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The Viral State Dynamics of the Discrete-Time
NIMFA Epidemic Model

Bastian Prasse and Piet Van Mieghem

Abstract—The majority of research on epidemics relies on
models which are formulated in continuous-time. However,
processing real-world epidemic data and simulating epidemics is
done digitally and the continuous-time epidemic models are
usually approximated by discrete-time models. In general, there
is no guarantee that properties of continuous-time epidemic
models, such as the stability of equilibria, also hold for the
respective discrete-time approximation. We analyse the discrete-
time NIMFA epidemic model on directed networks with
heterogeneous spreading parameters. In particular, we show that
the viral state is increasing and does not overshoot the steady-
state, the steady-state is exponentially stable, and we provide
linear systems that bound the viral state evolution. Thus, the
discrete-time NIMFA model succeeds to capture the qualitative
behaviour of a viral spread and provides a powerful means to
study real-world epidemics.

Index Terms—Epidemic processes, nonlinear systems.

I. INTRODUCTION

ORIGINATING from the study of infectious human dis-

eases [1], [2], epidemiology has evolved into a field with

a broad spectrum of applications, such as the spread of com-

puter viruses, opinions, or social media content [3], [4]. The

mutual characteristic of epidemic phenomena is that they can

be modelled by a viral infection, i.e. every individual is either

infected (with the opinion, social media content, etc.) or

healthy. An imperative element for epidemics is the infection

of one individual by another, provided that the individuals are

linked (for instance by physical proximity). The epidemic

model that we consider in this work describes the spread of a

virus on a higher level, by merging individuals with similar

characteristics (such as residence or age) into groups.

We consider a contact network of N nodes1. At any time

t � 0, each node i has a viral state viðtÞ, which equals to the

fraction of infected individuals of group i. If a viral infection is

possible from group i to group j, then there is a directed link

from node i to node j. For instance, a node could correspond to a

geographical region, the viral state viðtÞ could be the ratio of

infected individuals in region i and a link could capture a signifi-
cant flow of people between the respective regions. For node i,
the continuous-time NIMFA model [5], [6] with heterogeneous

spreading parameters describes the viral state evolution by

dviðtÞ
dt

¼ �diviðtÞ þ 1� viðtÞð Þ
XN
j¼1

bijvjðtÞ: (1)

Here, bij � 0 denotes the infection rate from group j to group i
and di > 0 denotes the curing rate of group i. The directed link
from node j to node i in the network is weighted by the infection
rate bij. If bij > 0, then infections occur from group j to group

i. If bii > 0, then the members of the same group i infect one
another. The discrete-time NIMFA model is obtained from the

continuous-time NIMFA (1) by applying Euler’s method [7],

with sampling time T > 0, and the discrete-time curing and

infection probabilities follow as qi ¼ diT and wij ¼ bijT ,
respectively. For the discretisation, the sampling time T must be

“sufficiently small”, whichwe state more precisely in Section IV.

Definition 1 (Discrete-Time NIMFA Model): The discrete-

time NIMFA model is given by

vi½kþ 1� ¼ ð1� qiÞvi½k� þ ð1� vi½k�Þ
XN
j¼1

wijvj½k� (2)

for every group i ¼ 1; . . . ; N , where k 2 N denotes the dis-

crete time slot, qi > 0 is the discrete-time curing probability,

and wij � 0 is the discrete-time infection probability from

group j to group i.
As vector equations, (2) reads

v½kþ 1� ¼ diagðu� qÞv½k� þ diagðu� v½k�ÞWv½k�; (3)

where the viral state vector at discrete time k equals v½k� ¼
ðv1½k�; . . . ; vN ½k�ÞT , the curing probability vector equals

q ¼ ðq1; . . . ; qNÞT , the N �N infection probability matrix W
is composed of the elementswij, and u is theN � 1 all-one vec-
tor. The steady-state2 vector v1 of the discrete-time NIMFA

model (3) is significant, because it corresponds to the endemic

state of the disease in the network.

Definition 2 (Steady-State Vector): The steady-state vector

v1 ¼ ðv1;1; . . . ; v1;NÞT is, if existent, the non-zero equilib-

rium of the discrete-time NIMFA model (2), which satisfies
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XN
j¼1

wijv1;j ¼ qi
v1;i

1� v1;i
; i ¼ 1; . . . ; N: (4)

We argue that the discrete-time NIMFA system (3) is (one

of) the simplest epidemic models that meets the practical

requirements of modelling real-world epidemics on networks.

