the dependency.

DP. Design pattern

/**
  * Creates a mock object that extends the given class, order checking is
  * enabled by default.
  * @param < T > the class that the mock object should extend.
  * @param name the name of the mock object.
  * @param toMock the class that the mock object should extend.
  * @param constructorArgs constructor and parameters used to instantiate the 
  * mock.
  * @param mockedMethods methods that will be mocked, other methods will
  * behave normally
  * @return the mock object.
  * @deprecated Use {@link #createMockBuilder(Class)} instead
  */
  @Deprecated public <T>T createStrictMock(final String name,final Class<T>
    toMock,final ConstructorArgs constructorArgs,final Method...mockedMethods)

Example Javadoc

Partial mocking is a very nice feature, but having to use the reflection API 
directly to get the constructor and methods is less than ideal, so we created a 
MockBuilder which we've been using for this.

Example commit message

We find cases in which API producers deprecate the old feature and slowly phase them
out as consumers are encouraged to use the new version of the functionality that makes
use of a design pattern. In the example above, the project moved from accessing a feature
through reflection to using the design pattern named Builder.
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DU. Dissuade usage

/**

  * Not supported. Use {@link

  * ImmutableSortedMultiset#toImmutableSortedMultiset} instead.

  * This method exists only to hide {@link

  * ImmutableMultiset#toImmutableMultiset} from consumers of {@code

  * ImmutableSortedMultiset}.

  * @throws UnsupportedOperationException always

  * @deprecated Use {@link ImmutableSortedMultiset#toImmutableSortedMultiset}.

  * @since 21.0

  */

 @Deprecated public static <E>Collector<E,?,ImmutableMultiset<E>>

   toImmutableMultiset(){

  throw new UnsupportedOperationException();

 }

Example Javadoc

We find cases where API producers implement an interface in a class, without implement-
ing all of its methods. The un-implemented methods are marked as deprecated so that the
consumer is given an indication (as a compiler warning) that this feature should not be
used. In the example above, the Javadoc also recommends a replacement.

FD. Functional defects

/** 
 * Compare 2 arrays only at the first level
 * @deprecated Use {@link java.util.Arrays#equals(char[],char[])} instead
 */
 @Deprecated public static boolean isEquals(char[] o1, char[] o2)

Example Javadoc

org.hibernate.internal.util.compare.EqualsHelper doesn't consider arrays when 
comparing objects for equality. Since EqualsHelper is used in many places, such as 
dirty checking, this problem results in unexpected behavior, such as array type fields 
always being considered dirty.

Issues related to this problem include:
  HHH-4110 CLOSED  
  HHH-2482 CLOSED  
  HHH-7810 OPEN  
  HHH-3009 CLOSED  
  HHH-7496 CLOSED  (probably)

Example issue tracker message

The introduction of flaws in API features is inevitable. We find that, at times, API pro-
ducers deprecate features with defects instead of removing them. We see an example in
the deprecated method above where the implementation of the equals method does not
consider arrays when comparing objects for equality, which in turn causes issues in other
parts of the API, as seen in the extract from the related issue report.
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ME. Merged to existing method

/**

  * Returns an equivalence that delegates to {@link Object#equals} and {@link

  * Object#hashCode}. {@link Equivalence#equivalent} returns {@code true} if

  * both values are null, or if neither value is null and 

  * {@link Object#equals} returns {@code true}. {@link Equivalence#hash}

  * returns{@code 0} if passed a null value.

  * @deprecated use {@link Equivalences#equals}, which now has the null-aware

  * behavior

  */

  @Deprecated public static Equivalence<Object> nullAwareEquals()

Example Javadoc

We found instances in which an API provides two features achieving the same end goal,
but one has more nuance associated with it and performs extra checks. Over time, the API
producer decides to combine these different checks into the same feature, thus resulting in
the other being deprecated. In the above example, the equalsmethod in the Equivalences
class now performs a null check, thus rendering the nullAwareEquals obsolete.
NF. New feature introduced

/**

  * @deprecated Use {@link ValueGraph#equals(Object)} instead. This method

  * will be removed in late 2017.

  */

  @Deprecated public static boolean equivalent(@Nullable ValueGraph<?,?>

    graphA,@Nullable ValueGraph<?,?> graphB)

Example Javadoc

Now that ValueGraph no longer extends Graph, change all the
common.graph interfaces to handle equals()/hashCode() "normally". Deprecate 
Graphs.equivalent().

Example commit message

Sometimes, when API producers introduce a new feature, the design of the project is also
changed. In these cases, the producers deprecate the older, superseded features.

ND. No dependency support

/**
  * Expect any boolean but captures it for later use.
  * @param captured Where the parameter is captured
  * @return 0
  * @deprecated Because of harder erasure enforcement, doesn't compile in 
  * Java 7
  */
  @Deprecated public static boolean capture(final Capture<Boolean> captured)

Example Javadoc

Over time APIs upgrade the dependencies on which they depend. With these upgrades,
specific features in the API can no longer be supported and need to be removed and re-
placed with modern functionality. In the cases we analyzed, upgrades in the Java version
often cause the incompatibilities. In the example above we see that the capture method
is not supported in Java 7 and becomes deprecated.
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RD. Redundant methods

/**
  * @deprecated since 5.2, to be removed in 6.0 with no replacement.
  */
  @Deprecated public ModificationStore getStore()

Example Javadoc

From a discussion with Adam, there was supposed to be another value, DIFF that 
would store the diff of String-based value fields. It was never implemented and 
isn't … needed, so [it’s] safe to deprecate and remove.

Example commit message

Redundant is code that is neither required nor essential and need not be executed. The
negative consequence of redundant code is that it results in bloated source code and re-
duced maintainability. We found cases in which the API producers deprecated a feature
when it is useless or no longer necessary.
RN. Renaming of feature

/**
  * Old name of {@link #getHost}.
  * @deprecated Use {@link #getHost()} instead. This method is scheduled for
  * removal in Guava 22.0.
  */
  @Deprecated public String getHostText()

Example Javadoc

The considered APIs have been developed over a long time by multiple developers, thus
contain inconsistencies in the naming convention. These inconsistencies might have been
introduced due to a lack of foresight or a change in the API’s nomenclature convention.
Just renaming a feature to adhere to new norms would break consumer code and hence
would not be backward compatible. The existing name is kept in place. In fact, we notice
in the cases that we manually analyze that the original name is intended to be left in the
API indefinitely, i.e., there are no plans to remove such features. However, API producers
do deprecate the feature with the incorrect name and encourage consumers to adopt the
new feature that adheres to the naming convention of the project.
SF. Security flaws

/**

  * Returns a hash function implementing the MD5 hash algorithm (128 hash

  * bits).

  * @deprecated If you must interoperate with a system that requires MD5, then

  * use this method, despite its deprecation. But if you can choose your hash

  * function, avoid MD5, which is neither fast nor secure. As of January 2017,

  * we suggest: For security: {@link Hashing#sha256} or a higher-level

  * API. For speed: {@link Hashing#goodFastHash}, though see its docs for

  * caveats.

  */

  @Deprecated public static HashFunction md5()

Example Javadoc

A security vulnerability might have been inadvertently introduced in a feature of an API
at its inception or over time, thus requiring the immediate action of the API producers to
address the issue. The producer deprecates the flawed feature and replaced it with one
which does not suffer from the same flaw. In this way, the producer warned the consumer
in the documentation that usage of such a feature is unsafe.
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SC. Separation of concerns

/**
  * @deprecated Use {@link #setImplicitNamingStrategy} or {@link
  * #setPhysicalNamingStrategy} instead
  */
  @Deprecated public void setNamingStrategy(String namingStrategy)

Example Javadoc

In object-oriented programming, each class or module is supposed to have its responsi-
bilities. Sometimes an API feature can do too many things simultaneously, i.e., it has too
many responsibilities. To fix this, we found cases in which the API producer decided to
split a single feature into multiple ones, also deprecating the original feature and creating
a transition guide.

TF. Temporary feature

/**
  * @deprecated (since 5.2.1), while actually added in 5.2.1, this was added
  * to cleanup the audit strategy interface temporarily.
  */
  @Deprecated public EnversService getEnversService()

Example Javadoc

AnAPI producer might introduce a feature only for a temporary purpose to aid consumers
in using certain functionality. Once, this is no longer needed, the temporary feature might
be deprecated. We see that such temporary features are planned to be removed almost
instantly from the API so that no consumer actually has the opportunity to use it in a
future version.

The analysis of 374 deprecated features and over 1,100 accompanying documents
yielded 12 rationales that API producers have used to deprecate a feature, thus
showing a sizeable diversity of purposes.

6.4 RQ2 results: Frequency of reasons

(d) Deprecation reasons in Hibernate (e) Deprecation reasons in Spring

(b) Deprecation reasons in Easymock (c) Deprecation Reasons in Guava

(a) Distribution of reasons across APIs
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Figure 6.4: Frequencies of reasons for deprecating features, by API
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After having categorized and described the diversity of reasons that led API producers
to deprecate one of their API features, we now focus on determining how each of these
reasons is prevalent in our dataset. Figure 6.4 reports the results by reasons in overall
decreasing frequency (left-hand side) and by API (right-hand side). Overall, introducing a
new feature (NF), the presence of functional defects (FD), the replacement with a design
pattern (DP) account for the majority of reasons (268 cases out of 374 or 72%). The most
frequent reason (NF) is the only one that appears in all the systems in our dataset, while
the others have a more project-specific prevalence. We now describe the results by API.

Easymock. Themost frequent reason for deprecation in Easymock is the implementation
of a new design pattern that required a change in the interface. There are also 7 cases
where the feature in their API was not supported by a newer version of Java. In 16 cases
a better implementation of the same feature was superseding the existing one. Overall,
we see that in Easymock most deprecations are not of a grave nature: A consumer could
safely continue using a deprecated feature from this API.

Guava. Developers in Guava predominantly introduce new features to replace existing
ones, hence use the deprecation mechanism. There are also some cases where there were
functional defects in the feature and some instances of having security flaws. There is one
feature that has been deprecated due to it being introduced as a temporary feature. In 36
cases, Guava deprecates a feature to dissuade usage of it due to an incomplete implemen-
tation of an interface; this is a case of misuse of the deprecation mechanism. Here the
feature was not deprecated due to it being superseded by a new feature or because the
feature had become obsolete. In most cases, it may be safe to continue using a deprecated
feature from Guava, but the reasons for deprecation are diverse and one needs to verify
them first.

Hibernate. In the case of Hibernate, developers have deprecated almost 50% of the dep-
recated functions due to the presence of functional issues in the features. This means that
when Hibernate deprecates a feature it is usually to fixmajor issues in the API. In the other
cases, the features are deprecated due to new functionality being introduced, because of
redundancy, or because it encourages bad coding practices.

Spring. In 41 cases Spring has replaced an existing feature with a better implementation.
Although Spring is an old and well-tested API, there have been 32 functional flaws to fix
and 2 security issues as well. Spring also has deprecated features due to incompatibilities
with newer versions of Java. Overall, there seems to be some danger to using deprecated
features from Spring and, in many cases, a consumer needs to replace a deprecated feature
with its successor.

