

Delft University of Technology

Neuromorphic Control using Input-Weighted Threshold Adaptation

Stroobants, Stein; De Wagter, Christophe; De Croon, Guido

DOI
10.1145/3589737.3605963
Publication date
2023
Document Version
Final published version
Published in
ICONS 2023 - Proceedings of International Conference on Neuromorphic Systems 2023

Citation (APA)
Stroobants, S., De Wagter, C., & De Croon, G. (2023). Neuromorphic Control using Input-Weighted
Threshold Adaptation. In ICONS 2023 - Proceedings of International Conference on Neuromorphic Systems
2023 Article 2 (ACM International Conference Proceeding Series). Association for Computing Machinery
(ACM). https://doi.org/10.1145/3589737.3605963
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3589737.3605963
https://doi.org/10.1145/3589737.3605963

Neuromorphic Control using Input-Weighted Threshold
Adaptation

Stein Stroobants
s.stroobants@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Christophe De Wagter
Delft University of Technology

Delft, The Netherlands

Guido C.H.E. de Croon
Delft University of Technology

Delft, The Netherlands

ABSTRACT
Neuromorphic processing promises high energy efficiency and
rapid response rates, making it an ideal candidate for achieving
autonomous flight of resource-constrained robots. It can be espe-
cially beneficial for complex neural networks as are used for high-
level visual perception. However, fully neuromorphic solutions also
need to tackle low-level control tasks. Remarkably, it is currently
still challenging to replicate even basic low-level controllers such
as proportional-integral-derivative (PID) controllers. Specifically,
it is difficult to incorporate the integral and derivative parts. To
address this problem, we propose a neuromorphic controller that
incorporates proportional, integral, and derivative pathways during
learning. Our approach includes a novel input threshold adapta-
tion mechanism for the integral pathway. This Input-Weighted
Threshold Adaptation (IWTA) introduces an additional weight per
synaptic connection, which is used to adapt the threshold of the
post-synaptic neuron. We tackle the derivative term by employ-
ing neurons with different time constants. We first analyze the
performance and limits of the proposed mechanisms and then put
our controller to the test by implementing it on a microcontroller
connected to the open-source tiny Crazyflie quadrotor, replacing
the innermost rate controller. We demonstrate the stability of our
bio-inspired algorithm with flights in the presence of disturbances.
The current work represents a substantial step towards control-
ling highly dynamic systems with neuromorphic algorithms, thus
advancing neuromorphic processing and robotics. In addition, inte-
gration is an important part of any temporal task, so the proposed
Input-Weighted Threshold Adaptation (IWTA) mechanism may
have implications well beyond control tasks.

KEYWORDS
Neuromorphic control, Spiking Neural Networks (SNNs), Micro-
Air-Vehicles (MAVs), Rate Coding, Threshold Adaptation

ACM Reference Format:
Stein Stroobants, Christophe De Wagter, and Guido C.H.E. de Croon. 2023.
Neuromorphic Control using Input-Weighted Threshold Adaptation. In
International Conference on Neuromorphic Systems (ICONS ’23), August 1–3,
2023, Santa Fe, NM, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3589737.3605963

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0175-7/23/08.
https://doi.org/10.1145/3589737.3605963

1 INTRODUCTION
Autonomous drones are envisaged for a wide range of applica-
tions [22]. Many of these applications require a high computational
capability, which enables them to accomplish tasks solely based on
data acquired from their onboard sensors, such as cameras and GPS-
sensors. Currently, this is out of reach for many drones, since they
are very limited in terms of size, weight, and processing [19]. Deep
neural networks require heavy, power-hungry processors. That is
why there is a surge of interest in bio-inspired, neuromorphic pro-
cessing, which carries the promise of low-latency, energy-efficient
processing of deep neural networks [18]. Although there is a lot
of focus on complex neural networks for high-level visual per-
ception [11], a fully neuromorphic solution needs to encompass
low-level control [1]. Remarkably, it is currently still highly chal-
lenging to replicate even simple low-level controllers such as PID
controllers with spiking neural networks. An example of such a
low-level controller is the fascinatingly elegant biological system
that affects the haltere reflexes of the drosophila melanogaster [8].

Recently, an increasing amount of robotics research has been
focused on developing spiking neural networks (SNNs) for control.
Specifically for controlling flying robots, examples include Clawson
et al. [4], which uses reward-modulated synaptic plasticity to track
a Linear-Quadratic Regulator (LQR) for a flapping wing drone. In

Figure 1: We propose a novel spiking neural network mech-
anism for realizing the integral term in a spiking PID con-
troller and analyze the use of different time constants for
the derivative term. For the integral term, we introduce
Input-Weighted Threshold Adaptation, leading to a second
weight per synapse. These mechanisms are demonstrated
with onboard attitude rate control of a tiny Crazyflie drone.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0001-5733-1677
https://orcid.org/0000-0002-6795-8454
https://orcid.org/0000-0001-8265-1496
https://doi.org/10.1145/3589737.3605963
https://doi.org/10.1145/3589737.3605963
https://doi.org/10.1145/3589737.3605963
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589737.3605963&domain=pdf&date_stamp=2023-08-28

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Stroobants, et al.

