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Abstract

The demand for composites is rising in industries for instance, in aircraft and automobile engines. In these
applications, composites encounter high thermal gradients service condition, and composites exhibit ma-
terial discontinuous gradient field. It is essential to study how high thermal gradients and material discon-
tinuities influence on the composites’ behavior. Composites are usually modelled with the standard finite
element method (FEM), but mesh refinement is required near material interfaces and regions with high ther-
mal gradients to obtain accurate solutions. Enriched finite element procedures are able to solve this issue.
The Generalized Finite Element Method (GFEM) can approximate high thermal gradients by adding enriched
degrees of freedom (DOFs) to original mesh nodes. In addition, the Interface-enriched Generalized Finite El-
ement Method (IGFEM) can cope with material discontinuities by creating nodes at the intersection between
discontinuities and edges of elements in the mesh. Yet, GFEM and IGFEM have their own limitations when
implemented: while GFEM needs extra enrichments to resolve the material interfaces in composites, and
IGFEM requires mesh refinement if thermal gradients are too high in cut elements. Then we can combine the
best of both methods.

In this thesis, a new Generalized Finite Element Method with spread and discrete enrichments (GFEMsd)
is developed to simulate heat transfer problems with high thermal gradients in composites. By combining
GFEM and IGFEM formulations, GFEMsd is capable of dealing with high thermal gradients and material dis-
continuities simultaneously in an effective manner. We show that GFEMsd obtains accurate results when
compared with analytical solutions in numerical examples. A convergence study illustrates that fewer DOFs
are required in GFEMsd for achieving the same level of accuracy comparable to that of IGFEM. We then apply
GFEMsd to simulate a twill pattern composite and derive effective heat conductivity values. Lastly, based on
the composite’s minimum effective heat conductivity, fiber shape optimization is conducted to obtain the
best design for a fixed fiber volume fraction.
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1
Introduction

Composites are increasingly popular in engineering, including aerospace [1], civil engineering [2], maritime
engineering [3], and automotive [4] because of their high specific strength, stiffness, and long service life.
In these applications, composite materials are often exposed to high temperatures, for instance in rocket
nozzles [5], thermal protection systems in aircraft where the temperature usually exceeds 1000 ◦C [6], and au-
tomobile engines [7]. Among composite materials, ceramic matrix composites (CMCs) have been regarded
as promising candidate materials for the mentioned components because of their low thermal conductivity,
light weight, and high strength to meet severe service demands [8]. However, under high temperatures, the
composite’s thermal and mechanical properties are strongly affected, which limits their applicability. Large
temperature differences and inhomogenous heat distribution in a manufactured part could lead to failure
[9], inner stress concentration [10], and microcracks [11, 12]. For example, a heat load may cause distortion
of the composite geometry during operation [13], and cyclic thermal shocks and long-term thermal aging
will affect the mechanical properties of composite structures [14, 15]. These heat-induced concerns pose
both safety and economic issues in the composite engineering practice. Therefore, to achieve better thermal
performance, it is desirable to exploit methods that faithfully predict heat distribution to design the com-
posite structures. And although experiments could be conducted to that end, they are expensive and time-
consuming. Numerical methods, on the other hand, are a wise alternative to experiments and are the focus
of this thesis.

The classic way to simulate heat conduction in composites is using Finite Element Method (FEM) [16–18]. By
using mesh refinement [19, 20] and geometry-conforming meshes [21], that is, meshes fitted to material in-
terfaces, the temperature field with high thermal gradients in composites can be simulated accurately. How-
ever, this technique is computationally expensive because very fine meshes should be generated to capture
high gradients. In addition, composites contain two or more material phases, so fine meshes or high-order
elements are also needed near the material discontinuities to get accurate solutions.

The Generalized Finite Element Method (GFEM) [22], which incorporates a priori knowledge of the solution
field in the form of enrichment functions into the formulation, could avoid mesh refinement by enriching
the finite element space. In [23] and [24], O’Hara et al. proposed a GFEM formulation with global–local
enrichments for steady-state and transient heat transfer problems, respectively. Their formulations can cap-
ture sharp thermal gradients reasonably with coarse, uniform meshes, but the iterative process to obtain the
final local enrichment is tedious. Abbas et al. [25] adopted a set of regularized Heaviside functions as en-
richments to solve convection-dominated problems involving solutions with high thermal gradients. A set of
enrichments were chosen when one enrichment was insufficient to represent high thermal gradients. The in-
convenience of this approach is that several enrichments complicate the implementation. Using parametric
enrichments in GFEM is another method to resolve high gradients. Waisman et al. [26] defined a−posteriori
energy form residual error, and minimized it adaptively to determine the parameters of the enrichment func-
tion and capture high gradients. Later, Zeller et al. [27] and Iqbal et al. [28] adopted similar concepts to
modify the parameterized enrichment functions by using other form of residual error measures.