Introducing a new feature, the presence of a functional defect, and change of in-
terfaces are the most frequent reasons for deprecating an API. However, only the
first is shared across all projects.
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6.5 RQ3 results: Automatic reason classification
Our RQ3 investigates to what extent a machine learning approach can automatically clas-
sify the reason for deprecation.

6.5.1 Methodological details
Although we always use VSM (Section 6.2.4), we progressively add more information
sources to evaluate their effect on the classification. In the first stage, we only use tokens
from Javadoc comments to classify the rationale, in the second we add commit messages,
in the third, we add issue tracker data.

We evaluate three training/testing conditions: (1) 10-fold cross validation within the
same API (i.e., we evaluate each system separately), (2) overall 10-fold cross validation (i.e.,
we merge all the instances in a single dataset), (3) cross-project validation (i.e., we use the
instances from three systems for training and test the resulting model on the last system;
we rotate the test system each time).

6.5.2 Results
Since random forest always outperformed the naive Bayes multinomial classifier, we only
report results for the former.

Within system validation. The first four groups in Table 6.2 report the results of the
classifier when tested within the same system using 10-fold cross-validation. For Guava,
the classifier performs well on just Javadoc data. For Easymock, the classifier achieves
100% correct instances with just the Javadoc. This result is probably due to most depreca-
tions being caused by the refactoring of a feature to use design patterns: Since Easymock
always uses the same pattern (builder pattern), the terminology is the same. With more
data, the accuracy of the classification decreases, probably due to added noise. For both
Spring and Hibernate the classification accuracy is below 65% with only Javadoc data.
With the addition of commit message data, the accuracy increases. In the case of Spring,
when we add issue tracker data, the accuracy increases to 88%. However, in the case of Hi-
bernate, the accuracy suffers slightly with issue tracker data, again probably due to added
noise.

Mixed-system validation. We combine the data for all the APIs and treat this com-
bined dataset as our singular vocabulary; Table 6.2 in the group named ‘All’ shows the
results. With only Javadoc data, the classifier correctly classifies almost 76% of the cases.
This might be due to all the Easymock instances, which the algorithm can easily classify
with only Javadoc data. Adding commit message data improves the classification by al-
most 10%. Issue tracker data yields a minor improvement.

Cross-project validation. Given that the results are promising at project level, we
tried to perform cross-project validation. However, results were consistently lower than
30% in the number of correctly classified instances. For example, in the case of Easymock,
the method only reaches 24%. This result seems to indicate that there is project specific
terminology that helps the machine learner to discern the different reasons. We also con-
ducted cross-project classification for only one category (binary classification). We choose
the addition of a new feature (NF) as our test category since we expect project-specific
terms to be minimal. Although the number of correctly classified instances is 54%, this
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Table 6.2: Classification results, using 10-fold cross validation within the same system and across all systems.

% correct 
instances K

weighted avg.

recall ROC

Guava

JD 0.883 0.843 0.883 0.963

JD+CM 0.893 0.855 0.893 0.956

JD+CM+IT 0.903 0.868 0.903 0.963

Easymock

JD 1.000 1.000 1.000 1.000

JD+CM 0.986 0.970 0.986 1.000

JD+CM+IT NA NA NA NA

Hibernate

JD 0.610 0.334 0.610 0.777

JD+CM 0.740 0.559 0.740 0.862

JD+CM+IT 0.720 0.526 0.720 0.866

Spring

JD 0.640 0.477 0.640 0.794

JD+CM 0.850 0.780 0.850 0.956

JD+CM+IT 0.880 0.824 0.880 0.962

All

JD 0.759 0.686 0.759 0.915

JD+CM 0.853 0.808 0.853 0.959

JD+CM+IT 0.866 0.825 0.866 0.962

is still poor in comparison to project level classification. This result leads us to conclude
that automated classification techniques work best at a project level due to project-specific
terminology.

An automatic classification approach can correctly classify more than 85% of dep-
recation reasons in three systems and 74% in the fourth. However, to achieve these
results, data from commit messages and issue reports is often necessary and the
classifier must be trained with project-specific instances.

6.6 Discussion
We discuss how our results lead to implications for future research and recommendation
for practitioners.
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6.6.1 Unmet developers’ communication needs
Programming languages provide API producers with deprecation mechanisms to allow
them to communicate with the API consumers, in a way that is recognized and rendered
distinctively by popular IDEs and compilers. In Java, by marking a feature as deprecated,
a compiler warning is thrown and the IDEs render the element as struck-through.

Recently, the Java language designers stated that the deprecation mechanism has been
used not only for communicating about obsolete features but also for alternative purposes,
which they labeled as “misuses” [117].⁴ Previous work indeed found one case where the
API producer has used the deprecation mechanism for an unorthodox purpose [136]. In
this case, the JUnit API marked beta features as deprecated to warn consumers about these
features’ beta nature, which may lead to unanticipated future changes.

In our study, we uncover two additional cases in which API producers use deprecation
for unorthodox purposes: (1) to indicate a temporary feature that is in place until a per-
manent solution can be found (as done by Guava and Hibernate), and (2) to indicate that a
class only implements part of an interface and the unimplemented methods are essentially
just stubs (as done in a widespread manner by Guava).

This finding raises the broader question of why API producers use the deprecation
mechanism for purposes besides marking out obsolete features. It is reasonable to think
that these are cases of communication needs for an API producer that are not being met by
the Java language specification. For example, while the Guava API producers do try also
to throw an exception to prevent the usage of specific features, they use the deprecation
mechanism to issue compiler warnings. As an additional example, XWiki has introduced
a workaround [151] where the usage of an ‘@Unstable’ annotation in combination with
an Eclipse plugin issues a warning in the IDE about the nature of the used feature.

This finding leads us to question if Java should invest in introducing a generic warning
mechanism as a more flexible communication mechanism that would not lead to misinter-
pretations. This mechanism would allow API producers to throw a compiler warning for
purposes other than deprecation, thus possibly addressing the producers’ unmet commu-
nication needs. In this vein, languages such as PHP and Ruby have already set a precedent,
where deprecation mechanisms and warning mechanisms are simultaneously present. By
performing a similar study to the one we present in this chapter in the API ecosystems of
those two languages, researchers and the Java language designers can better understand
whether there are benefits to having a generic warning mechanism and if indeed the cases
of misuse would be minimized while fulfilling developers’ communication needs.

6.6.2 Different evolution strategies
API evolution has been studied by researchers to understand how APIs evolve [26]. Re-
searchers have also investigated the decision process behind evolving the API and intro-
ducing breaking changes in the API [4]. API evolution strategies are generally based on
what features they change and how it affects the API consumer [14, 29, 135, 152, 153].
Significant work has also gone into alleviating the burden of dealing with API evolu-
tion [27, 28, 126, 127, 154].

⁴We consider these “misuses” from a more constructive perspective, that is, as evidence of developers’ communi-
cation needs that are unmet by the current mechanisms and can be basis for future research and improvements.
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In our study, we investigate the rationale used by API producers to evolve and render
specific features as obsolete and introduce new features to replace them. We see that there
are 12 reasons behind deprecating a feature. The frequency of usage of these rationales
differs per API. For instance, we see in the case of Easymock most deprecations are due to
the usage of design patterns, while for Spring, most changes are due to functional defects
or newly introduced features.

We found initial evidence that by understanding the rationale behind the deprecation,
we also better understand the evolution strategy adopted by an API and how it might
affect a consumer. With Spring and Hibernate we see that a large number of deprecations
are due to functional defect being present in the API. However, with Easymock and Guava
other less important reasons such as redundancy of a method or refactoring to use a design
pattern. Based on this, we can deduce that developers in Spring and Hibernate discover
issues in features on a regular basis. On the other hand with Easymock and Guava, most
of the changes are due to maintaining the API on a regular basis, without introducing
several new features.

Further work can be conducted expanding on this line to see whether knowing the
rationale behind evolution—thanks to the analysis of deprecation reasons—gives a better
approximation of the evolution strategy of an API. This work would help informing tools
to support practitioners keeping up with API evolution.

6.6.3 API documentation completeness
API documentation is vital in teaching consumers to adopt the API in a correct man-
ner [32]. Incomplete documentation is a considerable obstacle to API consumers [155].
This is the primary reasons that API producers invest a lot of time in documenting their
API in a correct and detailed manner [142].

Much work has gone into augmenting current API documentation to aid an API con-
sumer and reduce the documentation burden on the API producer. Stylos et al. [156] have
looked at augmenting API documentation by including API usage examples mined from
open source repositories. Treude and Robillard [157] seek to improve API documentation
with examples from community-driven documentation sources such as StackOverflow.

In the context of documentation of deprecated features, researchers have shown that
recommending a replacement feature in the deprecation message is helpful to API con-
sumers [15, 143]. In addition to that, informing the consumer about the rationale behind
deprecation and the version in which the deprecated feature will be removed performs a
vital role in the consumer’s decision to react to deprecation [136].

We found overwhelming evidence that the Javadoc for deprecated features seldom
mentions the reasons behind deprecating features. In fact, to uncover the rationale behind
deprecation it is necessary to refer to the commit messages and to the issue tracker data.
Conducting such a thorough search is error-prone and time consuming, thus impractical
in a real-world scenario.

We show the different sources needed to infer the rationale behind deprecation. Re-
search effort can be invested to be able to effectively retrieve the traceability links across
all the different sources together, such that the justification for deprecation is evident and
existing documentation enhanced.
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6.6.4 Automating the classification of rationale
We investigate how accurately the rationale behind deprecation of a feature can be clas-
sified based on its Javadoc, the commit message that deprecates it and the issue tracker
post that discusses its deprecation (if present). At a project level, we see that having this
information allows us to classify the rationale behind deprecation accurately.

The automated classification relies heavily on project-specific terminology as is ev-
idenced by the fact that cross-project classification yields poor results. Not only does
project-specific terminology play a role, but also the specificity of technical terms for each
rationale play a role too. For example, in the case of Easymock several deprecations took
place due to the refactoring of a feature to use the builder pattern. In this case, the word
“builder” is a specific case of refactoring to use a design pattern. If the automated classifier
learns on other instances of refactoring to design pattern, such as the one from the Spring
API, we see that it decreases the accuracy for the cases in Easymock.

Despite the specific circumstances under which an automated approach can work, the
classifier performs promisingly at a project level. API producers can run such an approach
on their documentation to automatically categorize the rationale of a deprecated feature
and use this categorization to augment their existing documentation.

We see that there is a need for more than just the Javadoc to classify the rationale of
a deprecated feature. This result puts into focus the need for the creation of a complete
information pipeline that stitches together the Javadoc, commit message, and issues re-
garding a deprecated feature. This approach would go a long way in aiding automating
the classification of the rationale of a deprecated feature.

Further research needs to be conducted in the area of automating the classification of
the rationale behind the deprecated feature. We show that a machine learning approach
can work and provide an initial baseline for future comparison. More research is needed
to investigate whether and how the poor performances in cross-project classification can
be tackled, for example by considering further features and other classification techniques
such as deep learning.