In particular, the NIMFA system succeeds to exhibit the fol-

lowing six properties, which are crucial for modelling and

processing real-world epidemic data:

P1. Every node i can be interpreted as a group of individu-

als. In theory, modelling an epidemic per individual

may be more accurate than combining individuals into

groups. However, it is infeasible in practice to deter-

mine the viral state of every individual at every time t.
A more realistic approach is to sample a subset of indi-

viduals to obtain an estimate of the viral state of a

group. Ideally, the individuals in a same group are

exchangeable and indistinguishable.

P2. The viral state v evolves in discrete time k, which is

advantageous for two reasons. First, for the simulation

of a viral spread, an implicit discretisation is performed

for the majority of continuous-time epidemic models

due to the absence of closed-form solutions for the viral

state vðtÞ. Hence, a more accurate approach is to

directly study the epidemic model in discrete-time. Sec-

ond, data on real-world epidemics is often collected

periodically3 and discrete-time models circumvent the

incomplete knowledge of the viral state of time spans

between two measurements.

P3. Node j infects node i if there is a directed link from

node j to node i. More specifically, the NIMFA model

(2) accounts for the infection from group j to group i by
the term ðwijð1� vi½k�Þvj½k�Þ, which is proportional to

both the fraction ð1� vi½k�Þ of healthy individuals of

group i at time k and the fraction vj½k� of infected indi-

viduals of group j at time k. The infection probability

wij measures the contact probability between group i
and j (e.g., group i and j could be two geographical

regions that are either adjacent or far apart).

P4. There is a curing term that opposes the infection of node

i by its neighbours. In particular, the curing term

ð1� qiÞvi½k� of group i in the NIMFA model (2) is pro-

portional to the fraction vi½k� of infected individuals of

group i. The curing probability qi measures the capacity

of the group i to heal from the virus (which can be het-

erogeneous since a group may, e.g., refer to either

young or old individuals).

P5. There is a unique [8], [9] non-zero equilibrium v1,

which corresponds to the endemic state of the virus.

Furthermore, if the disease does not die out, then the

viral state v approaches the endemic viral state v1, i.e.

v½k� ! v1 for k ! 1, which we show in this work. To

the best of our knowledge, the convergence of the

viral state vðtÞ to the steady-state v1 has only been

shown [5], [10] for the continuous-time NIMFA

model (1).

P6. The viral state is increasing, i.e. vi½k� > vi½k� 1� for
any node i at any time k, provided that the disease does

not die out and the initial viral state v½1� is close to zero

(almost disease-free), which we show in this work. The

viral state vi of node i often refers to cumulative varia-

bles in practical applications, which are increasing and

close to zero at the beginning of the outbreak of the dis-

ease. For instance [9], the viral state vi½k� of node i may

refer to the fraction of deaths by cholera of group i up
to time k.

For real-world applications, the usefulness of an epi-
demic model does not reduce to solely satisfying the
properties P1–P6. An epidemic model must additionally
be capable of giving answers to questions which are
relevant to practical use-cases. In particular, we identify
three questions.
Q1. In view of the absence of a closed-form solution of the

NIMFA difference equation (2), is there an approxi-

mate and simpler description of the viral state evolu-

tion? Of particular interest is a worst-case scenario of

the viral spread, i.e. an upper bound of the viral state

vi½k� for any node i at any time k.
Q2. How quickly does the virus spread? I.e. how fast does

the viral state v½k� approach the steady-state v1?

Q3. How to fit the NIMFA model (2) to real-world data? In

applications, we do not (exactly) know the infection

probability matrix W or the curing probabilities q. In
recent works [9], [11], efficient methods were derived

for learning the spreading parameters W; q of the

NIMFA model (2) from viral state v½k� observations. A
great advantage for the estimation of the spreading

parameters q;W is the linearity of the NIMFA equa-

tions (2) with respect to q;W .

In this work, we answer the questions Q1 and Q2. In sum-
mary, the NIMFA system (2) is a well-behaved and pow-
erful model, which can be fit to various epidemic data due
to the full heterogeneity of the spreading parameters W; q.
In Section II, we review related work. The nomenclature
and assumptions are introduced in Section III and Section
IV, respectively. In Section V, we analyse the viral state
dynamics for large times k. We study the monotonicity
of the viral state evolution in Section VI. In Section VII,
we derive upper and lower bounds on the viral state
dynamics.