Qiu et al. [17], a neuro-evolution strategy is utilized to learn a con-
troller for a drone and is shown to outperform a PID in simulation.
Closer to our work are studies that mimic the behavior of conven-
tional controllers with SNNs. Among those, the benefits of a spiking
end-to-end control pipeline are especially clear in Vitale et al. [21].
In this work, the rotation of a bi-rotor was controlled by combining
a neuromorphic implementation of the Hough transform with a
population-coded spiking implementation of the conventional PID
controller. They showed that due to the high update rates and asyn-
chronous data flow from the event camera and neuromorphic chip,
much faster responses could be obtained than with a conventional
control setup. The accuracy of this network scaled quadratically
with the number of neurons, putting a limit on the resolution. In
our previous work, the complexity of such a PID network was re-
duced to make it scale linearly with the number of neurons, and the
network was used to control the altitude of a free-flying drone in a
real-world test [20]. However, the integral and derivative paths in
both these works showed clear limitations, imposed by the number
of neurons used to represent the signals.

Besides population coding, also rate coding was used to recreate
conventional control. For example, in Zaidel et al. [23] the joints
of a 6-DOF robotic arm were controlled by a rate-encoded PID
controller, creating the integral pathway by having self-recurrent
connections and the derivative by adopting different time constants.
Despite using this self-recurrency in the integral pathway, there
still remained a steady-state error, showing the incapability of error
integration over time.

In all these examples the seemingly simple tasks of calculating
the integral and derivative over time have proven to be difficult
for the current-based Leaky Integrate-and-Fire (LIF) model. This
may be due to the simplicity of the LIF neuron used in most ro-
botics research. Popular for its simplicity, it fails to deal with the
phasic-tonic response exhibited by biological neurons [13]. Lastly,
although all these works show clear steps toward a full end-to-end
neuromorphic pipeline, none of them has demonstrated the ability
to control the lowermost loop of a real, free-flying drone.

We present a neuromorphic controller that can more closely
mimic PID controllers. We make the following contributions: (1)
We introduce Input-Weighted Threshold Adaptation (IWTA) to
achieve more accurate integration. (2) We systematically study the
capabilities and limitations of neurons with slow and fast time
constants for obtaining the derivative term. (3) We analyze the
advantages and limitations of the introduced mechanisms. (4) We
demonstrate the novel neuromorphic controller with the onboard
attitude rate control of a tiny (≈30 gram) flying Crazyflie robot
(shown in Figure 1). Using only 320 neurons and 800 synapses
per PID line, it is designed to take advantage of the unique char-
acteristics of neuromorphic computing, such as high processing
speed and fault tolerance, while maintaining the promise of low
power consumption when implemented in specialized hardware.
The network is automatically trained to closely track the output of
a conventional PID using backpropagation-through-time (BPTT),
removing the necessity for manual tuning of network parameters.

2 METHODS
The entire SNN consists of multiple groups of LIF neurons, each re-
sembling one of the separate parts of a conventional PID controller.
All groups consist of an encoding layer, transforming floating point
inputs to rate encoded spike-trains representing positive and nega-
tive values. These spikes propagate to neurons that respond pro-
portionally to the input, to the accumulated signal over time or
to the rate of change of the input. These independent systems are
discussed in detail below.

Figure 2: Overview of the encoding layer. The top graph
shows the firing probability for a certain stimulus for pos-
itive and negative encoding neurons. The bottom graph
depicts a typical sequence of encoded gyroscope measure-
ments. The average spike rate of the encoded positive and
negative spikes is shown in blue and red and the input se-
quence is shown in dashed green.

2.1 Encoding - floating points to spikes
For our network, a rate encoding scheme has been chosen that has
separate channels for positive and negative values. To ensure a
certain spiking frequency at an input stimulus, encoding is done
according to two (symmetrical) tuning curves. These tuning curves
represent the spike probability of an encoding neuron to a given
stimulus, and by comparing this to a random-generated number,
either a spike (1) or not (0) is produced by the neuron. Although
more complex functions can be chosen for these tuning curves, in
this work a linear relation between spiking frequency and stimulus
was chosen. This linear relation between input 𝑖 (𝑡) and output
spike probability 𝑃 (𝑠 (𝑡)) at time 𝑡 is dictated by the parameters 𝛼

Neuromorphic Control using Input-Weighted Threshold Adaptation ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA

and 𝛽 as follows:

𝑃 (𝑠 (𝑡)) =

0 𝑟𝛽𝑖 (𝑡) + 𝛼 ≤ 0
𝑟𝛽𝑖 (𝑡) + 𝛼 0 ≤ 𝑟𝛽𝑖 (𝑡) + 𝛼 ≤ 1
1 𝑟𝛽𝑖 (𝑡) + 𝛼 ≥ 1

(1)

𝑟 =

{
1 positive neuron
−1 negative neuron

(2)

The value of 𝑟 depends on whether the encoding neuron is positive
or negative. This is visualized in Figure 2 where the set of tuning
curves used in this work and the resulting output spikes are shown
for a typical input sequence measured with gyroscopes.