6.7 Related work
We describe work in the related areas of API documentation needs and improving docu-
mentation.
Studies on API evolution. Robbes et al. [3] analyze the impact of deprecation of an API
feature on the SmallTalk ecosystem. They find that while the number of API consumers
affected is high, minimal reaction to deprecation takes place. Sawant et al. [13, 14] mine
25,357 Java-based API consumers from GitHub and a further 150,326 Maven central based
JAR files to see howmany consumers are affected by deprecation and their reactions. They
observed that over 10% of deprecated methods affect consumers, but consumers do not
react. In contrast to this, we look at the reasons behind deprecation of the API from the
API producer perspective.

Hou and Yao [130] investigate the intent behind API evolution by studying release
notes. They found that API features were deprecated due to conformance to API naming
conventions, naming improvements, simplification of theAPI and replacement of function-
ality. Sawant et al. [136] interview 17 API producers as to why they deprecate features
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and catalog seven reasons behind deprecation. In this study, we analyze documentation at
a fine-grain (Javadoc, issue tracker and commit messages) level to understand the reason
behind deprecation. This analysis leads us to uncover 12 rationales behind deprecation.
Moreover, we evaluate how well an automated technique can classify the reason for a
deprecation.
Studies on API documentation needs. Robillard and Deline show that API documenta-
tion is a vital resource for developers who want to adopt a new API [32]. Myers and Stylos
concur with this view and provide evidence that API documentation plays a significant
role in making it usable [158]. Maalej and Robillard show that API reference documenta-
tion should complement the API by providing information that is not obvious from the
API syntax [159].

Uddin and Robillard uncover that consumers find it much harder to understand the
API producer’s intentions due to inadequate documentation [155]. Monperrus et al. an-
alyzed API Javadoc to see what was being talked about and in what cases there was an
information shortfall [31]. They state that a deprecation tag in Javadoc with no rationale
or conditions is an anti-pattern. Brito et al. find that in over 60% of the cases the replace-
ment for a deprecated feature is specified [15, 143]. During Sawant et al.’s investigation
into the deprecation mechanism, they found that consumers miss is the rationale behind
the deprecation itself [136].

In this study, we find that deprecated API documentation often does not document the
reason behind the deprecation, despite this being important for consumers.
Studies on improving API documentation. One of the primary challenges with pro-
ducing high-quality API documentation is the large amount of time and effort that goes
into creating the documentation [142].

Dekel and Herbsleb improve API documentation by highlighting specific directives
that are present in the documentation so that the consumer is made explicitly aware of
particular conditions that he has to be aware of [160]. Researchers have investigated ways
to improve existing documentation by augmenting it with examples mined, for instance,
from source code repositories [156, 161–163] and StackOverflow [157].

Subramanian et al. create a tool to called Baker that links source code examples to API
documentation [164]. Baker can do this in a real-time manner thus always keeping the
usage examples in the API documentation fresh. Dagenais and Robillard look to recover
the traceability links between APIs and their learning resources [165]. This study aims to
produce a comprehensive set of documentation that is mined from a variety of sources
such as developer blogs, StackOverflow and mailing lists, all in one place.

We found that the rationale behind deprecation can be automatically classified but,
more than one source of information is required. This understanding can aid in providing
consumers with the rationale behind deprecation.

6.8 Conclusion
We have presented an explorative study we conducted to uncover the rationale behind
the deprecation of an API feature. We manually analyzed over 1,100 document artifacts
relating to 374 from 4 mainstream Java APIs deprecated features. This analysis led to the
creation of a taxonomy comprising 12 reasons for deprecation. We observe that there



6.8 Conclusion

6

137

are several cases of deprecation being used in an unexpected, unorthodox manner, thus
hinting at currently unmet communication needs. Finally, we found that an automated
approach to classifying deprecation reasons can reach promising accuracy, but only when
it is trained on instances from the same project. We discussed the results and their impli-
cations concerning unmet communication needs, API evolution strategies, API documen-
tation completeness, and future work.
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mechanism
Concerning deprecation, the official Java documentation states: “A program element anno-
tated@Deprecated is one that programmers are discouraged from using, typically because
it is dangerous, or because a better alternative exists” [10]. The deprecation mechanism is
a commonly used practice [15].

Deprecation as a language feature has been adopted in many languages, such as PHP
and Java. However, there is no uniform implementation or support of deprecation across
languages. For example, Java exposes its deprecation mechanism as an annotation cap-
tured by the compiler to throw a warning when a program element marked as deprecated
is invoked; in PHP deprecation is added as a property to a function and throws a runtime
warning.

Furthermore, languages have been changing the deprecation mechanism in the search
for improvements, as evidenced by the Java language designers’ proposal to revamp the
Java deprecation mechanism for the third time [117]. According to the Java language de-
signers, the deprecation mechanism has been open to misuse and the inconsistent removal
of deprecated features creates confusion surrounding the fate of deprecated features. In
their words, this led to a situationwhere “everybodywas confused about what deprecation
actually meant, and nobody took it seriously.”

This variability in deprecation mechanisms across languages and volatility of imple-
mentations shows that deprecation as a whole is an unsolved problem. There is no current
understanding as to what constitutes an effective deprecation mechanism. Currently, API
consumers do not appear to react to deprecation [3, 166] despite API producers taking
great care in documenting the deprecation and the changes involved [15].

In this chapter, our goal is to determine the characteristics that a deprecation mecha-
nism should possess and whether these are desirable amongst developers and feasible to
implement, particularly in a mainstream language such as Java. We do this conducting a
study set up in two phases: An exploratory investigation, followed by the evaluation of the
desirability and feasibility of enhancements we propose to the deprecation mechanism.
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In the first part of our study, we investigate whyAPI producers deprecate features, how
they expect the API consumers to react, whether they remove deprecated features from
their APIs, and what the associated challenges are with using the deprecation mechanism.
To that aim, we use an interpretive descriptive technique to conduct and analyze interviews
with 17 developers who work on APIs both in industry and open source. We challenge
our findings by conducting a survey with 170 Java professionals.

With the insights gained from API producers and consumers coupled with interface
usability guidelines [167], in the second part of this study, we propose enhancements to the
deprecation mechanism. We evaluate the feasibility of this proposal by discussing them
with two Java language designers (one of whom is the promoter of the current revamp of
the existing Java deprecation mechanism) and its desirability among the aforementioned
170 Java professionals.

7.1 The Deprecation Mechanism In Java
Deprecation is provided by most programming languages, as a way for developers of APIs
and libraries to avoid introducing breaking changes when classes, fields, or methods are
to be removed.

In the original documentation of deprecation, we read: “Deprecation is a reasonable
choice in all these cases [where the API is buggy, insecure, disappearing in a future release,
or encouraging bad coding] because it preserves backward compatibility while encourag-
ing developers to change to the new API” [10].

Java first introduced the deprecation mechanism in the form of a Javadoc @deprecated
annotation, which provides information on why a feature was deprecated and what re-
placement feature should be used. Once source code annotations were introduced in Java
1.5, Java introduced a @Deprecated annotation. According to the Java language specifica-
tion, this annotation generates a compiler warning when a deprecated feature is used in
source code. Modern IDEs pick up this warning and display the warning along with the
accompanying Javadoc (Figure 7.1).

Recently, there has been a proposal to change the deprecation mechanism in Java (JEP
277 [117]). Stuart Marks (lead Java and OpenJDK language designer and promoter of
the changes in the deprecation mechanism) stated that deprecation warnings are largely
ignored by API consumers [168]. Marks attributed this behavior to two main reasons
(which he captured by observing the behavior of consumers who use the Java SE API):

1. Potential misuse: The current implementation of the deprecation mechanism is
open to potential misuse: “the @Deprecated annotation ended up being used for
several different purposes” [117]. This led to API consumers not taking deprecation
warnings seriously.

2. Inconsistent removal: There is no consistent removal protocol of deprecated fea-
tures, leading to: “an unclear message [regarding the future of a deprecated feature]
being delivered to developers about the meaning of @Deprecated” [117]. This led
clients to leave references to a deprecated features in the source code, given that
there is no danger of the code breaking when updating to a newer version of the
API.
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Given the aforementioned issues, the Java language developers put forward a set of
enhancements in the JEP [117]:

1. forRemoval(): Amethod named ‘forRemoval()’ in the deprecation class, which sets
a boolean flag to either true or false, where true signifies that the feature is going
to be removed in the future and false signifies that there are no plans to remove the
deprecated feature.

2. since(): A method named ‘since()’ in the deprecation class, to set a string during
the deprecation of a feature to indicate the version of the API in which this feature
has been deprecated.

Figure 7.1: Example of deprecation warning in the IDE

The involved Java language developers expect that these enhancements would remove
some of the confusion surrounding deprecation. In addition to enhancing the deprecation
mechanism, the Java language designers are going to remove deprecated features that
are currently present in the Java SE API. Their hope is that these initiatives will serve
as an inspiration to other API producers to remove their deprecated features and to API
consumers to take deprecation seriously and consider reacting to it. Overall, they aim to
change the culture surrounding deprecation.

7.2 Methodology
The overall goal of this chapter is to determine the characteristics that a deprecation mech-
anism should possess and whether these are desirable among developers and feasible to
implement in a mainstream language such as Java. This study has two parts: In the first
part, we start by deeply understanding how the deprecation mechanism is used and per-
ceived by both API producers and consumers; in the second part, we propose extensions
to Java’s deprecation mechanism and determine the feasibility of the same. This section
describes the methodology for the first part, the methodology for the second part can be
found in Section 7.5.

In the first part of our study, we propose four research questions:
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RQ1: Why do API producers use the deprecation mechanism? In this RQ, we iden-
tify why API producers use the deprecation mechanism. Such an understanding will
help us obtain a catalog of reasons adopted by API producers to deprecate features.

RQ2: When and why do API producers remove deprecated features? The Java lan-
guage designers claim that inconsistent removal policies related to deprecated features
have led to confusion surrounding the implications of deprecation. Having no clear pol-
icy of removal sends an unclear message to API consumers. In this RQ, we investigate
as to what the different removal protocols are and why API producers adopt them.

RQ3: How do API producers expect their consumers to react to deprecation? It
is an unverified claim that API producers always require their consumers to react to
deprecation. In this RQ, we seek to understand and analyze when API producers feel
that a reaction should take place.

RQ4: Why do API consumers react to deprecated features? From our first research
question we obtain a catalog of reasons why API producers may deprecate a feature. In
this RQ, we investigate the consumers’ perspective on deprecation.

7.2.1 Research Method
Interviews with API producers. To gain an in-depth understanding of how API pro-
ducers perceive the current implementation of the deprecation mechanism in Java, we
conduct a series of semi-structured interviews [169] with industrial and open source soft-
ware (OSS) API producers.

Before the interviews, (1) we analyze the official Java documentation and study the
deprecation mechanism that elucidates when the mechanism should be used, (2) we look
at the improvements made to the deprecation mechanism in Java 5 and finally (3) we
look at the proposed enhancement for Java 9. This helps us understand the scenarios in
which deprecation is used; this understanding was key in developing and conducting the
interviews.

The questions asked during the interviews are based on a guideline derived from our
research questions. We ask interviewees questions such as “When do you decide to change
an API?” and “Are there any steps that would lessen the burden to upgrade?”. We itera-
tively refine this guideline before every interview, based on the responses. Interviews are
conducted in English and transcribed.

