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Spatially evolving cascades in wall turbulence
with and without interface
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Direct numerical simulations of channel flow and temporal boundary layer at a Reynolds
number Reτ = 1500 are used to assess the scale-by-scale mechanisms of wall turbulence.
From the peak of turbulence production embedded at the small scales of the near-wall
region, spatially ascending reverse cascades are generated that move through self-similar
eddies growing in size with the wall distance. These fluxes are followed by spatially
ascending forward cascades through detached eddies thus reaching sufficiently small
scales where eventually scale energy is dissipated. This phenomenology is shared by
both boundary layer and channel flow and is recognized as a robust physical feature
characterizing wall turbulence in general. Specific features related to the flow configuration
are indeed identified in the outer region. In particular, the central region of channels
is characterized by a generalized Richardson energy cascade where large scales are in
equilibrium with small scales at different wall distances through a combined forward
cascade and spatial flux. On the contrary, the interface region of boundary layers is
characterized by an almost two-dimensional physics where spatially ascending reverse
cascades sustain long and wide interface structures with a forward cascade that survives
only in the wall-normal scales. The overall scenario consists in a variety of scale motions
that while protruding from the turbulent core towards the external region, squeeze at the
interface thus sustaining vertical shear in a thin layer. The observed multidimensional
physics sheds light on the complex interactions between outer entrainment and near-wall
self-sustaining mechanisms with possible repercussions for theories.
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1. Introduction

Due to its relevance for a wide variety of applications, wall turbulence has been the
subject of many studies over the years. Despite the long-standing research activity
in this field, wall-bounded turbulence still presents interesting scientific questions and
unsolved physical problems, see Townsend (1980) for a partial review. As a consequence,
technological applications still suffer from this lack of knowledge in terms of limited
prediction capabilities of turbulence models and of insufficiently general and reliable
active/passive techniques for its control and modification. The reason is the strongly
inhomogeneous and anisotropic multiscale features of wall turbulence that challenge the
development of a complete theory able to explain and predict the interplay between
the elementary phenomena composing it. Most of our knowledge on the multiscale
dynamics of turbulence is given by Kolmogorov’s seminal works on the inertial subrange
of turbulence (Frisch 1995). The related theory is based on the groundbreaking intuition
of reducing the complex problem of turbulence to its essential features, by assuming
homogeneity and isotropy. In these conditions, the main process governing turbulence
is the energy cascade between scales which is described by a single scalar parameter – the
average dissipation rate (Alexakis & Biferale 2018). However, wall turbulence has a much
richer physics that involves, beside energy cascade, anisotropic turbulence production and
inhomogeneous spatial fluxes. Such processes are strongly scale and position dependent
and lead to a geometrically complex redistribution of energy where reverse energy cascade
processes from small to large scales (Piomelli et al. 1991; Domaradzki et al. 1994;
Härtel et al. 1994; Dunn & Morrison 2005) play a fundamental role as unequivocally
shown in Cimarelli, De Angelis & Casciola (2013); Cimarelli et al. (2016). To deal
with these more general conditions, the Kolmogorov theory has been extended by
Hill (2002) in the form of a balance equation for the second-order structure function.
In the case of fully inhomogeneous and anisotropic flow conditions, the generalized
Kolmogorov equation describes a field of fluxes in a multidimensional space composed
by the three-dimensional (3-D) space of scales and by the 3-D space of positions. Such
a six-dimensional augmented-space of turbulence, while giving a complete description of
the turbulent phenomena, actually challenges for a rational approach. For this reason, most
of the attempts performed so far dealt with paradigmatic flows characterized by statistical
symmetries that drastically reduce the order of the augmented-space of turbulence. This is
commonly achieved by considering flows with statistically homogeneous directions thus
allowing us to reduce the dimensions of the space of positions.

With the aim of understanding wall turbulence, the need to reduce the complexity of
turbulence led so far to the application of the Kolmogorov equation to the symmetries
of turbulent channel flows. Indeed, the statistical homogeneity of channel flows in the
wall-parallel directions reduces the augmented space of turbulence to four dimensions,
the 3-D space of scales plus the wall distance. Several fundamental features of wall
turbulence have been unveiled by applying the Kolmogorov equation to channel flows,
see e.g. Danaila et al. (2001), Marati, Casciola & Piva (2004), Cimarelli et al. (2013,
2015b, 2016), Hamba (2018, 2019), Gatti et al. (2020) and Zimmerman et al. (2022).
Despite the relevance of the results obtained, when dealing with boundary layers, wall
turbulence is characterized also by entrainment phenomena at the turbulent/non-turbulent
interface (da Silva et al. 2014) whose physical features cannot be addressed in channel
flows. Such phenomena make the study of boundary layers of a more general relevance
for industrial and geophysical problems. However, the spatial inhomogeneity in the
streamwise direction renders boundary layers more challenging for their study in
comparison with streamwise-homogeneous channels especially when dealing with the
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Cascades in wall turbulence with and without interfaces

Kolmogorov equation. Indeed, the augmented space of turbulence in boundary layers is
composed of five dimensions being the field of fluxes occurring also in the space of
streamwise positions, see Yao, Mollicone & Papadakis (2022) where a boundary layer
undergoing bypass transition is analysed. This is one of the main reasons for the lack
of works studying the generalized Kolmogorov equation in fully developed turbulent
boundary layers. It should be noted that the Fourier transform is not applicable in the
streamwise direction due to the inhomogeneity in such direction, thus strongly limiting
also the use of the formalism given by the spectral energy budget often used in channel
flows as a spectral counterpart of the generalized Kolmogorov equation, see e.g. Mizuno
(2016), Cho, Hwang & Choi (2018), Lee & Moser (2019) and Wang, Pan & Wang (2021).
Finally, let us mention that the streamwise inhomogeneity of boundary layers renders also
their numerical solution not easy to achieve, see e.g. Schlatter & Örlü (2010). Indeed, it
requires the use of proper inflow and tripping conditions and of very long domains. As
an alternative, inflow conditions based on rescaling and recycling methods of the outflow
can be used to circumvent the simulation of transition and limiting the domain length but
further complicating the computational approach (Lund, Wu & Squires 1998).

A method to circumvent all these issues is to consider a temporally evolving boundary
layer. As recently shown in Kozul, Chung & Monty (2016), the temporal boundary layer
presents statistical features very similar to that of the spatially evolving boundary layer.
However, the streamwise homogeneity of the temporal boundary layer makes it a very
attractive setting to study the physics of turbulent boundary layers (Watanabe, Zhang &
Nagata 2018; Kozul et al. 2020) especially when dealing with sophisticated statistical
tools such as the generalized Kolmogorov equation. Furthermore, its ease of set-up and
computational cost savings make the temporal boundary layer a very interesting setting
also from a computational point of view, see again Kozul et al. (2016). The aim of the
present work is thus to extend the analysis of the spatially evolving cascade mechanisms
performed so far in channel flows to the settings of turbulent boundary layers. The
generalized Kolmogorov equation will be applied to fully developed boundary layers data
in order to shed light on the multiscale mechanisms characterizing the different flow
regions. A preliminary analysis of the generalized Kolmogorov equation in the setting of a
temporal boundary layer has been already published in Cimarelli et al. (2024). It is found
that reverse energy cascade mechanisms play a crucial role for the dynamics of near-wall
turbulence in accordance with previous works in turbulent channels (Cimarelli et al. 2013,
2016). It is also found that the entrainment phenomena acting at the edge of the boundary
layer significantly modify the energy transfer mechanisms of the outer region with respect
to channels. In particular, reverse energy cascade mechanisms, although weak, are found to
persist up to the interface region in analogy with observations reported for turbulent jets in
Cimarelli et al. (2021). The purpose of the present work is to give a physical explanation of
these energy transport phenomena in the outer and interface regions of boundary layers. To
this aim, the generalized Kolmogorov equation will be analysed in detail by addressing the
scale-by-scale contribution of the different terms composing it. Such a study will be also
used to provide reduced forms of the scale-by-scale budget for the different flow regions of
relevance for turbulence closures. Relevant length scales for the budget will be identified
as long as their scaling with the wall distance allows us to characterize the main physical
mechanisms dominating the different ranges of scale of the different flow regions. Finally,
the use of data from a turbulent channel at the same friction Reynolds number will allow us
to recognize which of the observed energy production, transfer and dissipation phenomena
can be considered as a robust feature of wall turbulence in general.

The paper is organized as follows. Section 2 provides some details about the simulations
performed and about the flow settings. The formalism of the generalized Kolmogorov
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Flow configuration (Lx, Ly, Lz)/δ (Nx, Ny, Nz) (�x+, �y+) (�z+
w , �z+

δ )

Channel flow (37.7, 10.5, 2) (6144, 3456, 577) (9.2, 4.5) (0.02, 8)

Boundary layer (11.9, 5.9, 2.8) (3072, 3072, 768) (5.8, 2.9) (0.09, 9.2)

Table 1. Domain extension, spatial discretization and grid resolution of the channel and boundary layer
simulations at Reτ = 1500. The wall-normal resolution �z+

w is computed at the wall while �z+
δ is evaluated at

the location z+ = Reτ .

equation is reported in § 3. The field of fluxes together with the sourcing and sinking
mechanisms are analysed in § 4. The scale-by-scale budget characterizing the different
flow regions are studied in § 5. Finally, the paper is closed by some concluding remarks in
§ 6 and by Appendix A where technical details about the generalized Kolmogorov equation
formalism are provided.

2. Direct numerical simulations and flow settings

In the present study we analyse data from direct numerical simulations (DNS) of a
turbulent channel flow and a temporal boundary layer at a friction Reynolds number
Reτ = uτ δ/ν = 1500 where uτ is the friction velocity, ν is the kinematic viscosity of the
fluid and δ, in the case of the channel flow, is the half-height of the channel gap, while, in
the case of the temporal boundary layer, is the boundary layer thickness.

