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Shortened Summary

In this report, it will be researched which of the two dampers, a Tuned Mass Damper or a Viscoelastic Damper,
is most effective in damping the vibrations of a building that occur during an earthquake. A Tuned Mass
Damper is a damper which can be implemented in a building like a pendulum, and which can damp vibra-
tions by swaying with a specified frequency. A Viscoelastic Damper damps an earthquake’s effect by absorbing
energy that comes from its movements. Both dampers will be added to models that describe the vibrations
of a building, and simulations of their effects on vibrations will be generated. Based on these results, it will be
concluded which damper is the most effective.
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Summary

Within this report, an analytical research will be performed on the effectivity of Tuned Mass Dampers (TMDs)
and Viscoelastic Dampers (VEDs), and a conclusion will be drawn as to which is most effective in damping the
oscillations of an earthquake. First of all, a simple model of second-order differential equations describing
the oscillations of each floor within a building of n floors is derived, in which no frictional forces are taken
into account. The solution to this model is derived for a building of two floors, which demonstrates the
characteristics of oscillations in this model and which shows how resonance is represented mathematically,
and what patterns of oscillations look like.

Then, a TMD and VED are added to the model of one floor to expose what their working principles are.
Subsequently, the methods of adding these dampers to the models for two, five and ten floors are given. For
varying earthquake-frequencies, the maximum displacement within 5 seconds is determined, which shows
the effect of TMDs and VEDs for different positions within the building. The conclusion from these results
is that the effect of the TMDs is always that at the eigenfrequencies, the oscillations of the building are no
longer resonating. However, the building will start resonating for other eigenfrequencies due to the TMD.
The VED is more consistent, though its damping-effect on resonating frequencies is smaller than for the
TMDs. The conclusion is that VEDs are most effective, though more dampers have to be added to improve its
effectiveness.

After this, a new model is introduced, which does contain a friction force: air resistance. Based on the new
model, it is concluded that even oscillations for resonating frequencies are eventually damped out, though
they do still grow large. Again, TMDs and VEDs are added to the model, and similar conclusions about the
effectivity of the dampers as for the first model were drawn.
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List of variables

xi (t ) the horizontal displacement of floor i with respect to its initial position (m)
P (xi (t )) the momentum of the displacement xi (t )
k the stiffness of a floor (N/m)
m the mass of one floor (kg)
F0 the amplitude of the earthquake (m)
ω the frequency of the earthquake (Hz)
kT the stiffness of the Tuned Mass Damper when attached to a floor (N/m)
mT the mass of a Tuned Mass Damper (kg)
cV the damping coefficient of a Viscoelastic Damper (Ns/m)
Cd the drag coefficient of a floor
A the cross-sectional area of a floor (m2)
ρ the density of air (kg/m3)
zi (t ) for i = 1,2, ...,n, zi (t ) = x ′

i (t ) and zi+n(t ) = xi (t )
yi (t ) for i = 1,2, ...,n, yi (t ) = x ′

h,i (t ) and yi+n(t ) = xh,i (t )

Kn the homegeneous form of both models for n floors can be described as x ′′
h(t ) = K xh(t )

K̃n the matrix that is defined as K =
[

[0]n×n Kn

In [0]n×n

]
fEarthquake(t ) the force of the earthquake, described by F0ω

2m cos(ωt )
fLinear Restoring(t ) the linear restoring force, described by −k∆x(t )
fAir Resistance(t ) the air resistance force, described by − 1

2Cd Aρ(x ′
1)2

dn the vector [1, 1, ..., 1]T of n components
d̃n the vector [dn , 0n]T of 2n components
A used in the particular solution of the model of two floors without air resistance, xp (t ) = Acos(ωt ).
L the matrix defined as L = (K2 +ω2I )
f(t ,z(t )) function used within the definition of the method RK4, such that f(t ,z(t )) = z′(t )

Matrices are denoted by captial letters (K ), vectors by letters in bold (A), and scalars by small letters (m).
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Report Overview

First, in chapter 2 a simple model describing the movements of a building during an earthquake without
friction forces will be introduced. The behaviour of the model will be analysed, and the working principles
of dampers within the model will be examined. Subsequently, in chapter 4, the two types of dampers will,
separately, be included in the model of two, five and ten floors, at several positions. It will be concluded
which damper is most effective in the first model. Chapter 5 will expand the model by including air resisance,
and the effect on the behaviour of the model will be considered. The dampers will be added to the new
model in chapter 6, and it will be concluded whether the conclusions for the dampers in the previous model
still stand.
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1
Introduction

Resonance is a common physical phnomenon. For example, it occurs when one of two guitar strings of the
same tuning is played: the other string will start oscillating without being plugged. The explanation for that,
is that both strings have a common eigenfrequency: a frequency that is "natural" to the string in its current
state. When the sound waves travels from the first towards the second string, a frequency in the sound wave
corresponding to an eigenfrequency of the string will cause the string to oscillate.

Figure 1.1: The strings have a common eigenfrequency, so that resonance occurs.

Unfortunately, buildings also have their own eigenfrequencies. When forced by gusts of wind, or by an earth-
quake, the buildings will start moving, while having a certain tendency to return to their original state: a
restoring force. This restoring force causes the building to start oscillating with its own eigenfrequencies, and
just like the two strings, when the earthquake or wind pushes the building with a frequency that is very close
to one of these eigenfrequencies, the building has the natural tendency to start oscillating. However, dur-
ing this case of resonance, the building will keep oscillating with an evergrowing amplitude, until either the
earthquake stops, or the building collapses.

This is a situation that we want to prevent from happening when building a new building in an earthquake-
prone area. Fortunately, there are methods to prevent this from happening: installing dampers. There is a
great variety of dampers, each with their own specific characteristics, and therefore it can be a hard decision
deciding which damper fits the requirements of a building best.

Therefore, in this report, the effect of two very different dampers on the oscillations of a building during an
earthquake will be analysed. The two dampers that will be considered are the Tuned Mass Damper (TMD)
and the Viscoelastic Damper (VED). The TMD is a device that can be attached to a building, and can be
tuned in such a way that it reduces the oscillations of certain frequencies. In contrast, the VED scales down
oscillations of every frequency by turning mechanical energy into heat.

It is of great importance that the dampers make sure the amplitude of the oscillations of the building does

15



16 1. Introduction

Figure 1.2: A building that collapsed from the effects of an earthquake [13].

not grow too large. Therefore, their assessment will be based on how effectively they reduce oscillations of all
frequencies: resonating and non-resonating. Furthermore, worst-case scenarios will be considered, i.e. the
amplitude of the earthquake will be as large as it gets, and the building’s material’s properties will be chosen
in such a way that they are both realistic and worst-case.



2
Literature Review

On the topics of modelling a building during an earthquake, adding Tuned Mass Dampers to a model, and
adding Viscoelastic Dampers to a model, extensive research has already been done. In this chapter, a brief
review will be given of important findings and conclusions on these issues.

2.1. Modelling a Building During an Earthquake

Constructions are often mathematically modelled a system of differential equations [14]. Such equations are
also often used for modelling a building during an earthquake, by describing the displacements of each floor
[26] [2] [12] [16]. Within these models, the differential equations are based on Newton’s second law, where
the external forces are taken to be the force of the earthquake and a linear restoring force. In some models,
a damping force is already included. The buildings in these models all have natural frequencies, for which
resonance occurs. The amount of natural frequencies of a building is equal to the amount of floors [12].
According to this model, for earthquake-frequencies near these frequencies, the maximum displacement
within a few seconds is significantly larger than for frequencies that are not near a natural frequency [2].

2.2. Modelling a Tuned Mass Damper on a Building

Adding a Tuned Mass Damper (TMD) to a floor in the model of a building can be done by including the
displacement of the TMD as a new differential equation. The Tuned Mass damper is modelled as a mass that
is attached to the floor by a spring [11]. In some cases, a damping force is considered to be in the spring, while
in other cases, the only force that acts between the floor and the damper is the linear restoring force [11]. The
properties (stiffness, mass and damping) of a TMD are chosen in such a way that the effect of an earthquake of
a certain frequency is minimized. For an earthquake with frequencyω, the optimal decisions for the stiffness

kT , mass mT and (if included in the model) damping cT are: ω2 = kT
mT

and cT =
√√√√ 3

( mT
m

)3

8
(
1+ mT

m

)3 , where m is

the mass of a floor. [11]. Extensive research has already been executed on the performance of TMDs and
their optimal positioning. If a single TMD is applied to a building, its optimal location is the highest floor of a
building [9]. When multiple TMDs are included in a building, their optimal positions are determined by the
structures and material properties of the building [9]. Performance of TMDs is usually based on their ability
of reducing oscillations of a particular frequency [21] [17]. However, the TMD causes resonance to occur for
different frequencies than the frequency it has been tuned to [11].

17



18 2. Literature Review

2.3. Modelling a Viscoelastic Damper on a Building

A damping force can be added to the model of differential equations, as was mentioned before [16], and
a Viscoelastic Damper can be included as a damping force. Its damping coefficient is dependent on the
properties of the material is it made of, but also on the amplitude and frequency of the earthquake, and on the
temperature. Furthermore, adding larger or more VEDs to a building will lead to stronger damping properties
[20] However, much more research needs to be done on the dependence on amplitude and frequency, though
some models are already able to capture frequency-dependence [20]. The optimal placement of a VED within
a building is not clear [10], though placing it on the first floor has a preference according to [4]



3
The Model without Air Resistance

In this chapter, the first simple model will be derived, and the values and ranges for the parameters within
the model will be given and explained. The model will then be solved analytically, such that the behaviour
of oscillations in the model becomes clear. Furthermore, a numerical method will be given, that will be used
to describe the model for varying earthquake-frequencies. After the behaviour of the undamped model has
been described, the properties of the Tuned Mass Damper and the Viscoelastic Damper will be discussed.

3.0.1. Derivation of the Model

The first model in this report, is based on the model introduced in [26]. The goal of the model is describing
the oscillations of the floors in a building separately, by modelling the horizontal displacement of the center
of gravity of each floor (also known as point masses). The displacement relative to the initial positions of the
point masses will be denoted by xi (t ) for the i th floor of the building.1 A schematic view of this discretisation
of the building is shown in figure 3.1.

Figure 3.1: Schematic view of the discretisation by floor of a building, in which the point masses denote the horizontal displacement of
each floor.

The movement of the floors is initially caused by the earthquake. Once the floors start shifting separately, due
to the stiffness of the building, the floors have a natural tendency to return to their initial state. The force that
embodies this tendency is the linear restoring force. In this model, the linear restoring force and the force
exerted by the earthquake are assumed to be the only force acting on the building, and will be modelled to

1The ground floor is the the first floor.

19



20 3. The Model without Air Resistance

operate on each floor (see figure 3.2). All other forces, such as damping forces and air resistance, are left out.
The external forces and the movement of the point masses are related by Newton’s second law2, such that for
the i th floor of the building,

d

d t
P (xi (t )) = fLinear Restoring(t ) + fEarthquake(t ). (3.1)

In this equation, P (xi (t )) = mx ′
i (t ) denotes t he momentum of point mass xi (t ), with m the mass of a floor,

which is assumed to be equal for all floors.

Figure 3.2: A scheme displaying the external forces acting on the building.

Furthermore, it is assumed that the earthquake behaves as a sinusoidal function with frequencyω (Hz) and
amplitude F0 (m): xEarthquake(t ) = F0 cos(ωt ). The force of the earthquake on a point mass can be determined
by multiplication of the mass m of a floor and the accelleration of the earthquake (i.e. the second derivative
of xEarthquake(t )):

fEarthquake(t ) =−F0ω
2m cos(ωt ). (3.2)

The linear restoring force on each floor is determined by considering the building as a spring-mass system,
as shown in figure 3.3. Each mass (i.e. floor) is attached to one or two springs, representing the stiffness
between floors. Once a mass moves in any direction, the springs will exert a linear restoring force on any
mass it is connected to. The linear restoring force is described by Hooke’s law: fLinear Restoring(t ) =−k∆x(t ). As
in figure 3.3, each floor is assumed to have an identical stiffness k. Note, furthermore, that only one spring is
attached to the mass on the outer right (the highest floor), and that the spring attached to the left of the outer
left mass (the ground floor) is attached to a fixed end (the ground). Based on equation (3.1), expression (3.2)

Figure 3.3: Configuration of the building as a sprng-mass system.

2Newton’s second law states that, if forces are acting on a body, the time rate of change of the momentum of that body is equal to the
total sum of the forces acting on it.
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and the configuration in figure 3.3, the following model for a the displacements xi (t ) of floor i in a building
of n floors is established:



mx ′′
1 =−kx1 −k(x1 −x2) − F0ω

2m cos(ωt ),

mx ′′
2 =−k(x2 −x1)−k(x2 −x3) − F0ω

2m cos(ωt ),

mx ′′
3 =−k(x3 −x2)−k(x3 −x4) − F0ω

2m cos(ωt ),

...

mx ′′
n−1 =−k(xn−1 −xn−2)−k(xn−1 −xn) − F0ω

2m cos(ωt ),

mx ′′
n =−k(xn −xn−1) − F0ω

2m cos(ωt ).

(3.3)

Finally, it is assumed that at the start of the earthquake, the building is in full rest (i.e. no displacement and
the velocity equals zero, such that the initial conditions are described by xi (0) = x ′

i (0) = 0 for i = 1,2, ...,n.

3.0.2. Values and Ranges of the Parameter in the Model without Air Resistance

The model contains a number of parameters, which can either be fixed or varied. In this model, the values
of the mass m (kg), the stiffness k (N/m) and the earthquake’s amplitude F0 (m) are kept constant, while
the earthquake’s frequency ω (Hz) is varied over a certain interval. This decision is based on the knowledge
that the earthquake-frequency has significant influence on the oscillation-patterns of the building (e.g. reso-
nance), and the fact that both the Tuned Mass Damper and the Viscoelastic Damper’s performance is highly
dependent on the frequency of the earthquake, as will be shown in sections 3.2 and 3.3. Furthermore, various
building heights are considered when analysing the effectivity of the dampers, since the height of a building
is proven to influence its eigenfrequencies, and therefore its oscillation-properties [2].

The precise values and range of the parameters are listed and argued below.

• The introduced model describes behaviours of buildings of n equal floors, and their height might in-
fluence the eigenfrequencies of the building. Therefore, when analysing the effectivity of dampers on
a building, several heights of the construction are considered: a small building of two floors, a mid-rise
building of five floors, and a high-rise building of ten floors, as depicted in figure 3.4

• Each floor in the buildings considered, are assumed to have equal mass m and stiffness k. The values
that are chosen for these parameters are averaged building-properties, based on the masses and stiff-
nesses of floors within a building of nine floors as presented in [7]. The stiffness k is set to approximately
5,5 ·109 N/m, whereas the mass m is fixed as 9,0 ·105 kg.

• The amplitude of earthquakes can range from 10−10 to 0.1 m. In this model, the amplitude of the earth-
quake is set to F0 = 0.1 m, as this is the scenario in which the earthquake has a maximized effect on the
building, such that the effectivity of the dampers is modelled in a worst-case scenario. However, the
amplitude of an earthquake will be of less influence on the size of displacements than the frequency of
the earthquake.

• Earthquake-frequencies occur within a range from 0.001 to 100 Hz , which is the range that will be used
for the values of ω within the model. The model will be analysed for each ω-step of 0.25 Hz.

3.1. The Behaviour of The Model

In this section, an analytical solution to the model (3.3) will be determined, which will expose the character-
istics of the oscillations, including resonance.



22 3. The Model without Air Resistance

Figure 3.4: Summary of the values and range of parameters within the model.

3.1.1. The Analytical Solution Describing Oscillation-Behaviour

To demonstrate the theoretical characteristics that define the oscillations of a building in the model intro-
duced in this chapter, the model will be solved analytically for a two-floor building (n = 2 in (3.3)):{

mx ′′
1 = −kx1 −k(x1 −x2) −F0ω

2m cos(ωt ),

mx ′′
2 = −k(x2 −x1) −F0ω

2m cos(ωt ),
(3.4)

with initial conditions xi (0) = x ′
i (0) = 0 for i = 1,2. The model describes a nonhomogeneous system of ordi-

nary differential equations. A method of determining the solution to such a system, is by finding a particular
and a homogeneous solution, whereafter the general solution to the system can be found by addition of the
two, and can be completed by substitution of the inital conditions [5].

To be able to apply the described method of solving the system of differential equations, it is beneficial to
rewrite it in vector-matrix notation:

x′′(t ) = K2x(t )−F0ω
2 cos(ωt )d, (3.5)

where

x(t ) =
[

x1(t )
x2(t )

]
, K2 =

[− 2k
m

k
m

k
m − k

m

]
, d =

[
1
1

]
. (3.6)

The Particular Solution

First, a particular solution xp (t ) will be established.3 A suggestion for its form is xp (t ) = Acos(ωt ). This form is
a reasonable proposition, since its second derivative is a multiplication of itself, and a cos-function is already

3A particular solution is a solution that solves the system of differential equationn, but does not necessarily satisfy the initial conditions.
Furthermore, there are no undetermined coefficients in the particular solution.
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present within the equation. It is derived whether this form satisfies the differential equation and what the
expression of A is by substitution into (3.5):

−ω2Acos(ωt ) = K2Acos(ωt )−F0ω
2 cos(ωt )d. (3.7)

To satisfy this equation for all values of t , it is required that −ω2A = K2A−F0ω
2d. In particular, A must satisfy(

K2 +ω2I
)

A = F0ω
2d. (3.8)

In case the matrix L = (
K2 +ω2I

)
is invertible, equation (3.8) can be solved by computing the inverse of L,

such that A = F0ω
2L−1d. To ascertain under which conditions the matrix is invertible, its determinant will be

examined:

det(L) =
∣∣∣∣∣ω

2 − 2k
m

k
m

k
m ω2 − k

m

∣∣∣∣∣
=

(
k

m

)2

−3
k

m
ω2 +ω4

=
(
ω2 − k

2m

(
3+p

5
))(

ω2 − k

2m

(
3−p

5
))

. (3.9)

From this expression, we derive that the determinant of L equals zero for ω2 = k
2m

(
3±p

5
)
, and therefore,

for those values of ω, the inverse of L does not exist and no solution exists for equation (3.8). Therefore, it is
assumed that L is invertible, i.e. ω2 ̸= k

2m

(
3±p

5
)
, and its inverse equals

L−1 = 1(
k

m

)2

−3
k

m
ω2 +ω4

[
ω2 − k

m − k
m

− k
m ω2 − k

m

]
(3.10)

By means of this, the expression for A can be determined,

A = F0ω
2L−1d = F0ω

2(
k

m

)2

−3
k

m
ω2 +ω4

[− 2k
m +ω2

− 3k
m +ω2

]
, (3.11)

settling the particular solution xp (t ):

x(t ) = F0ω
2L−1d = F0ω

2(
k

m

)2

−3
k

m
ω2 +ω4

cos(ωt )

[− 2k
m +ω2

− 3k
m +ω2

]
cos(ωt ) (3.12)

The Homogeneous Solution

Second, the a general solution xh(t ) to the homogeneous form of (3.5) will be determined.4 The homogeneous
equation has the following form:

x′′h(t ) = K2xh(t ). (3.13)

An approach to find the general solution to this equation is by introducing a new set of variables, such that this
system of second-order differential equations can be expressed as a system of first-order differential equa-
tions. Define yi (t ) ≡ x ′

h,i (t ) and yi+2(t ) ≡ xh,i (t ) for i = 1,2. Then the homogeneous equation (3.13) converts
to

y′(t ) = K̃2y(t ), (3.14)

4A homogeneous equation is an equation in which all terms that do not contain a term of x or its derivatives are set to 0.
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in which

y(t ) =


y1(t )
y2(t )
y3(t )
y4(t )

 , K̃2 =


0 0 − 2k

m
k
m

0 0 k
m − k

m

1 0 0 0

0 1 0 0

 . (3.15)

From this system of differential equations, the general solution can be established by finding the eigenvalues
and corresponding eigenvectors of the matrix K̃2. First, its eigenvalues are determined:

det
(
K̃2 −λI

) = 0

= λ4 +3
k

m
λ2 +

(
k

m

)2

= 0

=
(
λ2 + k

2m

(
3+p

5
))(

λ2 + k

2m

(
3+−p5

))
= 0,

(3.16)

And hence, λ = ± i ·
√

k
2m

(
3±p

5
)
.

dAs a second step in determining the general solution to the homogeneous equation, the eigenvectors cor-
responding to the eigenvalues will be determined. These can be established by finding a solution v to the
system

(
K̃2 −λI

)
v = 0 through elementary row operations:

−λ 0 − 2k
m

k
m 0

0 −λ k
m − k

m 0

1 0 −λ 0 0

0 1 0 −λ 0

 ∼


0 0 − 2k

m −λ2 k
m 0

0 0 k
m − k

m −λ2 0

1 0 −λ 0 0

0 1 0 −λ 0

 (3.17)

∼


0 0 0 k

m −
(

k
m +λ2

)(
k
m +λ2

)
k
m

0

0 0 k
m − k

m −λ2 0

1 0 −λ 0 0

0 1 0 −λ 0


(3.18)

By substitution of λ (as found in (3.16)) into k
m −

(
k
m +λ2

)(
k
m +λ2

)
k
m

, we find that this expression equals zero.5

Therefore, the following relations for the compnents v j of the eigenvectors vi are established:



v1 −λv3 = 0,

v2 −λv4 = 0,

k

m
v3 −

(
k

m
+λ2

)
v4 = 0.