Different from GFEM, the Interface-enriched Generalized Finite Element Method (IGFEM) [29] creates en-
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riched nodes directly at the intersection between material interfaces and edges of mesh elements, and en-
riched degrees of freedom are added to those nodes. IGFEM was designed to solve problems with weak dis-
continuity, where the gradient field is discontinuous, by a straightforward computer implementation. With
this aim, the contributions of IGFEM are found in many areas, including for instance, the modelling of in-
plain deformations in heterogeneous adhesives [30], the transverse failure of composite laminates [31, 32],
the shape optimization of microvascular composite panels [33], and the topology optimization for compli-
ance minimization problems [34]. In the context of heat transfer problems, two-dimensional (2D) multiple
materials [29] and three-dimensional (3D) composite models with complex internal morphologies such as
woven microvascular composites were also investigated [35–38].

One important material property of composites is the thermal conductivity. Thermal conductivity deter-
mines the conduction capability of composites, and plays a critical role in the composites’ thermal behav-
ior, which has also been studied extensively [39, 40]. Gori et al.[41] evaluated the thermal conductivity of
composite material by theoretical method with a cubic cell, and compared with numerical results. Gou et
al. [42] presented a numerical approach based on homogenization for predicting the effective thermal con-
ductivities of plain woven composites. Zhou et al. [43] established a parametric formulations between the
architecture of fiber reinforcement and effective thermal conductivity, which were predicted by using an an-
alytical homogenization method. Composites’ thermal conductivity was also optimized with regards to their
microstructure. Yan et al. [44] optimized the thermal conductivity of a UO2-Mo composite by tailoring the
Mo channel structural characteristics using machine learning. By adopting genetic algorithm, Liu et al. [45]
developed the geometric optimization of aerogel composite to minimize effective thermal conductivity. Yin
et al. [46] employed particle swarm optimization algorithm to optimize the composite parameters, and ob-
tained the minimized thermal conductivity.

This present work has two major objectives : (i) to develop a new Generalized Finite Element Method with
spread and discrete enrichment (GFEMsd) which combines the formulations of GFEM and IGFEM to solve
composite heat transfer problems with high thermal gradients, and (ii) to apply the proposed method to the
gradient-based design of embedded fibers in a CMCs plate. For the former, numerical examples with an-
alytical solutions are compared with the GFEMsd numerical results, showing that GFEMsd can capture the
temperature field accurately. Convergence study of these examples are shown and compared with IGFEM
reference results, GFEMsd converges faster than IGFEM, and is more accurate than IGFEM. For the latter, we
focus on the twill pattern composite model, the effective heat conductivity of the model using GFEMsd is de-
rived. Furthermore, a scheme for the fiber shape optimization to obtain minimal effective heat conductivity
is conducted, giving the best fiber shape design for a fixed fiber volume.
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A Generalized Finite Element Method

with Spread and Discrete Enrichments for
Capturing High Thermal Gradients in

Composites

In this chapter, the formulation of the proposed GFEMsd algorithm is elaborated in detail. Then 2D numerical
examples are presented to verify the method’s accuracy. Finally, GFEMsd formulation is expanded to solve 3D
composite problem.

2.1. Problem Description
Consider an open domain Ω ⊂ Rd referenced by a Cartesian coordinate system spanned by base vectors
{ei }d

i=1 as illustrated in Figure 2.1. This domain composes of two mutually exclusive material regions Ω1

and Ω2, with closure Ω, such that Ω=Ω1 ∪Ω2 ⊂ Rd , Ω1 ∩Ω2 =;. The phase interface Γ12 separates the two
sub-domainΩ1 andΩ2. The external boundary Γ=Ω−Ω has outward unit normal n and is partitioned into
three distinct boundary conditions Γu , Γq and Γh , which are the Dirichlet, Neumann and Robin boundary
conditions, such that Γ= Γu ∪Γq ∪Γh and Γu ∩Γq ∩Γh =;. The strong form for the steady-state heat bound-

ary value problem can be written as follows: Given the heat conductivity κ : Ω→ Rd ×Rd , the heat source
f :Ω→ R, prescribed temperature u : Γu → R, prescribed heat flux q : Γq → R, and heat transfer coeffificient

h : Γh →R and ambient temperature u∞ : Γh →R , find the temperature field u :Ω→R such that

∇· (κ∇u)+ f = 0 on Ω ,

u = u on Γu ,

κ∇u ·n = q on Γq ,

κ∇u ·n = h (u∞−u) on Γh .