2.2 Proportional - steering towards setpoint
The output of the proportional layer should drive the system from
its current state to a setpoint by responding linearly to the error.
In this network, this is done by feeding the output of an encoding
group, as described above, to two current-based Leaky Integrate-
and-Fire (LIF) neurons, again each representing either positive or
negative control commands (see Section S1.1 for the model used).
The spikes from this layer are sent to an output leaky integrator,
acting as an exponential filter to smooth the response. To ensure a
balanced response, the synaptic weights in the network must be
symmetrical for the positive and negative inputs. By using more
than one group, the stochastic effects induced by the encoding layer
can be reduced and the accuracy increased.

Figure 3: Structure of the proportional neuron groups. The
value is encoded into "positive" and "negative" spikes and
sent via symmetrical weights to a layer of Leaky Integrate
and Fire neurons. The spikes emitted by these neurons are
sent to a Leaky Integrate output neuron, resulting in an ex-
ponential filtered output.

2.3 Integral - ensuring zero steady-state error
The integral neurons should remove the steady-state error, unre-
solved by the proportional control. Initially, one may think that
LIF neurons could integrate by setting the decay parameter to one
(no decay). However, as soon as a spike occurs the integrated mem-
brane potential is reset. Hence, if the membrane potential is not
read out directly and the integrator has to be encoded by spikes, a
different mechanism is required. We propose a different solution
in this work inspired by threshold adaptation mechanisms and the
modulatory effects certain receptors exhibit. There is a synaptic
connection between the positive and negative encoding neurons to

both neurons, as opposed to the proportional connections where
there is only a connection between the positive neurons on the one
hand and between the negative neurons on the other. Besides the
synaptic weights, there is also a signal flowing from the encoding
neurons to the thresholds of the neurons in the integration layer,
increasing or decreasing the threshold based on the sign. Previous
work has studied various mechanisms for adapting the threshold
based on inputs, often to prevent spike saturation. For example, the
regular Adaptive LIF (ALIF), adapts its threshold based on its own
spike activity [3]. As a variation of the ALIF, Paredes-Vallés et al.
[16] proposes to deduct the pre-synaptic spike trace from incoming
spikes, to discern features under varying input statistics, such as
the per-pixel firing rate of event camera data. In our method, how-
ever, the threshold is regulated based on weighing the incoming
activity. A spike in the positive integration neuron coming from
the positive encoding neuron decreases the threshold with a weight
of 𝜃add (therefore increasing the spiking rate), while the negative
encoding neuron causes an increase with 𝜃add (thus decreasing the
spiking rate), and vice-versa for the negative integration neuron.
This results in the following update rule for the threshold:

𝜃 thr (𝑡 + 1) = 𝜃 thr (𝑡) + 𝜃add (𝑠− (𝑡) − 𝑠+ (𝑡)), (3)

with 𝑠− (𝑡) and 𝑠+ (𝑡) the negative and positive incoming spikes,
respectively. Now, the encoding neurons act as a constant driving
synaptic signal to maintain a certain activity in the integration
layer, while the actual spiking rate is governed by the variation in
the threshold. A common problem with PID regulators is integral
windup, where actuator saturation or large changes in setpoint
might lead to large amounts of accumulated error [2]. In our LIF
model, we solve this by limiting the amount of change in the thresh-
old, keeping the threshold in the range of [0, 2𝜃 thr] where 𝜃 thr is
the base threshold. If the threshold is zero, the integrator will spike
with the maximal spiking frequency, which is determined by the
time step and refractory period. It could be noted that multiple

Figure 4: Structure of the integral neuron groups, bearing
the Input-Weighted Threshold Adaptation (IWTA) mecha-
nism. Next to the regular synapses, additional connections
have been added that adapt the threshold of the LIF neurons
according to their weights.
changes to this model are imaginable. For instance, if a decay term
is added to the threshold it more closely resembles the ALIF, where
the threshold converges back to a base value. In biology, this kind of
input adaptation is similar to certain neurotransmitters with modu-
latory effects [7]. Also, every input group now uses only a single

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Stroobants, et al.

positive and negative encoding neuron, with one update parameter
𝜃add. One could imagine using a larger group of encoding neurons,
separate update weights 𝜃add per input connection and including
these weights in the training procedure. In this work, this remains
unexplored since it focused on the task of integrating errors for
which the proposed set of connections was sufficient.