(3.19)

Choosing v4 = 1 yields v2 = λ, v3 =
(

k
m +λ2

)
k
m

and v1 = λ

(
k
m +λ2

)
k
m

, implying the following form of the eigen-

5Since the established form of the matrix contains one row of zeros, one degree of freedom is acquired. In other words, the system
has infinitely many solutions, and by choosing one of the components of v (freely), an eigenvector will be determined that satisfies(
K̃2 −λI

)
v = 0. As a consequence of the degree of freedom, all scalar mulitples of that eigenvector v will also be an eigenvector of K̃2.
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vectors of the matrix K̃2:

v =



λ
(

k
m +λ2

)
k
m
λ(

k
m +λ2

)
k
m
1


. (3.20)

Now that both the eigenvalues and corresponding eigenvectors have been established, the general solution
to the homogeneous system of differential equations can be constructed. Since the eigenvalues of K̃2 are
solely imaginary, the solution to the homogeneous differential system of differential equations in terms of
y(t ), (3.14), can be written as

y(t ) =
4∑

i=1
[ai cos(Ii t )+bi sin(Ii t )]vi , (3.21)

in which Ii denotes the imaginary part of an eigenvalue λi of K̃2, and vi is the corresponding eigenvector.

It is worth noting that for I1,2 =±
√

k
2m

(
3+p

5
)
, the eigenvectors v1 and v2 coincide. Furthermore, the terms

a1 cos(I1t )v1 and a2 cos(I2t )v2 can be expressed as a single term, for cos(I1t ) = cos(−I2t ) = cos(I2t ). The
same holds for the sin-terms of both eigenvalues, and similar arguments hold for the eigenvalues I3,4 =
±i

√
k

2m

(
3−p

5
)
. Hence, (3.21) can be rewritten as

y(t ) =
2∑

i=1
[ai cos(ωi t )+bi sin(ωi t )] ṽi , (3.22)

where ω1,2 =
√

k
2m

(
3±p

5
)

and ṽi is the eigenvector corresponding to ωi (i = 1,2).

By definition of vector y(t ), the general solution to the homogeneous system of differential equations in terms
of xh(t ), (3.13), corresponds to the lower two components of the expression (3.22) of y(t ). Hence, by writing
wi as the lower two components of ṽi , the general solution to the homogeneous equation is:

xh(t ) =
2∑

i=1
[ai cos(ωi t )+bi sin(ωi t )]wi , (3.23)

wherein

wi =


(

k
m + (iωi )2

)
k
m
1

 =


(

k
m −ω2

i

)
k
m
1

 =
−1∓p

5

2
1

 (3.24)

The Complete Solution

The general solution to the nonhomogeneous system of differential equations (3.4) equals the sum of the
homogeneous solution (3.23) and the particular solution xxp (t ) = Acos(ωt ), where the expression for A is
given in (3.11). This leads to the following expression for x(t ):

x(t ) =
2∑

i=1
[ai cos(ωi t )+bi sin(ωi t )]wi +Acos(ωt ) (3.25)

By substitution the inital conditions x(0) = x′(0) = 0 into this expression, the values of the coefficients ai and
bi can be determined. First, implementing the condition x′(0) = 0 yields

2∑
i=1

ωi bi wi = 0. (3.26)



26 3. The Model without Air Resistance

Noting that the vectors wi and w2 are linearly independent, it can be concluded that b1 = b2 = 0.

By substituting the condition x(0) = 0 into equation (3.25), the following expression is derived:

2∑
i=1

[ai wi ]+A = 0. (3.27)

This equation can be written as a vector-matrix equation W a =−A, in which W = [w1 w2] and a = [a1 a2]T .
Since the columns of the matrix W are linearly independent, this matrix is invertible [8], and therefore the
coefficients a1 and a2 are determined by a =−W −1A.

First, the determinant of W can be easily computed:

det(W ) =
(

k
m −ω2

1

)
−

(
k
m −ω2

2

)
k
m

= −ω2
1 +ω2

2
k
m

= − k
m

p
5

k
m

= −p5, (3.28)

and therefore, the inverse of W is

W −1 = − 1p
5

 1
1−p

5

2

−1
−1−p

5

2

 . (3.29)

Hence, by using the definition of A as in equation (3.11), the coefficients a1 and a2 are given by

[
a1

a2

]
= − F0ω

2

p
5

((
k

m

)2

−3
k

m
ω2 +ω4

)
 1

1−p
5

2

−1
−1−p

5

2


[− 2k

m +ω2

− 3k
m +ω2

]

= F0ω
2

2
p

5

((
k

m

)2

−3
k

m
ω2 +ω4

) [ k
m (−7+3

p
5)+ω2(3−p

5)

k
m (7+3

p
5)+ω2(−3−p

5)

] (3.30)

By combining these expression for the coefficients (and b1 = b2 = 0) with the general solution (3.25), the
following expression for the complete solution to the system of differential equations (3.4) is derived:

x(t ) = F

(
ω,

k

m

)
·

k
m

(−7+3
p

5
)+ω2

(
3−p

5
)

2
p

5

−1
p

5

2
1

cos

√
k

2m

(
3+p

5
)
t



+ F

(
ω,

k

m

)
·

k
m

(
7+3

p
5
)+ω2

(−3−p
5
)

2
p

5

−1+p
5

2
1

cos

√
k

2m

(
3−p

5
)
t



+ F

(
ω,

k

m

)
·
[− 2k

m +ω2

− 3k
m +ω2

]
cos(ωt ),

(3.31)

where

F

(
ω,

k

m

)
≡ F0ω

2(
k

m

)2

−3
k

m
ω2 +ω4

. (3.32)

Analysing the Analytical Solution

The solution (3.31) describes the oscillations within a two-floor building as described by the model intro-
duced in section 3.0.1. From the solution, it can be seen that there are three frequencies that, with their



3.1. The Behaviour of The Model 27

amplitudes, determine the oscillation-patterns of the floors. Two examples of the patterns of the oscillations
of the floors is shown in figure 3.5.6 It is worth noticing that only one of the frequencies depends on the
earthquake’s frequencyω, and the other two frequencies are merely dependent on the ratio k

m . These two fre-
quencies are called the eigenfrequencies of the building, and are "natural" to the combination of dimensions
and material properties of the building.

(a) Oscillations with a lower frquency. (b) Oscillations with a higher frequency.

Figure 3.5: The different oscillation-patterns of the two floors caused by earthquakes whose frequencies are not near an eigenfrequency.
The combination of eigenfrequencies and the earthquake-frequency cause the two figures to show different oscillation-patterns.

Another important notice about the solution, is that each (oscillating) term is multiplied by the coefficient

F
(
ω, k

m

)
. This term can grow considerably whenever its denominator gets closer to zero. When finding the

particular solution, it was already established that the denominator of F has singularities forω2 = k
2m

(
3±p

5
)
.

Hence, if ω approaches
√

k
2m

(
3±p

5
)
, the amplitude of the oscillations will turn large. However, the fact that

these values are equal to the eigenvalues of the system is essential. For example, by substituting ω ≈ ω2 =√
k

2m

(
3−p

5
)

into the solution, it is found that

x(t ) ≈ F

(
ω≈ω2,

k

m

)
·
[

0
0

]
cos

√
k

2m

(
3+p

5
)
t



+ F

(
ω≈ω2,

k

m

)
·
[ k

2m

(
1+p

5
)

k
2m

(−3+p
5
)
]

cos

√
k

2m

(
3−p

5
)
t



+ F

(
ω≈ω2,

k

m

)
·
[ − k

2m

(
1+p

5
)

− k
2m

(−3+p
5
)
]

cos(ωt )

≈ F

(
ω≈ω2,

k

m

)
·
[ k

2m

(
1+p

5
)

k
2m

(−3+p
5
)
]

(cos(ω2t )−cos(ωt ))

. (3.33)

The last rule of the above expression displays how resonance occurs mathematically. The amplitude of the

oscillations is large due to the vast value of F
(
ω≈ω2, k

m

)
. However, the difference between the functions

cos(ω2t ) and cos(ωt ) starts out small, but increases as t increases, and therefore the pattern of resonance
shows limited oscillations at first, but will grow significantly with the passage of time.7 This effect can be seen
clearly in figure 3.6 below. Comparing these resonating patterns to the oscillation-patterns as shown in figure
3.5, it can be seen that within five seconds, the displacements during resonance grows up to 50 times the size
of oscillations without resonance.8

6The Python-code for creating the plots can be found in Appendix B.1.1.
7This phenomenon can also been seen by considering the identity cos(ω2t ) − cos(ωt ) = 2sin( (ω2+ω)t

2 )sin( (ω−ω2)t
2 ). For small ar-

guments, the sin-function can be approximated by its argument. Therefore, the expression for x(t ) can be approximated by
F0ω

2

(ω2 −ω2
1)(ω2 −ω2

2)

(ω2 −ω)t

2
sin( (ω2+ω)t

2 ) = F0ω
2t

2(ω2
1 −ω2)(ω+ω2)

sin( (ω2+ω)t
2 ), which causes the linear-like increase of the amplitude

of the oscilaltions.
8The Python-code for creating the plots can be found in Appendix B.1.1.
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(a) The earthquake’s frequency is near the eigenfrequency

ω2 =
√

k
2m

(
3−p

5
)
.

(b) The earthquake’s frequency is near the eigenfrequency

ω1 =
√

k
2m

(
3+p

5
)
.

Figure 3.6: The oscillation-patterns that occurs when the earthquake’s frequency is close to an eigenfrequency (resonance).

3.1.2. The Numerical Solution Describing Behaviour for Varying Earthquake-Frequencies

To further illustrate the influence of the earthquake’s frequency on the size of oscillations of a building, the
maximum displacement within a certain time-range can be determined for varying frequencies. Not only
does this portray the influence of the earthquake’s frequencies, it will also be useful in demonstrating the ef-
fects of the dampers on the size of the oscillations. To do so, the oscillation-patterns of the model 3.3 have to
be determined for a range ofω. In addition to that, as the amount of floors of a building increases, the compu-
tation time for determining the solution to the system of differential equations grows excessively. Therefore,
it is of interest to consider a numerical integration method for approximating these displacements.

The Numerical Integration Method

In order to use a numerical integration method to approximate a solution to a system of second-order differ-
ential equations (3.3), it is required to rewrite the model using only first-order derivatives. To this end, first,
the following vector-matrix notation is introduced to represent model (3.3) for n floors:

x′′(t ) = Kn x−F0ω
2m cos(ωt )dn , (3.34)

where

x =


x1(t )
x2(t )

...
xn(t )

 , Kn =



− 2k
m

k
m 0 0 ... 0 0 0

k
m − 2k

m
k
m 0 ... 0 0 0

0 k
m − 2k

m
k
m ... 0 0 0

... ... ... ... ... ... ... ...

0 0 0 0 ... k
m − 2k

m
k
m

0 0 0 0 ... 0 k
m − k

m


, dn =


1
1
...
1

 (3.35)

Second, the new variables z j (t ) will be introduced, such that zi (t ) ≡ x ′
i (t ) and zi+n(t ) ≡ xi (t ) for i = 1,2, ...,n.

This leads to the following system of first-order differential equations, which is equivalent to model (3.3):

z′(t ) = K̃n z−F0ω
2 cos(ωt )d̃n , (3.36)

where

z =


z1(t )
z2(t )

...
z2n(t )

 , K̃n =
[

[0]n×n Kn

In [0]n×n

]
, d̃n =

[
dn

0n

]
(3.37)



3.1. The Behaviour of The Model 29

This system of first-order differential equations will be used to determine the numerical approximations
of the solution to model (3.3). The numerical integration method that will be applied to this system is the
method Runge-Kutta 4 (RK4). By defining

f(t ,z(t )) ≡ K̃n z(t )−F0ω
2 cos(ωt )d̃n , (3.38)

RK4 can be described as follows [23]:

k1 =∆t f (tn ,wn) ,

k2 =∆t f
(

tn + ∆t

2
,wn + k1

2

)
,

k3 =∆t f
(

tn + ∆t

2
,wn + k2

2

)
,

k4 =∆t f (tn +∆t ,wn +k3) ,

wn+1 = wn + 1

6
(k1 +2k2 +2k3 +k4).

(3.39)

To analyse for which time-steps ∆t RK4 converges, for all eigenvalues λi of matrix K̃n , the stability bound on
the amplification factor of the method must be analysed:

|Q(λi∆t )| =
∣∣∣∣1+λi∆t + (λi∆t )2

2
+ (λi∆t )3

6
+ (λi∆t )4

24

∣∣∣∣ < 1. (3.40)

In Appendix A, an example of determining the bound on ∆t will be worked out. In the Python-codes that use
the numerical method, the stability bound will be verified for the exploited time-step.

As shown in figure 3.7, using the numerical time-integration method RK4 with time-step ∆t = 0,00025 s, the
oscillation patterns can be approximated accurately, with a relative error of at most 0.008 within five seconds,
where the relative error is defined as the ratio of the absolute error and the analytical solution. However, the
growing abolute erros, as shown in figures 3.7a and 3.7b, are growing larger as time passes.9 This will not
be a problem, as enough information concerning the behaviour of the oscillations can be derived from the
numerical approximation within five seconds (see figures 3.5 and 3.6).

9The Python -code for creating the plots can be found in Appendix B.1.2.
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(a) The absolute error within 10 seconds, without resonance. (b) The absolute error within 10 seconds, with resonance.

(c) The relative error within 10 seconds, without resonance. (d) The relative error within 10 seconds, with resonance.

Figure 3.7: The absolute and relative error for approximating the oscillations of a building of two floors within 100 seconds, using
time-step ∆t = 0,00025 s, with and without resonance.
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The Behaviour of the Building

Based on the numerical approximations, the behaviour of the maximum displacements of the buildings de-
scribed by model 3.3 for varying earthquake-frequencies can be determined. In figure 3.11, the relation be-
tween maximum displacement and earthquake-frequencyω is shown for buildings of two, five and ten floors.
As expected, the displacement of the building is considerably larger around eigenfrequencies than for other
earthquake-frequencies. Furthermore, it is worth noticing that larger buildings have more eigenfrequencies
lying in the range of possible values for the earthquake’s frequency. This is expected, as the amount of eigen-
frequencies of a building is equal to the number of floors. Moreover, the tallest building of ten floors shows
significantly larger displacements for earthuqake-frequencies around its eigenfrequencies.10

(a) A building of two floors. (b) A building of five floors.

(c) A building of ten floors.

Figure 3.8: The maximum displacements of buildings of two, five and ten floors, for earthquake-frequencies varying from 0.001 Hz to
100 Hz.

In figure 3.9, it can be seen that for earthquake-frequencies that are not close an eigenfrequency, the numeri-
cal approximation of the model shows bounded oscillating behaviour. For frequencies close to eigenfrequen-
cies, the oscillations, again, show a resonating pattern. These oscillations will grow unbounded, and therefore
it is required that they be damped before causing irreversible damage.11

10The Python-code used for creating these figures can be found in Appendices B.1.3, B.1.4 and B.1.5
11The Python-code for creating these figures can be found in Appendices B.1.6, B.1.7 and B.1.8.
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(a) An oscillation-pattern of a non-resonating frequency for a building of
two floors.

(b) An oscillation-pattern of a resonating frequency for a building of two
floors.

(c) An oscillation-pattern of a non-resonating frequency for a building of
five floors.

(d) An oscillation-pattern of a resonating frequency for a building of five
floors.

(e) An oscillation-pattern of a non-resonating frequency for a building of
ten floors.

(f) An oscillation-pattern of a non-resonating frequency for a building of
ten floors.

Figure 3.9: Oscillation-patterns for resonating and non-resonating earthquake-frequencies, for buildings of two, five and ten floors.

3.2. The Properties of the Tuned Mass Damper within the Model

In this section, it will be described how a Tuned Mass Damper can be implemented in a building, and how it
is able to damp the frequency it is tuned to.

3.2.1. Implementation of the Tuned Mass Damper in a Building

A Tuned Mass Damper (TMD) is, as the name suggests, a device that is tuned to reduce oscillations of a
specific frequency. It is a large mass, attached to a floor in a building, either as a pendulum (figure 3.10a),
or as an actual spring-mass system (figure 3.10b). 12 Therefore, the configuration of a TMD attached to a
floor resembles the spring-mass system as demonstrated in figure 3.10c, a TMD may be attached by an extra

12The restoring force of the pendulum can also be described by Hooke’s law, fLinear Restoring(t ) = k∆x.
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damper. Both systems can be modeled as a spring-mass system, as shown in figure 3.10c. However, the TMD
depicted in figure 3.10d is also attached to the building from below, by means of a viscous damper. Since the
focus of the research is centered on determining whether the TMD or the Viscoelastic Damper is the most
effective damper, such combinations of a TMD and a vicous damper will not be considered. In other words,
the TMD will be modeled as a mass with a linear restoring force.

(a) A TMD implemented as a pendulum.

(b) A TMD implemented as a mass with springs.

(c) The configuration of a TMD attached to a floor.
(d) The TMD in Taipei 101, Taiwan, which is implemented as a pendulum,

but also is also attached from below by viscous dampers [1].

Figure 3.10: Pictures indicating how a TMD is executed in a building.
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3.2.2. Explanation of the Working Principle of TMD

The working principle of a TMD will be described by adding a TMD to the model of a building of one floor
(n = 1 in (3.3)):

x ′′
1 =− k

m
x1 −F0ω

2 cos(ωt ). (3.41)

The analytical solution describing the oscillations of the floor in this model can be determined by finding a
particular and a homogeneous solution, as has been done in subsection 3.1.1 for the model of two floors.
Executing this method yields:

x1(t ) = F0ω
2

ω2 − k
m

cos

√
k

m
t

−cos(ωt )

 . (3.42)

It can be derived that the eigenfrequency of the floor in this model is equal to
√

k
m

By adding a TMD to the model, a new variable denoting the displacement of the damper is required. Denote
xT (t ) as the displacement of the TMD. Then, since the damper is modelled as a mass attached to the floor by
a spring (figure 3.10c), the model of one floor including a TMD converts to:{

mx ′′
1 =−kx1 −kT (x1 −xT )−F0ω

2m cos(ωt ),

mx ′′
T =−kT (xT −x1).