The channel flow simulation has been performed using a pseudospectral code based
on Fourier expansions in the homogeneous directions and Chebyshev polynomials in the
wall-normal direction. Time is advanced using a mixed Runge–Kutta and Crank–Nicolson
scheme, while the nonlinear terms are calculated in physical space with aliasing errors
removed by the 3/2-rule. Full details of the algorithm can be found in Chevalier
et al. (2007). The domain size is (Lx, Ly, Lz) = (37.7, 10.5, 2)δ in the streamwise (x),
spanwise (y) and wall-normal (z) directions, respectively. The number of modes used for
the spatial discretization is (Nx, Ny, Nz) = (6144, 3456, 577) thus leading to a physical
space resolution in the spatially homogeneous directions (�x+, �y+) = (9.2, 4.5),
see table 1 for additional details. The superscript + is hereafter used to indicate
non-dimensionalization with friction units. These DNS data have already been used for
studies of wall turbulence in Cimarelli et al. (2015b) to which the reader is referred for
further details on the main flow features and on the numerics.

Contrary to the channel flow, the temporal boundary layer is a less investigated
flow configuration and for this reason we refer the reader to Kozul et al. (2016) for a
detailed description of the numerical set-up and of the main flow features. This type
of flow develops in time rather than in space thus allowing us to recover a statistically
homogeneous condition both in the streamwise (x) and spanwise ( y) directions, see
figure 1(a) for a view of the instantaneous pattern taken by the flow solution. The boundary
layer simulation has been performed using the DNS code CaNS (Costa 2018) that employs
a standard pressure-projection method and a staggered second-order finite-difference
scheme for the spatial discretization. Time integration is carried out using a mixed
approach. In particular, the viscous terms in the wall-normal direction are integrated
implicitly through the use of a Crank–Nicholson scheme, while all the other terms are
integrated explicitly by using a three-step Runge–Kutta method with a CFL = 0.95. The
domain size in the vertical direction is chosen in order to have a final boundary layer
thickness that is 1/3 the domain height in order to avoid confinement effects, see again
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Figure 1. (a) Instantaneous pattern of enstrophy ζ in the boundary layer at Reτ = 1500. The volume rendering
reports low and high values of enstrophy from yellow to blue. The two lateral slices show isocontours of
enstrophy with values that increase logarithmically from yellow to purple. Finally, the grey isosurface denotes
a very small value of enstrophy, ζ = 1.4 × 10−6〈ζ 〉w with 〈ζ 〉w the average value at the wall, in order to show
the instantaneous pattern taken by the boundary layer interface in a portion of the domain. (b) Comparison of
the mean velocity profiles of the temporal boundary layer and of the channel flow at Reτ = 1500.

Kozul et al. (2016). On the other hand, the lateral sizes of the numerical domain are chosen
in order to solve the long and wide structures classically known to occur in wall turbulence.
The resulting domain size is (Lx, Ly, Lz) = (11.9, 5.9, 2.8)δ and is discretized by using a
number of grid points (Nx, Ny, Nz) = (3072, 3072, 768) that leads to a spatial resolution in
the spatially homogeneous directions (�x+, �y+) = (5.8, 2.9), see table 1 for additional
details. In order to improve the statistical convergence of the results, four independent
simulations have been carried out by changing the seed of the pseudorandom noise in
the initial condition. The present boundary layer data have been already used in Cimarelli
et al. (2024) to which we refer the reader for further details about the simulation settings.
In the same work, a detailed analysis of the main flow features is also performed in order
to provide a physical understanding of the flow and of its main differences with respect to
the more classical settings of spatially developing boundary layers.

Statistics are computed by performing a spatial average in the streamwise and spanwise
directions. In the case of the turbulent channel, a time average is also performed by using
different time samples. On the other hand, in the case of the turbulent boundary layer, an
ensemble average is also performed between the independent simulations performed. For
both flows, the resulting average operator will be denoted as 〈·〉. The standard Reynolds
decomposition will be adopted and denoted as u∗

i = Ui + ui where u∗
i is the total velocity

field and Ui = 〈u∗
i 〉 is the mean velocity field.

The mean velocity profiles of the two flow cases under consideration are reported in
figure 1(b). Based on the mean velocity profile and other relevant statistical quantities wall
turbulence has been classically divided into physically relevant flow regions depending
on the distance from the wall. From an energetic point of view, the peak of activity of
turbulence is located in the so-called buffer layer, from where the energy is irradiated
towards the wall, in the viscous sublayer, and away from the wall towards the outer region.
In this classical view the overlap layer, intermediate between the buffer layer and the outer
region, is an equilibrium layer where energy production and dissipation locally balance.
In the present work we will stick to this classical decomposition in order to clearly define
the relevant regions of the flow that will be analysed through the generalized Kolmogorov
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equation. In particular, the inner region of the flow will be considered as the region where
z+ < 0.2Reτ and will be assumed to be composed of a viscous sublayer for z+ < 6, by a
buffer layer for 6 < z+ < 60 and of an overlap layer for 60 < z+ < 0.2Reτ . The rest of the
flow will be called the outer region 0.2Reτ < z+ < Reτ and, in the case of the boundary
layer, will involve also the interface region for z+ ≈ Reτ .

3. The generalized Kolmogorov equation

The aim of the present work is to investigate the role played by large and small scales in the
entrainment processes and in the near-wall self-sustaining mechanisms of turbulence. In
order to investigate their multiscale character, the use of two-point statistics is demanding.
In this respect, several works in the past have shown that the generalized Kolmogorov
equation (Hill 2002) represents a sufficiently general statistical formalism to address the
multidimensional cascade processes of turbulence from its production to its dissipation.
Examples of its application in wall turbulence are Danaila et al. (2001), Marati et al.
(2004), Cimarelli et al. (2013, 2016), Chiarini et al. (2022), Yao et al. (2022) and
Zimmerman et al. (2022), in thermally driven turbulence are Rincon (2006); Togni,
Cimarelli & De Angelis (2015), in separated and reattaching flows are Mollicone et al.
(2018), Gatti et al. (2020) and in turbulent jets and wakes are Burattini, Antonia & Danaila
(2005), Gomes-Fernandes, Ganapathisubramani & Vassilicos (2015), Portela, Papadakis
& Vassilicos (2017) and Cimarelli et al. (2021). The generalized Kolmogorov equation is
written in terms of the second-order structure function of the fluctuating velocity field

〈δq2〉 ≡ 〈δuiδui〉, (3.1)

where δui ≡ ui(x′, t) − ui(x′′, t) is the increment of the fluctuating velocity and 〈·〉 denotes
ensemble average. Hereafter, we will often refer to the second-order structure function
as the scale energy even if such an interpretation is somewhat arguable especially in
inhomogeneous flows for large separations, see the discussion in Cimarelli et al. (2016)
and the possible alternative expression derived in Hamba (2018). For the theoretical
background about the second-order structure function and the generalized Kolmogorov
equation, the reader is referred to Appendix A. Here, we develop the formalism for the
symmetries of a temporal evolving turbulent boundary layer and turbulent channel. In
these settings, the generalized Kolmogorov equation reads

∂〈δq2〉
∂t

+ ∂〈δq2δui〉
∂ri

+ ∂〈δq2δU〉
∂rx

− 2ν
∂2〈δq2〉
∂ri∂ri

+ ∂〈δq2w̃〉
∂zc

+ 2
ρ

∂〈δpδw〉
∂zc

− ν

2
∂2〈δq2〉

∂zc2

= −2〈δuδw〉
(̃

dU
dz

)
− 2〈δu w̃〉 δ

(
dU
dz

)
− 4〈ε̃〉, (3.2)

where U = U(z, t) is the mean streamwise velocity, r = x′ − x′′ is the two-point
separation vector, xc = (x′ + x′′)/2 is the position vector of the midpoint and ·̃ denotes
the two-point average. Finally,

ε = ν
∂ui

∂xj

∂ui

∂xj
(3.3)

is the turbulent pseudodissipation. Here, x, y and z (u, v and w) denote the streamwise,
spanwise and wall-normal directions (velocities). For the sake of clarity, the generalized
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Kolmogorov equation (3.2) is rewritten by grouping together the divergence terms in the
space of scales and in the space of wall distances that in a symbolic form reads

∂〈δq2〉
∂t

= Tr + Dr + Tc + Π − E, (3.4)

where

Tr = −∂〈δq2δui〉
∂ri

− ∂〈δq2δU〉
∂rx

, (3.5)

Dr = 2ν
∂2〈δq2〉
∂ri∂ri

(3.6)

is the scale-energy exchange between different scales, respectively, due to inertial and
viscous diffusion mechanisms,

Tc = −∂〈δq2w̃〉
∂zc

− 2
ρ

∂〈δpδw〉
∂zc

+ ν

2
∂2〈δq2〉

∂zc2 (3.7)

is the scale-energy exchange between different wall distances and

Π = −2〈δuδw〉
(̃

dU
dz

)
− 2〈δu w̃〉 δ

(
dU
dz

)
, E = 4〈ε̃〉 (3.8a,b)

are the source and sink terms of turbulence related to production due to mean shear and
turbulent dissipation, respectively.

To highlight its conservative form, (3.2) can also be rewritten as

∂〈δq2〉
∂t

+ ∇4 · φ = ξ (3.9)

thus emphasizing that the Kolmogorov equation represents an exact and formally precise
formalism for the study of the hyperflux of scale energy in the compound space of scales
through the 3-D flux

φri = ∂〈δq2δui〉 + 〈δq2δU〉δi1 − 2ν
∂〈δq2〉

∂ri
(3.10)

and physical space through the one-dimensional flux

φcz = 〈δq2w̃〉 + 2
ρ

〈δpδw〉 − ν

2
∂〈δq2〉

∂zc
(3.11)

from the production to the dissipation regions of the augmented space of turbulence
identified by the source term

ξ = −2〈δuδw〉
(̃

dU
dz

)
− 2〈δu w̃〉 δ

(
dU
dz

)
− 4〈ε̃〉. (3.12)

Let us remark that the statistical homogeneity in both the streamwise and spanwise
directions provided by the temporal boundary layer and channel settings is a crucial aspect
for the success of this approach because it allows us to reduce the problem of turbulence to
four dimensions (the three components of scales r plus the wall distance zc). The difference
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between channel and temporal boundary layer is the statistical time invariance of the
former that allows us to study turbulence at equilibrium for ∂〈δq2〉/∂t = 0.