2.4 Derivative - decreasing overshoot
The derivative action should be proportional to the change over
time, countering any potential overshoot. To obtain this, a similar
structure to the proportional groups is used (as in Figure 3), but
now two of these groups are used in unison, instead of one. One
of these groups has very fast time constants (higher weights, but
faster decay), allowing it to react quickly proportionally to the in-
put. The other has slower time constants (lower weights, but slow
decay), resulting in an output that is a slightly delayed version of
the input. By taking the difference between these two groups, we
get a measure of the change over time which can be used as the
derivative term in our PID controller. Using multiple of these deriv-
ative groups again increases the accuracy of the overall estimate.
For the derivative, this is especially important, as the derivative is
usually already quite noisy due to noisy sensor measurements.

2.5 Training and tuning of the network
Since the network has a substantial number of parameters that all in-
fluence the performance of the controller (such as synaptic weights,
decay parameters and encoding parameters) and the parameters
all depend on the time constants and gains of a specific controller,
manual tuning is undesirable. Therefore, it was chosen to use the ar-
chitecture of the network as described above as a starting point and
fine-tune the parameters using Backpropagation-Through-Time
(BPTT). Because the LIF threshold function is non-differentiable, it
was chosen to apply a surrogate gradient in the backwards-pass of
BPTT [14]. Specifically, the surrogate gradient used in this work is
the derivative of the arc-tangent as was proposed in [9].

To force a response that is close to that of the target, the Mean
Squared Error (MSE) was used as the dominant term in the cost
function. Since during training, especially the derivative term was
very sensitive to converging to local minima, it was chosen to
add a second cost term for the derivative based on the Pearson
correlation coefficient 𝜌 (𝑥, 𝑥) [5]. Since we have a minimization
problem and the perfect coefficient 𝜌 is 1, we use 1 − 𝜌 (𝑥, 𝑥) as
the cost, further referring to it as the Pearson loss. For derivative
control, it is very important that the control action is at least of
the correct sign because failing so might mean instabilities can
arise. The Pearson loss promotes a linear relationship between both
inputs and therefore supports the network to produce the correct
sign. Finally, the parameters of the network need to stay within
certain bounds, decay parameters for instance cannot be larger
than 1 or smaller than 0. To force parameters to stay within these
bounds, a linear exterior penalty function perr (𝜙) is added to the
cost function equal to the distance to the boundary. This results in
the following cost function used in the BPTT training algorithm:

𝐽 (𝜙) = MSE(𝑥, 𝑥) + (1 − 𝜌 (𝑥, 𝑥)) + perr (𝜙) . (4)

In this cost function, 𝑥 and 𝑥 are the measured- and estimated
values respectively, 1− 𝜌 (𝑥, 𝑥) the Pearson loss. perr (𝜙) is the error
based on the parameters 𝜙 , which is zero for all values of 𝜙 inside
their specific range but of size |𝜙 | for those outside. A table of
all parameters included in the training, together with their valid
ranges, can be found in the supplementary information.

The data used for training was accumulated by logging the PID
values of the regular Crazyflie controller on an onboard 𝜇SD card
during manual flight. Care was taken to excite the system enough to
gather a broad range of possible values a controller might encounter.

3 ANALYSIS SNN CONTROLLER
First, we look at the suitability of the multiple time constants for
differentiation and afterward, we evaluate the IWTA mechanism
for integral control.

3.1 Derivative
To assess the ability of a network of LIFs with different time con-
stants to estimate the derivative we start by looking at the response
of both the fast and slow groups to an illustrational gyroscope se-
quence, obtained with the Crazyflie, after training. As can be seen
in Figure 5, the average spiking rate of the slow groups is approx-
imately a delayed version of the fast groups. By subtracting the
delayed version we obtain a result similar to first-order backward
difference, usually used in robotics to calculate the derivative of sen-
sor data. We noticed, however, that a particular set of time constants

Figure 5: Example response to a common gyroscope input
sequence recorded with the Crazyflie of both derivative
groups. The top graph shows the average spiking rate of
the fast and slow groups. As can be seen, the slow group
is slightly delayed and the difference between both can be
seen as a measure of the rate of change over time. In the bot-
tom figure, this is visible as the derivative estimated with
the SNN is compared to the measured derivative.
fits chiefly to the data it was trained upon. To further investigate
this behavior, the response to sine waves with different frequencies
was studied. Figure 6 shows the MSE and Pearson loss for a range
of sine waves with different frequencies after training on two sets
of frequencies. The network was trained on a smaller range of sine

Neuromorphic Control using Input-Weighted Threshold Adaptation ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA

Figure 6: MSE and Pearson loss for a range of derivatives of
sine waves after training on two sets of frequencies, 5-7Hz
and 2-10Hz. Green lines correspond to the smaller range,
and orange to the larger while the solid lines show MSE
and dotted Pearson loss. The darker-colored area depicts
the range on which the smaller set was trained. Three sub-
figures are also included, demonstrating the response to a
frequency A) below, B) inside and C) above the smaller train-
ing range with the SNN response in green and orange and
real derivative in red.