(2.1)

Let U be the set of functions for the temperature field, U ⊂ H 1(Ω) = {u : u|Γu = u} and V be the variation
space, V ⊂ H 1

0 (Ω) = {v : v |Γu = 0}, the weak form of Equation (2.1) is expressed as: Find u ∈U such that

a (w, u)+a (w, u)Γh = (
w, f

)+ (
w, q

)
Γq

+ (w, u∞)Γh
, ∀ w ∈ V . (2.2)
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where the linear and bilinear forms in Equation (2.2) are

a (w, u) =
∫
Ω
κ∇w ·∇u dΩ ,

a (w, u)Γh =
∫
Γh

hwu dΓ ,

(
w, f

)= ∫
Ω

w f dΩ ,(
w, q

)
Γq

=
∫
Γq

w q dΓ ,

(w, u∞)Γh
=

∫
Γh

hwu∞ dΓ .

(2.3)

Γh

Γq

Γu

Ω1

q

Ω2
n

Γ12

e1

e2

Figure 2.1: Schematic of domainΩ used in the formulation of the problem. The boundary of the domain is split into three
distinct regions Γu , Γq and Γh , where Dirichlet, Neumann and Robin boundary conditions are prescribed. The domain
is composed of two mutually exclusive material phases,Ω1 andΩ2. The inset shows the discretization with a material
interface that is non-matching to the mesh. Original mesh nodes are represented with black circles, enriched IGFEM

nodes and GFEM DOFs are denoted as green circles and blue squares, respectively.

The Galerkin projection is applied to the weak form in Equation (2.2) to approximate the solution. For the
Galerkin approximation, let V h ⊂ V and U h ⊂ U be finite-dimensional sets such that V h = {vh : vh |Γu = 0}
and U h = {uh : uh = vh + t h , t h |Γu = u}. Then the Galerkin form of the boundary value problem is

a
(
wh , vh

)
+a

(
wh , vh

)
Γh

=
(
wh , f

)
+

(
wh , q

)
Γq

+
(
wh ,u∞

)
Γh

−a
(
wh , t h

)
, ∀ wh ∈ V h . (2.4)

Equation (2.4) can be approximated using the Generalized Finite Element Method (GFEM) and the Interface-
enriched Generalized Finite Element Method (IGFEM) by discretizing the domain with finite elements. One
problem in GFEM framework is that the application of Dirichlet boundary condition is not straightforward,
because of the non-zero enrichment functions at the nodes with prescribed temperature value. Thus, one
must employ techniques such as the penalty method or Lagrange multipliers to enforce Dirichlet boundary
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conditions [47, 48]. In this work, the penalty method is adopted due to the simplicity in its implementation.
Then the Galerkin form becomes

a
(
wh , uh

)
+a

(
wh , uh

)
Γh

+ρ
(
wh , uh −u

)
Γu

=
(
wh , f

)
+

(
wh , q

)
Γq

+
(
wh , u∞

)
Γh

, ∀ wh ∈ V h . (2.5)

where ρ
(
wh , uh −u

)
Γu

= ρ
∫
Γu

wh
(
uh −u

)
dΓ is the penalty method part term, ρ is the penalty parameter.

2.2. GFEMsd Formulation
Considering the advantages of GFEM and IGFEM, we now solve the weak discontinuity heat transfer problem
with high thermal gradients by employing the Generalized Finite Element Method with spread and discrete
enrichments (GFEMsd), which combines both IGFEM and GFEM formulations. The term “spread” refers
to the GFEM enrichments applied over the discretized domain, and “discrete” means IGFEM enrichments
locating at the material discontinuities. This GFEMsd formulation has the temperature approximation form
as

uh (x) =
∑

i∈ιh
Ni (x)Ũi︸ ︷︷ ︸
FEM

+ ∑
i∈ιd

ψi (x)αi︸ ︷︷ ︸
IGFEM

+ ∑
i∈ιh

Ni (x)
∑
j∈ιs

ϕi j (x)Ûi j︸ ︷︷ ︸
GFEM

(2.6)