(3.43)

It is noteworthy that this system is very similar to the model of two floors, as in (3.4). To derive the solution
to this model, the method that was worked out in subsection 3.1.1 can be applied once more, and a similar
computation follows. The solution thence derived can be expressed as
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, (3.44)

where:

FT

(
ω,

k
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≡ F0ω

2

k
m

(
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−2ω2
)
−ω2 kT
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, (3.45)

and ω1 and ω2 are the eigenfrequencies of the system including a TMD:

ω1,2 =

√√√√√1
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)2
. (3.46)

From this solution, the working principle of a TMD can be seen. Assuming the frequency of the earthquake
acting on the building is known, the values of the parameters mT (mass) and kT (stiffness) can be chosen such
that their ratio kT

mT
equals the square of the earthquake’s frequency, ω2. Substituting this into (3.45) yields

FT

(
ω,

k

m
,ω2

)
=−F0

k
m

. (3.47)

which is a bounded factor, independent of the value of ω. With this and further substitution of kt
mT

=ω2, the
solution (3.44) converts to[

x1(t )
xT (t )
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 . (3.48)
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Based on this solution, it can be concluded that by tuning a TMD such that the ratio kT
mT

equalsω2, the effect of
the earthquake’s frequency is completely damped out (figure 3.11). Therefore, the floor will only oscillate with
the (new) eigenfrequencies of the system, ω1 and ω2, and resonance cannot occur. However, this only occurs
when the frequency of an earthquake acting on the building can be predicted before installing the TMD. Since
this is not the case, and (up until now) the configuration of TMDs cannot be adapted to the frequency of an
earthquake during an earthquake, the tuning should be done beforehand.

The tuning of a TMD is mostly done by setting the ratio kT
mT

equal to the square of an eigenfrequency of the
building when no TMD is included [22], since that is the frequency around which resonance occurs. Hence,
the TMD will be tuned such that kT

mT
= k

m . To demonstrate the effect of this decision, the tuning will be
substituted into the factor (3.45) and the solution (3.44) once again, yielding
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, (3.49)
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(3.50)

Substitution of ω ≈
√

k
m yields an expression similar to (3.48), in which the influence of the earthquake’s

frequency is (nearly) entirely damped out. However, the solution does show a recurring factor FT which
can grow significantly large whenever its denominator approaches zero. It can be shown that this occurs for
earthquake-frequencies near the eigenfrequencies ω1 and ω2 of the system. As demonstrated in figure 3.17c,
resonance occurs for values close to these new eigenfrequencies.13

13The Python-code for creating these figures can be found in Appendix B.1.9.
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(a) The influence of a TMD on the oscillation-pattern for an
earthquake-frequency neither near the eigenfrequency of the building

without damping, nor near a "new" eigenfrequency of the building
including a TMD.

(b) The influence of a TMD on the oscillation-pattern for an
earthquake-frequency near the eigenfrequency of the building without

damping (the tuned frequency).

(c) The influence of a TMD on the oscillation-pattern for an
earthquake-frequency near a "new" eigenfrequency of the building

including a TMD.

Figure 3.11: The influence of a TMD on the building for several earthquake-frequencies.

3.3. The Properties of the Viscoelastic Damper within the Model

In this section, the implementation of the Viscoelastic Damper is described, followed by a subsection in which
a function will be fitted to the viscoelastic damping constant (which is dependent on the earthquake’s fre-
quency), and the mathematical principle which describes the influence of the damper will be revealed.

3.3.1. Implementation of the Viscoelastic Damper in a Building

A Viscoelastic Damper (VED) is an oscillation-reducement device that contains a material possessing both
viscous (for fluid-like materials) and elastic (for solids) properties. It can be implemented in a building by
attaching it to a construction of braces (examples are shown in fgure 3.12).

The damping of a VED is caused by the conversion of mechanical energy (from movement of the building)
into heat, due to friction occuring when the material inside the VED deforms (viscocity). Furthermore, the
material inside the VED will deform back, by its elastic properties. The damping force exerted by a damping
mechanism can be modeled by the equation FDamping = c∆v [24], where c is a damping coefficient, and ∆v is
the difference in velocity between the floor and the floor below it. A configuration for modelling a damper on
a floor is shown in figure 3.13, in which CV is denoted as the viscoelastic damping coefficient.

In other words, when including a VED in the building, the floor to which the damper is attached will be of the
following form:

d

d t
P (xi (t )) = fLinear Restoring(t ) + fEarthquake(t ) + fDamping, (3.51)



3.3. The Properties of the Viscoelastic Damper within the Model 37

Figure 3.12: Possible installation methods for VEDs[6].

Figure 3.13: The configuration for adding a VED to a the model for one floor.

where FDamping = cV (x ′
i − x ′

i−1). Due to the elastic and viscous properties of a VED (the damper requires
time to return to its original state after deformation), the coefficient cV is dependent on the frequency of
the earthquake. Since limited data is available for the value of the viscoelastic damping coefficient, the next
subsection will concern finding a fitting function for the values of cV (ω).

3.3.2. Determining the Viscoelastic Damping Coefficient

The data that is considered for the values of cV is based on [19], and concerns various types fof viscoelastic
dampers. Their data points can be found in table ??. First of all, for each of the types of VEDs, a fitting function
will be determined. Afterwards, a decision for the type of VED that will be modelled will be made.

Type of VED Nominal load (kN) 5 Hz 10 Hz 15 Hz 20 Hz 25 Hz 30 Hz 35 Hz
VM010551E 5 11,6 8,7 7,3 6,5 5,9 5,5 5,2
VM020551E 10 24,07 18,1 15,3 13,6 12,4 11,5 10,8
VM030551E 15 41,0 30,8 26,1 23,2 21,1 19,6, 18,4
VM055551E 25 100,0 75,3 63,7 56,6 51,7 47,9 45,0
VM100551E 40 217,3 163,5 138,5 123,1 112,3 104,2 97,8
VM175551E 50 438,3 329,9 279,4 248,3 226,6 210,2 197,4

Table 3.1: The values of the viscoelastic damping coefficient cV for various frequencies [19].

For determining the function cV (ω) that fits the data points best, it is important to take two facts into con-
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sideration. First of all, the function must fit the data points. Second, the function should incorporate the
expected behaviour for the value of cV . By examining the data points as plotted in figure 3.14, we see that the
values of cV show a descending behaviour. First, the Lagrange Interpolation Polynomial will be considered.

Figure 3.14: The given data poins from table ?? for the viscoelastic damping coefficient cV .

The Sixth Degree Lagrange Interpolation Polynomial

Lagrange Interpolation is a method to determine a polynomial that fits a set of data points. Since for every
type of VED, seven data points are available of the form (frequency, coefficient), the sixth degree Lagrange
Interpolation Polynomial can be determined. The Lagrange Polynomials are of the form [23]

cV (ω) = a0 +a1ω+a2ω
2 +a3ω

3 +a4ω
4 +a5ω

5 +a6ω
6. (3.52)

The coefficients a j can be determined by solving the system that follows by substituting the seven data points
into this polynomial. Thence, the Lagrange Polynomial for each type of VED is determined. From figure
3.15 below, it is clear that the Lagrange Polynomial fits the data points for ω ≤ 35 Hz. However, for larger
earthquake-frequencies, the polynomial diverges, which is behaviour that is not expected from cV , based on
the given data points. Therefore, a different approach for determining the behaviour of cV for larger values of
ω is required.

Figure 3.15: The sixth degree Lagrange Interpolation Polynomial, fitted to the given data points.

The Function cV(ω) = a

ωb
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As ω decreases towards 0.001, the data points show a growth with increasing slope. Therefore, a function of
the form cV (ω) = a

ωb fits the data points. This function includes two parameters, a and b, that need to be
determined. To do so, two data points must be substituted in the equation, and the two outer points are used
for this. Denoting these by (ω1,c1) and (ω2,c2), a system of equations is derived:

c1 = a

ωb
1

,

c1 = a

ωb
1

.
(3.53)

Solving for a and b yields:

a = exp

(
lnω1 lnc2 − lnω2 lnc1

lnω1 − lnω2

)
, (3.54)

b = lnc2 − lnc1

lnω1 − lnω2
. (3.55)

For every type of VED, the plot of the function cV (ω) = a
ωb is displayed in figure 3.16. As can be seen, the

function seems to fit the data points very well, and follows the behaviour that is expected form cV based on
the data points, for ω greater than 35.

Figure 3.16: The function cV = a
ωb , fitted to the given data points.

Hence, by assuming the trend of the viscoelastic damping coefficient follows a trend that is monotonely de-
creasing as ω increases, it is concluded that the function cV (ω) = a

ωb can be well used to describe the be-
haviour of the viscoelastic damping coefficient, based on the data points. The values of the parameters a and
b are given in (3.54) and (3.55), and are dependent on the type of VED which has been chosen.

3.3.3. Explanation of the Working Principle of the VED

Implementing eqaution (3.51) in the model of one floor yields:

mx ′′
1 =−kx1 − cV x ′

1 −F0ω
2m cos(ωt ), (3.56)

where cV = cV (ω). Applying the standard method of determining a particular and a homogeneous solution,
and substituting the initial conditions, this second-order ordinary differential equation can be solved, which
yields the following expressions for the solution:

• if c2
V < 4km:

x1(t ) = e−
cV
2m t

[
−A cos

(p
Dt

)
+ 1p

D

(
− cV

2m
A−ωB

)
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(p
Dt

)]
+ A cos(ωt )+B sin(ωt );

(3.57)
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• if c2
V = 4km:

x1(t ) = e−
cV
2m t

[
−A+
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t
]
+ A cos(ωt )+B sin(ωt ); (3.58)

• if c2
V > 4km:
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where:
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D = k

m
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(cV ω
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)2
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All three expressions for the solution to the model (3.56) consist of two parts: first, a term that is multiplied
by an exponantial function with a negative, time-dependent exponent, and second, the terms A cos(ωt )+
B sin(ωt ). The first part of each solution, which includes the exponent, will be damped out as time ad-
vances,14 and therefore each solution converges towards an oscillations described by A cos(ωt )+B sin(ωt ).
Note that A and B , (3.61) and (3.62), respectively, are both bounded amplitudes, as their denominator will not
approach zero (unless ω approaches zero and k

m is close to zero, which is not the case). The rate of conver-
gence is determined by the magnitude of the value of cV , as shown in figure 3.17 (note that a larger nominal
load implies that the damping coefficient is larger, see figure 3.16).

14Note that, in the solution for c2
V > 4km, the exponent − cV

2m +p−D too, is negative for any values of ω and cV > 0: − cV
2m +p−D =

− cV
2m +

√(
cV ω
2m

)2 − k
m <− cV

2m + cV
2m = 0.



3.3. The Properties of the Viscoelastic Damper within the Model 41

(a) The influence of a VED on the oscillation-pattern for an
earthquake-frequency that is not near an eigenfrequency of the building.

(b) The influence of a VED on the oscillation-pattern for an
earthquake-frequency that is near an eigenfrequency of the building.

(c) The influence of a VED on the oscillation-pattern for an
earthquake-frequency that is near an eigenfrequency of the building,

zoomed in on the first three seconds.

Figure 3.17: The effect of a VED of several types on the oscillations of a building of one floor.

To conclude which type of VED is to be chosen for analysing the effectivity of VEDs, it will be determined
which VED-type is most effective in damping oscillations. Figure 3.17 shows the effects of different types
of VEDs when two of them are implemented in the model of a one-floor building. As can be seen, both
for resonating and for non-resonating oscillation-patterns, the VEDs with a nominal load of 50 kN damp
oscillations best. Therefore, this will be the type of VED which will be modelled when assessing the effectivity
of VEDs.





4
Dampers on the Model without Air

Resistance

In this chapter, the methods will be given, according to which the dampers will be included in the model.
Furthermore, the results that follow from this will be described, with the conclusion on which damper is the
most effective. Finally, a shortcoming of the model that is used for creating the results is mentioned.

4.1. Methods of Adding Dampers to the Model

All results will be created by using the numerical method RK4, as described in sebsection 3.1.2, with time-step
∆t = 0,00025 s. The codes that are used to create the reults can be found in Appendix B.1.

Adding TMDs

TMDs will be added to the models of two, five and ten floors according to the method described below. All
TMDs will have equal mass, set to 40% of the mass of a floor [3]. TMDs will be included in the models follow-
ing the mathematical expressions described in subsection 3.2.2.

1. A single TMD will be implemented in the building, which will be tuned to the eigenfrequency that
causes the largest maximum displacement. According to figure 3.11, for all buildings, the TMD will be
tuned to damp the lowest eigenfrequency of the building. The TMD’s position will be varied over every
floor. Based on the results, it will be determined on which floor the TMD has the most effect.

2. For the buildings of five and ten floors, the TMD will be positioned on the floor it is most effective
on. Furthermore, a second TMD will be implemented, tuned to the frequency which causes the largest
oscillations when the first TMD is added to the model. Its position will be varied over the floors, to
determine on which floor the second TMD has most effect.

3. For the building of two floors, the TMD will be positioned on the floor it is most effective on. Since the
TMDs are expected to cause resonance at different frequencies than the eigenfrequencies of the model
without damping, two new TMDs will be added to the model. Their tuning is set to the new resonating
frequencies, and their positions will be varied over the two floors.

Adding VEDs

Similar to the TMDs, VEDs will be included in the models of two, five and ten floors. The dampers will always
be included in the building in sets of ten. All VEDs are of the type that have a nominal load of 50 kN (see

43
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subsection 3.3.2). They will be added to the models of two, five and ten floors, according to the following
method.

1. A set of ten of VEDs will be implemented in the building, and their position will be varied over each
floor. Based on this, the position will be chosen where the VEDs are most effective.

2. The first set of VEDs will be included in the model, and positioned on the floor where the dampers are
most effective. A second set of ten VEDs is added, whose position will be varied.

Assessment

The effectivity of both dampers will be assessed based on their ability to reduce resonating oscillations as well
as non-resonating oscillations of a building.

4.2. Results of Dampers on the Model

4.2.1. Results of adding TMDs

Figure 4.1 shows the effect of adding one TMD to the models for buildings of two, five and ten floors. As
expected, the oscillations for the lowest eigenfrequency are damped significantly in each building, and no
resonance occurs according to figure 4.2b. However, for certain frequencies around it, resonance does occur,
as can be seen in figure 4.2a. Though the new peaks that can be seen in figure 4.1 are largest when the TMD
is added to the highest floor of each building, the oscillations for the eigenfrequency are damped most, and
therefore the position of the highest floor is decided to be the location where the TMD is most effective.

Placing a TMD on the highest floor of each building, figure 4.3 shows the effect of a second TMD - tuned to the
second-lowest eigenfrequency - on the maximum oscillations within five seconds, for buildings of five and
ten floors. Once again, the TMDs damp the oscillations for the tuned eigenfrequency very well, though reso-
nance occurs for a different frequency. However, the model shows a promising result, as can be seen in figure
4.4. It can be seen that if a pair of TMDs - tuned to the new eigenfrequencies of the model of two floors with
a damper on the highest floor - is included on the highest floor, the then created resonating frequencies are
"pushed" outside of the range of the earthquake’s frequency. However, it is not clear whether this is construc-
tially possible for buildings of five and ten floors, as many TMDs have to be included to damp both all five
resonating frequencies within the range of the earthquake’s frequency, and damp the new eigenfrequencies
that come with those.
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(a) The maximum displacement of a building of two floors, with a single
TMD tuned to the first eigenfrequency.

(b) The maximum displacement of a building of five floors, with a single
TMD tuned to the first eigenfrequency.

(c) The maximum displacement of a building of ten floors, with a single
TMD tuned to the first eigenfrequency.

(d) The maximum displacement of a building of ten floors, with a single
TMD tuned to the first eigenfrequency, zoomed in on the eigenfrequency

which is being damped.

Figure 4.1: The maximum displacements of buildings of two, five and ten floors within five seconds, when a single TMD - tuned to the
lowest eigenfrequency - is placed in the building. The position of the TMD within the building is varied.

(a) For a new eigenfrequency. (b) For the old eigenfrequency.

Figure 4.2: The oscillations for a building of two floors including a single TMD on the highest floor, for an eigenfrequency (which is now
damped) and a new resonating frequency due to the TMD.
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(a) The maximum displacement of a building of five floors. (b) The maximum displacement of a building of ten floors.

(c) The maximum displacement of a building of ten floors, with a single
TMD tuned to the first eigenfrequency, zoomed in on the eigenfrequency

which is being damped.

Figure 4.3: The maximum discplacements within five seconds of buildings of five and ten floors, where a TMD (tuned to the loswest
eigenfrequency) is added to the highest floor, and a second TMD (tuned to the second-highest floor) is varied over the building’s floors.

Figure 4.4: The maximum discplacements within five seconds of a building of two floors, in which a TMD is implemented on the
highest floor, and two TMDs are added to damp the new eigenfrequencies due to the first TMD. Their positions are varied. The floors of

the two extra TMDs are given by (floor TMD 1, floor TMD 2) in the legend, where TMD 1 damps the lowest new eigenfrequency, and
TMD 2 the higst new eigenfrequency (see figure 4.1a).

4.2.2. Results of adding VEDs

Figure 4.5 displays the effects of adding a set of ten VEDs to buildings of two, five and ten floors. It can be
seen that in each case, the VEDs damp the oscillations for resonance, but significantly. As can be seen in
figure 4.6b, the reonance-patterns are damped, but still the displacement grows quite large. Also, for non-
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resonating frequencies, the effect of the dampers can be seen in figure 4.6a: the oscillations will grow smaller
as time increases (as predicted in subsection 3.3.3).

From figure 4.5, it appears that for most locations, the VEDs have (almost) the same effect in buildings of five
and ten floor. Therefore, one of the optimal positions for VEDs for both the buildings of five and ten floors
is the highest floor, which will be the location for the first set of VEDs when adding a second set. Also, it can
be seen that the optimal position for the VEDs in the building of two floors is at the first floor. The results of
adding a second set of ten VEDs to each building is shown in figure 4.7. The damping effect of the VEDs for
resonating frequencies is increased, though the oscillations are still large.

It is woth noting that it might be useful to include both VEDs and TMDs in a building. The TMDs can be
used to damp the eigenfrequencies of the building, and since the new resonating frequencies cause smaller
(unbounded) oscillations than without a TMD, these frequencies can be well damped by VEDs.

(a) The maximum displacement of a building of two floors, with a single set
of VEDs.

(b) The maximum displacement of a building of five floors, with a single set
of VEDs.

(c) The maximum displacement of a building of ten floors, with a single set
of VEDs.

Figure 4.5: The maximum displacements of buildings of two, five and ten floors within five seconds, when a set of ten VEDs is placed in
the building. The position of the VED within the building is varied.
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(a) For the non-resonating frequency (b) For the resonating frequency.

Figure 4.6: The oscillations of a two-floor building damped by a set of ten VEDs, for a resonating and a non-resonating frequency.

(a) The maximum displacement of a building of two floors with two sets of
VEDs.

(b) The maximum displacement of a building of five floors with two sets of
VEDs.

(c) The maximum displacement of a building of ten floors, with two sets of
VEDs.

Figure 4.7: The maximum displacements of buildings of two, five and ten floors within five seconds, when a set of VEDs is placed in the
building (at its moptimal position), and a second set of ten VEDs is added. The position of the new set of VEDs is varied.