II. RELATED WORK

On the one hand, in [5], [8], [9], [11], [12], the continuous-

time NIMFA model (1), and variants thereof, are considered

as the exact description of the viral state evolution and every

node i corresponds to a group of individuals. We emphasise

that the NIMFA equations (1) are a special case of the epi-

demic model which was originally proposed by Lajmanovich

et al. [5].

3 For instance, the German Robert Koch Institute gathers and provides
online access to cases of notifiable diseases with the web-based query system
SurvStat@RKI 2.0 on a weekly basis.
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On the other hand, in [6], [13], [14], the NIMFA model was

derived as an approximation of the susceptible-infected-sus-

ceptible (SIS) epidemic process [3], [4] and “NIMFA” is an

acronym for “N-Intertwined Mean-Field Approximation”. For

the SIS process, every node i is usually interpreted as a single

individual.

The discrete-time NIMFA model with homogeneous

spreading parameters has been studied in [9], [11], [15]. The

discrete-time NIMFA model (2) with fully heterogeneous

spreading parameters has been proposed by Par�e et al. [9],

who showed that there is either one stable equilibrium, the

healthy state v½k� ¼ 0, or there are two equilibria, the healthy

state and a steady-state v1 with positive components. Further-

more, the discrete-time NIMFA model (3) has been validated

on data of real-world epidemics [9]. We are not aware of

results that assess the stability of the steady-state v1 of the

discrete-time NIMFA system (2). On the contrary, Ahn et al.

[15] gave a counterexample for which the steady-state v1 of

the NIMFA model (3) is unstable. In this work, we extend the

analysis of Par�e et al. [9] and we show that the steady-state

v1 is exponentially stable, provided that the Assumptions in

Section IV hold true.

III. NOMENCLATURE

For a squarematrixM, we denote the spectral radius by rðMÞ
and the eigenvalue with the largest real part by �1ðMÞ. For two
N � 1 vectors y; z, it holds y > z or y � z if yi > zi or

yi � zi, respectively, for every element i ¼ 1; . . . ; N . The mini-

mum of the discrete-time curing probabilities is denoted by

qmin ¼ minfq1; . . . ; qNg. We define theN �N matrixR as

R ¼ I � diagðqÞ þW: (5)

The principal eigenvector of the matrix R is denoted by x1.

Table I summarises the nomenclature.

IV. ASSUMPTIONS

Assumption 1: The curing probabilities are positive and the

infection probabilities non-negative, i.e. qi > 0 and wij � 0
for all nodes i; j.
Assumption 2: For every node i ¼ 1; . . . ; N , the sampling

time T > 0 satisfies

T � Tmax ¼ 1

di þ
PN

j¼1 bij

: (6)

The results of this work which rely on Assumption 2 hold true

if the sampling time is sufficiently small, which we consider a

rather technical assumption. The particular choice of the bound

(6) is due to Lemma 3 in Section V. Furthermore, we make the

following assumption on the initial viral state vi½1�.
Assumption 3: For every node i ¼ 1; . . . ; N , it holds that

0 � vi½1� � v1;i.

Assumption 3 is reasonable since the initial viral state v½1� of
many real-world epidemics is almost disease-free. For instance,

at the beginning of the periodic outbreak of the flu, every geo-

graphical region is almost healthy. As another example, consider

the spread of content (e.g., a novel tweet or a post) on online

social media. The beginning of the epidemic outbreak (at time

k ¼ 1) would correspond to the first appearance of the online

content. Hence, the viral state vi½1�, where node i refers to a

group of users, is close to 0.

Assumption 4: The infection probability matrix W is

irreducible.

Assumption 4 holds if and only if the infection probability

matrixW corresponds to a strongly connected graph4. Finally,

as shown in [9], Assumption 5 avoids the trivial viral dynam-

ics in which the virus dies out.

TABLE I
NOMENCLATURE

4 In a strongly connected graph, there is a path from every node i to any
other node j.

PRASSE AND MIEGHEM: THE VIRAL STATE DYNAMICS OF THE DISCRETE-TIME NIMFA EPIDEMIC MODEL 1669

Authorized licensed use limited to: TU Delft Library. Downloaded on September 28,2020 at 08:47:20 UTC from IEEE Xplore.  Restrictions apply. 