We follow an interpretive descriptive approach [170], after an explorative research
method, originating from the social sciences, that is an inductive approach to analyzing
interviews and deriving theories. As part of the interpretive descriptive technique, each
interview transcript was analyzed and broken into smaller parts, where each part was
assigned a code based on its content. We clustered these codes based on similarity, to
let common themes emerge from the interviews. When we encounter the same code re-
peatedly across multiple interviews, i.e., saturation, we adjust our interview guideline to
explore other topics. Each research question has its own set of codes, which we then
present as our results.
Survey with API producers and consumers. To challenge the findings from the inter-
views, we send out an anonymized survey made up of 29 questions to developers. Our
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Table 7.1: Profiles of the interviewed API producers

Company/ Experience
ID Domain Project (in years)
P1 Industry Large consultancy 6
P2 Industry Large consultancy 7
P3 Industry Large consultancy 6
P4 Industry Large bank 6
P5 Industry Large bank 5
P6 Industry Large consultancy 4
P7 Industry Large SW company 18
P8 Industry Large SW company 16
P9 Industry Large SW company 21
P10 Industry Startup 6
P11 Industry Startup 9
P12 Industry Public sector 15
P13 Industry Small SW company 9
P14 Industry XWiki 16
P15 OSS Spring Framework 8
P16 OSS JUnit 17
P17 OSS Mockito 4

survey consists of questions for both API producers and API consumers, based on the
role that the developer plays. This is so that we get both perspectives on the Java dep-
recation mechanism. It followed the structure of the theory developed as a result of the
interviews. The survey respondents were asked to rank the degree (on a five-point Likert
scale) to which they agreed with a theme that emerged from the interview process. When
a respondent completely disagrees with one of the statements, we ask the respondent to
provide us with their perspective. The survey is in our replication package [171].

7.2.2 Participant Selection
Interviews. We contacted API producers who work for large companies in two differ-
ent countries (The Netherlands and Brazil) and those that actively work on well-known
open source projects. We contacted the industrial developers by mailing the CTOs of cer-
tain companies asking to be put in contact with producers of APIs. In the case of open
source developers, we mailed the internal developers of JUnit, Spring and Mockito ask-
ing for an interview. We chose these three projects due to (1) the popularity of their API
(According to Sawant et al. [72], JUnit is the first, Spring the third, and Mockito the 10th
most used APIs on GitHub), and (2) convenience to access developers working on these
projects. Overall this resulted in 17 interview participants (identified as 𝑃1 - 𝑃17 in this
chapter). The background of the participants is summarized in Table 7.1.
Survey. We aimed to reach as many Java developers from diverse backgrounds. To that
end, the survey was spread via Twitter, Java mailing lists, country-specific developer mail-
ing lists, and companies. The survey ran for a period of 3 months. Overall, we obtained
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170 responses from which we could derive valid results. The survey respondents were
primarily developers (142 out of 170), the rest was composed of architects (10 out of 170),
researchers (9 out of 170), analysts (1 out of 170), manager (3 out of 170), consultants (1
out of 170) and testers (4 out of 170). 138 of our respondents work in industry and the
rest on open source projects. Our respondents originate primarily from countries such as
USA, Italy, Brazil, India and The Netherlands. On average our respondents have 11 years
of experience of working with Java.

7.2.3 Limitations
One of the risks of a qualitative study is that determining the validity of our findings is
a difficult undertaking [172]. We followed interpretive descriptive interview guidelines
closely. Despite our best efforts, some limitations exist, in the following, we explain how
we try to minimize them.
Generalizability. Our selection of developers to interview might not be representative
of the Java API producer community. To mitigate this limitation, we questioned three dif-
ferent sets of developers for their opinions from both industry and open source based proj-
ects. Furthermore, we surveyed 170 developers who act as API producers and consumers,
to challenge our findings. If the study is repeated using a different set of developers, the
results may be different. However, we found a large agreement concerning the view on
deprecation of interviewees and survey respondents.
Interviewer bias. Our own biases may have played a role when interviewing developers,
e.g., by leading interviewees to provide more desirable answers [173]. To mitigate this
issue, we challenged and triangulated our findings by conducting a survey with API pro-
ducers and consumers. We sent our survey out via different media such as Twitter and
developer forums. Given this, we do not know the exact context of the population that
has accessed our survey. Due to this, we cannot know the exact response rate. However
we can report that a total of 535 developers started our survey and 170 (32%) of them filled
the entire survey.
Credibility. Question-order effect [174] (a phenomenon where one question could pro-
vide context for the next one) may lead our interviewees and survey respondents to spe-
cific answers. One approach to address this bias could have been to randomize the order
of questions. In this study, we decided to order the questions based on the order in which
decisions are taken when deprecating a feature. Social desirability bias [175] (i.e., an inter-
viewee’s tendency to give a socially acceptable answer to appear in a positive light) may
have influenced answers in our interview and survey. To mitigate this issue, we informed
participants that the responses would be anonymous and evaluated in a statistical form.

7.3 Results
7.3.1 RQ1: Why do API producers use the deprecation mechanism?
We ask API producers whether and why they find the deprecation mechanism relevant
and what motivates them to use it. From the interviews and the Java documentation on
deprecation, seven main reasons as to why developers deprecate part of their API emerge:

1. Old interface encourages bad practices
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It is no longer 
supported

It contained non-
functional issues

It encouraged bad 
coding practices
Better features have 
been developed

It is no longer 
required
It contained 
functional issues

It marks a
feature as beta

Never Almost never Neutral Almost every time
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Every time
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Figure 7.2: Motivations to deprecate a feature according to API producers, by decreasing frequency

2. New/updated feature supersedes existing one

3. Usage of the feature is unnecessary

4. Functional issue in current implementation

5. Non-functional issue in current implementation

6. No longer provide a feature

7. Mark as beta

The first three reasons emerge from documentation. Reasons 2 - 6 are mentioned by
our interviewees, with reason 1 the only unmentioned one.We included these seven main
reasons behind deprecation in our survey that was sent to developers. In our survey, API
producers were asked how frequently they had used one or more of the reasons; Figure 7.2
reports the results. We also asked both API producers and consumers if they had encoun-
tered any other reasons behind deprecating a feature. Within 170 responses we obtained
no more reasons behind deprecation.

Reason 1 is the most popular reason behind deprecation as reported by our survey’s
respondents. Reasons 2-6 are the ones that all our interviewees agreed upon as being those
that they have used in their own APIs. API producers in our survey also agreed that these
are common/frequent reasons that they have used to deprecate a feature.

Reason 7 was mentioned by interviewee P16, whose team unexpectedly uses the dep-
recation mechanism in Java to mark a feature as beta or experimental. Interviewee P16
did acknowledge this as is a misuse of the deprecation mechanism, but they found it ef-
fective. P14 mentioned that in their API they faced a similar dilemma, where they wanted
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to explicitly indicate to an API consumer that a feature being used was new/experimental.
However, instead of perverting the meaning of deprecation, they introduced their own
annotation @Unstable that marked in the documentation that caution should be exercised
when using a new feature.

Orthogonal to all themotivations behind deprecation, it emerged that deprecation is an
effective, yet imperfect communication channel between API producers and the API con-
sumers. Interviewee P17 put it as: “[deprecation is] still the best communication method
as of today”. He went on to further state that the language feature of deprecation makes
it easier to tell a developer that uses a deprecated feature: “Hey! Be aware! We will re-
move this feature later, just so you know”. This advantage of deprecation is not restricted
to the open source software world but is found to be quite important in industry as well.
Interviewee P2 said that they find it important “when stopping an existing service, this
communication should happen at the time when we are thinking of breaking an existing
service”. The industrial API producers find it useful to let their customers know that a
certain service that they might be using is going to disappear. Nevertheless, the low reac-
tion rates of API consumers reported in literature [3, 166] underlines that messages sent
through this channel (regardless of how accurately they are written [15]) are often not
acted upon, thus raising concerns on its actual effectiveness, also on our interviewees.

One stated advantage of deprecation is that a developer is given instant feedback in
the IDE when using a deprecated feature. Despite this, some of our interviewees (P5, P6,
P7, P10) expressed the view that there might be a better way to communicate this change
to the consumer. In the opinion of these participants, this warning might be a bit of a later
point, as it would require developers to go through each file in the IDE to see if there are
any deprecated features that are being used. This happens only after an upgrade is made
to a newer version, but the notification only reaches the developers at the last moment,
thus necessitating an alternative channel of communication.

The deprecation mechanism is viewed as an interface for communication with the
API consumer. However, it is open to misuse and has shortcomings.

7.3.2 RQ2: When and why do API producers remove deprecated fea-
tures?

Most API producers (48%) among our survey respondents indicated that they usually re-
move a feature two or more releases after its deprecation. Despite most of the positive
votes for this policy, only 12% of developers indicate that they always remove a feature
after two releases, whereas 22% indicate that they do this almost every time and 29% say
they occasionally do this.

The second most popular removal pattern among our survey respondents was to never
remove a deprecated feature. This may be at the basis of the lack of reaction by clients to
deprecation. 16% of developers say that they always choose to not remove a deprecated
feature, 15% say that they do this almost every time and 27% say that they do this occa-
sionally. Only 25% of the respondents say that they have never adhered to this behavior.

Our survey respondents also indicated that they remove deprecated features in an



7.3 Results

7

147

upcoming release or in one release after the next immediate one. However, none of these
responses had too much support. Developers do not appear to be very keen on cleaning
up their code base after deprecating a feature.

Regardingwhy developers decide (not) to remove a deprecated feature, from the survey
results we get the sense that there is a large variance in removal policies of deprecated
features, a fact echoed by Stuart Marks (proponent of JEP 277) [168].

Interviewee P8 mentioned that they never remove a deprecated feature because con-
sumers do not appreciate it when functionalities are removed. The other developers of
this company (P7 and P9) agree with this perspective. In their opinion, the introduction
of breaking changes would be detrimental to customer satisfaction; this is despite this com-
pany providing detailed documentation on how to transition to the replacement feature
along with customer support to aid the transition.

Interviewee P12 echoed the previous sentiment. Their company too prefers to never
remove a deprecated feature. In fact, they are willing to maintain two versions of the same
feature in their code base. This company has only ever introduced a breaking changewhen
there was a severe flaw in the feature that was being used and in such a case the feature
was not deprecated first.

P14 mentioned that they also do not remove a feature from their API. After a feature is
deprecated, they first remove all references to it from their own code base. After this, they
move this feature to a legacy package. This does not involve changing the namespace of
the feature, they simply build their APIs JAR in such a way that they obtain one version
with no legacy features (i.e., no deprecated features) and another which includes them.
This gives the consumers of this API the choice of continuing the use of a legacy feature.

Interviewee P17 mentioned that in their API they often remove a deprecated feature,
however, they do not have a regular schedule or policy. What can trigger the removal may
be major changes such as a modification in the underlying architecture of the API.