4.2.3. Comparing the Results

From the results, it can be concluded that the application of TMD is very effective for damping resonating
frequencies. However, a downside is that new eigenfrequencies occur for which resonance finds place. Even
though these new eigenfrequencies seem to be damped by adding more TMDs in the building of two floors,
many more TMDs need to be added to the buildings of five and ten floors to cause the same result, and even
then it is not clear whether no resonance will occur. Furthermore, the TMDs do not damp the oscillations for
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other frequencies.

The VEDs are more consistent in their damping, though for resonating frequencies, the damping effect is still
small and oscillations remain large. By adding more VEDs, though, the damping effect increases. Further-
more, the VEDs also damp oscillations from frequencies without resonance.

Since the VEDs are more consistent in their damping, and do not cause resonance to occur for other fre-
quencies, they are considered to be the most effective dampers according to this model. It should be noted,
however, that either many VEDs should be included in the model, or mthe viscoelastic damping coefficient
should be increased, to make sure damping oscillations resonating frequencies are also damped enough.

4.3. Limitations of the Model

As has been seen in the behaviour of the model without damping (subsection 3.1.2), the oscillations of a build-
ing may grow unboundedly, even including dampers (see subsection 4.2.1), which will undoubtedly cause
irreparable damage and collapsement of buildings. However, according to measurements of oscillations dur-
ing earthquakes, even when resonance occurs, the displacements of buildings will not grow unboundedly
[15]. This might have several causes, and one of those might be that there is a frictional force acting on the
building, which is not taken into account in the model of tha last two chapters. Therefore, to further exam-
ine the effectivity of the TMDs and VEDs on the oscillations of a building, the next chapter will introduce an
expanded model in which a frictional force (air resistance) is included.





5
The Model including Air Resistance

In this chapter, the previous model is expanded by including air resistance. First, the new model is derived,
and the parameters values that are added will be given. Then, the behaviour of the model will be exposed,
and a comparison is made with the previous model.

5.1. Derivation of the Model

The movement of any body (except for when it is located in vacuum) is opposed by a friction force, which
can be due to air, water, or any other kind of medium that is occupying the space surrounding the body. A
building has to endure such friction forces, whenever it is moving (for example, during an earthquake), due
to friction caused by air. Therefore, the new model that will be introduced and applied in this chapter, will
contain air resistance as an external force, in addition to the earthuqake’s force and the linear restoring force
(see subsection 3).

Including the air resistance in the expression relating the external forces working on a floor to the movement
of that floor (see (3.1)), yields:

d

d t
P (xi (t )) = fLinear Restoring(t ) + fEarthquake(t ) + fAir Resistance(t ). (5.1)

A schematic view of the three external forces acting upon the building is given in figure 5.1.

Figure 5.1: A scheme displaying the external forces acting on the building in the new model.
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The expression that describes the force on a moving body due to air resistance is the following [25]:

fAir Resistance(t ) =−1

2
Cd Aρv2 · sign(v), (5.2)

where Cd denotes the drag coefficient of the body, A (m2) its cross-sectional area, v (m/s) its velocity, and ρ
the density of air. Furthermore, the function sign(v) is defined as follows:

sign(v) =


1 if v > 0,

0 if v = 0,

−1 if v < 0.

(5.3)

This function ascertains that the air resistance acts opposite to the movement of a body. By combining the
formula for the force due to air resistance with expression (5.1), the following model (which is an expansion
of (3.3)) is derived:

mx ′′
1 =−kx1 −k(x1 −x2) − F0ω

2m cos(ωt ) −1

2
Cd Aρ(x ′

1)2 · sign(x ′
1),

mx ′′
2 =−k(x2 −x1)−k(x2 −x3) − F0ω

2m cos(ωt ) −1

2
Cd Aρ(x ′

2)2 · sign(x ′
2),

mx ′′
3 =−k(x3 −x2)−k(x3 −x4) − F0ω

2m cos(ωt ) −1

2
Cd Aρ(x ′

3)2 · sign(x ′
3),

...

mx ′′
n−1 =−k(xn−1 −xn−2)−k(xn−1 −xn) − F0ω

2m cos(ωt ) −1

2
Cd Aρ(x ′

n−1)2 · sign(x ′
n−1),

mx ′′
n =−k(xn −xn−1) − F0ω

2m cos(ωt ) −1

2
Cd Aρ(x ′

n)2 · sign(x ′
n).

(5.4)

Furthermore, it is still assumed that the initial conditions of the point masses of the building are xi (0) =
x ′

i (0) = 0 for i = 1,2, ...,n.

5.2. Values of the Parameters in the Model Including Air Friction

By expanding the model from the previous two chapters, new parameters have been introduced. These pa-
rameters are: the drag coefficient Cd of a floor, the cross-sectional area A (m2) of a floor, and the density ρ of
air. Their values will be taken constant in the new model, and are listed below.

• The value of the drag coefficient Cd is a constant that is dependent on the shape of the moving body it
belongs to. For a floor within a building, the shape is considered to be a rectangle, as shown in figure
5.2. The value of the drag coefficient Cd that belongs to this shape is 2, which is the value that will be
used within this model.

• The crossectional area of a floor in the building that is modelled is based on the dimensions of the
building from which the values of the stiffness k and the mass m were taken [7]. Each floor in that
building has an area of 900 m2 in the shape of a square, with a height of 3 m (see figure 5.2). Therefore,
the cross-sectional area of a floor within the building is

p
900 ·3 = 90 m2.

• The density ρ of air is based on [18], and is equal to 1.293 kg/m3 for dry, cold air.

All other parameters, that have already been introduced in subsection 3.0.2, will retain the same value, or will
remain varying within the same interval.

5.3. The Behaviour of the Model

The new model (5.4) is no longer a system of ordinary differential equations, due to the new terms− 1
2Cd Aρ(x ′

i )2·
sign(x ′

i ). SInce the behaviour of this model is expected to be similar to the previous model, but However, its
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Figure 5.2: The dimensions of the building. The shape of the building is a rectangle on its side, which corresponds to a drag coefficient
of Cd = 2.

behaviour can still be determined by applying a numerical integration method. Before doing so, the velocity
of the point masses, x ′

i (t ), has to be approximated. This can be done by using the backward difference:

x ′
i (t ) ≈ xi (t )−xi (t −∆t )

∆t
, (5.5)

for i = 1,2, ...,n. No forward or central difference can be used, as when implementing a numerical integration
method, the next time-step xi (t +∆t ) is not known yet. The truncation error of the backward difference is
O (∆t ).

The numerical method that will be used to determine the behaviour of the new model is, as for the previous
model, the RK4-method (3.39). To be able to apply the method, it is again necessary to rewrite the system in
terms of first-order differential equations. First, the following vector-matrix notation is used for the model:

x′′(t ) = Kn x−F0ω
2m cos(ωt )dn − 1

2
Cd Aρ(x ′

1)2 · sign(x ′
1)dn , (5.6)

where

x =


x1(t )
x2(t )

...
xn(t )

 , Kn =



− 2k
m

k
m 0 0 ... 0 0 0

k
m − 2k

m
k
m 0 ... 0 0 0

0 k
m − 2k

m
k
m ... 0 0 0

... ... ... ... ... ... ... ...

0 0 0 0 ... k
m − 2k

m
k
m

0 0 0 0 ... 0 k
m − k

m


, dn =


1
1
...
1

 (5.7)

By introducing the new variables z j (t ) (as in section 3.1.2), such that zi (t ) ≡ x ′
i (t ) and zi+n(t ) ≡ xi (t ) for

i = 1,2, ...,n, the following system of first-order differential equations is derived for the new model (5.4):

z′(t ) = K̃n z−F0ω
2 cos(ωt )d̃n − 1

2
Cd Aρ(x ′

1)2 · sign(x ′
1)d̃n ., (5.8)

where

z =


z1(t )
z2(t )

...
z2n(t )

 , K̃n =
[

[0]n×n Kn

In [0]n×n

]
, dn =

[
d̃n

0n

]
(5.9)

Incorporating the backward difference into this notation, the following expression for the new function f =
[ f1, f2, ..., f2n]T is derived:

fi (t ,z(t )) ≡ [K̃n z(t )]i −F0ω
2 cos(ωt )− 1

2
Cd Aρ

(
zi+n(t )− zi+n(t −∆t )

∆t

)2

· sign

(
zi+n(t )− zi+n(t −∆t )

∆t

)
, (5.10)
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for i = 1,2...,n, and
fi (t ,z(t )) ≡ [K̃n z(t )]i , (5.11)

for i = n+1,n+2, ...,2n. Using the updated definition and implementing the Runge-Kutta fourth-order (RK4)
method with a time-step of ∆t = 0.00025 s, the obtained results are presented in Figure 5.3. These figures
depict the behavior of the model under varying earthquake frequencies, now accounting for air resistance.
It is clear that for the two- and five-floor buildings, the primary difference lies in the reduced maximum
displacement within five seconds during resonance, as compared to the previous model. Additionally, the
eigenfrequencies have shifted to the left. Figure 5.4 demonstrates that resonance occurs at these new eigen-
frequencies, although it is not as unbounded as observed in the previous model.

(a) A building of two floors. (b) A building of five floors.

(c) A building of ten floors.

Figure 5.3: The maximum displacements of buildings of two, five and ten floors, for earthquake-frequencies varying from 0.001 Hz to
100 Hz.
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(a) An oscillation-pattern of a non-resonating frequency for a building of
two floors.

(b) An oscillation-pattern of a resonating frequency for a building of two
floors.

(c) An oscillation-pattern of a non-resonating frequency for a building of
five floors.

(d) An oscillation-pattern of a resonating frequency for a building of five
floors.

(e) An oscillation-pattern of a non-resonating frequency for a building of
ten floors.

(f) An oscillation-pattern of a non-resonating frequency for a building of
ten floors.

Figure 5.4: Oscillation-patterns for resonating and non-resonating earthquake-frequencies, for buildings of two, five and ten floors. The
oscillations show a resonating pattern, but will eventually be damped due to the air resistance.





6
Dampers on the Model Including Air

Resistance

In this chapter, the methods of adding dampers to the new model will be described, followed by the results
that are created based on these methods. Based on that, a final conclusion will be drawn concerning which
damper is most effective in damping the oscillation-effects of an earthquake.

6.1. Methods of Adding Dampers to the Model

The methods of adding dampers to the new model are listed below. All results will be created by using the
numerical method RK4, as described in sebsection 5.3, with time-step∆t = 0,00025 s. The Python-codes that
are used to dcreate the results can be found in Appendix B.2.

1. For buildings of two, five and ten floors, a single TMD, tuned to the eigenfrequency with the largest dis-
placement, will be added to the model to determine whether the model gives more realistic oscillations,
and whether the dampers perform differently. The position of the TMD will be varied.

2. For the same three buildings, a set of ten VEDs will be added to the new model, and their positions will
be varied.

6.2. Results of Dampers on the Model

6.2.1. Results of Adding a TMD to the Model Including Air Resistance

In figure 6.1, the effect of the addition of a single TMD on the models of two, five and ten floors is shown. It
can be seen that the effects are very similar to the effects on the previous model.Again, as is shown in figure
6.2 for the building of two floors, no resonance occurs for the eigenfrequencies, but for a new eigenfrequency
due to the TMD, resonance does occur. Even though this resonating pattern is damped, its oscillations can
still grow quite large.
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(a) A building of two floors, with a single TMD tuned to the first
eigenfrequency.

(b) A building of five floors, with a single TMD tuned to the first
eigenfrequency.

(c) A building of ten floors, with a single TMD tuned to the first
eigenfrequency.

(d) A building of ten floors, with a single TMD tuned to the first
eigenfrequency, zoomed on the first eigenfrequency.

Figure 6.1: The maximum displacements of buildings of two, five and ten floors within five seconds, when a single TMD - tuned to the
lowest eigenfrequency - is placed in the building. The position of the TMD within the building is varied.

(a) For the old, damped eigenfrequency. (b) The new, resonating eigenfrequency.

Figure 6.2: The oscillations of a two-floor building, damped by a single TMD on the highest floor, for an eigenfrequency (which is
damped), and a new eigenfrequency due to a TMD.

6.2.2. Results of Adding VEDs to the Model Including Air Resistance

In figure 6.3, the effects of adding a single set of VEDs is shown. Like for the TMDs, the result is very similar
to the results from the previous model. Both the resonating patterns and the non-resonating patterns, as
shown in figure 6.4, are damped, but for the resonating frequencies, the damping is still small. As this result
is very similar to the results from the previous model, it is concluded that adding more VEDs will improve the
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damping in such a way that even for resonating frequencies, the oscillations can be kept small.

(a) A building of two floors, with a single TMD tuned to the first
eigenfrequency.

(b) A building of five floors, with a single TMD tuned to the first
eigenfrequency.

(c) A building of ten floors, with a single TMD tuned to the first
eigenfrequency.

Figure 6.3: The maximum displacements of buildings of two, five and ten floors within five seconds, when a single TMD - tuned to the
lowest eigenfrequency - is placed in the building. The position of the TMD within the building is varied.

(a) For the non-resonating frequency. (b) For the resonating frequency.

Figure 6.4: The oscillations of a two-floor building, damped by a set of VEDs on the lowest floor, for a resonating and a non-resonating
frequency.
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6.2.3. Comparing the Results of Adding TMDs and Adding VEDs to the Model Including
Air Resistance

Since the results from this model are very similar to the results from the previous model, the same conclusion
can be drawn. Even though the oscillations due to resonance caused by a TMDs will not grow unboundedly
due to the air resistance, the TMDs are not able to damp the new resonating oscillations. Adding more VEDs
to a building, however, does improve the damping. Therefore, the VEDs are still considered as more effective
dampers for earthquake-oscillations of a building.



7
Conclusion

In this research, Tuned Mass Dampers (TMDs) and Viscoelastic Dampers (VEDs) were added to buildings of
two, five and ten floors, and their damping performance was assessed, based on their ability to reduce oscil-
lations for both resonating and non-resonating frequencies. The dampers have been added to two models,
one without and one including air resistance.

First, in the model without air resistance, a single TMD was added to the buildings, tuned to the lowest eigen-
frequency. Its position in the building was varied over all floors. The TMD effectively reduced the oscilla-
tions for earthquake-frequencies close to the eigenfrequency, and no resonance occured for those frquencies.
However, adding the TMD caused resonance to occur for two new eigenfrequencies. Furthermore, for other
frequencies, the TMD has no effect in damping at all.

For all three buildings, it was concluded that the damping of the oscillations for the lowest eigenfrequency
was most effective for a TMD on the highest floor. Therefore, for the buildings of five and ten floors, a TMD
was placed on the upper floor, and a second TMD was added, tuned to the second-lowest eigenfrequency
of the building. A similar effect was observed as for the first TMD: resonance was damped for the eigen-
frequency, but new resonating eigenfrequencies appeared. Furthermore, the dampers still had no effect on
other frequencies.

In pursuing to damp the new peaks in maximum displacement that occur due to resonance caused by a TMD,
two extra TMDs were added to the building of two floors, when a TMD was already on the highest floor. These
new TMDs were tuned to the new eigenfrequencies caused by the first TMD. It appeared that, if the two TMDs
were btoth implemented on the highest floor, the new resonating frequencies were shifted out of the range
of the earthquake-frequency. However, if such a shifting of resonating frequencies is even possible for larger
buildings, a large amount of TMDs need to be implemented, which is unpractical, since these dampers take
up a significant amount of space.

After this, the VEDs were implemented. For all three buildings, a set of ten VEDs was added, and the position
was varied over all floors. Though the most optimal position of the VEDs did not become clear, the VEDs
proved more consistent in reducing the oscillations than the TMDs. For non-resonating frequencies, the
VEDs damped the oscillations effectively, though for resonating frequencies, the (once) unbounded growth
was damped, yet still large. Therefore, a second set of ten VEDs was included in each building, which proved
useful, since the oscillations both during and without resonance were reduced further. An important notice is
that during resonance, the oscillations do not grow unbounded when VEDs are included. However, the oscil-
lations still remained vast, and more VEDs need to be added to further reduce oscillations, or the viscoelastic
damping coefficient needs to be increased (if possible).

Since the VED is more consistent then the TMD in damping oscillation in the model without air resistance,
and reduces the resonating oscillations, it is considered to be the most effective damper of the two. It should
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62 7. Conclusion

be noted, however, that many VEDs should be included in the building so that resonating oscillations are
reduced to vibrations that are small enough to prevent damage to the building, or the viscoelastic coefficient
should be increased (if possible).

When adding TMDs and VEDs to the model including air resistance, similar results occur as for the previous
model, though eigenfrequencies are shifted, and the resonating oscillations do not grow unbounded. Since
resonance is no longer unbounded in this model, a damper has to reduce the oscillations only for a finite
amount of time. However, the new resonating frequencies due to a TMD on a building still cause resonance
to occur, with ocscillations that are vast and will cause damage to a building. These oscillations can, how-
ever, still be reduced by VEDs, and therefore it is again concluded that the VED is a more effectie damper of
earthquake-induced oscillations.

It should, furthermore, be noted that it might be useful to include both VEDs and TMDs in a building. The
TMDs can be used to damp the eigenfrequencies of the building, and since the new resonating frequencies
cause smaller oscillations than without a TMD, these frequencies can be well damped by VEDs.



8
Discussion

The choices for models, methods and parameter values and -ranges within this research were based on the
objective of reaching results that would give information on which damper, the TMD or the VED, is most
effective in damping oscillations. Further variation of parameters and expansion of the model can be done to
either support or counter the results from this research. Below, a number of possibilities is given for expansion
and modification of the choices made within this research, while it will also be argued whether this would
influence the results of the research.

8.1. Model Simplification

In both models within this research, all floors were assumed to have equal dimensions and equal properties
(stiffness k, mass m). However, such simplification implies that the results might only be valid for buildings
that satisfy these properties. Though further research upon this subject can and should be performed, it
is expected that the differentiation between floors solely influences the value of the eigenfrequencies of the
buildings. Therefore, the only effect that this is expected to have on the performance of the TMD and the VED,
is that the TMD should be tuned to a different frequency, and a VED might have less effect on resonance due to
higher eigenfrequencies (for which the viscoelastic damping coefficient cV is smaller). However, both these
topics have been discussed within the research, since the eigenfrequencies of buildings of different height
differed from one another, and the TMD’s and VED’s effect on those different buildings has been modelled.

Further model simplification has been done by considering only the oscillations of the building in one direc-
tion, due to the earthquake acting only in one dimension. However, in reality, the direction of oscilations is
unpredictable, and due to construction-properties of a building, factors such as the stiffness, cross-sectional
area and the drag coefficient of a floor might differ from when the direction is purely aimed one way. Further-
more, the model does not take into account any kind of rotational and bending movements of the building.
These movements, however, might influence the performance of the dampers. Therefore, further research is
required for considering the impact of those factors upon the effectivity of the dampers.

Moreover, the models assume that the force of the eartquake is acting upon every floor. This is questionable,
as this force comes from the ground, and is therefore only directly connected to the lowest floor. Therefore,
the model can be made more realistic, for example by applying the earthquake‘s force only on the lowest floor,
or by considering the ground as a function with a displacement, which moves according to the movements
of the earthquake.
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8.2. Methods

The method of modelling an earthquake has been done by considering an earthquake of maximum ampli-
tude (F0 = 0,1 m), and by considering every possibility of large oscillation due to resonance through varia-
tion over the earthquake’s frequency. Based on all worst-case scenarios, the dampers have been assessed.
However, when constructing a new building, not all worst-case scenarios might apply, and the risk of having
earthquakes with certain amplitudes or frequencies might be significantly low, so that these scenarios can be
left out when considering the effect of a certain damper on the new building. In that case, a thorough research
should be done on the risks of the occurence of certain earthquakes, and on the risks that are acceptable to
be taken. Nevertheles, since the research in this report is based on worst-case scenarios, the results might be
useful in determining these risks.