Assumption 5: The spectral radius of the matrix R is greater

than one, i.e. rðRÞ > 1.

V. VIRAL STATE DYNAMICS CLOSE TO THE STEADY-STATE

For completeness, we recapitulate the results of Par�e et al.

[9] on the equilibria and the stability of the healthy state5.

Theorem 1 ([9]): Under Assumptions 1, 2 and 4, the fol-

lowing two statements hold true:

(1) If rðRÞ � 1, then the healthy state v½k� ¼ 0 is the only
equilibrium of the discrete-time NIMFA model (3).

Furthermore, v½k� ! 0 when k ! 1 for any initial

viral state v½1�with 0 � vi½1� � 1 for every node i.
(2) If rðRÞ > 1, then there are two equilibria of the dis-

crete-time NIMFA model (3): The healthy state

v½k� ¼ 0 and a steady-state v1 with v1;i > 0 for

every node i.
The basic reproduction number R0 of the NIMFA epidemic

model [16] equals the spectral radius rðRÞ. The NIMFA

model with homogeneous spreading parameters [6], [17]

assumes that there is a scalar curing rate d and a scalar infec-

tion rate b such that qi ¼ d and bij ¼ baij for all nodes i; j,
where aij denote the elements of a symmetric and irreducible

zero-one adjacency matrix A. For the NIMFA model with

homogeneous spreading parameters, the condition rðRÞ � 1

simplifies to t � t
ð1Þ
c with the effective infection rate t ¼ b=d

and the epidemic threshold t
ð1Þ
c ¼ 1=�1ðAÞ.

Lemma 1: Suppose that Assumptions 1, 2 and 4 hold. Then,

the matrix R is irreducible and non-negative.

Proof: Appendix A. &

Hence, it follows from the Perron-Frobenius Theorem [18]

that, under Assumptions 1, 2 and 4, there is a real eigenvalue

�1ðRÞ of the matrix R which equals the spectral radius rðRÞ
and that the principal eigenvector x1 is positive.

We can generalise the bounds from [6], [13] for the steady-

state vector v1 to the NIMFA model (2) with heterogeneous

spreading parameters.

Lemma 2: Suppose that Assumptions 1, 2, 4 and 5 hold.

Then, the steady-state v1;i of any node i is bounded by

1� qiPN
j¼1 wij

� v1;i � 1� qi

qi þ
PN

j¼1 wij

:

Proof: Appendix B. &

We denote the difference of the viral state v½k� to the steady

state v1 by Dv½k� ¼ v½k� � v1. By considering the difference

Dv½k� ¼ v½k� � v1, we obtain an equivalent representation6 of

the discrete-time NIMFA equations (2).

Proposition 1 (NIMFA Equations as Difference to the

Steady-State): Suppose that Assumptions 1, 2, 4 and 5 hold.

Then, the difference Dv½k� ¼ v½k� � v1 from the viral state

v½k� to the steady state v1 of the discrete-time NIMFA model

(3) evolves according to

Dv½kþ 1� ¼ FDv½k� � diagðDv½k�ÞWDv½k�; (7)

where the N �N matrix F is given by

F ¼ I þ diag
q1

v1;1 � 1
; . . . ;

qN
v1;N � 1

� �

þ diagðu� v1ÞW:

(8)

Proof: Appendix C. &

For a sufficiently small sampling time T , Lemma 3 states

that every element of matrix F is non-negative.

Lemma 3: Suppose that Assumptions 1, 2, 4 and 5 hold.

Then, the N �N matrix F defined by (8) is non-negative, i.e.

ðF Þij � 0 for every i; j ¼ 1; . . . ; N .

Proof: Appendix D. &

Furthermore, Proposition 1 leads to the following

corollary.7

Corollary 1: Suppose that Assumption 1–5 hold. Then, it

holds that vi½k� � v1;i for every node i at every time k � 1.
Proof: Appendix E. &

In other words, Corollary 1 states that the set V ¼ fvj0 �
vi � v1;i; 8i ¼ 1; . . . ; Ng is a positive invariant set [19] of

the NIMFA model (2), i.e., if the initial viral state v½1� is ele-
ment of the set V, then the viral state v½k� will remain in the

set V for k � 1. We emphasise that Corollary 1 does not imply

that the viral state v½k� increases monotonically.