waves between 5 and 7Hz, and also on a much wider range of 2
to 10Hz. Afterwards, the response to the entire frequency range
was compared for both trained networks. Although the network
can accurately determine the derivative for the middle frequencies
(B), it is too fast for lower frequencies (A), where the network in
blue rises to its peak faster than the real derivative in red, and too
slow for higher ones (C) where the network reaches its tipping
point later. It is also visible that even with the larger range of input
frequencies during training, the different time constants cannot
correctly represent the entire band. Although the overall error gets
reduced when training on the large band, the response for the lower
and higher frequencies is still inaccurate. This suggests that a dif-
ferent mechanism would need to be introduced in order to obtain
perfect differentiation independent of input frequency.

The importance of both cost terms in the loss function is also
visible; the MSE cost for lower frequencies is relatively lower than
the Pearson loss and for higher frequencies vice versa. Also, the
amplitude of the SNN does not scale with the frequency, as is
the case in the real derivative. This asserts the need for a reliable
training procedure to tune the network to the application used, as
was done in this work.

3.2 Integral
Furthermore, we have looked into the potential of the proposed
Input-Weighted Threshold Adaptation (IWTA)mechanism. To present
the importance of a functioning integrator, the classical control
problem of the double integrator is used as an example. We have
implemented the discrete-time equations of the double-integrator

as

𝑥 (𝑡 + 𝑑𝑡) =
[
1 𝑑𝑡

0 1

]
𝑥 (𝑡) +

[
1
2𝑑𝑡

2

𝑑𝑡

]
(𝑢 (𝑡) − 𝑔), (5)

𝑦 (𝑡) =
[
1 0

]
𝑥 (𝑡), (6)

where𝑢 (𝑡) is the control input and 𝑔 is a constant input disturbance.
In Figure 7 we show the response of this system to three differ-
ent SNNs; the LIF SNN with only PD components, an SNN with
PD components and an integrator group that has fully recurrent
connections (as was used in [23]) and lastly our SNN with IWTA.
The system starts from an initial state of 𝑥0 = [0.3, 0.0]T and gets
a setpoint 0.0. The constant disturbance force 𝑔 was chosen to be
4.0. First, the SNN without any integrating mechanism settles at a
steady-state error of −0.1. Second, the SNN with recurrent connec-
tions manages to reduce this steady-state offset, but not remove it
completely. Due to representation errors, the recurrent connections
cannot perfectly describe the integrated error. This means that the
accumulated error is either underrepresented or overrepresented. In
the former case, the integrator leaks information each time step and
thus never completely removes the steady-state error. The green
lines in Figure 7 show this, since it clearly reduces the steady-state
error, but does not remove it completely. In the latter, the feedback
amplifies the error at each time step which makes the system unsta-
ble and leads to all integrator neurons spiking at each step. Finally,
the network that uses IWTA reaches a zero steady-state error.

Figure 7: Comparison of three controllers to a setpoint-
control task with an unknown input disturbance. The SNN
with PD control only shows a constant offset from the set-
point after converging. The SNN with recurrency is clearly
able to reduce the steady-state error, but due to representa-
tion error retains a small offset. The network equipped with
Input-Weighted Threshold Adaptation effectively removes
the steady-state error.

4 REAL-WORLD EXPERIMENTS
After the components are evaluated separately in simulation on
toy problems, the use of the complete network was verified on a
real-world problem.

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Stroobants, et al.

4.1 Hardware implementation
To demonstrate the capabilities of our approach, we have imple-
mented it as the lowest control layer of the tiny open-source quadro-
tor Crazyflie [10] (See Figure 1). The Crazyflie was enriched with
enough computational power by the development of a deck module
based on a Teensy 4.0 development board allowing the SNN to run
in real-time (500Hz) in C++ on the ARM Cortex-M7 microprocessor.
For the real-world tests, two scenarios were discerned; 1) manual
flight and 2) position control. For manual control the Crazyflie
receives attitude (roll/pitch/yaw) commands from a (manually con-
trolled) radio transmitter and the higher-level attitude controller
transforms these into rate setpoints. In the case of position con-
trol, the Crazyflie receives position measurements obtained with a
Motion Capture system along with position commands via radio
and via the same high-level controller these are converted to rate
setpoints. These setpoints are sent, along with the gyroscope mea-
surements from the onboard Inertial Measurement Unit (IMU), via
UART to the deck where the SNN controller is evaluated at 500Hz.
The torque command outputs of the neural controller are in turn
sent back to the Crazyflie via the same UART connection, where
they are inserted directly in the motor mixer. The total take-off
weight of the Crazyflie including the Teensy 4.0 is only 35 grams,
allowing for approximately 5 minutes of flight time.