Furthermore, the methods that have been used in this research for adding the dampers to the floors are
limited. Even by considering the effects of dampers on various floors, there are many more combinations in
which dampers could have been added to the models. Yet, the possibilities of adding dampers to a model
are also limited. For example, as TMDs require a lot of space, it might not be practically possible to have
one on multiple floors in a building (specially in a building of two floors), and a smilar statement applies to
VEDs. Therefore, the methods used within this research already give an extensive view on the effectivity of
the placement of dampers on various locations within a building.

Moreover, the method of assessing the effects of dampers on the building is by considering the displacement
of the floors. However, not only the displacement is of interest for possible damage to the building. Properties
of movements such as velocity and accelleration of the floors can both influence the damage the building
takes during an earthquake. Further research upon modelling these factors while adding dampers to the
building can be done.

Lastly, the assessment of effectivity of dampers has been done by only considering their effect on the oscil-
lations of a floor. However, it had not been taken into consideration what the financial costs of adding these
types of dampers are.



A
Determining an Upper Bound for the

Time-Step for Stability using RK4 on the
Model of Two Floors

In this appendix, the upper bound for the time-step for RK4 on the simple model (without air resistance) with
two floors is determined.

To determine for which time-steps ∆t the RK4-method converges, we analyse its amplification factor [23]:

Q(λi∆t ) = 1+λi∆t + (λi∆t )2

2
+ (λi∆t )3

6
+ (λi∆t )4

24
. (A.1)

For the method to be absolutely stable, it is required that |Q(λi∆t )| < 1 for all eigenvalues λi of the matrix K .
It is known that these eigenvalues are fully imaginary. Therefore, in this subsection, we will only consider λi

to be fully imaginary, i.e. λi = Ii i . We write λi = Ii i , such that for absolute stability:

|Q(λi∆t )| = |Q(i · Ii∆t )|

= |1− (Ii∆t )2

2
+ (Ii∆t )4

24
+ i

(
Ii∆t − (Ii∆t )3

6

)

=
√(

1− (Ii∆t )2

2
+ (Ii∆t )4

24

)2

+
(

Ii∆t − (Ii∆t )3

6

)2

= 1

24

√
(Ii∆t )8 −8(Ii∆t )6 +576 < 1.

(A.2)

To derive the bound on ∆t explicitly, consider the function g (s) = s8 − 8s6. Note that, to satisfy (A.2), we
require g (Ii∆t )+576 < 242 = 576, or equivalently, g (Ii∆t ) < 0. It can be deduced immediately that s = 0 is a
root of g (s) with mulitplicity 6. Furthermore, g (s) = 0 if s2 −8 = 0, implying s = ±2

p
2 are two other distinct

roots of g (s). To find where g (s) < 0, consider the derivative of g : g ′(s) = 8s7 −48a5. For the roots of g (s), the
derivatives of g (s) are:

g ′(−2
p

2) =−2048
p

2 < 0, (A.3)

g ′(0) = 0, (A.4)

g ′(2
p

2) = 2048
p

2 > 0, (A.5)

which, in combination with g (−2
p

2) = g (0) = g (2
p

2) = 0, can only be satisfied if s = 0 is a local maximum,
and g (s) < 0 if −2

p
2 < s < 0 or 0 < s < 2

p
2, i.e. 0 < |s| < 2

p
2 (as can also be seen in Figure A.1). Hence, (A.2)
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is satisfied if and only if 0 < |Ii∆t | < 2
p

2, which implies that the bound for absolute stability of the numerical
integration method RK4 is as follows1:

∆t < 2
p

2

|λi |
. (A.6)

Figure A.1: This figure displays the graph of g (s), where the value of g is denoted on the vertical axis, for every value of s on the
horizontal axis. Note that equations (A.3), (A.4) and (A.5), together with the knowledge that g (−2

p
2) = g (0) = g (2

p
2) = 0, imply that

g (s) < 0 if 0 < |s| < 2
p

2.

1Note that ∆t > 0 is always satisfied, and that λ= 0 is not an eigenvalue of K , so that |Ii | = |λi | > 0 for all i ∈ {1,2,3, ...,10}.
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Python Codes

B.1. Codes for the Model without Air Resistance

B.1.1. The Analytical Solution for Two Floors

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 16 14:39:24 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
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valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

def F(b,a):
return F0*b/(a**2-3*a*b+b**2)

a = k/m
omegalist = [2,10,20,80,fr(1)-0.00001,fr(2)-0.00001]
for omega in omegalist:

b = omega**2

c1 = (a*(7+3*math.sqrt(5))+b*(-3-math.sqrt(5)))/(2*math.sqrt(5))
c2 = (a*(-7+3*math.sqrt(5))+b*(3-math.sqrt(5)))/(2*math.sqrt(5))
w1 = np.zeros((2,1))
w2 = np.zeros((2,1))
w1[0,0] = (-1+math.sqrt(5))/2
w1[1,0] = 1
w2[0,0] = (-1-math.sqrt(5))/2
w2[1,0] = 1
Av = np.zeros((2,1))
Av[0,0] = -2*a+b
Av[1,0] = -3*a+b
ef1 = math.sqrt((a/2)*(3-math.sqrt(5)))
ef2 = math.sqrt((a/2)*(3+math.sqrt(5)))
def x(t):

term1 = c1*w1*math.cos(ef1*t)
term2 = c2*w2*math.cos(ef2*t)
term3 = Av*math.cos(omega*t)
return F(b,a)*(term1+term2+term3)

xlist = [[],[]]
xrellist = [[],[]]
for i in range(0,2):

for t in tlist:
xival = x(t)[i,0]
if i == 0:

xibelow = 0
else:

xibelow = x(t)[i-1,0]
xrellist[i].append(xival-xibelow)
xlist[i].append(xival)

for i in range(0,2):
plt.plot(tlist,xrellist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’relative displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M1F2 om=2 rel.png’,dpi=400)
if omega == 10:
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plt.savefig(’M1F2 om=10 rel.png’,dpi=400)
if omega == 20:

plt.savefig(’M1F2 om=20 rel.png’,dpi=400)
elif omega == 80:

plt.savefig(’M1F2 om=80 rel.png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602 rel.png’,dpi=400)
else:

plt.savefig(’M1F2 om=127.1324 rel.png’,dpi=400)
plt.figure(figsize=(8,4.8))
for i in range(0,2):

plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M1F2 om=2.png’,dpi=400)
if omega == 10:

plt.savefig(’M1F2 om=10.png’,dpi=400)
if omega == 20:

plt.savefig(’M1F2 om=20.png’,dpi=400)
elif omega == 80:

plt.savefig(’M1F2 om=80.png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602.png’,dpi=400)
else:

plt.savefig(’M1F2 om=127.1324.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.2. The Errors in the Numerical Approximation for Two Floors

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 16 14:39:24 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)
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m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

def F(b,a):
return F0*b/(a**2-3*a*b+b**2)

a = k/m
omegalist = [2,10,20,80,fr(1)-0.00001,fr(2)-0.00001]
for omega in omegalist:

b = omega**2

c1 = (a*(7+3*math.sqrt(5))+b*(-3-math.sqrt(5)))/(2*math.sqrt(5))
c2 = (a*(-7+3*math.sqrt(5))+b*(3-math.sqrt(5)))/(2*math.sqrt(5))
w1 = np.zeros((2,1))
w2 = np.zeros((2,1))
w1[0,0] = (-1+math.sqrt(5))/2
w1[1,0] = 1
w2[0,0] = (-1-math.sqrt(5))/2
w2[1,0] = 1
Av = np.zeros((2,1))
Av[0,0] = -2*a+b
Av[1,0] = -3*a+b
ef1 = math.sqrt((a/2)*(3-math.sqrt(5)))
ef2 = math.sqrt((a/2)*(3+math.sqrt(5)))
def x(t):

term1 = c1*w1*math.cos(ef1*t)
term2 = c2*w2*math.cos(ef2*t)
term3 = Av*math.cos(omega*t)
return F(b,a)*(term1+term2+term3)

xlist = [[],[]]
xrellist = [[],[]]
for i in range(0,2):

for t in tlist:
xival = x(t)[i,0]
if i == 0:

xibelow = 0
else:

xibelow = x(t)[i-1,0]
xrellist[i].append(xival-xibelow)
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xlist[i].append(xival)
for i in range(0,2):

plt.plot(tlist,xrellist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)
plt.ylabel(’relative displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M1F2 om=2 rel.png’,dpi=400)
if omega == 10:

plt.savefig(’M1F2 om=10 rel.png’,dpi=400)
if omega == 20:

plt.savefig(’M1F2 om=20 rel.png’,dpi=400)
elif omega == 80:

plt.savefig(’M1F2 om=80 rel.png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602 rel.png’,dpi=400)
else:

plt.savefig(’M1F2 om=127.1324 rel.png’,dpi=400)
plt.figure(figsize=(8,4.8))
for i in range(0,2):

plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M1F2 om=2.png’,dpi=400)
if omega == 10:

plt.savefig(’M1F2 om=10.png’,dpi=400)
if omega == 20:

plt.savefig(’M1F2 om=20.png’,dpi=400)
elif omega == 80:

plt.savefig(’M1F2 om=80.png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602.png’,dpi=400)
else:

plt.savefig(’M1F2 om=127.1324.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.3. The Maximum Displacement: Two floors

# -*- coding: utf-8 -*-
"""
Created on Fri Jun 16 14:39:24 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))
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tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

def F(b,a):
return F0*b/(a**2-3*a*b+b**2)

a = k/m
omegalist = [2,10,20,80,fr(1)-0.00001,fr(2)-0.00001]
for omega in omegalist:

b = omega**2

c1 = (a*(7+3*math.sqrt(5))+b*(-3-math.sqrt(5)))/(2*math.sqrt(5))
c2 = (a*(-7+3*math.sqrt(5))+b*(3-math.sqrt(5)))/(2*math.sqrt(5))
w1 = np.zeros((2,1))
w2 = np.zeros((2,1))
w1[0,0] = (-1+math.sqrt(5))/2
w1[1,0] = 1
w2[0,0] = (-1-math.sqrt(5))/2
w2[1,0] = 1
Av = np.zeros((2,1))
Av[0,0] = -2*a+b
Av[1,0] = -3*a+b
ef1 = math.sqrt((a/2)*(3-math.sqrt(5)))
ef2 = math.sqrt((a/2)*(3+math.sqrt(5)))
def x(t):

term1 = c1*w1*math.cos(ef1*t)
term2 = c2*w2*math.cos(ef2*t)
term3 = Av*math.cos(omega*t)
return F(b,a)*(term1+term2+term3)
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xlist = [[],[]]
xrellist = [[],[]]
for i in range(0,2):

for t in tlist:
xival = x(t)[i,0]
if i == 0:

xibelow = 0
else:

xibelow = x(t)[i-1,0]
xrellist[i].append(xival-xibelow)
xlist[i].append(xival)

for i in range(0,2):
plt.plot(tlist,xrellist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’relative displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M1F2 om=2 rel.png’,dpi=400)
if omega == 10:

plt.savefig(’M1F2 om=10 rel.png’,dpi=400)
if omega == 20:

plt.savefig(’M1F2 om=20 rel.png’,dpi=400)
elif omega == 80:

plt.savefig(’M1F2 om=80 rel.png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602 rel.png’,dpi=400)
else:

plt.savefig(’M1F2 om=127.1324 rel.png’,dpi=400)
plt.figure(figsize=(8,4.8))
for i in range(0,2):

plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M1F2 om=2.png’,dpi=400)
if omega == 10:

plt.savefig(’M1F2 om=10.png’,dpi=400)
if omega == 20:

plt.savefig(’M1F2 om=20.png’,dpi=400)
elif omega == 80:

plt.savefig(’M1F2 om=80.png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602.png’,dpi=400)
else:

plt.savefig(’M1F2 om=127.1324.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.4. The Maximum Displacement: Five floors

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 1 16:51:28 2023
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@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

dt_5 = np.zeros((10,1))
for i in range(0,5):

dt_5[i,0] = 1
def f(t,y, omega):

term1 = np.dot(Kt_5,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = []
xrelabsmaxlist = []
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for omega in omegalist:
# Runge-Kutta 4
y0 = np.zeros((10,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,omega)
k4 = dt*f(tn+dt,wn+k3,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[],[],[],[],[]]
xireallist = [[],[],[],[],[]]
xirelabslist = [[],[],[],[],[]]
xiabsmaxlist = []
xirelabsmaxlist = []
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
if i == 0:

xibelow = 0
else:

xibelow = xireallist[i-1][j]
xiabslist[i].append(abs(xival))
xireallist[i].append(xival)
xirelabslist[i].append(abs(xival-xibelow))

xiabsmaxlist.append(max(xiabslist[i]))
xirelabsmaxlist.append(max(xirelabslist[i]))

xabsmaxlist.append(max(xiabsmaxlist))
xrelabsmaxlist.append(max(xirelabsmaxlist))
print(’finished with omega =’, omega)

topreal = max(xabsmaxlist)
toprel = max(xrelabsmaxlist)
plt.plot(omegalist,xabsmaxlist)
for n in range(1,6):

if fr(n) <= omegamax:
if n == 1:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
else:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’)
plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F5 varying omega real.png’,dpi=400)
plt.figure(figsize=(8,4.8))

plt.plot(omegalist,xrelabsmaxlist)
for n in range(1,6):

if fr(n) <= omegamax:
if n == 1:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
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else:
plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’)

plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. relative displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F5 varying omega relative.png’,dpi=400)
plt.figure(figsize=(8,4.8))

plt.plot(omegalist,xabsmaxlist,label=’real displacement’)
plt.plot(omegalist,xrelabsmaxlist,label=’relative displacement’)
for n in range(1,6):

if fr(n) <= omegamax:
if n == 1:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
else:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’)
plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. (relative) displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F5 varying omega real and relative.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.5. The Maximum Displacement: Ten floors

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 1 17:39:03 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
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Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

dt_10 = np.zeros((20,1))
for i in range(0,10):

dt_10[i,0] = 1
def f(t,y, omega):

term1 = np.dot(Kt_10,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = []
xrelabsmaxlist = []
for omega in omegalist:

# Runge-Kutta 4
y0 = np.zeros((20,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,omega)
k4 = dt*f(tn+dt,wn+k3,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[],[],[],[],[],[],[],[],[],[]]
xireallist = [[],[],[],[],[],[],[],[],[],[]]
xirelabslist = [[],[],[],[],[],[],[],[],[],[]]
xiabsmaxlist = []
xirelabsmaxlist = []
for i in range(0,10):

for j in range(0,steps+1):
xival = wlist[j][i+10,0]
if i == 0:

xibelow = 0
else:

xibelow = xireallist[i-1][j]
xiabslist[i].append(abs(xival))
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xireallist[i].append(xival)
xirelabslist[i].append(abs(xival-xibelow))

xiabsmaxlist.append(max(xiabslist[i]))
xirelabsmaxlist.append(max(xirelabslist[i]))

xabsmaxlist.append(max(xiabsmaxlist))
xrelabsmaxlist.append(max(xirelabsmaxlist))
print(’finished with omega =’, omega)

topreal = max(xabsmaxlist)
toprel = max(xrelabsmaxlist)
plt.plot(omegalist,xabsmaxlist)
for n in range(1,11):

if fr(n) <= omegamax:
if n == 1:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
else:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’)
plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F10 varying omega real.png’,dpi=400)
plt.figure(figsize=(8,4.8))

plt.plot(omegalist,xrelabsmaxlist)
for n in range(1,11):

if fr(n) <= omegamax:
if n == 1:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
else:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’)
plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. relative displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F10 varying omega relative.png’,dpi=400)
plt.figure(figsize=(8,4.8))

plt.plot(omegalist,xabsmaxlist,label=’real displacement’)
plt.plot(omegalist,xrelabsmaxlist,label=’relative displacement’)
for n in range(1,11):

if fr(n) <= omegamax:
if n == 1:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
else:

plt.vlines(x=fr(n),ymin=0,ymax=topreal,linestyle=’--’,color=’grey’)
plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. (relative) displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F10 varying omega real and relative.png’,dpi=400)
plt.figure(figsize=(8,4.8))



B.1. Codes for the Model without Air Resistance 79

B.1.6. Two Floors

# -*- coding: utf-8 -*-
"""
Created on Sat Jun 17 13:09:44 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

dt_2 = np.zeros((4,1))
for i in range(0,2):

dt_2[i,0] = 1
def f(t,y, omega):

term1 = np.dot(Kt_2,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2
return term1 + term2

omegalist = [5,fr(1)-0.00001]
for omega in omegalist:

# Runge-Kutta 4
y0 = np.zeros((4,1))
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wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,omega)
k4 = dt*f(tn+dt,wn+k3,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[]]
xrellist = [[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+2,0]
if i == 0:

xibelow = 0
else:

xibelow = xlist[i-1][j]
xrellist[i].append(xival-xibelow)
xlist[i].append(xival)

for i in range(0,2):
plt.plot(tlist,xrellist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’relative displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 5:

plt.savefig(’M1F2 om=5 rel (num).png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602 rel (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))
for i in range(0,2):

plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 5:

plt.savefig(’M1F2 om=5 (num).png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F2 om=48.5602 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

######################## NUMERICAL STABILITY OF RUNGE KUTTA 4
def Q(l,dt):

I = l*dt
terms = I**8-8*I**6+576
return math.sqrt(terms)/24

for l in valsKt_2.imag:
if abs(Q(l,dt))>1:

print("The timestep is too large.")
break

else:
if l == valsKt_2.imag[-1]:
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print("The timestep is small enough.")
print("Your timestep is", dt)
dtmaxlist = []
for l in valsKt_2.imag:

dtmax = abs(2*math.sqrt(2)/l)
dtmaxlist.append(dtmax)

print("The maximum time-step for which RK4 converges is", round(min(dtmaxlist),10))

B.1.7. Five Floors

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 1 23:09:48 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

dt_5 = np.zeros((10,1))
for i in range(0,5):
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dt_5[i,0] = 1
def f(t,y, omega):

term1 = np.dot(Kt_5,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5
return term1 + term2

omegalist = [5,fr(1)-0.00001]
for omega in omegalist:

# Runge-Kutta 4
y0 = np.zeros((10,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,omega)
k4 = dt*f(tn+dt,wn+k3,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[],[],[],[]]
xrellist = [[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
if i == 0:

xibelow = 0
else:

xibelow = xlist[i-1][j]
xrellist[i].append(xival-xibelow)
xlist[i].append(xival)

for i in range(0,5):
plt.plot(tlist,xrellist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’relative displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 5:

plt.savefig(’M1F5 om=5 rel (num).png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F5 om=22.364 rel (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))
for i in range(0,5):

plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 5:

plt.savefig(’M1F5 om=5 (num).png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F5 om=22.364 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

######################## NUMERICAL STABILITY OF RUNGE KUTTA 4
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def Q(l,dt):
I = l*dt
terms = I**8-8*I**6+576
return math.sqrt(terms)/24

for l in valsKt_5.imag:
if abs(Q(l,dt))>1:

print("The timestep is too large.")
break

else:
if l == valsKt_5.imag[-1]:

print("The timestep is small enough.")
print("Your timestep is", dt)
dtmaxlist = []
for l in valsKt_5.imag:

dtmax = abs(2*math.sqrt(2)/l)
dtmaxlist.append(dtmax)

print("The maximum time-step for which RK4 converges is", round(min(dtmaxlist),10))

B.1.8. Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 1 23:14:49 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)