To provide a graphical illustration of Corollary 1, we gener-

ate a random network with N ¼ 10 nodes by creating a

directed link aij ¼ 1 from any node j to any node i with prob-

ability 0.25 and we repeat this network generation if the result-

ing network is not strongly connected. If aij ¼ 1, then we set

the infection probability wij to a uniformly distributed random

number in [0, 1] and, if aij ¼ 0, then we set wij ¼ 0. The cur-
ing probability qi for every node i is set to a uniformly distrib-

uted random number in ½0:95c; 1:05c�, where c ¼ 10 is a

constant. If the spectral radius rðRÞ � 1þ 10�3, then we

set the constant c to c=1:1 and generate new curing probabili-

ties q and we repeat this generation of curing probabilities

q until rðRÞ > 1þ 10�3. The sampling time T is set to

T ¼ Tmax=10, given by (6). For every node i, the initial viral

state vi½1� is set to a uniformly distributed random number in

½0; 0:01v1;i�. Fig. 1 depicts the resulting viral state traces vi½k�
for every node i. As stated by Corollary 1, the viral state v½k�
approaches the steady state v1 from below without oversh-

ooting, but the viral state v½k� is not strictly increasing. The

absence of overshoot is not evident, e.g., in a Markovian SIS

process overshoot is possible [20].

For applications in which the initial viral state v½1� is close
to zero, the NIMFA equations (9) can be replaced by linear

time-invariant (LTI) systems in two different regimes: On the

one hand, it holds for small times k that v½k� � 0. Hence, the
representation (3) can be linearised around the origin v½k� ¼ 0,
which yields

v½kþ 1� � Rv½k�; (9)

5 Theorem 1 follows immediately from merging [9, Theorems 1-2 and
Proposition 2].

6 Proposition 1 is a generalisation of [11, Proposition 3] to the NIMFA
model with heterogeneous spreading parameters q;W .

7Corollary 1 is a generalisation of [11, Corollary 1] to the NIMFA model
with heterogeneous spreading parameters q;W .
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for small times k. On the other hand, if the viral state v½k� is
close to the steady-state v1, which implies Dv½k� � 0, then
the representation (7) can be linearised around the origin

Dv½k� ¼ 0, which gives

Dv½kþ 1� � FDv½k�: (10)

Furthermore, we obtain that the steady-state v1 is asymptoti-

cally stable8.

Theorem 2 (Asymptotic Stability of the Steady-State):

Under Assumptions 1, 2, 4 and 5, the steady-state v1 of the

discrete-time NIMFA system (3) is asymptotically stable.

Proof: Appendix F. &

Ahn et al. [15] gave a counterexample for which the steady-

state v1 of the discrete-time NIMFA system (3) is unstable.

However, their counterexample does not satisfy Assumption 2.

Hence, a sufficiently small sampling time T is decisive for the

stability of the discrete-time NIMFA model (3). (Par�e et al. [9]
observed that the counterexample in [15] violates the third

assumption in [9], which is closely related to Assumption 2.)

VI. MONOTONICITY OF THE VIRAL STATE DYNAMICS

As stated by the property P6 in Section I, we will show that

the viral state v½k� is increasing, provided that the initial viral

state v½1� is small.

Definition 3 (Strictly Increasing Viral State Evolution):

The viral state v½k� is strictly increasing at time k if

v½kþ 1� > v½k�. The viral state v½k� is globally strictly incr-

easing if v½k� is strictly increasing at every time k � 1.
Lemma 4 states an inductive property of the monotonicity.

Lemma 4: Under Assumptions 1–5, the viral state v½k� is
strictly increasing at time k if the viral state v½k� 1� is strictly
increasing at time k� 1.
Proof: Appendix G. &

For any vector y ¼ ðy1; . . . ; yNÞT we define yl ¼ ðyl1; . . . ;
ylNÞT . Theorem 3 states equivalent conditions to a globally

strictly increasing viral state evolution.

Theorem 3 (Monotonicity of the Viral State Evolution):

Suppose that Assumptions 1–5 hold. Then, the viral state v½k�
is globally strictly increasing if and only if one of the follow-

ing two (equivalent) statements holds:

(1) The initial viral state v½1� satisfies

W � diagðqÞð Þv½1� > diagðqÞ
X1
l¼2

vl½1�: (11)

(2) It holds

diag u� v1ð ÞWdiag u� v1ð Þ � diagðqÞð Þz

> diagðqÞ
X1
l¼2

zl;

where theN � 1 vector z is given by

zi ¼ vi½1� � v1;i

1� v1;i
; i ¼ 1; . . . ; N:

Proof: Appendix H. &

For any scalar y with jyj < 1, the geometric seriesP1
l¼2 y

l ¼ y2

1�y gives an alternative form of the right-hand sides

of statement 1 and 2 of Theorem 3. From Theorem 3, we

obtain a corollary which states sufficient conditions for a glob-

ally strictly increasing viral state.