Figure 8: Position setpoint responses of both the SNN con-
troller (top) and the conventional PID (bottom). For both,
the positions asmeasured by theMotion Capture system are
shown in blue, and setpoints in red. Although the SNN con-
troller has a slightly noisier response, its trajectory is very
similar to the PID.

4.2 Flight tests
To demonstrate the capabilities of the network, a position-control
test was performed along with manual flight. First, the Crazyflie
was ordered to take off at its current position and after 2 seconds
it was ordered to move to [0.5, 0.0] in 2 seconds. This test was
repeated 10 times for both the SNN controller and the regular PID
controller as a benchmark. The results of all these 10 tests are
shown in Figure 8. In the top two plots, the response of the SNN

controller is shown. Among all ten tests, the controller remained
stable and was able to follow the setpoint. The trajectory followed
is very similar to that of the regular PID controller. However, on
the 𝑦-results, as well as the inset axes for 𝑥 , it is visible that the
SNN controller has slightly larger deviations around the setpoint.
These can be caused by the stochasticity in the encoder. Since the
input floating point value is reduced to a binary spiking input, the
accuracy of the encoding is influenced by the encoding parameters
but mostly by the number of input groups used. For this work, only
40 groups were chosen per P, I and D pathway for each control
axis. Since the P and I terms require 2 neurons per group and the D
term 4, this sums up to a total of 320 neurons per controller. This
small number of neurons was chosen to showcase the possibilities
of using small-scale systems for neuromorphic control. However,
increasing the number of input groups would make the spiking
representation of the input signals more accurate.

Besides the position-control tests, the response to manual flight
was performed with which the response of the different parts of the
controller on a real-world system could be analyzed. In Figure 9, one
second of such a test is shown. It is evident that the proportional
part is very accurate, and the integral pathway is able to effectively
deal with prolonged errors. The response of the derivative pathway
is less accurate. This is most likely caused by themechanisms shown
in the derivative analysis, earlier in this work (Section 3.1), where
it was shown that the derivative pathway tunes to specific delays.
Even though the network is trained on real flight data, the range
in delays might be too large which results in larger errors for the
lowest and highest frequencies. For control of the Crazyflie, this
is still acceptable since the derivative control path still effectively
dampens the response by countering large derivatives in the input.

5 CONCLUSION
In this work, we have proposed a novel input threshold adaptation
mechanism, Input-Weighted Threshold Adaptation (IWTA). This
mechanism adds extra weights per input connection that regulate
the spiking threshold of the LIF neuron. By doing so, it enhances
the network with the ability to integrate information over time,
something the regular LIF model is unable to do.

Also, we have shown that neuromorphic controllers using rate-
based encoding can be used to control highly unstable underactu-
ated systems. To demonstrate this, we have shown control of the
innermost loop of a real flying tiny quadrotor, the Crazyflie. Using
only 320 neurons per control axis, the network showed to be capa-
ble of stable and robust control, with the potential of extremely low
delays due to the high inference speed of neuromorphic hardware.
By a straightforward training method using surrogate gradients
and Backpropagation Through-Time, the network can be fine-tuned
to a very limited amount of data from a real-world flying drone.
Due to the sparse connections, the network is able to optimally
benefit from the advantages of neuromorphic hardware.

In future work, we intend to apply the IWTA mechanism to
different tasks and benchmarks to further establish its potential.
Even though the different time constants for the derivative neu-
rons allow us to dampen the control response, we have shown that
they are limited to a specific frequency. We will also investigate
the application of IWTA on the derivative neurons to improve the

Neuromorphic Control using Input-Weighted Threshold Adaptation ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA

Figure 9: Output of the SNN controller in blue versus target
values computed with a conventional PID controller in red
for a manually controlled flight. The three uppermost fig-
ures depict the individual components of the controller. As
can be seen, the SNN controller produces very similar results
to the reference controller. The lowermost figure shows the
input to the network; the target rotational rate𝜙 and the rate
measured by the gyro.

accuracy over a much broader range of frequencies. The availabil-
ity of a neuromorphic controller, such as a PID, that can be easily
implemented on neuromorphic hardware plays a crucial role in
completing the neuromorphic control loop in robotics. These con-
trollers can be readily integrated into pipelines utilizing event-based
algorithms, like a vision-based control system using an event cam-
era as in [15]. Lastly, the fast-paced and unpredictable movements
of drones demand high-performance computing that traditional
hardware struggles to provide, making neuromorphic processing
an attractive alternative.