Equation (2.6) has three terms with different functions. The first term is the standard Finite Element Method
(FEM) approximation, Ni (x) and Ũi are the standard shape functions and degrees of freedom (DOFs), respec-
tively. ιh is an index corresponding to all the original nodes of the mesh. The second term is IGFEM approx-
imation, ψi (x) are IGFEM enrichment functions which are constructed by means of Lagrange shape func-
tions of integration elements, αi are IGFEM enriched DOFs associated with IGFEM enriched nodes which
are created at the intersections of elements edges and material interfaces. ιd is the index set of all the created
IGFEM nodes. This second term enables GFEMsd to capture weak discontinuities at material interfaces. The
last term denotes GFEM approximation that serves to resolve the high thermal gradients. ϕi j (x) are enrich-
ment functions associated with GFEM enriched DOFs Ûi j . ιs is the index set of GFEM enrichment functions.
It should be noted that in GFEMsd formulation, the GFEM enriched DOFs are added to all the background
mesh nodes. As the heat conduction problems in this work exhibits high thermal gradients, GFEM enrich-
ment functions should have strong nonlinear characteristics. Therefore, GFEM enrichment function used in
this work is a scaled exponential function, ϕi j (x) = e

−x
c , where c is a scaling coefficient related to the domain

size. An introduction of GFEM and IGFEM formulations can be found in Appendix A.

Starting from Equation (2.6), the discrete approximation of weak form Equation (2.5) can be expressed as

KU = F (2.7)

where K and F are the stiffness matrice and force vector, U is the vector of DOFs, namely standard and
enriched DOFs. In GFEMsd formulation, enriched DOFs contain both IGFEM and GFEM DOFs. Then we
derive K and F .

As illustrated in the inset of Figure 2.1, the model domain contains two materials with different heat con-
ductivity κ1 and κ2. The domain is meshed by triangle elements. Cut elements, i.e., elements intersected
by the material interfaces, are divided into cut sub-elements. Therefore, there are two kinds of elements in
the domain: (a) Original mesh elements, which contain FEM DOFs and GFEM enriched DOFs. (b) Cut sub-
elements, which contain all the FEM DOFs, IGFEM and GFEM enriched DOFs.

First, we look at the general element case, which refers to cut sub-elements. Letφ be the matrice contains all
the standard shape functions and enrichment functions on element e, and B be the matrice of derivatives of
these shape and enrichment functions

φ= [
N1 · · · ψ1 · · · N1ϕ1 · · ·] , (2.8)
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B =



∂N1

∂x
· · · ∂ψ1

∂x
· · · ∂

(
N1ϕ1

)
∂x

· · ·
∂N1

∂y
· · · ∂ψ1

∂y
· · · ∂

(
N1ϕ1

)
∂y

· · ·

∂N1

∂z
· · · ∂ψ1

∂z
· · · ∂

(
N1ϕ1

)
∂z

· · ·


. (2.9)

Chain-rule [50] is adopted when calculating the derivatives in B matrice. The element DOFs arrangement
sequence inφ and B is the same: FEM DOFs, IGFEM enriched DOFs, and GFEM enriched DOFs.

Next, for the original mesh elements, we only need to remove the GFEM contribution part in φ and B to
obtain new corresponding matrices.

Then, the stiffness matrice ke of this element is constructed as

ke = kel +kρ +kh (2.10)

where kel is the element local stiffness matrice related to material heat conductivity, kρ is the penalty stiffness
matrice along Dirichlet boundary and kh is the Robin boundary condition stiffness matrice.

And the element force vector fe is

fe = fel + fρ + fh + fq (2.11)

where fel is the element local force vector related to material heat conductivity, fρ is the element Dirich-
let boundary force vector, and fh and fq are force vectors for Robin and Neumman boundary conditions,
respectively.

The expression for terms in Equations (2.10) and (2.11) are

kel =
∫

e
κi BᵀB de ,

kρ = ρ
∫
∂e
φᵀφd∂e ,

kh = h
∫
∂e
φᵀφd∂e ,

fel =
∫

e
φᵀ f de ,

fρ = ρ
∫
∂e
φᵀu d∂e ,

fh = h
∫
∂e
φᵀu∞ d∂e ,

fq =
∫
∂e
φᵀq d∂e .

(2.12)

Then the discrete system of linear Equation (2.7) is obtained by FEM standard assembly procedure, except
that enrichments are incorporated

K =A
e

ke , F =A
e

fe . (2.13)

whereA is the standard FEM assembly procedure operator.