Corollary 2: Suppose Assumptions 1–5 hold and that the

initial viral state v½1� equals either

v½1� ¼ �x1 þ h (12)

or

v½1� ¼ ð1� �Þv1 þ h

for some small � > 0 and an N � 1 vector h whose norm

khk2 ¼ Oð�pÞ for some scalar p > 1 which is independent of

�. Then, there exists an � > 0 such that the viral state v½k� is
globally strictly increasing.

Proof: Appendix I. &

Numerical simulations show that if the initial viral state

v½1� approaches zero from an arbitrary direction, which

differs from (12), then the viral state v½k� is in general not

globally strictly increasing. However, the simulations also

indicate that, if the initial viral state v½1� is small, then the

viral state seems “almost” globally strictly increasing,

which is illustrated by Fig. 1 and motivates us to state

Definition 4.

Fig. 1. The upper sub-plot depicts the viral state traces vi½k�, i ¼ 1; . . . ;N , for a
directed network with N ¼ 10 nodes and heterogeneous spreading parameters
q;W until discrete time k ¼ 3000. The lower sub-plot depicts the same viral state
traces vi½k�, i ¼ 1; . . . ;N , but only the initial phase until discrete time k ¼ 200.

8 The steady-state v1 is asymptotically stable if there exists an � > 0 such
that kv½1� � v1k < � implies that v½k� ! v1 when k ! 1.
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Definition 4 (Quasi-Increasing Viral State Evolution):

Define S� as the set of times k � 1 at which the viral state

v½k� is not strictly increasing:

S� ¼ k 2 N j 9i : vi½kþ 1� � vi½k�f g:
Then, the viral state v½k� is quasi-increasing with stringency �,
if the set S� is finite and kv½kþ 1� � v½k�k2 � � for every time

k in S�.
Thus, a quasi-increasing viral state v½k� is strictly increasing

at every time k not in the set S� and at the times k in the finite

set S�, the viral state v½k� is decreasing only within an �-strin-
gency. For the viral state trace v½k� depicted in Fig. 1, the set

S� equals S� ¼ f1; 2; . . . ; 165g. Theorem 4 states that the

viral state v½k� is quasi-increasing with an arbitrarily small

stringency �, provided that the initial viral state v½1� is suffi-
ciently small.

Theorem 4: Suppose that Assumptions 1–5 hold and that

v½1� 6¼ 0. Then, for any � > 0 there is a #ð�Þ such that

kv½1�k2 � #ð�Þ implies that the viral state v½k� is quasi-increas-
ing with stringency �.
Proof: Appendix J. &

VII. BOUNDS ON THE VIRAL STATE DYNAMICS

Due to the non-linearity of the NIMFA equations (3), an

analysis of the exact viral state evolution is challenging. How-

ever, it is possible to upper- and lower-bound the viral state

v½k� by LTI systems, which allows for an approximate analysis

of the viral state evolution. As stated by Proposition 2, the lin-

earisation (9) of the NIMFA model around zero directly yields

an upper bound on the viral state v½k�.
Proposition 2 (First Upper Bound): Suppose that Assump-

tions 1–3 hold and define the LTI system

v
ð1Þ
ub ½kþ 1� ¼ Rv

ð1Þ
ub ½k�; k � 1; (13)

where the matrix R is given by (5). If v
ð1Þ
ub ½1� � v½1�, then it

holds that v
ð1Þ
ub ½k� � v½k� at every time k � 1. If rðRÞ � 1, then

the LTI system (13) is unstable. If rðRÞ < 1, then the LTI

system (13) is asymptotically stable.

Proof: Appendix K. &

In addition the upper bound in Proposition 2, the linearisa-

tion (10) of the NIMFA model around the steady-state v1
yields another upper bound on the viral state v½k�, as stated by

Proposition 3.