To further reduce the dimensions of the problem, in the present work we will consider
the two-dimensional (2-D) space (ry, zc) identified by the hyperplane rx = rz = 0. In
this space, the streamwise scale transport due to the mean velocity field is zero,
∂〈δq2δU〉/∂rx = 0, being δU = 0 for rz = 0. Analogously, the turbulence production due
the mean shear increment is zero, −2〈δuw̃〉δ(dU/dz) = 0, being δ(dU/dz) = 0 for rz = 0.
In this space, the conservative form of the Kolmogorov equation (3.9) is better recast as

∂φry

∂ry

∣∣∣∣
rx,z=0

+ ∂φcz

∂zc

∣∣∣∣
rx,z=0

= ζ |rx,z=0 , (3.13)

where

ζ |rx,z=0 = ξ |rx,z=0 − ∂〈δq2〉
∂t

∣∣∣∣
rx,z=0

− ∂φrx

∂rx

∣∣∣∣
rx,z=0

− ∂φrz

∂rz

∣∣∣∣
rx,z=0

(3.14)

is an extended source term taking into account the scale-energy exchange with the
rx /= 0 and rz /= 0 dimensions through the terms −∂φrx/∂rx|rx,z=0 and −∂φrz/∂rz|rx,z=0,
respectively. Notice that in the case of the temporal boundary layer, a gate of scale-energy
exchange is also open for the time dimension being ∂〈δq2〉/∂t|rx,z=0 /= 0. To ease the
notation, ·|rx,z=0 will be dropped in what follows.

In closing this section, let us note that in the rest of the work we will refer to concepts
like forward/reverse cascades and descending/ascending spatial fluxes. In the theoretical
framework provided by the reduced form of the generalized Kolmogorov equation (3.13),
the concept of forward/reverse cascade is used to denote fluxes in the space of scales that
move towards smaller and larger scales ry, i.e. when φry < 0 and φry > 0, respectively.
Analogously, the concept of descending/ascending spatial flux denotes fluxes in the space
of positions that move towards lower and higher wall-distances zc, i.e. when φcz < 0 and
φcz > 0, respectively. The reader is again referred to Appendix A for further insights about
the formalism.

4. Paths of scale energy and sourcing/sinking mechanisms

The fluxes of scale energy in the compound space of spanwise scales and wall distances
(ry, zc) are shown in figure 2 for the flow symmetries of boundary layer and channel.
The overall picture conforms with a near-wall turbulence production region that feeds
through spatial fluxes and forward/reverse cascade processes the entire flow field. This
is in accordance with results first reported in Cimarelli et al. (2013) for channel flows
and confirmed by Yao et al. (2022) for boundary layers undergoing bypass transition. We
briefly summarize here the main features of such processes before addressing in detail the
effect of the outer interface mechanisms that are present in turbulent boundary layers but
not in turbulent channels.

As shown by the isocontours of the source term ξ reported in figure 2, the buffer
layer region in the range of spanwise scales, 20 < r+

y < 80, is the site of the most
intense sourcing mechanisms of turbulence, see also the near-wall close-up reported in
figure 3(a,b). From this source region, scale energy is radiated to feed both the wall and
the outer regions where it is finally dissipated. As shown by Cimarelli et al. (2013), a
distinguishing feature of wall turbulence is that scale energy is transferred first towards
larger scales before bending to small scales where it is eventually dissipated. Hence,
reverse energy cascade processes take place that pose strong difficulties for theories in
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Figure 2. Fluxes of scale energy (black lines with arrows) in the compound space of spanwise scales and wall
distances (φ+

ry
, φ+

cz
)(0, r+

y , 0, z+
c ) and isocontours of the scale energy source ξ+(0, r+

y , 0, z+
c ) for a turbulent

boundary layer (a) and a turbulent channel (b) at Reτ = 1500.

wall turbulence and for its modelling. In fact, energy emerges from small scales near the
wall to drive the large-scale quasicoherent motions of the outer regions (Jiménez 1999).
The latter undergo instability and by bursting generate smaller turbulent motions where
scale energy is eventually removed by viscous dissipation. Hence, small and large scales
are in equilibrium only by considering a non-local and multidimensional coupling based
on reverse and forward cascades between scales and spatial fluxes between different flow
regions.

An interesting feature observed at high Reynolds numbers is the emergence of a second
source region in the overlap layer, see again the isocontours of ξ in the overlap layer shown
in figure 2. Although its intensity is small compared with the near-wall source, this outer
source region expands with the Reynolds number and is expected to become the dominant
source region of turbulence for Reτ ≈ 20 000 (Cimarelli et al. 2015b). Indeed, as shown
in Cimarelli et al. (2015b), this outer scale-energy source exhibits statistical features that
agree with the hypothesis of an overlap layer dominated by self-similar structures attached
to the wall. Such an increasingly relevant outer production cycle is then conjectured to be
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Figure 3. Near-wall (a,b) and outer (c,d) zoom of the fluxes of scale energy (black lines with arrows) in
the compound space of spanwise scales and wall distances (φ+

ry
, φ+

cz
)(0, r+

y , 0, z+
c ) and isocontours of the scale

energy source ξ+(0, r+
y , 0, z+

c ) for a turbulent boundary layer (a,c) and a turbulent channel (b,d) at Reτ = 1500.

at the basis of the anomalous scaling of near-wall quantities (Marusic, Baars & Hutchins
2017; Chen & Sreenivasan 2021). The underlying physical mechanism is the repulsion of
the fluxes emerging from the near-wall region (Cimarelli et al. 2015b).

The multidimensional scenario of wall turbulence described so far is shared by both
turbulent boundary layer and channel flow thus suggesting that the spatially evolving
forward and reverse energy cascade is a robust phenomenological feature of wall
turbulence overall. The specific features related to the presence of entrainment mechanisms
at the turbulent/non-turbulent interface of boundary layers are addressed in the following.

4.1. Source of scale energy
By starting the analysis from the near-wall region, we observe that the sourcing
mechanisms of turbulence are essentially the same for channel and boundary layer as
shown by the isocontours reported in figure 3(a,b). In particular, the peak activity is
located at (r+

y , z+
c ) = (40, 11) with an intensity ξ+ = 0.73 for both flow configurations.

Conversely, the turbulent entrainment at the interface affects the source mechanisms of
the overlap and outer regions of the flow. It consists in an enhancement and shift towards
smaller scales and wall distances of the sourcing mechanisms of the overlap layer. In
particular, we measure that the peak value of the source term in the overlap layer is
located at (r+

y , z+
c ) = (400, 158) = (0.26Reτ , 0.1Reτ ) with an intensity ξ+ = 0.014 for

the boundary layer and at (r+
y , z+

c ) = (442, 192) = (0.3Reτ , 0.128Reτ ) with an intensity
ξ+ = 0.0086 for the channel. The location of the outer peak of the source term is reported
using both inner and outer units since, in Cimarelli et al. (2015b), the underlying flow
structures are found to agree with the self-similar scaling of attached eddies (Marusic &
Monty 2019). The enhancement of the intensity of the outer self-sustaining mechanisms
in the settings of turbulent boundary layers is at the basis of a more significant protrusion
of the positive values of ξ towards the outer region, see figure 2. In particular, we measure
that the production mechanisms of turbulence exceed dissipation up to z+

c ≈ 1300 in the
turbulent boundary layer compared with z+

c ≈ 900 in the channel. Interestingly, a change
in topology of the source term is observed also in the transitional region between the
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Cascades in wall turbulence with and without interfaces

buffer and overlap layers. It consists in a net separation of the near-wall and overlap source
mechanisms by a sink layer ξ < 0 that in the case of channel flows extend at all scales
while for boundary layers a bridge of positive source between the buffer and overlap
self-sustaining mechanisms is found for intermediate scales 100 < r+

y < 250.

4.2. Field of fluxes
In analogy of the source term, also the field of fluxes of scale energy (φry, φzc) in the
near-wall region is found to be substantially the same for the two flow configurations.
As shown in figure 3(a,b), the field of fluxes takes its origin from the peak region of the
scale-energy source and diverges, locally feeding smaller and larger scales before bending
towards the wall and the outer region. The wall layer and the zc-distributed range of small
scales represent the two sink regions attracting the field of fluxes in wall turbulence. The
two branches of fluxes that connect the peak of scale energy source to these two sink
regions will be analysed separately in the following.

4.2.1. Branch of fluxes towards the dissipative sink at the wall
By considering first the branch of fluxes moving towards the wall, it is possible to observe
that after an initial reverse energy cascade the field of fluxes bends towards the wall with
a rapidly vanishing scale-space flux. In particular, the near-wall asymptotic behaviour is

(φry, φzc) ∼ (0, 1) zc, for zc → 0 (4.1)

since the near-wall scaling is such that δu, δv ∼ zc, δw ∼ z2
c and δp ∼ δpw, see the

Appendix in Cimarelli et al. (2013). Hence, the viscous sublayer of both boundary layers
and channels is characterized by a dissipative sink fed by a field of fluxes aligned with
the wall-normal direction that are homogeneously distributed at all scales. As shown by
the scale-by-scale budgets in § 5, this behaviour conforms with a viscous sublayer where
the dissipative mechanisms are characterized by a variety of horizontal scales imposed by
the variety of scales of the overlying turbulent dynamics with only the wall-normal scales
recovering the classical role of dissipation at small scales.