Only interviewee P15 mentioned that they have a protocol to remove deprecated fea-
tures. When deprecating a feature they indicate the release in which this feature is going
to be removed. They generally remove deprecated features in the following major release.
On being asked about this policy resulting in breaking changes, the interviewee responded:
“We deprecate a feature when we have a point where we see it’s not useful … and then we
remove it in the next major release … because we have a new [,better] implementation.”

API producers are wary about removing deprecated features from their API and
mostly have no preset protocol for removal.

7.3.3 RQ3: How do API producers expect their consumers to react to
deprecation?

We asked our interviewees whether they perceived that (1) deprecation on its own was
enough to send a message across that a feature should no longer be used and (2) whether
it would act as an incentive for their clients to react to API evolution. Predominantly,
most of our interviewees said that it was the choice of the consumer to react, but that the
deprecation mechanism would have no impact on reaction behavior. In the words of P17:
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“I think it’s an easy way out for developers of an API because it is really easy to edit and
notify your users, but you do not actually remove the whole feature. So you are stuck with
the sense that a user can be willing to keep using it and not be incentivized to actually
stop using it”.

The only outlier we had was interviewee P5 who disagreed with the popular sentiment
and went on to say that deprecation is a beautiful concept as it gives a consumer the time
to consider reacting: “just marking something deprecated will give you an opportunity to
think of alternative ways of doing things but at the same time keeping control over when
you want to move on … to new features”.

As a follow-up, we asked our interviewees if deprecation of a feature could act as an
incentive for their clients to change the version of the API that they are using. Interviewee
P10 mentioned that the reason behind the deprecation would be key: “Yes, … the reason
for deprecation has to be concrete enough for me to switch to the new versions”.

In the view of interviewee P2, the decision to switch versions is often based on the
cost of an upgrade: given that deprecation is not a breaking change, it does not act as a
stumbling block; however, if the reason behind deprecation is serious enough, then there
is an incentive to change. Overall, API producers assume that their clients will react to
deprecation only if the reason is serious.

We also wanted to establish if deprecation of a feature dissuades the usage of that
feature to such an extent that it can be safely removed. Some of our industrial interviewees
said that when they deprecate a feature, they can often remove it safely later on as they
know that their clients have received the message. Concerning OSS, P16 said: “For JUnit,
it hasn’t really worked out to deprecate things and then get rid of them … [but it] might
work for some other libraries”. He recounted a case where JUnit had deprecated a single
field in the codebase, which had caused IDE’s such as Eclipse to post issues on JUnit as
they were opposed to that field being deprecated.

One point of agreement across all the API producers was that an automated tool that
helps API consumers to react to deprecation with minimal effort would probably be most
beneficial. Such a tool would ensure that clients react, and keep concerns regarding cost
to change at a minimum.

API producers acknowledge the costs for consumers associated to reacting to dep-
recation. For this reason, they assume a prompt reaction by consumers only if the
reason behind deprecation is serious.

7.3.4 RQ4: Why do API consumers react to deprecated features?
We start by ascertaining whether API consumers react to deprecated features. In the event
that they do react, we investigate why.
Do API consumers react to deprecated features? In addition to investigating whether
consumers react to deprecated features, we also explore whether deprecation acts as a
barrier to upgrading the version of the API being used.

Deprecation is regarded by consumers as the least important reason that prevents them
from changing versions of the API. Over 40% of the consumers are neutral about its impact,
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while only 1% indicate that deprecation has prevented them from upgrading API versions.
We see that the largest barrier to API consumers when upgrading a version of an API
is the new version breaking some existing functionality. This is in line with previous
findings [176].

Most consumers claim that they react to deprecation, we asked these API consumers
as to how they react. 67% of consumers indicate that they react by replacing a depre-
cated feature with its recommended replacement. 66% of our respondents claim to read
the documentation and then base the reaction on the motivation behind deprecation. “do-
ing nothing” is the second least popular way to react to deprecation, 26% of the survey
respondents indicate that they have never reacted in this manner. The least popular way
to react to deprecation is to replace the deprecated feature with an in-house feature. These
findings contradict earlier results et al. [166] showing that majority of projects on GitHub
do not react to API deprecations. However, one explanation for this might be that these re-
sponses might be an indicator of the social desirability bias, thus prompting the consumers
to claim that they always react.

We ask the respondents who have never reacted to deprecation to explain the reason
behind their behavior. Most responses indicated that since deprecation is not a breaking
change, reacting to deprecation is not pivotal. This is summarized by one respondent
saying: “It is the safest bet to keep things as they are. Deprecation as such does not change
the behavior of the solution, so it doesn’t need to be acted upon”. Other responses include
API consumers saying that the cost of a reaction was not justified hence they preferred to
wait till the deprecated feature is removed. Poor documentation was also cited as a reason
not to react.
Why do API consumers react to deprecated features? We ask our survey respon-
dents to indicate what motivated them to react to deprecation. These results can be found
in Figure 7.3.

We asked the API consumers if knowing the removal policy of an API regarding dep-
recated features had any impact on their decision to react. This was a point of contention,
with 29% of respondents saying that this had indeed motivated them to react. However,
a majority of 36% claimed that this had never motivated them and that the reason behind
deprecation had far greater significance.

We see in Figure 7.3 that the motivation behind deprecation plays a large role in elic-
iting a reaction from the API consumer. When a feature is deprecated due to functional
issues, non-functional issues, or because a new feature is an improvement over the old
one, there is a large number of API consumers (over 40%) in each case that says they have
been motivated to react in that case. 27% or less of the API consumers indicate that other
reasons have motivated them to react to deprecation.

API consumers predominantly claim that they react to deprecation, the driving
factor behind this behavior is the reason behind deprecation.



7

150 7 How to improve the deprecation mechanism

Its use is no longer 
necessary

A non-functional issue 
has emerged

New/better features 
have been developed
A functional issue 
has emerged

It encouraged bad 
coding practices
It is no longer going 
to be supported

It marks a
feature as beta

Never Almost never Neutral Almost every time

0

Every time

0 40% 80%40%80%

Figure 7.3: Motivations to react to deprecation according to API consumers’ experience, by decreasing frequency

7.4 Analysis and reflection
We now discuss the main findings of our study. The knowledge gained from this study
helps us understand the gaps (and how to address them) in the current implementation of
the deprecation mechanism and deprecation in Java on the whole.

7.4.1 A communication mechanism
Previous work by Sawant et al. [166] has shown that API consumers in the Java ecosystem
do not necessarily replace references to deprecated features in their source code. This is
similar to the behavior observed in the SmallTalk sphere by Robbes et al. [3] as well.

One of the contributing factors to this phenomenon is the fact that third-party API
producers and Java SE API producers do not have consistency when it comes to the re-
moval of a feature from the API as seen in Section 7.3.2. This points to the fact that the
deprecation mechanism in its current form might not be fulfilling its goal in effectively
communicating when it is imperative that an API consumer cease to use a deprecated
feature.

From the interviews, we observed that API producers agree with this view as they too
feel that certain improvements can bemade to streamline the communication between pro-
ducers and clients. To address this, we leverage the interface usability guidelines outlined
by Jakob Nielsen [167]. By considering deprecation as a communication interface between
API producers and API consumers and by using interface usability guidelines, we hope to
be able to understand the shortfall in the effectiveness of the deprecation mechanism as a
communication mechanism.

In the following, we discuss two enhancements to the current deprecation mechanism
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that would better facilitate the communication between API producers and consumers,
namely understanding when a feature will be removed from the API and the severity level
of the deprecation.
The future of deprecated features. The current implementation of the deprecation
mechanism is in direct contravention of Nielsen’s [167] guideline on “Visibility of sys-
tem status,” which states: “The system should always keep users informed about what is
going on.” Indeed, with the current deprecationmechanism provided by the Java language,
API consumers have no indication on the future of a deprecated feature.

The enhancements in Java 9’s deprecation mechanism attempt to address this short-
coming by allowing API producers to indicate whether a deprecated feature is going to
be removed or not. By doing so, API consumers will be given a clear indication about the
future of a deprecated feature. This will help the consumer take a decision on the reaction
to deprecation.

However, the enhancements do not go far enough in addressing the issues present in
the usability of the deprecation interface. Although the future of a deprecated feature has
been made explicit, there is still no definite timeline that an API producer can provide to
the consumer. By just marking a feature as one that will be removed, no indication is
given as to how long the removal could take, which still leaves the future of a deprecated
feature in an ambiguous state as the deprecated feature could be removed immediately or
after many years. Currently, the onus is on APIs to provide this timeline in the Javadoc
(e.g., Spring framework), however, this is not standard practice [15].
The severity of a deprecation. Nielsen’s usability guideline on “Consistency and stan-
dards” dictates that “Users should not have to wonder whether different words, situations,
or actions mean the same thing” [167]. In the current implementation of the deprecation
mechanism, there is no way to discern the difference between features deprecated due
to serious issues, those that have been deprecated due to small improvements, or even
those that have been deprecated because there was no better alternative to communicate
with the customers (as in the case of beta features). The proposed enhancements to the
deprecation mechanism to be implemented in Java 9 do not address this issue.

We see from API producers (Section 7.3.3), that there are different suggested reaction
patterns for different deprecations. Only in certain caseswhere there is a serious issuewith
a feature, do they feel it is imperative for the consumer to react. From the API consumers
that answered our survey, we understand that the reason behind deprecation is important
when it comes to reacting to a deprecated feature. Functional issues, non-functional issues,
and bad coding practices are all major motivations when it comes to reacting to deprecated
features, whereas they are less likely to react to a deprecation of a feature due to the fact
that usage of it is no longer required. In the current state, the deprecation mechanism does
not allow for API producers to inform the API consumers on the severity of a deprecation.

An indication of the severity of deprecation would not be a novel extension to Java’s
deprecation mechanism. Currently, C# [177] allows API producers to indicate if a depreca-
tion is severe or not with the help of a boolean. In the event that a deprecation is serious,
the compiler throws an error when the functionality is invoked. Although C#’s approach
can be considered extreme, it shows that indication of severity of a deprecation is a viable
feature in a deprecation mechanism. We highlight that this extension to the mechanism is
of utmost importance to API producers and consumers alike and will aid the deprecation
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mechanism in functioning as a more effective communication interface.

7.4.2 Misuse of deprecation
Currently, in Java, if an API producer wants to issue a compiler warning to communicate
with the consumer, the deprecation mechanism is the only straightforward option. API
producers have attempted to overcome this limitation in the Java language specification
by implementing workarounds (e.g., in the case of XWiki, beta features are marked using a
special annotation which requires special IDE support so that it is highlighted). However,
none of these workarounds are natively supported by IDEs or Continuous Integration (CI)
environments and, thus, not portable.

This has led to the misuse of the deprecation mechanism, where certain features that
are not intended for removal in the future are marked as deprecated (e.g., in the case of
JUnit where beta features are marked as deprecated).

This leads us to conclude that there is a need for an alternative way for API producers
to communicate with the API consumers, especially in the case where they would like to
indicate that a feature is beta or experimental. A generic warning mechanism that gives
API producers the ability to generate compiler warnings on usages of certain features of
the API for reasons other than deprecation could solve this issue.