The elements used in the following simulation work are three-node triangular (t3) element for 2D problem
and four-node tetrahedron (T4) element for 3D problem. Gauss integration rules with three gauss points are
used in integration elements.
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2.3. Comparison of GFEMsd, IGFEM and GFEM
Strengths and limitations of GFEMsd, IGFEM and GFEM when tackling with high thermal gradients problem
in composite are listed below.

• In GFEM, because enrichment functions are usually not zero at nodes, except for some special enrichments
such as the Ridge enrichment introduced by Möes et al. [51], the prescribed nodal temperature values cannot
be assigned directly. Thus, the imposition of Dirichlet boundary conditions is not straightforward. This prob-
lem still exists in GFEMsd, therefore, the Dirichlet boundary condition needs penalty method to be prescribed
weakly.

• About high thermal gradients, GFEM can capture the gradients by enriching the finite element space. But
in IGFEM, the solution accuracy depends on FEM approximationm, and mesh refinement could be imple-
mented in regions where gradients are too steep. In GFEMsd, GFEM enriched DOFs are added to all the
background mesh nodes. As a consequence, there is no blending element issue [52], and the high thermal
gradients can be well resolved by GFEM enrichments contribution.

• When encountering with material interfaces, in GFEM, enriched DOFs are attached to original mesh nodes
near the weak discontinuities, and extra enrichments are applied to deal with the weak discontinuities [53].
GFEM enriched DOFs represent temperatures after interpolation. While in IGFEM, enriched DOFs are as-
sociated with new nodes created along the discontinuities and directly represent temperature solutions.
GFEMsd adopts the principle of IGFEM to add enriched DOFs to capture discontinuity temperature fields.
In summary, GFEM and IGFEM methods play to their strengths in GFEMsd formulation to solve the above-
mentioned problem.

2.4. Numerical Examples
In the following sections, 2D and 3D heat conduction problems are presented. The 2D problems having ex-
act solutions demonstrate the accuracy of GFEMsd in addressing high thermal gradients in composite. In
2D problems, no units are specified; therefore, any consistent unit system can be assumed. In the 3D prob-
lem, a twill pattern composite material model is studied systematically, including the configuration of fiber
geometry, the temperature distribution when subjected to high thermal gradients, and effective heat con-
ductivity properties. Finally, a fiber shape optimization is conducted to achieve the minimum effective heat
conductivity of the composite for a given constant fiber volume.

2.4.1. One-Dimensional Heat Source Conduction Problem
This example is used to verify the proposed GFEMsd formulation and the spread exponential enrichment
function in an equivalent 1D heat conduction problem. Let the temperature field over the domain Ω= 1×1
to be defined as (see Figure 2.2)

u
(
x, y

)={
2000(x −0.5)e−x +1050 0 ≤ x ≤ 0.5,

10000(x −0.5)e−x +1050 0.5 < x ≤ 1.
(2.14)

This manufactured temperature solution is constant in the y direction and uses an exponential function. The
material interface locates at x = 0.5 and material heat conductivity coefficients are κ1 = 5 and κ2 = 1 to the
left and right of the material interface, respectively. The body source term is then obtained by

f
(
x, y

)=−∇· (κ∇u) =− (10000x −25000)e−x . (2.15)

Top and bottom edges are insulated (heat flux q = 0), and temperature values u = 50 and u = 2889.4 are
prescribed to the left and right edges, respectively. The Dirichlet boundary conditions are enforced weakly by
means of penalty method. For the numerical solution, GFEMsd with spread exponential enrichment function
is used to get an approximation of the temperature field. Figure 2.3 compares the numerical to the analytical
result, showing that GFEMsd is capable of capturing the temperature field accurately.
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Ω, f

u = 50
κ1

u = 2889.4
κ2

x

y

Figure 2.2: Schematic for two different materials of 1D heat source conduction problem. Material interface locates at
x = 0.5. Boundary conditions include prescribed temperatures u at left and right edges, insulated bottom and top edges.

0 0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000

X-coordinate

T

Analytical
Numerical

Figure 2.3: Temperature field of 1D heat source conduction problem.