4.2.2. Branch of fluxes towards the zc-distributed dissipative sink at small scales
By considering now the branch of fluxes feeding the outer regions of the flow, we remark
again that both forward and reverse cascade processes are present. The crossover scale
b between these two phenomena, defined by φry(b, zc) = 0, is reported in figure 4. In
agreement with the idea that the large-scale motion attached to the wall is the flow pattern
mostly intercepted by the fluxes ascending from the near-wall region, the crossover scale
b is found to follow a linear scaling with the wall distance

+
b ≈ 40 + 2.3z+

c . (4.2)

It is widely recognized that coherent structures are associated with strong events of energy
transfer (Piomelli, Yu & Adrian 1996; Hamba 2019; Chan, Schlatter & Chin 2021; Wang
et al. 2021; Chiarini et al. 2022). In the inner region of wall-bounded turbulent flows
these structures are thought to be self-similar (Marusic & Monty 2019) and to form a
self-sustaining process (Jiménez & Pinelli 1999; Panton 2001). The picture consists of
pair of streamwise vortices that create long and wide streamwise velocity streaks (Adrian
2007). In turn, the low-speed streamwise velocity streaks while growing become unstable
and burst thus creating smaller and smaller detached eddies. As shown in Cimarelli et al.
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Figure 4. Crossover scale +
b (z+

c ) as a function of the wall distance in turbulent boundary layer (solid line)
and turbulent channel (dotted line). The dashed line reports the self-similar scaling (4.2).

(2013, 2016), the spatially ascending reverse and forward cascades conform with this
scenario. In particular, the scales of the source term in the buffer layer agree with a
turbulence production associated with streamwise vortices while the following combined
reverse cascade and spatial flux agrees with the generation of longer and wider streaks
ascending from the wall. On the other hand, the subsequent combination of forward
cascade and spatial flux agrees with the generation of detached eddies at progressively
higher wall distances from the burst of the streaks itself. Note that more recent studies
of turbulent structures highlight that coherent motions can also be generated by shear
at any wall distance and that by growing become attached to the wall (Lozano-Durán
& Jiménez 2014). Also this phenomenon finds support in the generalized Kolmogorov
equation through the positive value of the source term in the overlap layer, see again
figure 2. The source term energizes the field of fluxes in the overlap layer thus supporting
the idea that coherent motions can be also locally generated by shear. The self-similar
scaling (4.2) gives further support to all these phenomenological interpretations of the
scale-by-scale energy exchange described by the generalized Kolmogorov equation. This
self-similar scaling holds in the overlap layer of both boundary layer and channel, the only
difference being the extension of its validity that for channels is for z+

c < 180 = 0.12Reτ

while for boundary layers is z+
c < 120 = 0.08Reτ .

By entering the outer region of the flow, this self-similarity of the flow structures is
lost and, consequently, the crossover scale b stops its growth. This is the region where
channels and boundary layers mostly differ from each other. In particular, in a turbulent
channel the crossover scale saturates by oscillating around the value +

b ≈ 700 = 0.46Reτ

and goes to infinity at the channel centreline, see again figure 4. Hence, the outer flow
structures involved in the reverse energy cascade in channels scale with the channel
height rather than the distance from the wall. However, as shown in figure 2(b), the
intensity of the reverse energy flux is very weak thus suggesting that the outer region
of channels is barely influenced by reverse energy cascade processes. Accordingly, the
outer region can be thought as the region of the channels where a Richardson energy
cascade scenario is recovered when generalized by taking into account spatial fluxes. The
generalized Richardson energy cascade consists in spatially ascending cascade processes
that transfer energy from the energy containing scales identified by the crossover scale b
at a certain distance from the wall to the small scales of higher wall distances where it is
finally dissipated. Since b → ∞ for z+

c → Reτ , we also have that the core region of the
channel is uniquely characterized by a forward cascade towards small scales. Notice that
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Cascades in wall turbulence with and without interfaces

the small-scale asymptotic behaviour of fluxes both for channels and boundary layers is

(φry, φzc) = (1, 0)|r|, for |r| → 0 (4.3)

and is dominated by the viscous scale-space flux since δui ∼ |r| and δp ∼ |r|, see the
Appendix in Cimarelli et al. (2013). Hence, the fluxes become asymptotically normal to
the zc-axis by approaching the dissipative range of small scales.

Contrary to channel flows, in the outer region of boundary layers the crossover scale
b decreases monotonically with the wall distance, see again figure 4. This behaviour
is confirmed by the scale-energy paths shown in figure 2(a). The monotonic decrease
of b is such that we can expect that for sufficiently high wall distances the crossover
scale reduces to the Kolmogorov scale, b → η, and, hence, all the scales of the interface
region are expected to undergo a reverse energy cascade. This scenario is confirmed
by the close-up of the scale-energy paths reported in figure 3(c). The range of scales
of forward cascade gets progressively smaller for increasing wall distance contrary to
channels where forward cascades dominate the entire range of scales. This behaviour of
the interface region of boundary layers conforms with the scale-by-scale phenomenology
of the interface of shear-less flows and jets reported in Cimarelli et al. (2015a, 2021) and
Zhou & Vassilicos (2020). It consists in an almost 2-D physics of turbulence where reverse
cascade processes from the turbulent core feed long and wide flow interface structures
thus sustaining the turbulent entrainment and the propagation of the turbulent front.
A forward cascade survives only in the normal to the interface direction. Hence,
the scenario conforms with long and wide interface structures where dissipation is
accomplished by normal to the interface gradients over a very thin layer of the order of
the Kolmogorov scale. As better shown by the scale-by-scale budgets reported in § 5, this
phenomenology is found here to characterize also the interface region of boundary layers.
Notice that such mechanisms have similarities with the almost 2-D dissipative processes
of the viscous sublayer analysed so far.

Turning back to the overall behaviour of the outer region of boundary layers, it is
worth noting that the reverse energy cascade is far more intense than in channels, see
again figure 2(a). Hence, analogously to the buffer and overlap layers, the reverse cascade
is recognized to play a fundamental role also for the outer flow dynamics contrary to
channels where we have already shown to be essentially ineffective, see figure 2(b) for
comparison. To note that such an enhancement of the reverse energy cascade with respect
to channels is found to occur also within the inner region, in the overlap layer, compare
again figure 2(a,b). An accompanying feature of this stronger influence of the reverse
energy cascade in boundary layers, is a rather different topology of the scale-energy fluxes
with respect to channels also from the overlap layer region. By comparing figure 2(a,b), it
is possible to observe that the field of fluxes in boundary layers exhibits a diverging pattern
contrary to the almost uniform topology of the fluxes in channels. We remind the reader
that in accordance with (3.13), we have

∇π · φπ = ζ (4.4)

with ∇π = (∂/∂ry, ∂/∂zc) and φπ = (φry, φzc). Hence, the divergence of the fluxes is
given by the extended source term. The behaviour of the extended source term (not
shown for brevity) resembles the one of the source term, ζ ≈ ξ . As a consequence, the
divergence of the fluxes almost follows the behaviour of the source term ξ that, as shown
in § 4.1, exhibits some differences between channels and boundary layers. However, such
differences are not as significant as those observed in the pattern taken by the field of
fluxes. The reason is the most effective action of the source on the pattern of fluxes rather
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than on their intensity. Let us try to grasp the essential aspects by rewriting equation (4.4)
in a curvilinear coordinate system adapted to the flux vector field,

1
hτ

∂φτ

∂τ
+ φτ

j

∂hη

∂τ
= ζ, (4.5)

where τ and η denote the tangential and normal directions to the field of fluxes, j = hτ hη

is the Jacobian while hτ =
√

(∂ry/∂τ)2 + (∂zc/∂τ)2 and hη =
√

(∂ry/∂η)2 + (∂zc/∂η)2

are the scale factors. From (4.5) it is evident how the divergence of the field of fluxes ζ

takes the combined effect of a change of the flux intensity φτ and of an opening/closing
of the field pattern hη. Evidently the former prevails on the latter in channel flows while in
boundary layers the opposite occurs thus leading to a more divergent pattern of the field of
fluxes. The associated enhancement of reverse/forward cascade in boundary layers is such
that a divergence line appears in the overlap layer, see again figure 2(a). The dynamical
relevance of this divergence line is such that all the scales populating the outer flow region,
say for z+

c > 400 = 0.26Reτ , are fed by fluxes that trace back to this line. Like for the
crossover scale b, the divergence line intercepts scales linearly increasing with the wall
distance thus suggesting again self-similar attached eddies as underlying flow structures.
In particular, we measure r+

y ≈ 200 + 1.2z+
c .

5. Scale-by-scale budgets

In the present section, a more quantitative view of the multiscale processes of
wall-bounded turbulence with and without interfaces is provided by means of the
generalized Kolmogorov equation evaluated at fixed wall distances and as a function of the
sole spanwise scale, i.e. by fixing rx = rz = 0. The analysis will not address the field of
fluxes but the overall transport terms in the space of scales and wall distances as described
by (3.4).

5.1. Buffer layer
By starting the analysis from the buffer layer, it is possible to see from figure 5(a) that the
dynamics of the near-wall production region in boundary layers and channels is essentially
the same, in accordance with the previous analysis in § 4. It consists in a turbulence
production that dominates the budget by largely exceeding the amount of dissipation,
Π − E > 0, i.e. the buffer layer is a net energy source region of turbulence. As already
noted in Cimarelli & De Angelis (2012), a distinguishing feature of wall turbulence is
that the peak of turbulence production is not located at the large scales but amid the
spectrum of scales, r+

y = 40, thus leading to overwhelming difficulties for turbulence
models (Cimarelli & De Angelis 2014). The clear matching of scales suggests a strong
connection of the production peak with quasistreamwise vortices. The scale-energy excess
of this region, Π − E > 0, is eventually drained by inertial scale-space transport Tr < 0
and by spatial transport Tc < 0 to feed both larger and smaller scales (through forward and
reverse cascades) of the other regions of the flow (through spatial fluxes).