SUPPLEMENTARY INFORMATION
1.1 Current-based Leaky-Integrate-and-Fire

neuron
The current-based Leaky-Integrate-and-Fire (CUBA-LIF) is widely
used in literature, available in most SNN simulators and commonly
used in neuromorphic hardware, such as Intel’s Loihi [6]. The
discrete-time dynamic equations of the LIF neuron are as follows:

𝜐𝑖 (𝑡 + 1) = 𝜏mem
𝑖 𝜐𝑖 (𝑡) + 𝑖𝑖 (𝑡), (7)

𝑖𝑖 (𝑡 + 1) = 𝜏
syn
𝑖

𝑖𝑖 (𝑡) +
∑

𝑤𝑖 𝑗𝑠 𝑗 (𝑡), (8)

where 𝜐𝑖 (𝑡) is the membrane potential at time 𝑡 , 𝜏mem
𝑖

∈ [0, 1] and
𝜏
syn
𝑖

∈ [0, 1] the membrane and synaptic time constants, 𝑖 (𝑡) the
synaptic current at time 𝑡 ,𝑤𝑖 𝑗 the synaptic weight between neurons

𝑖 and 𝑗 , and 𝑠 𝑗 a binary value representing either a spike or no spike
coming from the pre-synaptic neuron 𝑗 . To determine whether a
neuron emits a spike, the membrane potential is reduced with the
neurons firing threshold 𝜃 thr

𝑖
and passed through the Heaviside

step function to determine the output of the neuron:

𝑠𝑖 (𝑡) = 𝐻 (𝜐𝑖 (𝑡) − 𝜃 thr𝑖) =
{
0, 𝜐𝑖 (𝑡) − 𝜃 thr

𝑖
≤ 0

1, 𝜐𝑖 (𝑡) − 𝜃 thr
𝑖

> 0
(9)

When the Heaviside function resolves to 1 and the neuron emits
a spike, the membrane potential 𝜐𝑖 (𝑡) is reduced by the threshold
value (in literature this is known as a soft reset [12]).

1.2 Trained parameters and ranges
In Table S2, all the parameters used in the network are given, along
with the specified range and the number that was used in the
Crazyflie application.

Table S2: All parameters trained in the network, their given
range and how many are used for the real-world tests.

Parameter Range Count

P 𝜏𝑖 (current decay) [0, 1] 80
𝜏𝑣 (voltage decay) [0, 1] 80
𝑤𝑖 (input weight) [0, inf] 40
𝑤𝑜 (output weight) [0, inf] 40

I 𝜏𝑖 (current decay) [0, 1] 80
𝜏𝑣 (voltage decay) [0, 1] 80
𝑤𝑖 (input weight) [0, inf] 40
𝑤𝑜 (output weight) [0, inf] 40

D 𝜏𝑖 (current decay) [0, 1] 160
𝜏𝑣 (voltage decay) [0, 1] 160
𝑤𝑖 (input weight) [0, inf] 80
𝑤𝑜 (output weight) [0, inf] 80

ACKNOWLEDGMENTS
This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA8655-20-1-7044.

REFERENCES
[1] Ignacio Abadía, Francisco Naveros, Eduardo Ros, Richard R Carrillo, and Niceto R

Luque. 2021. A cerebellar-based solution to the nondeterministic time delay
problem in robotic control. Science Robotics 6, 58 (2021).

[2] Karl Johan Astrom and Lars Rundqwist. 1989. Integrator windup and how to
avoid it. In 1989 American Control Conference. IEEE, IEEE, Pittsburgh, PA, USA,
1693–1698. https://doi.org/10.23919/ACC.1989.4790464

[3] Romain Brette and Wulfram Gerstner. 2005. Adaptive exponential integrate-and-
fire model as an effective description of neuronal activity. Journal of neurophysi-
ology 94, 5 (2005), 3637–3642.

[4] Taylor S Clawson, Silvia Ferrari, Sawyer B Fuller, and Robert J Wood. 2016.
Spiking neural network (SNN) control of a flapping insect-scale robot. In 2016
IEEE 55th Conference on Decision and Control (CDC). IEEE, IEEE, Las Vegas, NV,
USA, 3381–3388. https://doi.org/10.1109/CDC.2016.7798778

[5] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jing-
dong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson Correlation Coefficient.
Springer, Berlin, Heidelberg, 1–4. https://doi.org/10.1007/978-3-642-00296-0_5

https://doi.org/10.23919/ACC.1989.4790464
https://doi.org/10.1109/CDC.2016.7798778
https://doi.org/10.1007/978-3-642-00296-0_5

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Stroobants, et al.

[6] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 1 (2018), 82–99.

[7] Gaetano Di Chiara, Micaela Morelli, and Silvana Consolo. 1994. Modulatory func-
tions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions.
Trends in neurosciences 17, 6 (1994), 228–233.

[8] Michael H Dickinson. 1999. Haltere–mediated equilibrium reflexes of the fruit
fly, Drosophila melanogaster. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences 354, 1385 (1999), 903–916.

[9] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and
Yonghong Tian. 2021. Incorporating learnable membrane time constant to en-
hance learning of spiking neural networks. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. CVPR, Virutal, 2661–2671.