To investigate the convergence and accuracy of GFEMsd, the L2 norm and the energy norm of the error are
used, which are defined as

||u −uh ||L2(Ω) =
√∫

Ω

(
u −uh

)2 dΩ (2.16)

||u −uh ||E(Ω) =
√∫

Ω

(
u −uh

)2 dΩ+
∫
Ω

(∇u −∇uh
)2 dΩ (2.17)

Figures 2.4 and 2.5 summarizes the results of the convergence study, where GFEMsd is compared to an IGFEM
reference solution without spread exponential enrichment. Figure 2.4(a) shows the L2 norm of the error as
a function of the number of DOFs while Figure 2.4(b) is L2 norm with the mesh size. As observed in these
figures, GFEMsd yields faster convergence rates than IGFEM which is 1.997 with respective to mesh size.
Moreover, since the spread enrichment has a similar form as the exact solution in this example, L2 norm
error is greatly reduced in GFEMsd as compared to IGFEM, which demonstrates the strength of GFEMsd in
coping with high gradients problem. Similar phenomena can also be observed in the energy norm results,
and GFEMsd performs better than IGFEM as shown in Figure 2.5.
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Figure 2.4: Convergence results in L2 norm of the error with respect to (a) the total number of DOFs and (b) mesh size of
the 1D heat source conduction problem.
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Figure 2.5: Convergence results in energy norm of the error with respect to (a) the total number of DOFs and (b) mesh size
of the 1D heat source conduction problem.

2.4.2. Two-Dimensional Source Heat Conduction Problem
After testing GFEMsd in a 1D heat source problem, we now turn to a 2D heat conduction problem, where we
spatially vary the heat source along two directions. Let the domain be the same as in the first example and let
the exact temperature field be

u
(
x, y

)={
100×cos(3πx)cos

(
3πy

)+550 0 ≤ x ≤ 0.5,

500×cos(3πx)cos
(
3πy

)+550 0.5 < x ≤ 1.
(2.18)

Then the body source is
f
(
x, y

)= 9000×π2cos(3πx)cos
(
3πy

)
(2.19)

The material heat conductivity coefficients and material interface location are the same as the previous 1D
example. The Dirichlet boundary conditions with spatially changing values are applied to all the edges, which
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are

uleft = 100×cos
(
3πy

)+550, uright = 550−500×cos
(
3πy

)
. (2.20)

utop =
{
−100×cos(3πx)+550 0 ≤ x ≤ 0.5,

−500×cos(3πx)+550 0.5 < x ≤ 1,
, ubottom =

{
100×cos(3πx)+550 0 ≤ x ≤ 0.5,

500×cos(3πx)+550 0.5 < x ≤ 1,
. (2.21)

The temperature field simulation result is illustrated in Figure 2.6. To better compare the numerical and
analytical solutions, a typical temperature solution along the straight line y = 0.3 is plotted in Figure 2.7. The
result shows that GFEMsd can also obtain an accurate numerical solution in this 2D example.

The convergence results for this example are shown in Figures 2.8 and 2.9. GFEMsd is also more accurate than
IGFEM, showing that GFEMsd can solve high thermal gradients problems accurately even without a similar
spread enrichment as the exact solution. Besides, GFEMsd recovers the convergence rate of 1.9749 in L2 norm
error with respect to mesh size which is almost the same as IGFEM.

T

40

1060

600

Figure 2.6: Temperature field of 2D heat source conduction problem.
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Figure 2.7: Temperature field along the black arrow in Figure 2.6 of 2D heat source conduction problem. The high
gradients locate approximately between the two dashed gray lines.
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Figure 2.8: Convergence results in L2 norm of the error with respect to (a) the total number of DOFs and (b) mesh size of
the 2D heat source conduction problem.
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Figure 2.9: Convergence results in energy norm of the error with respect to (a) the total number of DOFs and (b) mesh size
of the 2D heat source conduction problem.

2.4.3. Multiple Curved Material Interfaces
This example is using GFEMsd to analyze 2D heat conduction problem with multiple curved material inter-
faces. The effect of material mismatch, which is the material heat conductivity coefficients difference across
material interface, on the performance of GFEMsd is studied as well.

The domain Ω = 4 × 4 is discretized with a 20 × 20 × 2 triangle elements. The two material interfaces are
described by cosine functions with an offset shown as

i1
(
x, y

)= cos

(
1

2
πx

)
+2.3,

i2
(
x, y

)= cos

(
1

2
πx

)
+1.7.