5.2. Overlap layer
Also the overlap layer is found to be substantially unaltered between channel and boundary
layer as shown in figure 5(b). In accordance with the equilibrium assumption of the overlap
layer, production and dissipation almost balance each other Π − E ≈ 0 and consequently
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Figure 5. Scale-by-scale budgets of wall turbulence evaluated at different wall distances z+
c = 11 (a), z+

c =
114 (b), z+

c = 450 (c), z+
c = 1000 (d) reported as a function of the spanwise scale r+

y for rx = rz = 0. Data
from the turbulent boundary layer are reported with lines while those from the turbulent channel are reported
with symbols. Different colours are used for the different terms of the generalized Kolmogorov equation (3.4):
Π (red); Tr (green); Dr (blue); Tc (orange); E (black, dashed line); ∂〈δq2〉/∂t (black, solid line).

the role of spatial fluxes is almost negligible Tc ≈ 0. An exception to this equilibrium
assumption is given by the range of intermediately large scales where a net source,
although weak compared with the one in the buffer layer, is present. Such range of
production scales is at the basis of the outer scale-energy source already described in
§ 4.1 and is responsible for the sustenance of the reverse energy cascade processes of
these regions of the flow. Accordingly, the inertial scale-space flux is negative Tr < 0
thus draining energy to feed reverse cascade processes. This phenomenon is more intense
in boundary layers in accordance with the enhancement of the outer scale-energy source
and of the reverse cascade phenomena previously discussed in §§ 4.1 and 4.2, respectively.

Note that the shift to larger scales of the turbulence production processes by increasing
the wall distance allows for a larger separation of scales with respect to the scale-space
diffusion. Hence, a small inertial subrange takes place in the overlap layer where the
inertial scale-space flux sustains turbulence Tr > 0. The emergence of an inertial subrange
of scales can be addressed by considering the behaviour of the crossover scales between
production-dominated, cascade-dominated and viscosity-dominated scales,

Tr(p, zc) = Π, Tr(ν, zc) = Dr. (5.1a,b)
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Figure 6. Inertial and viscous crossover scales, +
p (z+

c ) (black line) and +
ν (z+

c ) (red line), as a function of the
wall distance in the turbulent boundary layer. The dashed lines report the self-similar scaling +

p = κz+
c and

+
ν = 6.5(κz+

c )1/4.

Accordingly, the inertial subrange is defined as the range of scale ν < ry < p. As shown
in figure 6, both scales increase with the wall distance but the steeper increase of the
turbulence production scale p allows for the development of an increasingly large inertial
subrange. Such a scenario can be formalized using scaling arguments typical of the overlap
region. In this region of the flow, turbulence production can be estimated as u3

τ /(κz)
where κ is the von Kármán constant. By invoking the equilibrium assumption, turbulent
dissipation can be equivalently written as 〈ε〉 = u3

τ /(κz). By substituting this behaviour
into the definition of the Kolmogorov scale, we have the following scaling for the smallest
turbulent scales:

η+ ∼ (κz+)1/4. (5.2)

On the other, the estimate for the scaling of the large-production scales can be obtained
by comparing the velocity increments induced by shear |δu| ∼ |r|(∂U/∂z) with those
related to the inertial cascade |δu| ∼ 〈ε〉1/3|r|1/3. The result is the so-called shear scale
S =

√
〈ε〉/(∂U/∂z)3, see Marati et al. (2004). By using again the scaling of shear and

dissipation in the overlap region, ∂U/∂z ∼ uτ /(κz) and 〈ε〉 = u3
τ /(κz), we have that the

shear scale linearly increases with the wall distance

+
S ∼ κz+. (5.3)

As shown in figure 6, these self-similar scalings are found to be a robust formalism
quantitatively describing the behaviour of the inertial subrange in the overlap layer of wall
turbulence. Notice that while the production scale is directly described by the shear scale,
p ≈ S, the viscous cutoff scale of the energy cascade ν is found to be larger than the
Kolmogorov scale, ν ≈ 6.5η thus suggesting that the extension of the viscous subrange
of turbulence is of the order of 6.5 Kolmogorov scales. In closing this section, let us notice
that such self-similar scalings are followed within the overlap layer for z+

c < 300 = 0.2Reτ

then the production scale p is found to almost saturate its growth in the outer region. It is
then evident that the generation of a larger separation of scales for the development of a
sufficiently large inertial subrange in the outer region of the flow is realized by an increase
of the extension of the overlap layer z+

c = 0.2Reτ that in turn is given by an increase of the
friction Reynolds number.
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Cascades in wall turbulence with and without interfaces

5.3. Outer layer
The main differences between boundary layer and channel become evident when
considering the outer flow region shown in figure 5(c,d). In accordance with the previous
analysis in § 4, it consists in an enhancement of the turbulence production mechanisms
and of the reverse energy cascade processes in boundary layers with respect to channels.
In particular, the enhancement of production is such that an excess of scale energy
Π − E > 0 is observed also at z+

c = 1000 = 0.66Reτ in the case of boundary layers. On
the other hand, the enhancement of the reverse energy cascade is such that a significant
large scale sink Tr < 0 is observed also at z+

c = 1000 = 0.66Reτ in the case of boundary
layers. It is worth noting the already mentioned increase of scale separation that enables
the appearance of an increasingly large inertial subrange in between production and
scale-space diffusion where the inertial scale-space transport dominates the budget Tr > 0.
Another important aspect related to the increasing of the wall distance zc is the increase
of non-equilibrium effects in temporal boundary layers. In particular, for z+

c = 1000 =
0.66Reτ the non-equilibrium term significantly takes part on the budget by draining a
significant portion of scale energy to sustain the temporal growth of the boundary layer,
i.e. ∂〈δq2〉/∂t > 0. The scale energy drained to sustain the propagation of turbulence is
made available locally by production processes since the spatial transport term is almost
negligible Tc ≈ 0. The opposite scenario occurs in the interface region as shown in the
following section.

5.4. Interface layer
The scale-by-scale budget at the interface of the boundary layer and at the channel centre
is reported in figure 7(a). As already mentioned, turbulence in this region of the flow
is sustained by transport processes both in the space of scales and physical space, Tr >

0 and Tc > 0, being the production processes that are significantly smaller in boundary
layers, Π < Tc < Tr and, for symmetry reasons, zero in channels, Π = 0. Analogously to
the external part of the outer layer, the scale energy provided by the transport terms and
by the local production in the boundary layer, significantly exceed the local dissipation
Tr + Tc + P > E thus sustaining the propagation of the turbulent interface that in the case
of temporally evolving flows is given by the non-equilibrium term, i.e.

∂〈δq2〉
∂t

≈ Tr + Tc + P − E > 0. (5.4)

The scale-space distribution of the processes involved is such that the wide flow structures
are those generated first during the boundary layer growth. It is then of relevance to address
the nature of the transport phenomena involved in turbulent entrainment.

As shown in figure 7(c), the spatial transport providing scale energy at the interface is
mainly due to turbulent transport phenomena. Indeed, pressure transport is found to drain
scale energy from this region while the viscous transport is almost negligible. Hence,
the scale energy provided from below by spatial transport in the boundary layer can be
modelled as

Tc ≈ −∂〈δq2w̃〉
∂zc

− 2
ρ

∂〈δpδw〉
∂zc

. (5.5)

Notice that the amount of scale energy drained by the pressure transport is found to be
released in the very external flow region of the boundary layer (not shown) where the
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Figure 7. Scale-by-scale budget of wall turbulence evaluated at z+
c = 1500 (centre of the channel and interface

of the boundary layer) reported as a function of the spanwise scale r+
y for rx = rz = 0. Data from the

turbulent boundary layer are reported with lines while those from the turbulent channel are reported with
symbols. Different colours are used for the different terms of the generalized Kolmogorov equation (3.4):
Π (red); Tr (green); Dr (blue); Tc (orange); E (black, dashed line); ∂〈δq2〉/∂t (black, solid line). The overall
budget is reported in (a). The contributions to Tr are shown in (b) where −∂〈δq2δu〉/∂rx (solid line and
circle), −∂〈δq2δv〉/∂ry (dashed–dotted line and diamond), −∂〈δq2δw〉/∂rz (dashed line and square). The
contributions to Tc are shown in (c) where −∂〈δq2w̃〉/∂zc (solid line and circle), −(2/ρ)∂〈δpδw〉/∂zc (dashed
line and square), (ν/2)∂2〈δq2〉/∂zc

2 (dashed–dotted line and diamond). The contributions to Dr are shown
in (d) where 2ν∂2〈δq2〉/∂r2

x (solid line and circle), 2ν∂2〈δq2〉/∂r2
y (dashed–dotted line and diamond),

2ν∂2〈δq2〉/∂r2
z (dashed line and square).

balance reduces to

∂〈δq2〉
∂t

≈ − 2
ρ

∂〈δpδw〉
∂zc

> 0, for z+
c > 1.3Reτ (5.6)

since the scale-space transport phenomena and hence dissipation are almost zero there in
accordance with the irrotational and non-turbulent nature of the fluctuations populating
the external flow region. This behaviour fully agrees with that observed in the external
region of free-shear flows as shown in Cimarelli et al. (2021). Hence, this behaviour of the
pressure transport phenomena is a peculiar feature of turbulent interfaces in general. As a
matter of fact, the pressure transport at the channel centre is found to play a less relevant
role and, hence, the spatial transport is found to be determined solely by the turbulent
transport, i.e. Tc ≈ ∂〈δq2w̃〉/∂zc > 0.
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Cascades in wall turbulence with and without interfaces

By considering now the behaviour of the scale-space transport at the interface, it is
important to remember that the analysis of the field fluxes reported in § 4.2 revealed that
the most energized scales of the interface region are the large ones. This is a result of the
combined action of spatial fluxes with reverse cascades, with the latter involving almost
all the range of scales of the interface region. The almost absence of forward cascade
mechanisms in the space of spanwise scales gives rise to very important questions. How is
dissipation accomplished at the interface? What are the turbulence phenomena involved?
To address these issues in figure 7(b), the scale-space transport term is split into its
contributions related to the cascade processes in the rx, ry and rz scales. It is evident that
the scale-space transport in the interface parallel scales (rx, ry) is weak compared with that
in the normal to the interface scales rz, hence

Tr ≈ −∂〈δq2δw〉
∂rz

> 0. (5.7)