Such mechanisms already exist in other languages (e.g., Python has a warning system
that allows for the specifications of different levels of compiler warnings) and would not
be a revolutionary introduction. However, by introducing such a system and making dep-
recation a sub-case of the warning mechanism the Java language designers would allow
API producers increased flexibility. There is currently no proposal to introduce such a
mechanism; we postulate that it would be fruitful for the Java community to discuss this.

7.4.3 API consumer aid with deprecation
Most of our interviewees suggested that refactoring tools to automatically replace refer-
ences to deprecated features with their recommended replacements could incentivize API
consumers to react to deprecation, as it would reduce the overall cost to react to depreca-
tion and reduce the chances of errors.

There is some existing work on providing refactoring support to API consumers to
reduce the burden of reacting to deprecation. Henkel and Diwan [27] propose to capture
refactorings made by API producers to their codebase when adapting to their own depre-
cated features and then replaying these refactorings on the API consumers’ code. Xing
and Stroulia [28] developed an approach that recommends alternative features from an
API to replace an obsolete feature by looking at how the API’s own codebase has adapted
to change. The tool created by Perkins [128] replaces deprecated method invocations with
the source code of the deprecated method from the API itself. This has been shown to be
effective in 75% of cases.

Although exploring promising avenues, all of the aforementioned tools require a non-
trivial amount of effort from the API producers, thus do not scale. Additionally, these
tools do not handle more complex cases where the replacement for a deprecated method
is not a one-to-one replacement. This shows that this problem of automatically replacing
deprecated features is non-trivial and remains unsolved. The persistent need for such
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a tool calls for increased research in programming languages and practices supporting
automated API restructuring.

7.5 Proposed Enhancements To The Deprecation Mecha-
nism

Based on our results and analysis, we have uncovered certain aspects surrounding the
deprecation mechanism that are especially important for the Java language designers. In
the second part of this study, we propose and investigate desirability and feasibility of
three enhancements. The first two are related to the deprecation mechanism: they go
beyond JEP 277, aiming at defining a more complete deprecation mechanism. The third
proposal address an issue at a higher level - the language level.

1. R: Removal dates should be marked: Deprecation should allow developers to
indicate the version or date when a deprecated feature will be removed.

2. S: Severity should be marked: Deprecation should allow developers to indicate
the severity of a deprecation and raise warnings of according strength.

3. W: Warning mechanisms should be generic: Java should introduce a warning
mechanism to allow for other types of warnings to be raised, as well as managed by
IDEs, thus minimizing the misuse of deprecation.

We refer to our proposal as RSW from this point on. We validate the desirability
and feasibility of RSW by performing a two-step validation. First, we obtain feedback
from the larger community of Java developers (survey with the same 170 professionals)
to understand to what extent there would be support for RSW. Second, we interview two
Java language design experts (one of them being the promoter of JEP 277) to determine
whether RSW could be implemented in Java and if-so then how this could be done and
what the associated difficulties would be.

7.5.1 Desirability among the Java community
We present the results of our survey in Figure 7.4. 78% of developers find R to be (very)
desirable and only 7% do not want such a change. In fact, in our optional write-in survey
option, 2 developers expressed even more support for this feature.

We see that S is the third most desired change, thus implying that Java developers
would like API producers to be allowed to signify to their clients that in certain cases
it is pivotal that the client reacts. This supports that API consumers do not get a clear
indication as to how severe the deprecation of a feature is.

W aims to give API producers more flexibility when it comes to communicating with
their clients. We see that there is no strong trend among Java developers concerning the
desirability of this proposal: The 22% of the developers who find it desirable are balanced
by 27% who find it undesirable. Moreover, 51% of the developers sit on the fence in this
case and have neutral opinion on the warning mechanism. This result may indicate that
the Java community does not currently perceive it as necessary to have different warnings
other than deprecation; this would be in line with the low number of respondents who
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Figure 7.4: Respondent’s perspective on the enhancements to the Java deprecation mechanism

reported to use the deprecation mechanism for purposes different than the intended ones
(Section 7.3.4). Nevertheless, this proposal is the one that diverges the most from what
developers are already used to, thus, it would be reasonable to consider the results in the
light of the theory on the “diffusion of innovations” [178]; in this case, the percentage of
the respondents that found this enhancement desirable would be slightly higher than the
expected percentage of early adopters of innovations [178].

We also asked our survey respondents whether they would welcome an automated
refactoring tool to deal with deprecation. The survey respondents were primarily positive,
confirming the opinion of the interviewed API producers.

7.5.2 From theory to practice: RSW’s Feasibility
We assessed the feasibility of implementing RSW in the Java language by means of an
interviewwith the promoter of JEP 277 (Stuart Marks referred to as J1) and a Java language
design expert (referred to as J2) who has been part of the expert group for JSR-305 [179]
and the specification lead group of JSR-308 [180].
R: Indication on a removal timeline for deprecated features. Regarding R, J1 men-
tions that the implementation would be possible but not trivial. The principal challenge is
how such a feature could be implemented. The first issue with indicating in which version
a deprecated feature is going to be removed is that version numbering schemes constantly
change. The second issue is that having a concrete date would pose a challenge as well
since release schedules constantly change (e.g., Java 9 release has been pushed back twice
in the last year). However, J1 did concede that giving such an indication is definitely use-
ful to API consumers, but only if a uniform version numbering convention is adopted by
third-party APIs and the Java SE.

J2 confirmed as well that R would send a more concrete message about removal to
the API consumers. However, he felt that there would be no need to over complicate the
annotation to achieve this aim: “[there is no] need to make the annotation that muchmore
complicated”. He felt that if an API established and adhered to a uniform policy to deal
with deprecated features, that might achieve the same goal.
S: Indication on the severity of deprecation. With S, we hope to provide API con-
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sumers a clear indication as to how severe a certain deprecation is. J1 said that for JEP 277
something similar was considered: “[the idea was] to include an enumerator that specifies
the reason behind deprecation such that tools could do filtering based on the reason, and
different reasons would have different severities for different users”. According to him,
the issue was that compiling a comprehensive list of distinct reasons behind deprecation
of a feature is a non-trivial endeavor. In fact, we observed in our interviews that, in many
cases, deprecations could fall into more than one category. However, our proposal differs
from this as it allows API producers to indicate the level of severity i.e., the seriousness
with which API consumers should take this deprecation into account. This is similar to
the severity field in the deprecation mechanism in C#. J1 felt that it could be implemented
in Java but only after further deliberation on this takes place.

In J2’s opinion having two different levels of deprecation: “error versus warning”
would be a good idea, as it would give API producers enhanced control over the usage
of the features their API provides. However, there are two principal challenges associated
with this: First, the deprecation mechanism would have to provide a boolean flag that
would allow an API producer to indicate if it is severe or not, which would also indicate
to the compiler if a warning or error should be thrown; Second, a better understanding
would be needed to demarcate deprecated features that are severe and those that are not.
W: A high-level warning mechanism. W does not impact the deprecation mechanism
directly, but seeks to address the misuse of the deprecation as elucidated in JEP 277. In
this work, we found just one case of misuse of the deprecation mechanism where a beta
feature was marked as deprecated. J1 agreed that marking beta features as deprecated
is “off label” usage of the deprecation mechanism. During the discussions on JEP 277, it
was considered to have “experimental” as a reason to deprecate a feature. Despite this
extension never being implemented, no further steps were taken to minimize this misuse
of the deprecation mechanism. J1 felt that a warning mechanism would be extreme. In
fact, he suggested that one viable alternative that will be present in Java 9 is “incubator
modules, which are sort-of related to beta or experimental”. However, these are coarse-
grained as they apply to entire modules and not individual classes or methods.

J2 was was not entirely supportive of adding a generic warning mechanism to Java.
He felt that “[by attempting] to eliminate every type of misuse, we’re only going to open
the opportunity for more types of misuse, and we’re going to make it harder for people
who are going to use it in a sensible way or in an imaginative way”. He also felt that
introducing an explicit warning mechanism and making deprecation a subclass of that
system would be too massive a change to introduce into the Java language. However, he
was supportive of first trying out more specific warnings as in the case of JSR-305 [179].
This would then entail creating a generic warning mechanism that could be reused for
each specific warning.

7.6 Comparison of deprecationmechanisms in other lan-
guages

Besides Java, there are many other languages that provide a mechanism that allows API
producers to deprecate features in their APIs. We investigate to what degree these lan-
guages implement RSW. We focus on languages that have the deprecation mechanism
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as a built-in feature in the language, unlike languages such as Python or Go that rely on
documentation and coding conventions to mark functionality as deprecated. Additionally,
we evaluate whether they implement any feature in line with RSW.

Table 7.2: Deprecation mechanisms across languages

Language
Version of
feature
deprecation

Warning:
feature to be
removed

R S W

Most popular languages with a deprecation mechanism
Java 8 3

C# 3

VBasic 3

PHP 3 3

Ruby 3 3 3

Delphi 3

R 3 3

Obj.-C 3

Dart 3 3

D
Scala 3 3

Clojure
Haskell
Groovy 3

Languages developed since 2010
Swift 3

Rust 3

Kotlin 3 3

Ceylon
Julia
Hack 3 3

Language with deprecation investigated in previous work
Smalltalk 3

We select the first 15 languages from the Tiobe language popularity index [181] that
have a built-in mechanism, and to analyze if newer languages do a better job with depre-
cation we look at languages that have been released since 2010. We also add SmallTalk
to this comparison as it has been studied in previous work. This results in a comparison
between 21 languages seen in Table 7.2.

We first of all note that no language implements all of RSW. Ruby and Dart are the
only languages that allow API producers to indicate when a deprecated feature is going
to be removed (R). Scala, on the other hand, allows API producers to indicate if a depre-
cated feature is going to be removed. Visual Basic, Kotlin, and C# are the only languages
that implement S. Only 6 languages allow developers to issue a custom compiler warning
(W). The warnings thrown in PHP and hack are runtime warnings, whereas for the other
languages they are all compiler warnings.

Julia, Swift, Scala, and Rust allow developers to indicate the version in which a feature
was deprecated. For the other languages, this fact is typically communicated with the aid



7.7 Related work

7

157

of documentation. However, unlike Java’s Javadoc system that supports deprecation, most
languages do not provide a dedicated mechanism to document deprecation.

In terms of variance between newer and older languages, we see that Kotlin, Rust and
Swift are the most advanced as they implement one of the facets of RSW. Among the
more established languages, C# and Ruby standout as well.

We see that there is no uniform manner in which languages implement their depreca-
tion mechanism. In fact, newer languages who have a clean slate to start with also do not
implement all the features that would constitute a more complete deprecation mechanism.

Languages are not consistent in implementing a deprecation mechanism and none
implement RSW fully.

7.7 Related work
Previous studies have focused on deprecation from the client perspective. Particularly
Robbes et al. [3] analyzed the reaction to deprecated features in the SmallTalk ecosystem.
They found that in most cases clients prefer not to react to an obsolete API feature. This
study was extended by Sawant et al. [166] who analyzed the reaction to deprecated fea-
tures of 5 popular Java APIs. This study confirmed the results of Robbes et al. with one
exception where clients of Java APIs were less inclined to replace an obsolete feature with
a replacement feature from the same API.