84 B. Python Codes

Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

dt_10 = np.zeros((20,1))
for i in range(0,10):

dt_10[i,0] = 1
def f(t,y, omega):

term1 = np.dot(Kt_10,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10
return term1 + term2

omegalist = [5,fr(1)-0.00001]
for omega in omegalist:

# Runge-Kutta 4
y0 = np.zeros((20,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,omega)
k4 = dt*f(tn+dt,wn+k3,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[],[],[],[]]
xrellist = [[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
if i == 0:

xibelow = 0
else:

xibelow = xlist[i-1][j]
xrellist[i].append(xival-xibelow)
xlist[i].append(xival)

for i in range(0,5):
plt.plot(tlist,xrellist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’relative displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 5:

plt.savefig(’M1F10 om=5 rel (num).png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F10 om=11.7434 rel (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))
for i in range(0,5):

plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)



B.1. Codes for the Model without Air Resistance 85

plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 5:

plt.savefig(’M1F10 om=5 (num).png’,dpi=400)
elif omega == fr(1)-0.00001:

plt.savefig(’M1F10 om=11.7434 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

######################## NUMERICAL STABILITY OF RUNGE KUTTA 4
def Q(l,dt):

I = l*dt
terms = I**8-8*I**6+576
return math.sqrt(terms)/24

for l in valsKt_10.imag:
if abs(Q(l,dt))>1:

print("The timestep is too large.")
break

else:
if l == valsKt_10.imag[-1]:

print("The timestep is small enough.")
print("Your timestep is", dt)
dtmaxlist = []
for l in valsKt_10.imag:

dtmax = abs(2*math.sqrt(2)/l)
dtmaxlist.append(dtmax)

print("The maximum time-step for which RK4 converges is", round(min(dtmaxlist),10))

B.1.9. The TMD on the Model of One Floor

-*- coding: utf-8 -*- """ Created on Wed Jun 21 22:06:05 2023

@author: bradl """

import os import math import numpy as np import matplotlib.pyplot as plt dirn ame = "C : /User s/br adl /BEP−
F i g ur es/"pl t .r cPar ams["save f i g .di r ector y"] = os.chdi r (os.path.di r name(di rn ame))

tbegin = 0 tend = 5 steps = 4000*(tend-tbegin) dt = (tend-tbegin)/steps tlist = [tbegin] for i in range(1,steps+1):
t = tbegin+dt*i tlist.append(t)

m = 9E5 k = 5556222222 F0 = 0.1 mT = m*0.4 kT = math.sqrt(k/m)**2*mT

a = k/m c = kT/mT

def x(t,omega): factor = (F0*omega**2)/(omega**2-k/m) tpart = math.cos(omega*t)-math.cos(math.sqrt(k/m)*t)
return factor*tpart def xTMD(t,Av,a1,a2,v1,v2,om1,om2,omega): term1 = factor*a1*v1*math.cos(om1*t) term2
= factor*a2*v2*math.cos(om2*t) term3 = factor*Av*math.cos(omega*t) return term1 + term2 + term3

omegalist = [2,math.sqrt(k/m)-0.00001,math.sqrt(k/(2*m)*(3-math.sqrt(5)))-0.00001] for omega in omegal-
ist: b = omega**2

xlist = [] for t in tlist: xval = x(t,omega) xlist.append(xval)

om1 = math.sqrt((2*a+c+math.sqrt(4*a**2+c**2))/2) om2 = math.sqrt((2*a+c-math.sqrt(4*a**2+c**2))/2) fac-
tor = F0*omega**2/(a*c-2*a*b-b*c+b**2) a1 = c*(b-om2**2)/(om1**2-om2**2) a2 = c*(-b+om1**2)/(om1**2-
om2**2) v1 = np.zeros((2,1)) v1[0,0] = (c-om1**2)/c v1[1,0] = 1 v2 = np.zeros((2,1)) v2[0,0] = (c-om2**2)/c
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v2[1,0] = 1 Av = np.zeros((2,1)) Av[0,0] = -c+b Av[1,0] = -c

xTMDlist = [] for t in tlist: xTMDval = xTMD(t,Av,a1,a2,v1,v2,om1,om2,omega)[0,0] xTMDlist.append(xTMDval)

plt.plot(tlist, xlist, label=’without TMD’) plt.plot(tlist, xTMDlist, label=’with TMD’) plt.xlabel(’time in sec-
onds’) plt.ylabel(’displacement in meters’) plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend() if omega == 2: plt.savefig(’M1F1 TMD om=2.png’,dpi=400) elif omega == math.sqrt(k/m)-0.00001:
plt.savefig(’M1F1 TMD om=78.5721.png’,dpi=400) elif omega == math.sqrt(k/(2*m)*(3-math.sqrt(5)))-0.00001:
plt.savefig(’M1F1 TMD om=48.5602.png’,dpi=400) plt.figure(figsize=(8,4.8))

B.1.10. The VED on the Model of One Floor

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 02:04:04 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 20
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1

FREQS = [5,10,15,20,25,30,35]
NLOADS = [5,10,15,25,40,50]
DATA = np.array([[11.6,8.7,7.3,6.5,5.9,5.5,5.2],

[24.0,18.1,15.3,13.6,12.4,11.5,10.8],
[41.0,30.8,26.1,23.2,21.1,19.6,18.4],
[100.0,75.3,63.7,56.6,51.7,47.9,45.0],
[217.3,163.5,138.5,123.1,112.3,104.2,97.8],
[438.3,329.9,279.4,248.3,226.6,210.2,197.4]])

def c(omega,index):
c1 = DATA[index,0]
o1 = FREQS[0]
c2 = DATA[index,-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
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return -4*1000*a/(omega**b)

omegalist = [2,math.sqrt(k/m)-0.00001]
for omega in omegalist:

for indexp1 in range(0,7):
if indexp1 == 0:

cV = 0
else:

index = indexp1-1
Nload = NLOADS[index]
cV = c(omega,index)

F = F0*omega**2/((cV**2*omega**2/m**2) + (k/m - omega**2)**2)
A = -F*(k/m - omega**2)
B = F*(cV*omega/m)
D = k/m - cV**2/(4*m**2)
D1 = -D
if cV**2 == 4*k*m:

def xVED(t):
term1 = -A*math.exp(cV/(2*m)*t)
term2 = (cV/(2*m)*A - omega*B)*t*math.exp(cV/(2*m)*t)
term3 = A*math.cos(omega*t)
term4 = B*math.sin(omega*t)
return term1 + term2 + term3 + term4

elif cV**2 < 4*k*m:
def xVED(t):

factor = math.exp(cV/(2*m)*t)
term1 = -A*math.cos(math.sqrt(D)*t)
term2 = (cV/(2*m)*A - omega*B)*math.sin(math.sqrt(D)*t)/math.sqrt(D)
term3 = A*math.cos(omega*t)
term4 = B*math.sin(omega*t)
return factor*(term1 + term2) + term3 + term4

else:
def xVED(t):

a1 = ((cV/(2*m) - math.sqrt(D1))*A - omega*B)/(2*math.sqrt(D1))
a2 = -((cV/(2*m) + math.sqrt(D1))*A - omega*B)/(2*math.sqrt(D1))
term1 = a1*math.exp((cV/(2*m)+math.sqrt(D1))*t)
term2 = a2*math.exp((cV/(2*m)-math.sqrt(D1))*t)
term3 = A*math.cos(omega*t)
term4 = B*math.sin(omega*t)
return term1 + term2 + term3 + term4

xVEDlist = []
for t in tlist:

xVEDlist.append(xVED(t))
if indexp1 == 0:

plt.plot(tlist,xVEDlist,label=’no VED’)
else:

plt.plot(tlist,xVEDlist,label=’Nominal load is ’+str(Nload)+’ kN’,linewidth=1)
plt.legend()
plt.xlabel(’time (s)in seconds’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
if omega == 2:

plt.savefig(’M1F1 VED om=2.png’,dpi=400)
elif omega == math.sqrt(k/m)-0.00001:

plt.savefig(’M1F1 VED om=78.5721.png’,dpi=400)
plt.figure(figsize=(8,4.8))
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B.1.11. Adding 1 TMD to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 4 01:09:59 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_2T = np.zeros((3,3))
K_2T[0,0] = -2*k/m
K_2T[0,1] = k/m
K_2T[1,0] = k/m
K_2T[1,1] = -k/m
def Kt_2T(n):

T2_n = np.zeros((3,3))



B.1. Codes for the Model without Air Resistance 89

if n != 0:
i = n-1
T2_n[i,i] = -kT/m
T2_n[i,2] = kT/m
T2_n[2,i] = kT/mT
T2_n[2,2] = -kT/mT

upperright = K_2T + T2_n
matrix = np.zeros((6,6))
for j1 in range(0,3):

matrix[j1+3,j1] = 1
for j2 in range(0,3):

matrix[j1,j2+3] = upperright[j1,j2]
return matrix

neigvals = np.linalg.eigvals(Kt_2T(2))
nIlist = []
nIlist = []
for i in range(0,3):

nIlist.append(neigvals[2*i].imag)
nIlist.sort()
def nfr(n):

return nIlist[n-1]
print(nIlist)

dt_2T = np.zeros((6,1))
for i in range(0,2):

dt_2T[i,0] = 1
def f(t,y, omega):

term1 = np.dot(Kt_2T(2),y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2T
return term1 + term2

omegalist = [nfr(1)-0.00001,fr(1)-0.00001]
for omega in omegalist:

# Runge-Kutta 4
y0 = np.zeros((6,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,omega)
k4 = dt*f(tn+dt,wn+k3,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[]]
xrellist = [[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+3,0]
if i == 0:

xibelow = 0
else:

xibelow = xlist[i-1][j]
xrellist[i].append(xival-xibelow)



90 B. Python Codes

xlist[i].append(xival)
# for i in range(0,2):
# plt.plot(tlist,xrellist[i],label=’floor ’ + str(i+1),linewidth=1)
# plt.xlabel(’time (s)’)
# plt.ylabel(’relative displacement (m)’)
# plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
# plt.legend()
# if omega == omegalist[0]:
# plt.savefig(’M1F2 om=nfr1 rel (num).png’,dpi=400)
# elif omega == omegalist[1]:
# plt.savefig(’M1F2 om=nfr1 rel (num).png’,dpi=400)
# plt.figure(figsize=(8,4.8))
for i in range(0,2):

plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)
plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == omegalist[0]:

plt.savefig(’M1F2 + TMD om=nfr1 (num).png’,dpi=400)
elif omega == omegalist[1]:

plt.savefig(’M1F2 + TMD om=fr1 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.12. Adding 1 VED to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 4 01:26:06 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
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rho = 1.293
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_2(omega,n):
matrix = np.zeros((2,2))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_2V(omega,n):

matrix = np.zeros((4,4))
for i in range(0,4):

for j in range(0,4):
matrix[i,j] = Kt_2[i,j]

for i in range(0,2):
for j in range(0,2):

matrix[i,j] = C_2(omega,n)[i,j]
return matrix

dt_2 = np.zeros((4,1))
for i in range(0,2):

dt_2[i,0] = 1
def f(t,y,ydiff, omega,matrix):

term1 = np.dot(Kt_2V(omega,1),y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2
term3 = np.zeros((4,1))
Favec = np.ones((4,1))
for i in range(0,2):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:
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Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist = [2,fr(1)-4.3]#0.00001]
for omega in omegalist:

matrix = Kt_2V(omega,1)
# Runge-Kutta 4
y0 = np.zeros((4,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+2,0]
xlist[i].append(xival)

for i in range(0,2):
plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == omegalist[0]:

plt.savefig(’M2F2 + VED om=2 (num).png’,dpi=400)
elif omega == omegalist[1]:

plt.savefig(’M2F2 + VED om=fr1 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.13. Maximum Displacement: Adding 1 TMD to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 11:37:43 2023

@author: bradl
"""
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import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_2T = np.zeros((3,3))
K_2T[0,0] = -2*k/m
K_2T[0,1] = k/m
K_2T[1,0] = k/m
K_2T[1,1] = -k/m
def Kt_2T(n):

T2_n = np.zeros((3,3))
if n != 0:

i = n-1
T2_n[i,i] = -kT/m
T2_n[i,2] = kT/m
T2_n[2,i] = kT/mT
T2_n[2,2] = -kT/mT

upperright = K_2T + T2_n
matrix = np.zeros((6,6))
for j1 in range(0,3):

matrix[j1+3,j1] = 1
for j2 in range(0,3):
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matrix[j1,j2+3] = upperright[j1,j2]
return matrix

neigvals = np.linalg.eigvals(Kt_2T(2))
nIlist = []
nIlist = []
for i in range(0,3):

nIlist.append(neigvals[2*i].imag)
nIlist.sort()
def nfr(n):

return nIlist[n-1]
print(nIlist)

dt_2T = np.zeros((6,1))
for i in range(0,2):

dt_2T[i,0] = 1
def f(t,y, omega,matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2T
return term1 + term2

omegalist=[]
omegasteps = 400
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[]]
for n in range(0,3):

matrix = Kt_2T(n)
for omega in omegalist:

y0 = np.zeros((6,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[]],[[],[]],[[],[]]]
xiabsmaxlist = [[],[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+3,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

top = max(max(xabsmaxlist[0]),max(xabsmaxlist[1]),max(xabsmaxlist[2]))
for n in range(0,3):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without damping’)

else:
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plt.plot(omegalist,xabsmaxlist[n],label=’TMD on floor ’+ str(n))
for m in range(1,3):

if fr(m) <= omegamax:
if m == 1:

plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
else:

plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)
plt.title(’2 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F2 + 1 TMD varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.14. Maximum Displacement: Adding extra TMDs to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 16:19:42 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):
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return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_2T = np.zeros((3,3))
K_2T[0,0] = -2*k/m
K_2T[0,1] = k/m
K_2T[1,0] = k/m
K_2T[1,1] = -k/m
T2_2 = np.zeros((3,3))
T2_2[1,1] = -kT/m
T2_2[1,2] = kT/m
T2_2[2,1] = kT/mT
T2_2[2,2] = -kT/mT
upperright = K_2T + T2_2
matrix = np.zeros((6,6))
for j1 in range(0,3):

matrix[j1+3,j1] = 1
for j2 in range(0,3):

matrix[j1,j2+3] = upperright[j1,j2]
neigvals = np.linalg.eigvals(matrix)
nIlist = []
for i in range(0,3):

nIlist.append(neigvals[2*i].imag)
nIlist.sort()
def nfr(n):

return nIlist[n-1]
print(nIlist)

kT1 = nfr(1)**2*mT
kT2 = nfr(2)**2*mT
K_2TTT = np.zeros((5,5))
K_2TTT[0,0] = -2*k/m
K_2T[0,1] = k/m
K_2T[1,0] = k/m
K_2T[1,1] = -k/m
TT1T2_2 = np.zeros((5,5))
for i in range(0,3):

for j in range(0,3):
TT1T2_2[i,j] = T2_2[i,j]

def Kt_2TTT(n1,n2):
TT2T2_n1 = np.zeros((5,5))
TT3T2_n2 = np.zeros((5,5))
i = n1-1
TT2T2_n1[i,i] = -kT1/m
TT2T2_n1[i,2] = kT1/m
TT2T2_n1[2,i] = kT1/mT
TT2T2_n1[2,2] = -kT1/mT
j = n2-1
TT3T2_n2[j,j] = -kT2/m
TT3T2_n2[j,2] = kT2/m
TT3T2_n2[2,j] = kT2/mT
TT3T2_n2[2,2] = -kT2/mT

upperright = K_2TTT + TT1T2_2 + TT2T2_n1 + TT3T2_n2
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matrix = np.zeros((10,10))
for j1 in range(0,5):

matrix[j1+5,j1] = 1
for j2 in range(0,5):

matrix[j1,j2+5] = upperright[j1,j2]
return matrix

print(np.linalg.eigvals(Kt_2TTT(2,2)).imag)

dt_2T = np.zeros((10,1))
for i in range(0,2):

dt_2T[i,0] = 1
def f(t,y, omega,matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2T
return term1 + term2

omegalist=[]
omegasteps = 400
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[[],[]],[[],[]]]
for n1 in range(1,3):

for n2 in range(1,3):
matrix = Kt_2TTT(n1,n2)
for omega in omegalist:

y0 = np.zeros((10,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[[],[]],[[],[]]],[[[],[]],[[],[]]]]
xiabsmaxlist = [[[],[]],[[],[]]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
xiabslist[n1-1][n2-1][i].append(abs(xival))

xiabsmaxlist[n1-1][n2-1].append(max(xiabslist[n1-1][n2-1][i]))
xabsmaxlist[n1-1][n2-1].append(max(xiabsmaxlist[n1-1][n2-1]))
print(’finished with omega =’, omega, ’, n1 =’, n1, ’, n2 =’, n2)

toplist = []
for i in range(0,2):

for j in range(0,2):
toplist.append(max(xabsmaxlist[i][j]))

top = max(toplist)
for n1 in range(1,3):

for n2 in range(1,3):
plt.plot(omegalist,xabsmaxlist[n1-1][n2-1],label=’(’+str(n1)+’,’+str(n2)+’)’)
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for z in range(1,3):
if fr(z) <= omegamax:

if z == 1:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

# if nfr(z) <= omegamax:
# if z == 1:
# plt.vlines(x=nfr(z),ymin=0,ymax=top,linestyle=’--’,color=’moccasin’,label=’new eigenfr.’)
# else:
# plt.vlines(x=nfr(z),ymin=0,ymax=top,linestyle=’--’,color=’moccasin’)

plt.title(’2 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F2 + extra TMDs varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.15. Maximum Displacement: Adding 1 TMD to Five Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 00:00:38 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
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Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_5T = np.zeros((6,6))
K_5T[0,0] = -2*k/m
for i in range(0,4):

K_5T[i,i+1] = k/m
K_5T[i+1,i] = k/m

for i in range(0,3):
K_5T[i+1,i+1] = -2*k/m

K_5T[4,4] = -k/m
def Kt_5T(n):

T1T5_n = np.zeros((6,6))
if n != 0:

i = n-1
T1T5_n[i,i] = -kT/m
T1T5_n[i,5] = kT/m
T1T5_n[5,i] = kT/mT
T1T5_n[5,5] = -kT/mT

upperright = K_5T + T1T5_n
matrix = np.zeros((12,12))
for j1 in range(0,6):

matrix[j1+6,j1] = 1
for j2 in range(0,6):

matrix[j1,j2+6] = upperright[j1,j2]
return matrix

dt_5TT = np.zeros((12,1))
for i in range(0,5):

dt_5TT[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5TT
return term1 + term2

omegalist=[]
omegasteps = 400
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[]]
for n in range(0,6):

matrix = Kt_5T(n)
for omega in omegalist:

y0 = np.zeros((12,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
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wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+6,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,6):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,6):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’TMD on floor ’+ str(n))

for m in range(1,5):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M1F5 + 1 TMD varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.16. Maximum Displacement: Adding 2 TMDs to Five Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 15:06:57 2023

@author: bradl
"""

import os
import math
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import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT1 = fr(1)**2*mT
kT2 = fr(2)**2*mT
K_5TT = np.zeros((7,7))
K_5TT[0,0] = -2*k/m
for i in range(0,4):

K_5TT[i,i+1] = k/m
K_5TT[i+1,i] = k/m

for i in range(0,3):
K_5TT[i+1,i+1] = -2*k/m

K_5TT[4,4] = -k/m
T1T5_5 = np.zeros((7,7))
T1T5_5[4,4] = -kT1/m
T1T5_5[4,5] = kT1/m
T1T5_5[5,4] = kT1/mT
T1T5_5[5,5] = -kT1/mT
def Kt_5TT(n):