[10] Wojciech Giernacki, Mateusz Skwierczyński, Wojciech Witwicki, Paweł Wroński,
and Piotr Kozierski. 2017. Crazyflie 2.0 quadrotor as a platform for research
and education in robotics and control engineering. In 2017 22nd International
Conference on Methods and Models in Automation and Robotics (MMAR). IEEE,
IEEE, Miedzyzdroje, Poland, 37–42. https://doi.org/10.1109/MMAR.2017.8046794

[11] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P Rodríguez,
Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni
Di Caro, et al. 2015. A machine learning approach to visual perception of forest
trails for mobile robots. IEEE Robotics and Automation Letters 1, 2 (2015), 661–667.

[12] Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. 2020. Rmp-snn: Residual
membrane potential neuron for enabling deeper high-accuracy and low-latency
spiking neural network. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. CVPR, Virtual, 13558–13567.

[13] Marie Levakova, Lubomir Kostal, Christelle Monsempès, Philippe Lucas, and
Ryota Kobayashi. 2019. Adaptive integrate-and-fire model reproduces the dy-
namics of olfactory receptor neuron responses in a moth. Journal of The Royal
Society Interface 16, 157 (2019), 20190246. https://doi.org/10.1098/rsif.2019.0246
arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2019.0246

[14] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. 2019. Surrogate gradi-
ent learning in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Processing Magazine 36, 6
(2019), 51–63.

[15] Federico Paredes-Vallés, Jesse Hagenaars, Julien Dupeyroux, Stein Stroobants,
Yingfu Xu, and Guido de Croon. 2023. Fully neuromorphic vision and control for
autonomous drone flight. arXiv preprint arXiv:2303.08778 (2023), 18 pages.

[16] Federico Paredes-Vallés, Kirk YW Scheper, and Guido CHE De Croon. 2019.
Unsupervised learning of a hierarchical spiking neural network for optical flow
estimation: From events to global motion perception. IEEE transactions on pattern
analysis and machine intelligence 42, 8 (2019), 2051–2064.

[17] Huanneng Qiu, Matthew Garratt, David Howard, and Sreenatha Anavatti. 2020.
Evolving spiking neurocontrollers for UAVs. In 2020 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, IEEE, Canberra, ACT, Australia, 1928–
1935. https://doi.org/10.1109/SSCI47803.2020.9308275

[18] Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell,
Mark E Dean, Garrett S Rose, and James S Plank. 2017. A survey of neuromorphic
computing and neural networks in hardware. arXiv preprint arXiv:1705.06963
(2017), 88 pages.

[19] Silvia Sekander, Hina Tabassum, and Ekram Hossain. 2018. Multi-tier drone
architecture for 5G/B5G cellular networks: Challenges, trends, and prospects.
IEEE Communications Magazine 56, 3 (2018), 96–103.

[20] Stein Stroobants, Julien Dupeyroux, and Guido De Croon. 2022. Design and
implementation of a parsimonious neuromorphic PID for onboard altitude control
for MAVs using neuromorphic processors. In Proceedings of the International
Conference on Neuromorphic Systems 2022. Association for Computing Machinery,
Knoxville, TN, USA, 1–7. https://doi.org/10.1145/3546790.3546799

[21] Antonio Vitale, Alpha Renner, Celine Nauer, Davide Scaramuzza, and Yulia San-
damirskaya. 2021. Event-driven vision and control for UAVs on a neuromorphic
chip. In 2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, IEEE, Xi’an, China, 103–109. https://doi.org/10.1109/ICRA48506.2021.
9560881

[22] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI magazine 29, 1
(2008), 9–9.

[23] Yuval Zaidel, Albert Shalumov, Alex Volinski, Lazar Supic, and Elishai Ezra Tsur.
2021. Neuromorphic NEF-based inverse kinematics and PID control. Frontiers
in neurorobotics 15, 631159 (2021), 12 pages. https://doi.org/10.3389/fnbot.2021.
631159

https://doi.org/10.1109/MMAR.2017.8046794
https://doi.org/10.1098/rsif.2019.0246
https://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2019.0246
https://doi.org/10.1109/SSCI47803.2020.9308275
https://doi.org/10.1145/3546790.3546799
https://doi.org/10.1109/ICRA48506.2021.9560881
https://doi.org/10.1109/ICRA48506.2021.9560881
https://doi.org/10.3389/fnbot.2021.631159
https://doi.org/10.3389/fnbot.2021.631159

	Abstract
	1 Introduction
	2 Methods
	2.1 Encoding - floating points to spikes
	2.2 Proportional - steering towards setpoint
	2.3 Integral - ensuring zero steady-state error
	2.4 Derivative - decreasing overshoot
	2.5 Training and tuning of the network

	3 Analysis SNN controller
	3.1 Derivative
	3.2 Integral

	4 Real-world experiments
	4.1 Hardware implementation
	4.2 Flight tests

	5 Conclusion
	1.1 Current-based Leaky-Integrate-and-Fire neuron
	1.2 Trained parameters and ranges

	Acknowledgments
	References