There have been a few studies focused on an APIs deprecation policy itself. Raemaek-
ers et al. [19, 129] investigated when API developers deprecate features. They found that
APIs introduced deprecated features inmajor andminor releases in equal measure. Brito et
al. [15] investigate whether API developers document deprecated features with a link to
the replacement feature. They found that in two-thirds of the cases deprecated features
were appropriately documented by the API developers, however, they found that the qual-
ity of these deprecation messages did not improve over time.

The introduction of breaking changes in APIs and their impact has been a major topic
of study. Dig and Johnson [26] studied and classified the API breaking changes in 4 APIs.
They found that 80% of the breaking changes introduced in an API were due to refactor-
ings. Cossette and Walker [154] studied 5 Java based APIs to investigate how API evo-
lution recommenders would handle certain cases. Their study showed that none of the
recommenders could handle all of the breaking cases.

The impact of breaking changes in APIs can be wide ranging. For example, Linares-
Vasquez et al. [135] show that breaking changes in Android APIs have an impact on the
rating of an app. Espinha et al. [133] looked at the impact of breaking changes introduced
in popular web APIs such as Twitter, Facebook etc. Xavier et al. [153] looked at 317 real-
world Java libraries and showed that 14% of API changes are breaking in nature and 2.5%
of the clients of these APIs are affected by these changes.

Studies on why APIs evolve over time and what decisions go into evolving an API
provide a unique insight into the inner workings of APIs. Bogart et al. [4] studied how
developers decide to introduce breaking changes in APIs in the Eclipse, R, and NodeJS
ecosystems, how these changes are communicated to the clients of the APIs and what
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tooling and practices are adopted to ensure that the impact of the change is minimal. They
show that each ecosystem has its own policy to evolve and this policy is tightly coupled
with the nature of the developers that work in that ecosystem. Hou and Yao [130] explore
the breaking changes in Java’s AWT/Swing framework and find that these changes are
limited due to the quality of the pre-existing architecture of the framework.

7.8 Conclusion
Java’s deprecation mechanism is planned for change due to issues perceived by the Java
language designers [117]: For the third time, the deprecation mechanism in Java is being
revamped. Most mainstream languages offer a deprecationmechanism, but there is no uni-
form, universal support across languages. These facts witness that deprecation as a whole
is an unsolved problem and that there is no clear understanding as to what constitutes an
effective deprecation mechanism.

With this work, we aimed at empirically determining the developers’ needs concern-
ing deprecation. We did this by conducting a two-step study, involving an exploratory
investigation and a validation with a large number of Java developers.

Our results show that API producers do not have any kind of preset protocol to remove
deprecated features from their codebase, thus making the future of a deprecated feature
ambiguous. API consumers, are more concerned with the reason behind deprecation as
that proves to be the ultimate motivation to react. Based on these findings, we proposed
two enhancements for the deprecation mechanism, namely, the indication of the version
in which the deprecated feature will be removed, and different severity levels for different
types of deprecation. Furthermore, to counteract the misuse of the deprecation mecha-
nism, we also proposed to extend Java with a warning mechanism. These changes go
beyond the proposed revamp of the Java deprecation mechanism, and we showed that the
larger Java community would find these extensions valuable and at the same time, Java
language designers found these changes to be challenging, yet feasible to implement. The
knowledge that we accumulated in this study is not applicable to only Java, but also to
other languages which may choose to alter the way in which they implement their depre-
cation mechanism.

With this chapter we make the following main contributions:

• An understanding of why and how API producers use the deprecation mechanism
and a catalog of reasons that motivate API consumers to react to deprecation, thus
providing researchers and language designers with an in-depth understanding of
required features of a deprecation mechanism.

• A proposal that enhances Java’s deprecation mechanism whose feasibility and de-
sirability is evaluated with the aid of two Java language designers and a survey
with 170 respondents, showing that certain aspects of our proposal would be well
received by the Java community.

• An analytical comparison between the deprecation mechanisms of 23 popular and
new languages, that shows both practitioners and researchers the state of depreca-
tion mechanisms and how they deviate from a mechanism that addresses additional
developers’ needs.
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8
Conclusion

8.1 Research Questions Revisited
In this section revisit the research questions defined in Chapter 1.

Research Question 1. How are API consumers affected by deprecation of an API element?

This research question exposes that, for some APIs, a large proportion of consumers
is affected by deprecation of an API feature. We determine this in two different studies,
where the first used data obtained from mining type-checked API usage from 25,000 Java-
based GitHub projects that are consumers of five mainstream Java APIs: Guava, Guice,
Spring, Hibernate and Mockito and the second that mined data from 250,000 projects that
are consumers of the top 50 most popular Java APIs.

We observe that, in the case of Guava, over 30% of the consumers are affected by dep-
recation. However, in the case of Spring, where we observe that only 35 out of 15,000
projects analyzed have been affected by deprecation. We also fast-forwarded the con-
sumers that use an API to use the latest version of the API, and we see that in most cases
(except Spring) a larger proportion of consumers is affected by deprecation. In the case
of Guava there was a consumer that would have to replace 8,568 invocations and in the
case of Hibernate one consumer would have to replace 17,471 invocations. This provides
evidence that consumers can be adversely affected by deprecation on a large scale and the
maintenance effort required to react can be large.

In the case of the 50 APIs that we analyzed, we found that 20 never affect their con-
sumers. A further 18 of these only affect less than 2% of their consumers. The remaining
12 APIs have a significant impact on their consumers. APIs that fall into this category
include also very popular APIs.

For those APIs that do not affect their consumers, we try to ascertain as to what dep-
recation policy adopted by APIs rarely affects their consumers. We find that APIs that are
not active with releasing frequently and those that do not deprecate too many features (<
9% of the features) but preferred to directly introduce breaking changes when evolving,
rarely affect their consumers with deprecation.
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In the other cases where a consumer is affected by deprecation, it can be because the
API deprecates more than 9% of its features and rarely removes them, thus actually encour-
aging the adoption of deprecated features. Some APIs introduce features in an already
deprecated state, this usually to indicate that they are beta features or unimplemented
stubs.

We see from this research question that API evolution (of the type deprecation) affects
API consumers. We see that the API deprecation policy can have a direct impact on the
scale at which the consumers are affected by deprecation.

Research Question 2. How and why do API consumers (not) react to deprecation of an API
element?

With this research question, we sought to understand how and why API consumers
react to deprecated API elements. If a consumer chooses not to react we also investigate
why. To answer this question we adopt a mixed-method approach that involves: manual
analysis, large scale analysis of API usage on GitHub, and surveys with API consumers.

We manually analyzed 380 instances of usage of deprecated features in APIs. This
analysis yields seven different ways in which consumers can react to deprecated features.
Some examples of reaction patterns are: replacing the deprecated feature with is recom-
mended replacement, replacing the deprecated feature with a replacement from the JDK,
rolling back the version of the API being used and not reacting at all. After determining
these seven reaction patterns, we mined API usage data from GitHub for 50 APIs to see
how frequently each of these reaction patterns took place in this ecosystem.

On analyzing data collected from over 250,000 Java project on GitHub, we found that
not reacting to deprecation is the most popular way to deal with deprecation. In 146,000
cases where there is an invocation made to a deprecated entity, the consumer did not react
at all. This is a startling finding as the expectation would be that consumer would try to
replace the deprecated call with its recommended replacement. In fact, in only 36 cases
did consumers use a feature from the same API. The second most popular way to react
to deprecation was to replace the library being used with another that provides similar
functionality.

In one of our previous studies, we had observed that in the cases that a reaction was to
take place, it often took the consumers a median time of 200 days to perform the reaction.
While this might explainwhywe see such a large scale of non-reactions, it does not explain
it entirely. Especially because we strive to mine the entire history of the consumer, right
from its beginning to determine how it is affected by deprecation and how it reacts. This
history spans from the year 2008, thus making it less than likely that by waiting for a
further year we would observe more reactions.

We survey consumers to ask them as to what prevents them from updating the ver-
sion of the dependency that they use and what prevents them from reacting to depreca-
tion. Consumers indicate that the fact that feature that they use is deprecated in a certain
version of the API does not stop them from upgrading, it is often the cost of updating a
dependency that acts as a barrier. Surprisingly, a large proportion of our survey respon-
dents claim to react to deprecation by replacing the deprecated call with its recommended
replacement. This is contradictory to our data, however, to a certain extent, it can be ex-
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plained by social desirability bias. Alternatively, the development practices adhered to by
our survey respondents are significantly different from those that we observe in the data.

We ask those consumers who indicate that they seldom or never react to deprecation
as to why this is the case. The most popular response to this is that they can often not find
a suitable replacement. This may hint at a communication issue from the producer’s side.
The second most popular reason is that the cost associated with reacting to deprecation is
so high that the consumer does not want to make this effort.

From this research question, we understand that consumers choose not to react to the
deprecation of an API element. The replacement feature provided by the API is often not
suitable, indicating that the API producers need to do a better job at documenting the new
features that they introduce. Additionally, the cost of reacting is also a major stumbling
block and consumers need to be provided with some aid when it comes to dealing with
API deprecation or evolution.

Research Question 3. How do API producers support API consumers when reacting to
deprecation?

We seek to understand what kind of support API producers provide their consumers
when it comes to enabling them to react to deprecation. We answer this question by
performing a manual analysis of API deprecated features and the various sources that
document the deprecation.

When an API deprecates a feature, the API producers typically inform the API con-
sumers as to what feature replaces the one that was just deprecated [31, 98]. While this
information can aid a consumer in reacting to deprecation, it need not always be sufficient
as found in Chapter 7 of this thesis. Consumers usually need a good reason to react to
deprecation i.e., the reason behind the deprecation has to be severe enough for them to
react.

Uncovering the rationale behind the deprecation of a feature is not as trivial as it may
seem. During our investigation, we found that the reason is seldom mentioned in the
Javadoc itself. A much deeper search is needed to uncover the API producer’s rationale.
We had to look at the commit that deprecated the feature to understand from the commit
message as to what reason the producers had given for the change that was committed
to the repository. In the cases where the commit message was insufficient, we looked
at the issue tracker of the API to understand whether the API producers had discussed
the deprecation of the feature. We performed this manual analysis on 380 instances of
deprecated features belonging to the Spring, Guava, Hibernate, Guice and Mockito APIs.

Our investigation revealed ten reasons behind the deprecation of a feature. Some of
the reasons include: the feature was obsolete and superseded by a newer feature, the fea-
ture had a performance issue, the feature had a security flaw or the feature was deprecated
as the API wanted to introduce the usage of a design pattern. We also found three addi-
tional reasons to deprecate a feature that are not considered to be typical: the feature is
temporary, the feature is in beta mode, and the feature is an unimplemented stub feature.

Once we had uncovered all the reasons behind deprecation, we benchmarked them
across the APIs to determine the most popular reasons. We found that introducing a new
feature was the most popular reason followed by functional defects in the code. This
is important, as the presence of functional defects in the code is pertinent information
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that the consumers need as in such cases they would deem it necessary to react to the
deprecation. The absence of this information in the Javadoc is a barrier to the consumers
from making an informed decision.

This shows us that API producers have a diverse set of reasons behind deprecating a
feature. However, they do not communicate this reason with consumers. This points to a
need for API producers to better document their deprecations in the API.