By recalling that the scale-by-scale budget is reported for rz = 0 this result tells us that a
significant forward cascade is occurring in the rz space that is almost homogeneous in the
ry space. Hence, a forward cascade in the normal to the interface scales is experienced by
narrow to wide interface structures. On the contrary, scale-space transport in the spanwise
scales is negative highlighting a draining of scale energy to feed wider interface structures.
Also the scale-space transport in the streamwise scales is negative highlighting that a
forward cascade towards the rx = 0 scales is absent at the interface and supporting the
existence of a reverse cascade towards the rx /= 0 scales. The overall scenario consists
in a turbulent front where a variety of wide and long interface structures are generated
by spatially ascending reverse cascade processes whose thickness is reduced by spatially
ascending forward cascade mechanisms in the normal to the interface scales. Hence,
dissipation is accomplished by vertical friction phenomena in a very thin interfacial
layer over a variety of long and wide interface structures. To note that such mechanisms
of dissipation share strong similarities with those commonly studied in 2-D turbulence
(Boffetta & Ecke 2012). This phenomenology has been observed also in free-shear flows
by Cimarelli et al. (2015a, 2021) and Zhou & Vassilicos (2020) thus possibly suggesting
that the underlying physics is a robust and peculiar feature of turbulent interfaces in
general. As a matter of fact, the behaviour of the scale-space transport at the channel
centre is completely different and conforms with a forward cascade in the entire 3-D space
of scales (rx, ry, rz) being the contributions to Tr that are all positive. Hence, the channel
centre is characterized by the generation of progressively smaller eddies that are eventually
dissipated by classical small-scale viscous phenomena.

5.5. Viscous sublayer
The phenomena observed for the interface region have been found to have similarities
with the cascade and dissipation processes classically occurring in 2-D turbulence
(Boffetta & Ecke 2012). Wall turbulence is characterized by another region where 2-D
turbulence effects are present, the viscous sublayer. Indeed, in this region of the flow the
impermeability condition of the wall constrains the flow dynamics to two dimensions.
Despite the flow dynamics in this region of the flow not differing between channels and
boundary layers, we will analyse it in order to highlight the similarities and the differences
with respect to the scale-by-scale processes of the interface region. The main difference
of the viscous sublayer from the interface region is given by the fact that in the former the
2-D behaviour of turbulence is imposed by the wall constraint while in the latter by the
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dynamics of the interface. A second difference is also given by the fact that the no-slip
condition of the wall makes the viscous sublayer dominated by viscous mechanisms
contrary to the interface region where also inertial processes are dominant.

To better understand the scale-by-scale behaviour of the viscous sublayer with respect
to the one at the interface, we perform a near-wall asymptotic analysis similar to the
one reported in Cimarelli et al. (2013). The near-wall scaling of velocity and pressure
is such that δu, δv ∼ zc, δw, w̃ ∼ z2

c and δp ∼ δpw where δpw is a characteristic pressure
increment at the wall. By considering these two useful relationships (Hill 2002)

∂

∂ri
= 1

2

(
∂

∂x′
i
− ∂

∂x′′
i

)
,

∂

∂xci

=
(

∂

∂x′
i
+ ∂

∂x′′
i

)
(5.8a,b)

we can write the near-wall asymptotic behaviour of the terms of the generalized
Kolmogorov equation that for rz = 0 reads

∂〈δq2〉
∂t

∼ z2
c, 2〈δuδw〉

(̃
dU
dz

)
∼ z3

c, 4〈ε̃〉 ≈ 4ν

〈
∂ui

∂z
∂ui

∂z

〉

∂〈δq2δui〉
∂ri

∼ z3
c, 2ν

∂2〈δq2〉
∂rπ∂rπ

∼ z2
c, 2ν

∂2〈δq2〉
∂rz∂rz

≈ 2ν

〈
∂ui

∂z
∂ui

∂z

〉
+ 2ν

〈
∂u′

i
∂z′

∂u′′
i

∂z′′

〉

∂〈δq2w̃〉
∂zc

∼ z3
c,

2
ρ

∂〈δpδw〉
∂zc

∼ z2
c,

ν

2
∂2〈δq2〉
∂zc∂zc

≈ 2ν

〈
∂ui

∂z
∂ui

∂z

〉
− 2ν

〈
∂u′

i
∂z′

∂u′′
i

∂z′′

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.9)

where π = x, y denotes the wall-parallel directions. Hence, we have that both production
and scale-space transport rapidly vanish approaching the wall

Π ∼ z3
c, Tr ∼ z3

c (5.10a,b)

and the budget reduces to a balance of spatial transport and scale-space diffusion with
dissipation

Tc + Dr − E ∼ 0, (5.11)

where Dr is determined by the scale-space diffusion in the wall-normal scales, Dr =
2ν∂2〈δq2〉/∂r2

z , while Tc by the viscous diffusion, Tc = (ν/2)∂2〈δq2〉/∂zc
2. In particular,

the asymptotic scaling suggests that in the limit of large scales Tc = Dr = E/2 while at
small scales Tc = 0 and Dr = E. As shown in figure 8, these asymptotic scalings are found
to fully describe the scale-by-scale behaviour of the viscous sublayer.

In accordance with the near-wall asymptotic scaling and the scale-by-scale budget
shown in figure 8, the wall region is characterized by a spatially descending forward
cascade in the sole space of wall-normal scales. Hence, dissipation is accomplished
by wall-normal velocity gradients occurring in a very thin layer over a wide range of
horizontal scales in analogy with the 2-D phenomenology observed for the interface
region. The main difference is the physical nature of the two transports occurring in
physical and scale space that in the viscous sublayer is given by viscous diffusion
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Figure 8. Scale-by-scale budget of wall turbulence evaluated in the viscous sublayer z+
c = 1 reported

as a function of the spanwise scale r+
y for rx = rz = 0. Data from the turbulent boundary layer are

reported with lines while those from the turbulent channel are reported with symbols. Different colours
are used for the different terms of the generalized Kolmogorov equation (3.4): Π (red); Tr (green);
Dr (blue); Tc (orange); E (black, dashed line); ∂〈δq2〉/∂t (black, solid line). The overall budget is
reported in (a). The contributions to Tr are shown in (b) where −∂〈δq2δu〉/∂rx (solid line and circle),
−∂〈δq2δv〉/∂ry (dashed–dotted line and diamond), −∂〈δq2δw〉/∂rz (dashed line and square). The contributions
to Tc are shown in (c) where −∂〈δq2w̃〉/∂zc (solid line and circle), −(2/ρ)∂〈δpδw〉/∂zc (dashed line
and square), (ν/2)∂2〈δq2〉/∂zc

2 (dashed–dotted line and diamond). The contributions to Dr are shown
in (d) where 2ν∂2〈δq2〉/∂r2

x (solid line and circle), 2ν∂2〈δq2〉/∂r2
y (dashed–dotted line and diamond),

2ν∂2〈δq2〉/∂r2
z (dashed line and square).

phenomena

Tc ≈ ν

2
∂2〈δq2〉
∂zc∂zc

, Dr ≈ 2ν
∂2〈δq2〉
∂rz∂rz

, Tr ≈ 0 (5.12a,b,c)

while in the interface layer by inertial turbulence mechanisms

Tc ≈ −∂〈δq2w̃〉
∂zc

, Dr ≈ 0, Tr ≈ −∂〈δq2δw〉
∂rz

. (5.13a,b,c)

6. Conclusions

The multidimensional mechanisms of turbulence in wall flows are addressed by means
of the generalized Kolmogorov equation with particular attention to the role played
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by the outer scale phenomena in the presence of entrainment mechanisms at the
turbulent/non-turbulent interface. To this aim, direct numerical simulation data of a
temporal boundary layer are compared with those of a turbulent channel where such
phenomena are absent. In order to reduce the problem to its essential features, the analysis
of the augmented space of turbulence described by the Kolmogorov equation is restricted
to the 2-D subspace (ry, zc). The overall behaviour of turbulence consists in a peak of
scale-energy source in the buffer layer from which the field of fluxes diverges to feed the
two dissipative sinks of the flow, the viscous sublayer at the wall and the zc-distributed
range of small scales. The branch of fluxes feeding the dissipative sink at the wall
starts from the singularity point in the buffer layer and exhibits an in-plane forward and
reverse energy cascade before bending towards the wall. By approaching the wall the
fluxes become progressively aligned with the wall-normal direction. Indeed, the cascade
mechanisms in the space of wall-parallel scales rapidly vanish with the wall distance and
only a cascade towards progressively smaller wall-normal scales survives. Accordingly,
the high rates of dissipation in the viscous sublayer are realized by the vertical shearing in
a very thin layer of almost 2-D motions covering a wide range of wall-parallel scales, i.e.
the near-wall footprint of the variety in size of eddies populating the entire boundary layer.
The branch of fluxes feeding the zc-distributed small scale dissipative sink form spatially
ascending reverse energy cascades through self-similar eddies growing in size with the
wall distance. This pattern is followed by spatially ascending forward cascades through
detached eddies thus reaching sufficiently small scales where eventually scale energy is
dissipated. Hence, small scales in wall turbulence are found to be in equilibrium with
large scales only when spatial fluxes induced by the inhomogeneity of the flow are taken
into account. In other words, a generalized Richardson energy cascade takes place where
large scales are in equilibrium with small scales at higher wall distances trough a combined
forward cascade and spatial flux.

This multidimensional scenario is observed in both channel and boundary layer
configurations thus suggesting that the described combination of spatially moving forward
and reverse energy cascade is a common feature of wall turbulence in general (Cimarelli
et al. 2013, 2015b, 2016). In fact, the turbulence processes of entrainment in boundary
layers are found to modify but not to completely alter the described scenario. In particular,
we found that in the boundary layer the second outer scale-energy source is more intense
and shifted to smaller scales and the reverse energy cascade processes are stronger. The
increase in intensity of the reverse cascades has two main repercussions. The first is that
their role becomes relevant also in the outer region contrary to channels where they are
almost irrelevant from a dynamical point of view. The second is the appearance of a
divergence line of fluxes in the overlap layer representing a specific set of self-similar
eddies growing with the wall distance. Their relevance is given by the fact that all the
fluxes feeding the outer region of the flow are found to pass through this set of attached
eddies.