Proposition 3 (Second Upper Bound): Under Assumptions

1–5, denote an upper bound of the difference of the viral state

v½k� to the steady-state v1 at time k by Dvub½k�. Furthermore,

define the LTI system

Dvub½kþ 1� ¼ FDvub½k�; k � 1; (14)

where the N �N matrix F is given by (8). Then, the follow-

ing statements hold true:

(1) If Dvub½1� � Dv½1�, then it holds that

Dvub½k� � Dv½k� at every time k � 1.
(2) If Dvub½1� � 0, then it holds that Dvub½k� � 0 at

every time k.

Proof: Appendix L. &

Hence, the LTI system (14) yields the upper bound

v
ð2Þ
ub ½k� :¼ Dvub½k� þ v1 � v½k�

on the viral state v½k� at every time k. If Assumption 3 holds

and Dvub½1� ¼ Dv½1�, then it holds that 0 � Dvub½k� � Dv½k�
for every time k. Thus, the convergence of Dv½k� to 0 implies

the convergence of Dvub½k� to 0. The upper bound of Proposi-

tion 2 is tight when the viral state v½k� is small and the upper

bound of Proposition 3 is tight when the viral state v½k� is close
to the steady-state v1. We combine Propositions 2 and 3 to

obtain a tighter upper bound, for every node i ¼ 1; . . . ; N , as

vub;i½k� :¼ minfvð1Þub;i½k�; vð2Þub;i½k�g: (15)

Finally, Proposition 4 provides a lower bound on the viral state

v½k�.
Proposition 4 (Lower Bound): Suppose that Assumptions

1–5 hold and let there be an N � 1 vector vmin > 0 such that

v½k� � vmin holds at every time k � 1. Furthermore, let

Dvlb½1� ¼ Dv½1� and define the LTI system
Dvlb½kþ 1� ¼ FlbDvlb½k�; k � 1; (16)

where the N �N matrix Flb is given by

Flb ¼ I þ diag
q1

v1;1 � 1
; . . . ;

qN
v1;N � 1

� �

þdiag u� vminð ÞW:

Then, the following statements hold true:

(1) It holds that Dvlb½k� � Dv½k� � 0 at every time

k � 1.
(2) Denote g ¼ minfvmin;1; . . . ; vmin;Ng. Then, it holds

Dvlb½k� � � 1� qmin
g

1� g

� �k�1

v1:

Hence, Dvlb½k� ! 0 when k ! 1.

Proof: Appendix M. &

Hence, the LTI system (16) yields the lower bound

vlb½k� :¼ Dvlb½k� þ v1 � v½k� (17)

on the viral state v½k� at every time k. In particular, if the viral

state v½k� is globally strictly increasing, as discussed in Section

VI, then the vector vmin can be chosen as vmin ¼ v½1�. Lemma 5

ensures the existence of a vector vmin > 0 for every initial viral
state v½1� 6¼ 0, which can be applied to Proposition 4.
Lemma 5: Suppose that Assumptions 1–5 hold. Then, for

any initial viral state v½1� > 0, there exists an N � 1 vector

vmin > 0 such that v½k� � vmin holds at every time k � 1. Fur-
thermore, for any initial viral state v½1� 6¼ 0, there exists an

N � 1 vector vmin > 0 such that v½k� � vmin holds at every

time k � N � 1.
Proof: Appendix N. &

Proposition 4 and Lemma 5 guarantee the existence of an

LTI system (16) that lower-bounds the viral state v½k�. Thus,
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the viral state v½k� converges to the steady-state v1 exponen-

tially fast:

Corollary 3 (Steady-State is Exponentially Stable): Sup-

pose that Assumptions 1–5 hold. Then, for any initial viral

state v½1� 6¼ 0 there exist constants a < 1 and k� � N � 1
such that

kv½k� � v1k2 � kv1k2ak�1 8k � k�: (18)

If the initial viral state v½1� > 0, then the constant k� can be

set to k� ¼ 1. Furthermore, if the viral state v½k� is globally

strictly increasing (cf. Theorem 3) and v½1� > 0, then (18) is

satisfied for

a ¼ 1� qmin
g

1� g
; (19)

where g ¼ minfv1½1�; . . . ; vN ½1�g.
Proof: Appendix O. &

It is an open problem whether the steady-state v1 is expo-

nentially stable for initial viral states v½1� that do not satisfy

Assumption 3. In the susceptible-infected-susceptible (SIS)

epidemic process [3], [21], the hitting time THn is the first

time when the SIS process reaches a state with n infected

nodes. As argued in [22], the average hitting time E½THn �
scales exponentially with respect to the number n of infected