(2.22)

The mismatch of heat conductivity between the two material interfaces causes the weak discontinuity. The
domain, boundary conditions and material phases are shown in Figure 2.10(a). A constant heat flux q = 100
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is applied to the top edge, and the bottom edge has a prescribed Robin boundary condition with ambient
temperature u∞ = 15 and heat transfer coefficient h = 7.9. Left and right edges are insulted. The material
mismatch are investigated corresponding to three values of the thermal conductivity ratio β= κ2/κ1 = 5, 50,

and 100 with κ1 = 1. The spread enrichment function is adopted as ϕ = e
−y
c because the heat flux is applied

in the y direction.

The temperature fields obtained with GFEMsd are presented in Figure 2.10(b), 2.10(c) and 2.10(d), separately.
Figure 2.11 gives the temperature field along the line x = 2 in the domain. These figures show that GFEMsd

can capture the temperature field smoothly with increasing gradient discontinuity across material interfaces.

Because the exact solution for this problem is not available, so convergence rates will be measured with re-
spect to the energy norm error where the exact strain energy is obtained using a posteriori estimate. The
relative error er is computed as

er = ||up −uh ||E(Ω) =
√

a (up ,up )−a
(
uh ,uh

)
(2.23)

where up is a posteriori estimate of the exact solution.

The convergence results are in Figure 2.12, showing that GFEMsd stills performs better than IGFEM for all the
three material mismatch cases when the mesh sizes are predefined.

u∞ = 15

q = 100
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κ2

Ω

x

y
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Figure 2.10: (a) Schematic of domain geometry and boundary conditions of the multiple curved material interfaces
example, temperature field for (b) κ2/κ1 = 5 , (c) κ2/κ1 = 50, (d) κ2/κ1 = 100 with κ1 = 1.
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Figure 2.11: Temperature fields along the line x = 2 of multiple curved material interfaces problem.
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Figure 2.12: Convergence results in energy norm of the error with respect to (a) the total number of DOFs and (b) mesh
size of the multiple curved material interfaces problem.

2.5. Three-Dimensional Twill Pattern Composite
In the above 2D numerical examples, we demonstrated the accuracy of GFEMsd in addressing high thermal
gradients problems with material discontinuities. In this section, we focus on the 3D twill pattern compos-
ite, studying the temperature distribution, the effective heat conductivity coefficients, and the fiber shape
optimization.

2.5.1. Three-Dimensional Twill Pattern Composite Geometric Modelling
Twill pattern composites consist of longitudinal and transverse fibers in a pattern of over two and under two
repetition as shown in Figure 2.13. As the weaving pattern can be defined by a basic repeating unit, it is
commonly to use the repetitive unit cell to construct a representative volume element (RVE) for analyzing the
composite’s behavior. Figure 2.14 illustrates the twill composite idealized RVE model.
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Figure 2.13: A twill weave fabric of the twill pattern composite.

1 mm

8 mm

8 mm

0.75 mm
0.1 mm

Figure 2.14: The idealized RVE model of twill pattern composite, structured mesh of the background, conforming mesh of
the twill pattern fibers, and the cross-section of fibers.

We assume that there is no space between the fiber bundles in the RVE model. The cross-section shape of
each fiber is modelled as an ellipse with semi-major axis r = 0.75mm and semi-minor axis b = 0.1mm. The
centerline of fiber can be split into seven segments, each segment has its mathematical function to describe
its position, see Appendix B for the mathematical equations of the fiber’s centerline position. Eight fibers
are immersed in the matrix to form the RVE model. The RVE model has a dimension size 8×8×1 mm, see
in Figure 2.14. The fiber and matrix heat conductivity coefficients κ f , κm are 10 W/(m ·K) and 65 W/(m ·K),
respectively.

In the modelling process, a level set function [57, 58] is used to describe the boundary of the fibers. Then,
a Neumann boundary condition with uniform heat flux q = 10 W/m and Dirichlet boundary condition u =
50 K are prescribed to the top and bottom surfaces of the model, respectively. The other model surfaces are
considered as insulated. Figure 2.15 illustrates the temperature field of this twill composite model. It can
be seen that the temperature field is symmetric which conforms to the symmetry of the structure of the RVE
model.
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Figure 2.15: Temperature distribution of the twill RVE model.

2.5.2. Effective Heat Conductivity and Boundary Conditions of the RVE Model
In this work, the composite properties are orthotropic. The effective heat conductivity coefficients are κex ,
κe y and κez , then we relate the composite’s heat flux to temperature gradients as


q x

q y

q z

=


kex 0 0

0 ke y 0

0 0 kez



∂u
∂x
∂u
∂y

∂u
∂z

 . (2.24)

We determine the main effective heat conductivity coefficients as follows: For a 3D composite RVE model,
considering the surface with area A through which heat flux q passes, the component of heat conduction
equation along z direction can be described as

Φ=−
∫
κez

∂u

∂z
dA , (2.25)

whereΦ is the heat difference between the two surfaces in z direction.