Research Question 4. Can language designers improve the deprecation mechanism for
both API producers and consumers?

The deprecation mechanism is a language feature and its implementation is down to
the language designers that maintain it. Deprecation acts as a communication medium, it
is what allows API producers to directly inform API consumers that the API is going to
change.

We started by interviewing 17 API producers from both open-source (projects such as
JUnit, Spring, Mockito, and XWiki) and industry (companies such as HP, ING Bank, and
ABN Amro) to understand how they perceive the deprecation mechanism. They indicated
that in its current form in Java, the deprecationmechanismmet most of their needs, in fact,
they all perceive it as the only way in which they can communicate with the API consumer
through code. However, they would have preferred if they could indicate more explicitly
that in certain cases it was imperative that the consumer would change the call made to
the deprecated entity.

Our interviews with the producers uncovered that they were at times forced to use
the deprecation mechanism in a way that it was not designed i.e., they would mark fea-
tures that are not deprecated as it was the only way in which a compiler warning could be
thrown in Java. This meant that they added to the confusion surrounding the deprecation
mechanism as mentioned by Stuart Marks [117] (the lead Java language designer on dep-
recation). This finding is similar to what we found in Chapter 6 when manually analyzing
the documentation of deprecated API elements.

We surveyed 170 API consumers to understand how they perceive the deprecation
mechanism as well. They supported the changes that the Java language has implemented
in Java 9, however, they felt that these changes did not go far enough. Just like the pro-
ducers, they too demanded that the severity of a deprecation should be indicated by the
deprecation mechanism. Furthermore, they would like the API producer to provide a con-
crete timeline for the removal of the deprecated element. In the current state (even with
the Java 9 enhancements) the consumers have no idea as to when exactly a deprecated
element will be removed.

From the producer and consumer perspectives, we conclude that certain changes are
needed to the Java deprecationmechanism. These changes are: (1) introducing a way to in-
dicate the severity of a deprecation, (2) indicating a timeline for removal of the deprecated
feature and, (3) creating a generic warning mechanism that would reduce the chance that
the deprecation mechanism would be misused. We took these proposed enhancements to
two prominent (including the lead language designer on deprecation) Java language de-
signers to understand whether they would support such changes. They were behind the
first two changes, however, felt that the warning mechanism was too extreme a change
in Java and other alternatives should be explored first. We also asked API consumers and
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producers alike in a survey as to whether they would support these changes, they too
supported the first two changes and not the last one.

Our findings and proposed enhancements are not limited to deprecation in Java only.
Other languages such as Kotlin, Smalltalk, and Ruby could all benefit from making these
changes. For API consumers to be given amore completemessage through the deprecation
mechanism the communication medium must be as unambiguous as possible.

8.2 Implications
We discuss the implications we can derive from the work done in this thesis.

8.2.1 Better support for API consumers
By studying deprecation and its impact, we show that API evolution affects a significant
proportion of consumers. We observe that the majority of these consumers choose not
to react to the deprecation of the API element. Our investigation shows that the primary
reason for this is the cost involved in actually reacting.

Previous research has attempted to reduce the cost involved with consumers reacting
to API evolution. Henkel and Diwan created a tool called CatchUp! [27] that replays the
refactorings made by API producers to adapt to an API change, directly in the consumer
code. Xing and Stroulia [28] created a tool called DiffCatchUp that recommends alter-
native features from the API that a consumer can use based on how the API adapts to a
change. Dagenais and Robillard created a tool called SemDiff that recommends changes
to the consumer code for methods deleted by the API. Schrafer et al. [90] mine framework
change rules from consumer code that has already adapted to the API change and propose
the same to the consumer affected adversely by an API change. Kapur et al. [126] created a
tool called Trident that allows API consumers to automatically refactor their code. Savga
and Rudolf [127] developed a tool called Comeback! that aids consumers in upgrading
from one version of the API to a new one. Perkins et al. [128] created a tool that specifi-
cally targets the case of deprecated features in the API. Their approach involved replacing
a deprecated call with the actual method body of the deprecated feature, thus eliminating
the deprecated call from the consumer codebase.

All these aforementioned approached suffer from one or more of the following pitfalls:
(1) as shown in this thesis, consumers typically do not upgrade the version of the depen-
dency that they use, which implies that there is very little transition data available, (2) the
available data is generally in a limited scope and, (3) the suggestions made by such tools
are typically not semantic aware, thus their suggestions are not always applicable to all
consumers affected by the API evolution.

These facts point to a need for a semantic-aware tool able to efficiently port consumer
code from an older version of the API to a newer version with minimal effort. While in
this thesis we talk specifically about the deprecation context, this can be generalized to
most API evolution cases. More modern approaches to mine API usage semantics such as
that of Gu et al. [182] have the potential to solve the aforementioned issues.

As a direct consequence of such a tool, the cost of dealing with API evolution would be
reduced, thus allowing a larger number of API consumers to update the version of the API
that they use. This, in turn, would lead to the overall lessening of the technical debt that is
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prevalent in most software systems [183] and also reduces the overall cost associated with
the development of software. These reasons motivate the need for further research work
and developmental work to be invested in making such a tool viable in the near future.

8.2.2 Language features impact communication
The deprecation mechanism is provided by many languages. It acts as a one-directional
medium of communication between the API producers and the consumers. A deprecated
element conveys that the element is obsolete and going to be removed in a future version
of the API simultaneously the consumer is made aware of the replacement feature that
has been introduced and that should ideally be adopted. It is pivotal that the depreca-
tion mechanism allows for unambiguous communication between the API producer and
consumer.

In this thesis, we study the Java language deprecation mechanism to see whether all
needs are fulfilled. While the thesis is primarily Java-based, the needs that a useful depre-
cation mechanism should fulfill are language agnostic. We observe that the deprecation
feature in Java would benefit from giving producers the ability to indicate the severity
of a deprecated feature and the timeline within which it would be removed. Aside from
changing the deprecation mechanism, Java could also provide the API producers with al-
ternative ways in which compiler warnings could be thrown, thus providing producers
with a more fine-grained ability to communicate with the consumers.

We studied other languages and their deprecation mechanisms to see how they con-
form to our suggested improvements. We observed that none of the languages conform
to all of the features we proposed in this thesis: There is a scope for the improvement of
the deprecation mechanism in most languages.

Aside from deprecation, a language feature can have a profound impact on how pro-
ducers can communicate with consumers. One such example is the introduction of the
@Nullable annotation that allowed the API producer to indicate that a return value or pa-
rameter can be null, thus communicating clearly with the consumer as to what to expect
from the API element.

Such fine-grained annotations can help make an API more usable as it allows the pro-
ducer to convey more information to the consumer. It remains an open challenge to
uncover what other annotations would serve a purpose in this context. Currently, API
producers have introduced ad-hoc annotations such as @Beta (introduced by both Guava,
XWiki, and JUnit) to convey more information to the consumer.

Recently, the Java language designers have realized that changes are necessary to im-
prove the communication between the producer and the consumer. They have changed
the deprecation mechanism in Java 9, introducing a way for API producers to indicate that
certain deprecated features are scheduled for removal in a future release. They also allow
API producers to mention in which version the feature was deprecated, thus giving the
consumer an indication of the period that the feature that they want to use are using is
deprecated. These changes are an improvement over the original deprecation mechanism
that has been present since Java 5. However, these changes do not go far enough.

In the future, we hope to implement the changes that have been proposed in this thesis
and evaluate the utility of our proposal in the real world. It is also our hope that other
languages adopt these changes if their utility can be definitively proven.
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8.2.3 Laws of API evolution
Revisiting the introduction, we see that the phenomenon of software evolution has been
studied in detail over the years. The seminal work in this field is that of Lehman [5] who
defined the eight laws of software evolution. These laws describe the balance between
development effort of new features in a system and factors that slow down the progress
of the evolution of the system.

In this thesis, we have investigated the reasons behind APIs evolving. In chapter five,
we uncover seven different evolution policies, which range from frequently introducing
new API elements and removing existing ones to never changing the API. Both extremes
are contradictory to the software evolution laws. For instance, the case where the API
continually evolves would contradict the law “Conservation of Familiarity” as the API con-
sumers would be less familiar with the new API elements and how to use them, however,
in some cases the API has to change completely (e.g., JUnit completely changed its inter-
face from major version 4 to major version 5 to adapt to changes in the Java language). In
the case that the API never evolves, it would contradict the laws “Continuing Change” and
“Continuing Growth” as it would not be evolving to keep up with consumer needs, how-
ever, the lack of change of the API can actually be perceived as a positive by consumers
as it would imply lower cost of maintenance of their code.

The original eight laws were written to apply to E-type systems (systems written to
perform a real-world activity). However, in the case of APIs, these laws in the current
form might not be entirely applicable. The balance between software development effort
and evolution of the API should not take into account only the case of the API producers,
but also the API consumers. Any change made to an API directly impacts its consumers,
and they should be considered to be the primary stakeholders of the system.

Laws for API evolution should take into account the delicate balance between the
API and the consumers that depend on it. Essentially, such laws need to multi-faceted
and be designed to maintain the balance between development effort of new features, the
evolution of the API and the impact of changes on the consumer. This can lead to the
creation of a new set of laws: “The Laws of API evolution”.

8.3 Concluding remarks
In this thesis, we focus primarily on API evolution. We study this from the perspective of
the API consumer to understand as to how they deal with API evolution and what issues
they face when dealing with new versions of the API. From the producer perspective, we
seek to understand how they support the consumers and what behavior they expect from
the consumers when it comes to dealing with API evolution. Finally, we analyze how
language designers can have an impact on consumer behavior regarding API evolution.
We see that API consumers need to be provided a lot more support when it comes to
dealing with deprecation. We hope that in the future more research effort will be focused
on this problem.
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Glossary
API Application Programming Interface, interface of a pre-defined set of functionality

that can be resued by a developer in their code.

AST Abstract Syntax Tree, an AST is a tree-like representation of source code tokens.

CI Continuous Integration.

CRAN Comprehensive R Archive Network, repository with R packages.

Deprecation The marking of an API element as defunct or obsolete and is indicated as
something that will be removed in a future version of the API.

fine-GRAPE fine-grained APi usage extractor.

GUI Graphical User Interface.

IDE Integrated Development Environment, dedicated tool designed to aid developer dur-
ing their development process, for example: Eclipse or IntelliJ.

JAR Java ARchive, a file type that packages Java class files.

JEP Java Enhancement Proposal, is a process to collect proposals for enhancements to
Java.

JLS Java Language Specification, is a set of rules that specifies the behavior of the Java
language.

JSR Java Specification Request, a request that can be made to enhance or change Java.

ORM Object Relation Mapping, a mapping between Java objects and a database schema.

OSS Open Source Software.

POM Project Object Model, a configuration file used by Maven to build a Java project.

PR Pull Request.

Reaction Reaction, defined as the action taken by an API consumer when an deprecated
API element is encountered.



184 Glossary

RSW Removal Severity Warning, is a proposal to enhance the deprecation mechanism in
Java, more details on which can be found in chapter 7.

SDK Software Development Kit.

SQL Structured Query Language.
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