nodes, which is in agreement with the exponential conver-

gence to the steady state v1 for the NIMFA epidemic model.9

We provide a numerical evaluation of the upper bound vub½k�,
given by (15), and the lower bound vlb½k�, given by (17). We

generate a directed Erdo��s-R�enyi random graph with N ¼ 500
nodes by creating a directed link aij ¼ 1 from any node j to any
node i with link probability 0.05. We generate another graph if

the resulting graph is not strongly connected. If aij ¼ 1, then we
set the infection probability wij to a uniformly distributed ran-

dom number in [0, 1] and, if aij ¼ 0, then we set wij ¼ 0. The
curing probability qi for every node i is set to a uniformly distrib-

uted random number in ½0:95c; 1:05c�, where c ¼ 10 is a con-

stant. If the spectral radius rðRÞ � 1þ 10�5, then we set the

constant c to c=1:005 and generate new curing probabilities q
and we repeat this generation of curing probabilities q until

rðRÞ > 1þ 10�5. The sampling time T is set to T ¼ Tmax=20,
given by (6). For every node i, the initial viral state vi½1� is
set to a uniformly distributed random number ½0; 0:1v1;i�.
We initialise the bounds vub½k� and vlb½k� on the viral state v½k�
at different bound-initialisation times k0 � 1, i.e., vlb½k0� ¼
v½k0� ¼ vub½k0�. To obtain the lower bound vlb½k�, we set the

vector vmin of Proposition 4 to

vmin;i ¼ min
k�k0

vi½k�; i ¼ 1; . . . ;N:

We emphasise that if vi½k0� > vi½k0 � 1� holds for every

node i, then the vector vmin becomes vmin ¼ v½k0� due to

Lemma 4. Fig. 2 illustrates that, for a small bound-initialisa-

tion time k0, the upper bound vub½k� results in a reasonable fit,

whereas the lower bound vlb½k� does not perform well. If the

Fig. 2. For a directed Erdo��s-R�enyi random graph with N ¼ 500 nodes and
heterogeneous spreading parameters q;W , the fit of the lower bound vlb½k� and
the upper bound vub½k� on the viral state v½k� is depicted. Each of the four sub-
plots shows two viral state traces vi½k� and the corresponding bounds of the
two nodes with the maximal and minimal steady-state v1;i, respectively.
From top to bottom, the sub-plots correspond to an initialisation of the bounds
vlb½k0� ¼ v½k0� ¼ vub½k0� at the bound-initialisation time k0 ¼ 1, k0 ¼ 250,
k0 ¼ 500 and k0 ¼ 750, respectively.

9 For an SIS process, the spreading time [23] is another measure for the
time of convergence to the metastable state. For the spreading time, the con-
vergence to the metastable state is defined differently for every realisation of
the same SIS epidemic process. Hence, the spreading time is subject to random
fluctuations, which approximately follow a lognormal distribution [22], con-
trary to the deterministic NIMFA model (2) and the average hitting time
E½THn � of an SIS process.
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bound-initialisation time k0 is greater, then both bounds vlb½k�
and vub½k� give a tight fit to the exact viral state v½k�.

VIII. CONCLUSION

In this work, we analysed the discrete-time NIMFA epi-

demic model with heterogeneous spreading parameters on

directed graphs. Our contribution is threefold. First, we proved

that the steady-state v1 is asymptotically stable and we

showed that the viral state v½k� approaches the steady-state v1
without overshooting. Second, provided that the initial viral

state v½1� is sufficiently small, we showed that the viral state

v½k� is increasing. Third, we derived linear systems that give

upper and lower bounds on the viral state v½k� and we proved

that the viral state v½k� converges to the steady-state v1 expo-

nentially fast.

The properties listed as the first and second contribution are

phenomena that occur in many real-world epidemics, in par-

ticular when the viral state v½k� refers to a cumulative variable

(for instance, a fraction of individuals that have shared partic-

ular online social media content up to time k).
In conclusion, we have shown that the discrete-time

NIMFA epidemic model captures the qualitative behaviour of

real-world epidemics in which the virus reaches an endemic

state. Furthermore, since the spreading parameters are hetero-

geneous and the underlying contact network is directed, the

NIMFA model has a vast parameter space and can be fitted to

various real-world epidemic data, which allows for quantita-

tive predictions of the viral state evolution.
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