The processes of turbulence entrainment in boundary layers are indeed found to
markedly modify the turbulence dynamics in the more external part of the outer layer,
the interface region. Contrary to channels where the centre line region is characterized
by forward energy cascades, the interface region is found to be characterized by reverse
energy cascades that, although weak, involve the almost entire range of wall-parallel
scales. Hence, the propagation of the turbulent front and the intensity of turbulent
entrainment are sustained by spatially ascending reverse cascades representing the
interface footprint of the variety of wide and long intense motions populating the turbulent
core of the boundary layer. A forward cascade survives only in the wall-normal scales
thus revealing that the variety of wall-parallel scale motions, while protruding from
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the turbulent core towards the external region, squeeze at the interface thus sustaining
vertical shear in a very thin layer a few Kolmogorov scales thick. Hence, in analogy with
2-D turbulence and with the observed dynamics of the viscous sublayer, dissipation at
the interface is accomplished by shearing phenomena over a thin layer of a variety of
wide and long motions originating from the turbulent core of the boundary layer. This
phenomenology has been observed also in free-shear flows by Cimarelli et al. (2015a,
2021) and Zhou & Vassilicos (2020) thus possibly suggesting that the underlying physics
is a robust feature of turbulent interfaces in general.
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Appendix A. Theoretical background

In this appendix, we provide a few technical details about the second-order structure
function and its evolution equation with the aim of better defining its features. The interest
of this appendix, which is mostly devoted to a formal analysis of two-points statistics
and of their equations, is that it provides a clearer physical understanding of the results
reported in the present work. To this purpose, the theoretical framework of the generalized
Kolmogorov equation is also used to show how well-known results in the turbulence theory
are recovered. The reader not interested in such additional details may skip this appendix,
since the main results of the work are already conveyed in the main body of the paper.

A.1. Second-order structure function
By recalling the definition of the second-order structure function,

〈δq2〉 ≡ 〈δuiδui〉 (A1)

it is clear that the velocity increment between two points δui ≡ ui(x′, t) − ui(x′′, t) is a
central object. The statistical features of the second-order structure function are better
expressed by considering the two-point separation vector r = x′ − x′′ and the midpoint
vector xc = (x′ + x′′)/2, i.e. 〈δq2〉 = 〈δq2〉(xc, r, t). As shown in figure 9, the dependence
of 〈δq2〉 on the midpoint xc is related to the statistical inhomogeneity of the flow while the
dependence on the separation vector r is related to the multiscale features of the flow.
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r

Figure 9. Sketch of the quantities involved in the definition of the two-point velocity increment
δui = ui(x′, t) − ui(x′′, t).

From the definition of the second-order structure function (A1), we can write

〈δq2〉(xc, r, t) = 2〈k〉(xc + r/2, t) + 2〈k〉(xc − r/2, t) − 2〈ui(xc + r/2, t)ui(xc − r/2, t)〉,
(A2)

where k = uiui/2 is the turbulent kinetic energy. It is then clear that the second-order
structure function is strictly related to the two-points correlation function,

R(xc, r, t) ≡ 〈ui(xc + r/2, t)ui(xc − r/2, t)〉. (A3)

For statistically homogeneous flows, the dependence on the midpoint position xc vanishes
and the relation between the second-order structure function and the two-points correlation
function reduces to

〈δq2〉(r, t) = 4〈k〉 − 2R(r, t). (A4)

Periodic boundary conditions can be applied in such homogeneous conditions and the
kinetic energy spectrum can be also defined,

E(k, t) ≡ 1
(2π)3

∫
R(r, t)e−jk·r dr, (A5)

where j = √−1 is the imaginary unit and k is the wavenumber. The above definition
highlights that the second-order structure function is strictly related also to the kinetic
energy spectrum as

〈δq2〉(r, t) = 4〈k〉 − 2
∫

E(k, t)ejk·r dk. (A6)

Equations (A4) and (A6) suggest that in statistically homogeneous turbulence, the three
statistical observables carry the same kind of information. The main difference is indeed
the support provided for the definition of scales that is the physical space r for the
second-order structure function and for the two-points correlation function and the spectral
space k for the kinetic energy spectrum.

A.2. Derivation of the generalized Kolmogorov equation
The generalized Kolmogorov equation is the exact equation for the evolution of the
second-order structure function 〈δq2〉. Contrary to the equation for the kinetic energy
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Cascades in wall turbulence with and without interfaces

spectrum E(k, t) that can be written only for statistically homogeneous flows that feature
periodic boundary conditions, the generalized Kolmogorov equation applies to any flows
and, hence, also in strongly inhomogeneous and anisotropic turbulence. The exact form
of the equation is due to the fact that it can be directly derived from the Navier–Stokes
equations. The procedure for its derivation has been introduced by Hill (2002) without
considering the Reynolds decomposition. This latter has been introduced later by Marati
et al. (2004) for the derivation of the second-order structure function equation applied to
the statistical symmetries of a turbulent channel.

We report here the main steps of the derivation of the second-order structure function
equation in its most general form by considering also the Reynolds decomposition of
the flow fields. The first step is to derive the evolution equations for the fluctuating
velocity increment δu. These equations can be obtained by subtracting the Navier–Stokes
equations for the velocity fluctuations written at the two points of the increment x′ and
x′′. Then, by considering that the two points x′ and x′′ are independent variables, e.g.
∂ui(x′, t)/∂x′′

j = 0, all the flow variables can be written as two-point increments. Finally,
a change in the coordinate system from (x′, x′′, t) to (xc, r, t) can be performed by
considering the following differential relations:

∂

∂x′
i
= 1

2
∂

∂xci

+ ∂

∂ri

∂

∂x′′
i

= 1
2

∂

∂xci

− ∂

∂ri

∂2

∂x′
i∂x′

i
+ ∂2

∂x′′
i ∂x′′

i
= 1

2
∂2

∂xci∂xci

+ 2
∂2

∂ri∂ri

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A7)

The resulting equations for the fluctuating velocity increments read
∂δui

∂t
+

(
ũj + Ũj

) ∂δui

∂xcj

+ (
δuj + δUj

) ∂δui

∂rj
+ ũj

∂δUi

∂xcj

+ δuj
∂δUi

∂rj
− ∂δ〈uiuj〉

∂xcj

= − 1
ρ

∂δp
∂xci

+ ν

2
∂2δui

∂xcj∂xcj

+ 2ν
∂2δui

∂rj∂rj
, (A8)

where we recall that δ· and ·̃ denote the two-point difference and the two-point average
operators. The second-order structure function equation can be finally obtained by
multiplying (A8) by 2δui, applying the average operator and by rearranging the viscous
terms in order to highlight the dependence of the equation on the behaviour of the
pseudodissipation ε. The resulting final form of the generalized Kolmogorov equation
reads

∂〈δq2〉
∂t

+ ∂〈δq2δuj〉
∂rj

+ ∂〈δq2ũj〉
∂xcj

+ ∂〈δq2〉δUj

∂rj
+ ∂〈δq2〉Ũj

∂xcj

+ 2〈δuiδuj〉
(̃

∂Ui

∂xj

)
+ 2〈δuiũj〉 δ

(
∂Ui

∂xj

)

= − 2
ρ

∂〈δpδui〉
∂xci

+ 2ν
∂2〈δq2〉
∂rj∂rj

+ ν

2
∂2〈δq2〉
∂xcj∂xcj

− 4〈ε̃〉, (A9)

where the solenoidal condition of the velocity field is repeatedly applied in its derivation,
i.e. ∂δui/∂ri = ∂δui/∂xci = ∂ ũi/∂ri = ∂ ũi/∂xci = 0. This equation represents an exact
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equation that statistically describes all the degrees of freedom of turbulence by addressing
the augmented space of scales and positions, r and xc, respectively. Hence, the multiscale
nature of turbulence also in strongly inhomogeneous conditions is formally described by
this theoretical framework.

It is useful now to highlight the conservative form of the generalized Kolmogorov
equation by rewriting it as

∂〈δq2〉
∂t

+ ∇6 · φ = ξ, (A10)

where

ξ = −2〈δuiδuj〉
(̃

∂Ui

∂xj

)
− 2〈δuiũj〉 δ

(
∂Ui

∂xj

)
− 4〈ε̃〉 (A11)

is the source term of a six-dimensional hyperflux φ occurring in the compound
six-dimensional augmented space of scales r and positions xc,

φ =
[
φr
φc

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈δq2δu〉 + 〈δq2〉δU − 2ν
∂〈δq2〉

∂rx

〈δq2δv〉 + 〈δq2〉δV − 2ν
∂〈δq2〉

∂ry

〈δq2δw〉 + 〈δq2〉δW − 2ν
∂〈δq2〉

∂rz

〈δq2ũ〉 + 〈δq2〉Ũ + 2
ρ

〈δpδu〉 − ν

2
∂〈δq2〉
∂xc

〈δq2ṽ〉 + 〈δq2〉Ṽ + 2
ρ

〈δpδv〉 − ν

2
∂〈δq2〉
∂yc

〈δq2w̃〉 + 〈δq2〉W̃ + 2
ρ

〈δpδw〉 − ν

2
∂〈δq2〉

∂zc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A12)

and

∇6 = [∇r, ∇c] =
[

∂

∂rx
,

∂

∂ry
,

∂

∂rz
,

∂

∂xc
,

∂

∂yc
,

∂

∂zc

]
. (A13)

It is then possible to interpret the generalized Kolmogorov equation as an exact statistical
theoretical framework for the assessment of how kinetic energy produced at large scales
is dissipated at small scales also in fully inhomogeneous conditions (Danaila et al. 2001).
Indeed, by tracing back the hyperfluxes from the small scales r and regions xc where
turbulence dissipation ε is physically accomplished, it is possible to reconstruct the paths
followed by scale energy and the large scales r and regions xc where have been locally
energized by production mechanisms. In this context, the 3-D field of fluxes φr identifies
the energy cascade process between scales, while 3-D field of fluxes φc locates the flow
regions statistically involved.