T2T5_n = np.zeros((7,7))
if n != 0:

i = n-1
T2T5_n[i,i] = -kT2/m
T2T5_n[i,6] = kT2/m
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T2T5_n[6,i] = kT2/mT
T2T5_n[6,6] = -kT2/mT

upperright = K_5TT + T1T5_5 + T2T5_n
matrix = np.zeros((14,14))
for j1 in range(0,7):

matrix[j1+7,j1] = 1
for j2 in range(0,7):

matrix[j1,j2+7] = upperright[j1,j2]
return matrix

dt_5TT = np.zeros((14,1))
for i in range(0,5):

dt_5TT[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5TT
return term1 + term2

omegalist=[]
omegasteps = 400
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[]]
frlist = [[0],[0],[0],[0],[0]]
xfrlist = [[0],[0],[0],[0],[0]]
def bound(l):

if l == 0:
return 0

elif l == 1:
return 20

elif l == 2:
return 40

elif l == 3:
return 60

elif l == 4:
return 100

for n in range(0,6):
matrix = Kt_5TT(n)
for omega in omegalist:

y0 = np.zeros((14,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
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[[],[],[],[],[]],
[[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+7,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
if n == 1:

for l in range(0,4):
if bound(l)< omega and omega < bound(l+1):

if xfrlist[l][-1]<xabsmaxlist[n][-1]:
frlist[l].append(omega)
xfrlist[l].append(xabsmaxlist[n][-1])

print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,6):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,6):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without 2nd TMD’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’2nd TMD on floor ’+ str(n))

for m in range(1,5):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

for n in range(1,6):
print(frlist[n-1][-1])

plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M1F5 + 2 TMDs varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.17. Maximum Displacement: Adding 1 TMD to Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 12:40:25 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
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plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()
def fr(n):

if n == 0:
return 0

else:
return Ilist[n-1]

print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_10T = np.zeros((11,11))
K_10T[0,0] = -2*k/m
for i in range(0,9):

K_10T[i,i+1] = k/m
K_10T[i+1,i] = k/m

for i in range(0,8):
K_10T[i+1,i+1] = -2*k/m

K_10T[9,9] = -k/m
def Kt_10T(n):

T10_n = np.zeros((11,11))
if n != 0:

i = n-1
T10_n[i,i] = -kT/m
T10_n[i,10] = kT/m
T10_n[10,i] = kT/mT
T10_n[10,10] = -kT/mT

upperright = K_10T + T10_n
matrix = np.zeros((22,22))
for j1 in range(0,11):

matrix[j1+11,j1] = 1
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for j2 in range(0,11):
matrix[j1,j2+11] = upperright[j1,j2]

return matrix

dt_10T = np.zeros((22,1))
for i in range(0,10):

dt_10T[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10T
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[],[]]
for n in range(0,11):

matrix = Kt_10T(n)
for omega in omegalist:

y0 = np.zeros((22,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+11,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

top = max(max(xabsmaxlist[0]),max(xabsmaxlist[1]),max(xabsmaxlist[2]),max(xabsmaxlist[3]),max(xabsmaxlist[4]))
for n in range(0,11):
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if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’TMD on floor ’+ str(n))

for m in range(1,10):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7",loc="lower right")
plt.savefig(’M1F10 + TMD varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.18. Maximum Displacement: Adding 2 TMDs to Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 14:49:29 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
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for i in range(0,10):
Ilist.append(valsKt_10[2*i].imag)

Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT1 = fr(1)**2*mT
kT2 = fr(2)**2*mT
K_10TT = np.zeros((12,12))
K_10TT[0,0] = -2*k/m
for i in range(0,9):

K_10TT[i,i+1] = k/m
K_10TT[i+1,i] = k/m

for i in range(0,8):
K_10TT[i+1,i+1] = -2*k/m

K_10TT[9,9] = -k/m
T1T10_10 = np.zeros((12,12))
T1T10_10[9,9] = -kT1/m
T1T10_10[9,10] = kT1/m
T1T10_10[10,9] = kT1/mT
T1T10_10[10,10] = -kT1/mT
def Kt_10TT(n):

T2T10_n = np.zeros((12,12))
if n != 0:

i = n-1
T2T10_n[i,i] = -kT2/m
T2T10_n[i,11] = kT2/m
T2T10_n[11,i] = kT2/mT
T2T10_n[11,11] = -kT2/mT

upperright = K_10TT + T1T10_10 + T2T10_n
matrix = np.zeros((24,24))
for j1 in range(0,12):

matrix[j1+12,j1] = 1
for j2 in range(0,12):

matrix[j1,j2+12] = upperright[j1,j2]
return matrix

dt_10T = np.zeros((24,1))
for i in range(0,10):

dt_10T[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10T
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[]]
for n in range(0,11):

matrix = Kt_10TT(n)
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for omega in omegalist:
y0 = np.zeros((24,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[]]
for i in range(0,10):

for j in range(0,steps+1):
xival = wlist[j][i+12,0]
xiabslist[n-1][i].append(abs(xival))

xiabsmaxlist[n-1].append(max(xiabslist[n-1][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n-1]))
print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,10):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,11):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without 2nd TMD’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’2nd TMD on floor ’+ str(n))

for m in range(1,11):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M1F10 + 2 TMDs varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))
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B.1.19. Maximum Displacement: Adding 1 VED to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 17:53:06 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_2(omega,n):
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matrix = np.zeros((2,2))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_2V(omega,n):

matrix = np.zeros((4,4))
for i in range(0,4):

for j in range(0,4):
matrix[i,j] = Kt_2[i,j]

for i in range(0,2):
for j in range(0,2):

matrix[i,j] = C_2(omega,n)[i,j]
return matrix

dt_2 = np.zeros((4,1))
for i in range(0,2):

dt_2[i,0] = 1
def f(t,y, omega,matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[]]
for n in range(0,3):

for omega in omegalist:
matrix = Kt_2V(omega,n)
y0 = np.zeros((4,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[]],[[],[]],[[],[]]]
xiabsmaxlist = [[],[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+2,0]
xiabslist[n-1][i].append(abs(xival))

xiabsmaxlist[n-1].append(max(xiabslist[n-1][i]))
xabsmaxlist[n-1].append(max(xiabsmaxlist[n-1]))
print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
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for i in range(0,3):
toplist.append(max(xabsmaxlist[i]))

top = max(toplist)
for n in range(0,3):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’no damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’10 VEDs on floor ’+str(n))

for z in range(1,3):
if fr(z) <= omegamax:

if z == 1:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’2 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F2 + 1 VED varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.20. Maximum Displacement: Adding 2 VEDs to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 23:38:42 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
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Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

x=1
def C_2V1_x(omega):

matrix = np.zeros((2,2))
matrix[x-1,x-1] = -cV(omega)/m
matrix[x-1,x-2] = cV(omega)/m
return matrix

def C_2V2(omega,n):
matrix = np.zeros((2,2))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_2VV(omega,n):

matrix = np.zeros((4,4))
for i in range(0,4):

for j in range(0,4):
matrix[i,j] = Kt_2[i,j]

upperleft = C_2V1_x(omega) + C_2V2(omega,n)
for i in range(0,2):

for j in range(0,2):
matrix[i,j] = upperleft[i,j]

return matrix
dt_2 = np.zeros((4,1))
for i in range(0,2):

dt_2[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2
return term1 + term2

omegalist=[]
omegasteps = 200
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omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[]]
for n in range(0,3):

for omega in omegalist:
matrix = Kt_2VV(omega,n)
y0 = np.zeros((4,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[]],[[],[]],[[],[]]]
xiabsmaxlist = [[],[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+2,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,3):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,3):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without a 2nd set’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’2nd ten VEDs on floor ’+str(n))

for z in range(1,3):
if fr(z) <= omegamax:

if z == 1:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’2 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M1F2 + 2 VEDs varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.21. Maximum Displacement: Adding 1 VED to Five Floors

# -*- coding: utf-8 -*-
"""
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Created on Sun Jul 2 19:21:21 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_5(omega,n):
matrix = np.zeros((5,5))
if n == 1:

matrix[0,0] = -cV(omega)/m
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elif n > 1:
matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_5V(omega,n):

matrix = np.zeros((10,10))
for i in range(0,10):

for j in range(0,10):
matrix[i,j] = Kt_5[i,j]

upperleft = C_5(omega,n)
for i in range(0,5):

for j in range(0,5):
matrix[i,j] = upperleft[i,j]

return matrix
dt_5 = np.zeros((10,1))
for i in range(0,5):

dt_5[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[]]
for n in range(0,6):

for omega in omegalist:
matrix = Kt_5V(omega,n)
y0 = np.zeros((10,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
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print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,5):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,6):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’no damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’10 VEDs on floor ’+str(n))

for z in range(1,3):
if fr(z) <= omegamax:

if z == 1:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M1F5 + 1 VED varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.22. Maximum Displacement: Adding 2 VEDs to Five Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 23:45:18 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
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Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

x=1
def C_5V1_x(omega):

matrix = np.zeros((5,5))
matrix[x-1,x-1] = -cV(omega)/m
matrix[x-1,x-2] = cV(omega)/m
return matrix

def C_5V2(omega,n):
matrix = np.zeros((5,5))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_5VV(omega,n):

matrix = np.zeros((10,10))
for i in range(0,10):

for j in range(0,10):
matrix[i,j] = Kt_5[i,j]

upperleft = C_5V1_x(omega) + C_5V2(omega,n)
for i in range(0,5):

for j in range(0,5):
matrix[i,j] = upperleft[i,j]

return matrix
dt_5 = np.zeros((10,1))
for i in range(0,5):

dt_5[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5
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return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[]]
for n in range(0,6):

for omega in omegalist:
matrix = Kt_5VV(omega,n)
y0 = np.zeros((10,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,6):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,6):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without a 2nd set’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’2nd set VEDs on floor ’+str(n))

for z in range(1,6):
if fr(z) <= omegamax:

if z == 1:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
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plt.legend(fontsize="7")
plt.savefig(’M1F5 + 2 VEDs varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.23. Maximum Displacement: Adding 1 VED to Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Sun Jul 2 17:46:38 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
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o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_10(omega,n):
matrix = np.zeros((10,10))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_10V(omega,n):

matrix = np.zeros((20,20))
for i in range(0,20):

for j in range(0,20):
matrix[i,j] = Kt_10[i,j]

upperleft = C_10(omega,n)
for i in range(0,10):

for j in range(0,10):
matrix[i,j] = upperleft[i,j]

return matrix
dt_10 = np.zeros((20,1))
for i in range(0,5):

dt_10[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[],[]]
for n in range(0,11):

for omega in omegalist:
matrix = Kt_10V(omega,n)
y0 = np.zeros((20,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
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[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[]]
for i in range(0,10):

for j in range(0,steps+1):
xival = wlist[j][i+10,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,10):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,10):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’no damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’10 VEDs on floor ’+ str(n))

for m in range(1,10):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M1F10 + 1 VED varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.1.24. Maximum Displacement: Adding 2 VEDs to Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 01:38:34 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
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tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

x=1
def C_10V1_x(omega):

matrix = np.zeros((10,10))
matrix[x-1,x-1] = -cV(omega)/m
matrix[x-1,x-2] = cV(omega)/m
return matrix

def C_10V2(omega,n):
matrix = np.zeros((10,10))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_10VV(omega,n):

matrix = np.zeros((20,20))



B.1. Codes for the Model without Air Resistance 123

for i in range(0,20):
for j in range(0,20):

matrix[i,j] = Kt_10[i,j]
upperleft = C_10V1_x(omega) + C_10V2(omega,n)
for i in range(0,10):

for j in range(0,10):
matrix[i,j] = upperleft[i,j]

return matrix
dt_10 = np.zeros((20,1))
for i in range(0,5):

dt_10[i,0] = 1
def f(t,y, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10
return term1 + term2

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[],[]]
for n in range(0,11):

for omega in omegalist:
matrix = Kt_10VV(omega,n)
y0 = np.zeros((20,1))
wlist = [y0]
for i in range(0,steps+1):

tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[]]
for i in range(0,10):

for j in range(0,steps+1):
xival = wlist[j][i+10,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)
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toplist = []
for i in range(0,11):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,11):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without a 2nd set’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’2nd set VEDs on floor ’+str(n))

for m in range(1,10):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M1F10 + 2 VEDs varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2. Codes for the Model including Air Resistance

B.2.1. Two Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 21:46:15 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 20
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
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A = 36
rho = 1.293
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

if n == 1:
return 0

elif n == 2:
return 0

dt_2 = np.zeros((4,1))
for i in range(0,2):

dt_2[i,0] = 1
def f(t,y, ydiff, omega):

term1 = np.dot(Kt_2,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2
term3 = np.zeros((4,1))
Favec = np.ones((4,1))
for i in range(0,2):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist = [2,44]
for omega in omegalist:

y0 = np.zeros((4,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
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wlist.append(wnew)
xilist = [[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+2,0]
xilist[i].append(xival)

for i in range(0,2):
plt.plot(tlist,xilist[i],label=’floor ’+str(i+1),linewidth=1)

plt.title(’earthquake-frequency is ’+str(omega)+’ Hz’)
plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.legend()
if omega == 2:

plt.savefig(’M2F2 om=2.png’,dpi=400)
if omega == omegalist[1]:

plt.savefig(’M2F2 om=44.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.2. Five Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 01:51:12 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 20
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
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for i in range(0,5):
Kt_5[i+5,i] = 1

valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()

d = np.zeros((10,1))
for i in range(0,5):

d[i,0] = 1
def f(t,y, ydiff, omega):

term1 = np.dot(Kt_5,y)
term2 = -F0*omega**2*math.cos(omega*t)*d
term3 = np.zeros((10,1))
Favec = np.ones((10,1))
for i in range(0,5):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist = [2,21.5]
for omega in omegalist:

# Runge-Kutta 4
y0 = np.zeros((10,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
xlist[i].append(xival)

for i in range(0,5):
plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
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plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M2F5 om=2 (num).png’,dpi=400)
elif omega == omegalist[1]:

plt.savefig(’M2F5 om=21.5 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

######################## NUMERICAL STABILITY OF RUNGE KUTTA 4
def Q(l,dt):

I = l*dt
terms = I**8-8*I**6+576
return math.sqrt(terms)/24

for l in valsKt_5.imag:
if abs(Q(l,dt))>1:

print("The timestep is too large.")
break

else:
if l == valsKt_5.imag[-1]:

print("The timestep is small enough.")
print("Your timestep is", dt)
dtmaxlist = []
for l in valsKt_5.imag:

dtmax = abs(2*math.sqrt(2)/l)
dtmaxlist.append(dtmax)

print("The maximum time-step for which RK4 converges is", round(min(dtmaxlist),10))

B.2.3. Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 4 00:33:12 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 50
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
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Cd = 2
A = 36
rho = 1.293
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()

dt_10 = np.zeros((20,1))
for i in range(0,10):

dt_10[i,0] = 1
def f(t,y, ydiff, omega):

term1 = np.dot(Kt_10,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10
term3 = np.zeros((20,1))
Favec = np.ones((20,1))
for i in range(0,10):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist = [2,11.5]
for omega in omegalist:

# Runge-Kutta 4
y0 = np.zeros((20,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[],[],[],[],[],[],[],[],[]]
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for i in range(0,10):
for j in range(0,steps+1):

xival = wlist[j][i+10,0]
xlist[i].append(xival)

for i in range(0,10):
plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == 2:

plt.savefig(’M2F10 om=2 (num).png’,dpi=400)
elif omega == omegalist[1]:

plt.savefig(’M2F10 om=11.5 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.4. Adding 1 TMD to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 4 01:45:46 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
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Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_2T = np.zeros((3,3))
K_2T[0,0] = -2*k/m
K_2T[0,1] = k/m
K_2T[1,0] = k/m
K_2T[1,1] = -k/m
def Kt_2T(n):

T2_n = np.zeros((3,3))
if n != 0:

i = n-1
T2_n[i,i] = -kT/m
T2_n[i,2] = kT/m
T2_n[2,i] = kT/mT
T2_n[2,2] = -kT/mT

upperright = K_2T + T2_n
matrix = np.zeros((6,6))
for j1 in range(0,3):

matrix[j1+3,j1] = 1
for j2 in range(0,3):

matrix[j1,j2+3] = upperright[j1,j2]
return matrix

neigvals = np.linalg.eigvals(Kt_2T(2))
nIlist = []
nIlist = []
for i in range(0,3):

nIlist.append(neigvals[2*i].imag)
nIlist.sort()
def nfr(n):

return nIlist[n-1]
print(nIlist)
dt_2T = np.zeros((6,1))
for i in range(0,2):

dt_2T[i,0] = 1
def f(t,y,ydiff, omega,matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2T
term3 = np.zeros((6,1))
Favec = np.ones((6,1))
for i in range(0,5):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3
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omegalist = [nfr(1)-0.00001,fr(1)-4.3]
for omega in omegalist:

matrix = Kt_2T(2)
# Runge-Kutta 4
y0 = np.zeros((6,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+3,0]
xlist[i].append(xival)

for i in range(0,2):
plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == omegalist[0]:

plt.savefig(’M2F2 + TMD om=nfr1 (num).png’,dpi=400)
elif omega == omegalist[1]:

plt.savefig(’M2F2 + TMD om=fr1 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.5. Adding 1 VED to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Tue Jul 4 01:26:06 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))
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tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_2(omega,n):
matrix = np.zeros((2,2))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_2V(omega,n):

matrix = np.zeros((4,4))
for i in range(0,4):

for j in range(0,4):
matrix[i,j] = Kt_2[i,j]
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for i in range(0,2):
for j in range(0,2):

matrix[i,j] = C_2(omega,n)[i,j]
return matrix

dt_2 = np.zeros((4,1))
for i in range(0,2):

dt_2[i,0] = 1
def f(t,y,ydiff, omega,matrix):

term1 = np.dot(Kt_2V(omega,1),y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2
term3 = np.zeros((4,1))
Favec = np.ones((4,1))
for i in range(0,2):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist = [2,fr(1)-4.3]#0.00001]
for omega in omegalist:

matrix = Kt_2V(omega,1)
# Runge-Kutta 4
y0 = np.zeros((4,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xlist = [[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+2,0]
xlist[i].append(xival)

for i in range(0,2):
plt.plot(tlist,xlist[i],label=’floor ’ + str(i+1),linewidth=1)

plt.xlabel(’time (s)’)
plt.ylabel(’displacement (m)’)
plt.title(’earthquake-frequency: ’ + str(round(omega,4)) + ’ Hz’)
plt.legend()
if omega == omegalist[0]:
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plt.savefig(’M2F2 + VED om=2 (num).png’,dpi=400)
elif omega == omegalist[1]:

plt.savefig(’M2F2 + VED om=fr1 (num).png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.6. Maximum Displacement: Adding 1 TMD to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 03:42:00 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
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kT = fr(1)**2*mT
K_2T = np.zeros((3,3))
K_2T[0,0] = -2*k/m
K_2T[0,1] = k/m
K_2T[1,0] = k/m
K_2T[1,1] = -k/m
def Kt_2T(n):