It is finally worth noting that the generalized Kolmogorov equation exhibits a
well-defined asymptotic behaviour at very large scales. Indeed, from (A4) it is clear that by
considering a separation vector r in statistical homogeneous directions such that |r|  

987 A4-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.359


Cascades in wall turbulence with and without interfaces

with  the correlation length, the two-point correlation function vanishes R(|r|  , t) = 0
and the second-order structure function reduces to

〈δq2〉(r, t) = 4〈k〉. (A14)

The same reasoning can be applied to all the terms of the generalized Kolmogorov
equation (Marati et al. 2004) to show that the large-scale asymptote of (A9) is, within
a factor 4, the single-point turbulent kinetic energy budget.

A.3. The generalized Kolmogorov equation and the classical theory of turbulence
Most readers will be familiar with Kolmogorov’s theory for homogeneous isotropic
turbulence. In order to elucidate the present theoretical framework, a useful approach is
to derive such classical results from the generalized Kolmogorov equation. As is well
known, for sufficiently high Reynolds numbers, turbulence develops scales small enough
to be considered not affected by the boundary conditions of the problem. In this condition,
the small scales of turbulence are assumed to recover all the statistical symmetries and
can be thought as universal. In such statistical homogeneous and isotropic conditions, the
generalized Kolmogorov equation (A9) significantly simplifies. In particular, thanks to
statistical homogeneity, the dependence on the midpoint vector xc vanishes, e.g. 〈δq2〉 =
〈δq2〉(r, t), and the generalized Kolmogorov equation reduces to

∂〈δq2δuj〉
∂rj

+ ∂〈δq2〉δUj

∂rj
+ 2〈δuiδuj〉∂Ui

∂xj
= 2ν

∂2〈δq2〉
∂rj∂rj

− 4〈ε〉, (A15)

where a statistical steady condition is also considered. Because of homogeneity, the
mean velocity gradient in the production term of turbulence by mean shear has to be
understood as constant, i.e. ∂Ui/∂xj = const in homogeneous shear flows and ∂Ui/∂xj = 0
in homogeneous shear-free turbulence. Equation (A15) unequivocally highlights that the
prominent feature of statistically homogeneous turbulence is the transfer of energy in the
space of scales. Furthermore, by considering small scales such that |r|/S � 1 where S
is the shear scale, the energy injection by mean shear can be neglected as well as the
contribution to scale transport from the mean velocity increment. In these conditions, the
generalized Kolmogorov equation further reduces to

∂〈δq2δuj〉
∂rj

− 2ν
∂2〈δq2〉
∂rj∂rj

= −4〈ε〉 (A16)

thus showing that the small scales of homogeneous turbulence develop an equilibrium
range where scale energy is transported between scales at a constant rate prescribed by the
rate of energy dissipation, i.e.

∇r · φr = −4〈ε〉. (A17)

The absence of effects from mean shear in this equilibrium range allows us also to
assume an isotropic recovery at small scales, i.e. 〈δq2〉 = 〈δq2〉(r) where r = |r|. To better
express the generalized Kolmogorov equation under statistical isotropic conditions, it is
useful to recast equation (A16) in a spherical coordinate system,

1
r2

d
dr

(
r2〈δq2δur〉

)
− 2ν

1
r2

d
dr

(
r2 d〈δq2〉

dr

)
= −4〈ε〉, (A18)

where δur is the radial velocity increment (also called longitudinal velocity increment)
and the terms depending on the azimuthal and polar angles cancel out due to the statistical

987 A4-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

35
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.359


A. Cimarelli, G. Boga, A. Pavan, P. Costa and E. Stalio

Sc
al

e

Sc
al

e 
fl

ux

Position

Dissipation

Production

Figure 10. Sketch of the picture of turbulence provided by the generalized Kolmogorov equation in statistically
homogeneous turbulence. The eddies are drawn only for improving the graphical readability of the sketch
but are not intended to convey any insights about the flow physics provided by the generalized Kolmogorov
equation.

isotropy assumption. In order to address the flux of scale energy, it is possible now to
perform a spherical volume integral and the generalized Kolmogorov equation under
isotropic conditions becomes

〈δq2δur〉 − 2ν
d〈δq2〉

dr
= −4

3
〈ε〉r (A19)

thus showing that the essential feature of turbulence in statistically homogeneous isotropic
conditions is the single process of flux of scale energy from large to small scales, see
the sketch reported in figure 10. This flux is radial in the space of scales, linear with the
separation r and proportional to the turbulent dissipation rate 〈ε〉. Notice that a similar
result can be obtained also under the sole statistical homogeneity assumption as shown in
Nie & Tanveer (1999).

The isotropic version of the generalized Kolmogorov equation (A19) can finally
be used to recover the famous 4/5th law (Kolmogorov 1941). Indeed, in statistically
isotropic conditions, the second- and third-order structure function tensors are completely
determined by a single scalar field given by the second- and third-order moment of
the longitudinal velocity increment, 〈δu2

r 〉 and 〈δu3
r 〉, respectively (Robertson 1940).

Accordingly, it is possible to re-express equation (A19) as a function of longitudinal
increments as

1
3r3

d
dr

(
r4〈δu3

r 〉
)

− 2ν
d
dr

[
1
r2

d
dr

(
r3〈δu2

r 〉
)]

= −4
3
〈ε〉r. (A20)

By considering now a very high Reynolds number, an inertial range of scales can be
assumed where the viscous contribution can be neglected. In this range, the generalized
Kolmogorov equation for isotropic turbulence expressed as a function of longitudinal
increments, (A20), reads

〈δu3
r 〉 = −4

5
〈ε〉r (A21)

which is the so-called 4/5th law.
In conclusion, the generalized Kolmogorov equation provides a full description of the

augmented space of turbulence (xc, r, t) by addressing the source and sink mechanisms
and the hyperflux connecting them. By considering statistical homogeneity, the complex
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problem of turbulence reduces to its essential features that the generalized Kolmogorov
equation recognizes in the single process of transport of energy between scales, see (A16).
Hence, homogeneous turbulence develops a spectrum of scales where large and small
scales are in equilibrium through a process of energy cascade in accordance with (A19),
see also the sketch in figure 10.

In the more general conditions of inhomogeneous turbulence, the formalism of the
generalized Kolmogorov equation is still valid and allows us again to assess the processes
that form before turbulent energy is dissipated at small scales. As unequivocally shown
by the generalized Kolmogorov equation in its full form, (A9) and (A10), both the source
by mean shear and dissipation by viscous mechanisms are defined in the augmented space
(xc, r, t) and are connected by the hyperflux, sum of a spatial and a scale transport. The
presence of a spatial flux greatly complicates the problem. Because of that, the rate of
energy dissipation at the small scales of a given flow region is fed by turbulence production
by shear occurring at the large scales of other flow regions. In other words, the large and
small scales of a given region of the flow are no more in a local statistical equilibrium
because of inhomogeneity.

In this context two possible scenarios are envisaged by the generalized Kolmogorov
equation. The first one is sketched in figure 11(a) and consists in a small scale turbulent
dissipation fed by a large-scale production occurring in another region of the flow through
a spatial flux combined with a forward cascade. This scenario is called generalized
Richardson cascade in the main body of the present work. The second scenario is sketched
in figure 11(b). Again, small-scale dissipation of a given region of the flow is fed by
turbulence production occurring at the large scales of another region. However, the spatial
flux is combined with both reverse and forward cascades. Qualitatively, this is the scenario
observed in the inner region of wall turbulence as shown in the present work. The presence
of an inverse energy cascade is supported by the generalized Kolmogorov equation only
because of the presence of spatial fluxes. In fact, when dissipation acts at small scales, only
the non-locality (in space) of the budget induced by spatial fluxes can allow the presence
of an inverse energy cascade. This is different in flow cases where dissipation occurs at
large scales, e.g. 2-D turbulence. In this case the inverse energy cascade directly feeds
dissipation and hence can also occur locally in space as in homogeneous turbulence.

Let us finally notice that in the two scenarios depicted in figure 11(a,b), statistical
anisotropy has not been considered. In fact, a third scenario is also supported by the
generalized Kolmogorov equation that is given by the fact that both the mechanisms
sketched in figure 11(a,b) can simultaneously occur in strongly anisotropic turbulence.
In other words, from the turbulence production scales and regions, energy while moving in
other flow region can be continuously transferred to larger scales in some scale-directions
while to small scales in the other scale-directions. This third scenario is then a combination
of the previous two and qualitatively represents the energy transport phenomena observed
in the near-wall and outer region of wall turbulence as shown in the present work.

To conclude this appendix, let us point out that some authors refer to the generalized
Kolmogorov equation (A9) as the Kármán–Howarth–Monin–Hill equation. In fact, von
Kármán & Howarth (1938) were the first to write an equation for the second- and
third-order two-point correlation for homogeneous isotropic turbulence while Monin &
Yaglom (1975) were first to extend it to non-isotropic, but still homogeneous, conditions.
Thanks to (A4) and others similar, it is clear that such equations can be readily re-expressed
in terms of second- and third-order structure functions thus leading to the reduced
forms of the generalized Kolmogorov equation (A16) and (A18). On the other hand, the
fully inhomogeneous anisotropic form of the generalized Kolmogorov equation has been
derived for the first time by Hill (2002) directly using the formalism of the second- and
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Figure 11. Sketch of the picture of turbulence provided by the generalized Kolmogorov equation in
inhomogeneous turbulence with a forward cascade (a) and a combined reverse and forward cascade (b). The
eddies are drawn only for improving the graphical readability of the sketches but are not intended to convey
any insights about the flow physics provided by the generalized Kolmogorov equation.

third-order structure functions, in the same spirit of the original work of Kolmogorov on
the theory for isotropic turbulence. Under this respect, we name (A9), the generalized
Kolmogorov equation.
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