T2_n = np.zeros((3,3))
if n != 0:

i = n-1
T2_n[i,i] = -kT/m
T2_n[i,2] = kT/m
T2_n[2,i] = kT/mT
T2_n[2,2] = -kT/mT

upperright = K_2T + T2_n
matrix = np.zeros((6,6))
for j1 in range(0,3):

matrix[j1+3,j1] = 1
for j2 in range(0,3):

matrix[j1,j2+3] = upperright[j1,j2]
return matrix

neigvals = np.linalg.eigvals(Kt_2T(2))
nIlist = []
nIlist = []
for i in range(0,3):

nIlist.append(neigvals[2*i].imag)
nIlist.sort()
def nfr(n):

return nIlist[n-1]
print(nIlist)

dt_2T = np.zeros((6,1))
for i in range(0,2):

dt_2T[i,0] = 1
def f(t,y,ydiff, omega,matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2T
term3 = np.zeros((6,1))
Favec = np.ones((6,1))
for i in range(0,5):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(0,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[]]
for n in range(0,3):
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matrix = Kt_2T(n)
for omega in omegalist:

y0 = np.zeros((6,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[]],[[],[]],[[],[]]]
xiabsmaxlist = [[],[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+3,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

top = max(max(xabsmaxlist[0]),max(xabsmaxlist[1]),max(xabsmaxlist[2]))
for n in range(0,3):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’TMD on floor ’+ str(n))

for m in range(1,3):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m)-5,ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’2 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M2F2 + 1 TMD varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.7. Maximum Displacement: Adding 1 TMD to Five Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 17:56:36 2023
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@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_5 = np.zeros((10,10))
for i in range(0,4):

Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_5T = np.zeros((6,6))
K_5T[0,0] = -2*k/m
for i in range(0,4):

K_5T[i,i+1] = k/m
K_5T[i+1,i] = k/m

for i in range(0,3):
K_5T[i+1,i+1] = -2*k/m

K_5T[4,4] = -k/m
def Kt_5T(n):

T1T5_n = np.zeros((6,6))
if n != 0:

i = n-1
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T1T5_n[i,i] = -kT/m
T1T5_n[i,5] = kT/m
T1T5_n[5,i] = kT/mT
T1T5_n[5,5] = -kT/mT

upperright = K_5T + T1T5_n
matrix = np.zeros((12,12))
for j1 in range(0,6):

matrix[j1+6,j1] = 1
for j2 in range(0,6):

matrix[j1,j2+6] = upperright[j1,j2]
return matrix

dt_5TT = np.zeros((12,1))
for i in range(0,5):

dt_5TT[i,0] = 1
def f(t,y,ydiff, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5TT
term3 = np.zeros((12,1))
Favec = np.ones((12,1))
for i in range(0,5):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[]]
frlist = [[0],[0],[0]]
xfrlist = [[0],[0],[0]]
def bound(l):

if l == 0:
return 0

elif l == 1:
return 40

elif l == 2:
return 70

elif l == 3:
return 100

for n in range(0,6):
matrix = Kt_5T(n)
for omega in omegalist:

y0 = np.zeros((12,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
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wnold = y0
tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+6,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
if n == 0:

for l in range(0,3):
if bound(l)< omega and omega < bound(l+1):

if xfrlist[l][-1]<xabsmaxlist[n][-1]:
frlist[l].append(omega)
xfrlist[l].append(xabsmaxlist[n][-1])

print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,6):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,6):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’TMD on floor ’+ str(n))

for n in range(1,3):
if n == 1:

plt.vlines(x=frlist[0][-1],ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
print(frlist[0][-1])

else:
plt.vlines(x=frlist[n-1][-1],ymin=0,ymax=top,linestyle=’--’,color=’grey’)
print(frlist[n-1][-1])

plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M2F5 + 1 TMD varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))
toplist = []
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for i in range(0,6):
toplist.append(max(xabsmaxlist[i]))

top = max(toplist)
for n in range(0,6):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’TMD on floor ’+ str(n))

for n in range(1,4):
if n == 1:

plt.vlines(x=frlist[0][-1],ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
print(frlist[0][-1])

else:
plt.vlines(x=frlist[n-1][-1],ymin=0,ymax=top,linestyle=’--’,color=’grey’)
print(frlist[n-1][-1])

plt.title(’5 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M2F5 + 1 TMD varying omega (more eigfr).png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.8. Maximum Displacement: Adding 1 TMD to Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 18:49:04 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_10 = np.zeros((20,20))
for i in range(0,9):
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Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()
def fr(n):

if n == 0:
return 0

else:
return Ilist[n-1]

print(Ilist)

mT = m*0.4
kT = fr(1)**2*mT
K_10T = np.zeros((11,11))
K_10T[0,0] = -2*k/m
for i in range(0,9):

K_10T[i,i+1] = k/m
K_10T[i+1,i] = k/m

for i in range(0,8):
K_10T[i+1,i+1] = -2*k/m

K_10T[9,9] = -k/m
def Kt_10T(n):

T10_n = np.zeros((11,11))
if n != 0:

i = n-1
T10_n[i,i] = -kT/m
T10_n[i,10] = kT/m
T10_n[10,i] = kT/mT
T10_n[10,10] = -kT/mT

upperright = K_10T + T10_n
matrix = np.zeros((22,22))
for j1 in range(0,11):

matrix[j1+11,j1] = 1
for j2 in range(0,11):

matrix[j1,j2+11] = upperright[j1,j2]
return matrix

dt_10T = np.zeros((22,1))
for i in range(0,10):

dt_10T[i,0] = 1
def f(t,y,ydiff, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10T
term3 = np.zeros((22,1))
Favec = np.ones((22,1))
for i in range(0,10):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
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elif ydiff[i,0] == 0:
Favec[i,0] = 0

term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)
return term1 + term2 + term3

omegalist=[]
omegasteps = 100
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[],[]]
# frlist = [[0],[0],[0],[0],[0]]
# xfrlist = [[0],[0],[0],[0],[0]]
# def bound(l):
# if l == 0:
# return 0
# elif l == 1:
# return 20
# elif l == 2:
# return 40
# elif l == 3:
# return 60
# elif l == 4:
# return 80
# elif l == 5:
# return 100
for n in range(0,11):

matrix = Kt_10T(n)
for omega in omegalist:

y0 = np.zeros((22,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
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[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+11,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
# if n == 0:
# for l in range(0,5):
# if bound(l)< omega and omega < bound(l+1):
# if xfrlist[l][-1]<xabsmaxlist[n][-1]:
# frlist[l].append(omega)
# xfrlist[l].append(xabsmaxlist[n][-1])
print(’finished with omega =’, omega, ’, n =’, n)

top = max(max(xabsmaxlist[0]),max(xabsmaxlist[1]),max(xabsmaxlist[2]),max(xabsmaxlist[3]),max(xabsmaxlist[4]))
for n in range(0,11):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’without damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’TMD on floor ’+ str(n))

for m in range(1,10):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7",loc="lower right")
plt.savefig(’M2F10 + TMD varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.9. Maximum Displacement: Adding 1 VED to Two Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 16:25:10 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
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tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_2 = np.zeros((4,4))
for i in range(0,2):

Kt_2[i+2,i] = 1
Kt_2[0,2] = -2*k/m
Kt_2[0,3] = k/m
Kt_2[1,2] = k/m
Kt_2[1,3] = -k/m
valsKt_2 = np.linalg.eigvals(Kt_2)
Ilist = []
for i in range(0,2):

Ilist.append(valsKt_2[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_2(omega,n):
matrix = np.zeros((2,2))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_2V(omega,n):

matrix = np.zeros((4,4))
for i in range(0,4):

for j in range(0,4):
matrix[i,j] = Kt_2[i,j]

for i in range(0,2):
for j in range(0,2):
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matrix[i,j] = C_2(omega,n)[i,j]
return matrix

dt_2 = np.zeros((4,1))
for i in range(0,2):

dt_2[i,0] = 1
def f(t,y,ydiff, omega,matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_2
term3 = np.zeros((4,1))
Favec = np.ones((4,1))
for i in range(0,2):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist=[]
omegasteps = 200
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[]]
for n in range(0,3):

for omega in omegalist:
matrix = Kt_2V(omega,n)
y0 = np.zeros((4,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[]],[[],[]],[[],[]]]
xiabsmaxlist = [[],[],[]]
for i in range(0,2):

for j in range(0,steps+1):
xival = wlist[j][i+2,0]
xiabslist[n-1][i].append(abs(xival))

xiabsmaxlist[n-1].append(max(xiabslist[n-1][i]))
xabsmaxlist[n-1].append(max(xiabsmaxlist[n-1]))
print(’finished with omega =’, omega, ’, n =’, n)
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toplist = []
for i in range(0,3):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,3):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’no damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’10 VEDs on floor ’+str(n))

for z in range(1,3):
if fr(z) <= omegamax:

if z == 1:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(z),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’2 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M2F2 + 1 VED varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.10. Maximum Displacement: Adding 1 VED to Five Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 21:19:29 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_5 = np.zeros((10,10))
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for i in range(0,4):
Kt_5[i,i+5] = -2*k/m
Kt_5[i,i+6] = k/m
Kt_5[i+1,i+5] = k/m

Kt_5[4,9] = -k/m
for i in range(0,5):

Kt_5[i+5,i] = 1
valsKt_5 = np.linalg.eigvals(Kt_5)
Ilist = []
for i in range(0,5):

Ilist.append(valsKt_5[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_5(omega,n):
matrix = np.zeros((5,5))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_5V(omega,n):

matrix = np.zeros((10,10))
for i in range(0,10):

for j in range(0,10):
matrix[i,j] = Kt_5[i,j]

upperleft = C_5(omega,n)
for i in range(0,5):

for j in range(0,5):
matrix[i,j] = upperleft[i,j]

return matrix
dt_5 = np.zeros((10,1))
for i in range(0,5):

dt_5[i,0] = 1
def f(t,y,ydiff, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_5
term3 = np.zeros((10,1))
Favec = np.ones((10,1))
for i in range(0,5):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:
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Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist=[]
omegasteps = 100
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[]]
frlist = [[0],[0]]
xfrlist = [[0],[0]]
bound1 = 30
bound2 = 70
for n in range(0,6):

for omega in omegalist:
matrix = Kt_5V(omega,n)
y0 = np.zeros((10,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]],
[[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[]]
for i in range(0,5):

for j in range(0,steps+1):
xival = wlist[j][i+5,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
xabsmaxlist[n].append(max(xiabsmaxlist[n]))
if n == 0:

if omega<bound1:
if xfrlist[0][-1]<xabsmaxlist[n][-1]:

frlist[0].append(omega)
xfrlist[0].append(xabsmaxlist[n][-1])
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elif omega<bound2:
if xfrlist[1][-1]<xabsmaxlist[n][-1]:

frlist[1].append(omega)
xfrlist[1].append(xabsmaxlist[n][-1])

print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,5):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,6):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’no damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’10 VEDs on floor ’+str(n))

for n in range(1,3):
if n == 1:

plt.vlines(x=frlist[0][-1],ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)
print(frlist[0][-1])

else:
plt.vlines(x=frlist[n-1][-1],ymin=0,ymax=top,linestyle=’--’,color=’grey’)
print(frlist[n-1][-1])

plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend()
plt.savefig(’M2F5 + 1 VED varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.2.11. Maximum Displacement: Adding 1 VED to Ten Floors

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 3 20:09:52 2023

@author: bradl
"""

import os
import math
import numpy as np
import matplotlib.pyplot as plt
dir_name = "C:/Users/bradl/BEP - Figures/"
plt.rcParams["savefig.directory"] = os.chdir(os.path.dirname(dir_name))

tbegin = 0
tend = 5
steps = 4000*(tend-tbegin)
dt = (tend-tbegin)/steps
tlist = [tbegin]
for i in range(1,steps+1):

t = tbegin+dt*i
tlist.append(t)

m = 9E5
k = 5556222222
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F0 = 0.1
Cd = 2
A = 36
rho = 1.293
Kt_10 = np.zeros((20,20))
for i in range(0,9):

Kt_10[i,i+10] = -2*k/m
Kt_10[i,i+11] = k/m
Kt_10[i+1,i+10] = k/m

Kt_10[9,19] = -k/m
for i in range(0,10):

Kt_10[i+10,i] = 1
valsKt_10 = np.linalg.eigvals(Kt_10)
Ilist = []
for i in range(0,10):

Ilist.append(valsKt_10[2*i].imag)
Ilist.sort()
def fr(n):

return Ilist[n-1]
print(Ilist)

FREQS = [5,10,15,20,25,30,35]
DATA = np.array([438.3,329.9,279.4,248.3,226.6,210.2,197.4])
def cV(omega):

c1 = DATA[0]
o1 = FREQS[0]
c2 = DATA[-1]
o2 = FREQS[-1]
b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2
return 10*1000*a/(omega**b)

def C_10(omega,n):
matrix = np.zeros((10,10))
if n == 1:

matrix[0,0] = -cV(omega)/m
elif n > 1:

matrix[n-1,n-1] = -cV(omega)/m
matrix[n-1,n-2] = cV(omega)/m

return matrix
def Kt_10V(omega,n):

matrix = np.zeros((20,20))
for i in range(0,20):

for j in range(0,20):
matrix[i,j] = Kt_10[i,j]

upperleft = C_10(omega,n)
for i in range(0,10):

for j in range(0,10):
matrix[i,j] = upperleft[i,j]

return matrix
dt_10 = np.zeros((20,1))
for i in range(0,5):

dt_10[i,0] = 1
def f(t,y,ydiff, omega, matrix):

term1 = np.dot(matrix,y)
term2 = -F0*omega**2*math.cos(omega*t)*dt_10
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term3 = np.zeros((20,1))
Favec = np.ones((20,1))
for i in range(0,10):

vi = ydiff[i,0]/dt
if ydiff[i,0] > 0:

Favec[i,0] = -1
elif ydiff[i,0] == 0:

Favec[i,0] = 0
term3[i] = Favec[i,0]*Cd*A*rho*vi**2/(2*m)

return term1 + term2 + term3

omegalist=[]
omegasteps = 100
omegamax = 100
for val in range(1,omegasteps+1):

o = val/omegasteps*omegamax
omegalist.append(o)

xabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[],[]]
for n in range(0,11):

for omega in omegalist:
matrix = Kt_10V(omega,n)
y0 = np.zeros((20,1))
wlist = [y0]
for i in range(0,steps+1):

if i > 0:
wnold = wlist[-2]

elif i == 0:
wnold = y0

tn = tlist[i]
wn = wlist[-1]
wndiff = wn - wnold
tn = tlist[i]
wn = wlist[-1]
k1 = dt*f(tn,wn,wndiff,omega,matrix)
k2 = dt*f(tn+dt/2,wn+k1/2,wndiff,omega,matrix)
k3 = dt*f(tn+dt/2,wn+k2/2,wndiff,omega,matrix)
k4 = dt*f(tn+dt,wn+k3,wndiff,omega,matrix)
wnew = wn + (k1 + 2*k2 + 2*k3 + k4)/6
wlist.append(wnew)

xiabslist = [[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]],
[[],[],[],[],[],[],[],[],[],[]]]

xiabsmaxlist = [[],[],[],[],[],[],[],[],[],[],[]]
for i in range(0,10):

for j in range(0,steps+1):
xival = wlist[j][i+10,0]
xiabslist[n][i].append(abs(xival))

xiabsmaxlist[n].append(max(xiabslist[n][i]))
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xabsmaxlist[n].append(max(xiabsmaxlist[n]))
print(’finished with omega =’, omega, ’, n =’, n)

toplist = []
for i in range(0,10):

toplist.append(max(xabsmaxlist[i]))
top = max(toplist)
for n in range(0,10):

if n == 0:
plt.plot(omegalist,xabsmaxlist[n],label=’no damping’)

else:
plt.plot(omegalist,xabsmaxlist[n],label=’10 VEDs on floor ’+ str(n))

for m in range(1,10):
if fr(m) <= omegamax:

if m == 1:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’,label=’eigenfrequency’)

else:
plt.vlines(x=fr(m),ymin=0,ymax=top,linestyle=’--’,color=’grey’)

plt.title(’10 floors’)
plt.xlabel(’earthquake-frequency (Hz)’)
plt.ylabel(’max. displacement within ’ + str(tend) + ’ s (m)’)
plt.legend(fontsize="7")
plt.savefig(’M2F10 + 1 VED varying omega.png’,dpi=400)
plt.figure(figsize=(8,4.8))

B.3. Other Codes

B.3.1. Fitting a Function to cV

-*- coding: utf-8 -*- """ Created on Sun Jul 2 00:48:45 2023

@author: bradl """

import os import math import numpy as np import matplotlib.pyplot as plt dirn ame = "C : /User s/br adl /BEP−
F i g ur es/"pl t .r cPar ams["save f i g .di r ector y"] = os.chdi r (os.path.di r name(di rn ame))

FREQS = [5,10,15,20,25,30,35] NLOADS = [5,10,15,25,40,50] DATA = np.array([[11.6,8.7,7.3,6.5,5.9,5.5,5.2], [24.0,18.1,15.3,13.6,12.4,11.5,10.8],
[41.0,30.8,26.1,23.2,21.1,19.6,18.4], [100.0,75.3,63.7,56.6,51.7,47.9,45.0], [217.3,163.5,138.5,123.1,112.3,104.2,97.8],
[438.3,329.9,279.4,248.3,226.6,210.2,197.4]])

Coeffslist = [] Matrix = np.zeros((7,7)) for power in range(0,7): for j in range(0,7): Matrix[j,power] = FREQS[j]**power
Matrixinv = np.linalg.inv(Matrix) for i in range(0,6): Vector = np.zeros((7,1)) for j in range(0,7): Vector[j,0] =
DATA[i,j] Coeffs = Matrixinv@Vector Coeffslist.append(Coeffs)

def c2(omega): terms = 0 for power in range(0,7): terms += Coeffslist[index][power]*omega**power return
terms

def c1(omega,index): c1 = DATA[index,0] o1 = FREQS[0] c2 = DATA[index,-1] o2 = FREQS[-1] b = math.log(c2/c1)/math.log(o1/o2)
a = o2**b*c2 return a/(omega**b)

omegalist1=[] omegalist2=[] omegasteps = 400 omegamax1 = 100 omegamax2 = 50 for val in range(8,omegasteps+1):
o = val/omegasteps*omegamax1 omegalist1.append(o) for val in range(8,omegasteps+1): o = val/omegasteps*omegamax2
omegalist2.append(o) c1list = [[],[],[],[],[],[]] c2list = [[],[],[],[],[],[]] for index in range(0,6): Nload = NLOADS[index]
for j in range(0,7): if index == 0: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’red’) elif index == 1: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’purple’)
elif index == 2: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’orange’) elif index == 3: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’blue’)
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elif index == 4: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’black’) elif index == 5: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’green’)
plt.xlabel(’earthquake-frequency (Hz)’) plt.ylabel(’damping coefficient (kN)’) plt.savefig(’cV data points.png’,dpi=400)
plt.figure(figsize=(8,4.8)) for index in range(0,6): Nload = NLOADS[index] for omega in omegalist1: c1list[index].append(c1(omega,index))
plt.plot(omegalist1,c1list[index],label = ’Nominal load is ’+str(Nload)+’ kN’,linewidth=1) for j in range(0,7): if
index == 0: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’red’) elif index == 1: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’purple’)
elif index == 2: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’orange’) elif index == 3: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’blue’)
elif index == 4: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’black’) elif index == 5: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’green’)
plt.xlabel(’earthquake-frequency (Hz)’) plt.ylabel(’damping coefficient (kN)’) plt.legend() plt.savefig(’cV per-
fect.png’,dpi=400) plt.figure(figsize=(8,4.8))

for index in range(0,6): Nload = NLOADS[index] for omega in omegalist2: c2list[index].append(c2(omega,index))
plt.plot(omegalist2,c2list[index],label = ’Nominal load is ’+str(Nload)+’ kN’,linewidth=1) for j in range(0,7): if
index == 0: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’red’) elif index == 1: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’purple’)
elif index == 2: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’orange’) elif index == 3: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’blue’)
elif index == 4: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’black’) elif index == 5: plt.plot(FREQS[j],DATA[index,j],marker=’o’,color=’green’)
plt.xlabel(’earthquake-frequency (Hz)’) plt.ylabel(’damping coefficient (kN)’) plt.legend() plt.savefig(’cV La-
grange.png’,dpi=400) plt.figure(figsize=(8,4.8))
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