When calculating the effective heat conductivity along the z direction, Dirichlet and Neumann boundary
conditions are prescribed on surfaces, z = 0 and z = l , respectively, while other surfaces are insulated. These
boundary conditions are q |z=l =−κez

∂u

∂z
·n ,

u|z=0 = u1 .
(2.26)

With these boundary conditions, the heat flux q is constant, so the heat gradient kez
∂u

∂z
is constant, then

Equation (2.25) can be rewritten as

Φ=−κez
∂u

∂z
A . (2.27)

Considering the temperature u1 and u2 on the two surfaces and length l between the surfaces, Equation (2.27)
can be rearranged as the following term

κez =−Φ
A
· ∂z

∂u
=−Φ

A
· l

u2 −u1
=−q · l

u2 −u1
, (2.28)
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where the temperature u1 on Dirichlet boundary condition surface is set in advance, the temperature u2 on
Neumann boundary condition surface temperature can be determined by the surface average temperature
evaluated from GFEMsd approximation, that is

u2 =
∑n

i=1 u2, i ·ai∑n
i=1 ai

(2.29)

where u2, i is the average temperature of each element on the Neumann boundary surface. In meshing pro-
cess, the boundary surfaces are meshed by standard three-node triangle element. For each triangle element,

u2, i = ue1 +ue2 +ue3

3
, where ue1, ue2 and ue3 are the nodal temperature in the element, n is total number of

elements on the surface and ai is the area of each element.

In such a way, the effective heat conductivity of RVE in z direction is determined by Equations (2.28) and
(2.29). The same principle also applies to obtain the effective heat conductivity in x and y directions. A
simple numerical test of the correctness of this method can be found in Appendix C. The effects of arbitrary
internal fiber shape on the effective heat conductivity will be reflected on a macro scale. Predicting effective
heat conductivity under other boundary conditions can be found in [59].

Figure 2.16 shows that the RVE effective heat conductivity as a function of the total DOFs. It can be seen that
the obtained effective heat conductivities slightly change with DOFs. The values are more accurate with more
DOFs for finer meshes are generated. Furthermore, κex value is almost equal to that of κe y , this conforms to
the symmetry of the structure of the RVE model. The value κez is smaller than the other two values, for less
matrix material volume fraction in z direction.
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Figure 2.16: Three main effective thermal conductivity coefficients of the RVE model with respective to the number of
DOFs.

2.5.3. Fiber Shape Optimization of the RVE Model
In this section, the effect of fiber parameters on the effective heat conductivity κez is analyzed and GFEMsd

solver is combined with a gradient-based optimization scheme to optimize the shape of the embedded fibers
in the RVE model.

Firstly, the fiber geometry is parameterized to easy the study. The fiber centerline vertical position z adopts a
simple cosine function

z (x) = a cos

(
2πx

l f

)
(2.30)

where a and l f are the amplitude and wavelength of the fiber, x is the fiber horizontal location. In this way,
the parameterized RVE model still keeps a similar fiber architecture as the twill pattern.
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Because fiber has smaller heat conductivity value, the composite model will have smaller effective heat con-
ductivity with more fiber, which can be speculated obviously based on the basic composite property Voigt
model [60]. However, more fiber usually means a high manufacturing cost. To identify the best performance
and cost-effective design, a fiber shape parameters design optimization scheme is conducted. The goal of the
optimization work is to minimize the effective heat conductivity κez under a fixed volume of fiber, which can
be achieved by tailoring the fiber shape parameters a and b. The optimization problem consequently takes
the form

s : [a, b] = argmin
a,b

κez ,

Subject to : V f =V0 ,

a ∈ [0.5, 1] ,

b ∈ [0.5, 0.75] .

(2.31)

where s is the design variable vector and V0 is the predefined fiber volume. With this objective function and
constraints, the classic Sequential Quadratic Programming optimization algorithm [61] is adopted to solve

this problem and a finite difference is used to get the partial derivative of the fiber volume
∂V f

∂a
and

∂V f

∂b
.

Two different initial guess points are used to verify the optimization process efficiency. Their results are listed
in Table 2.1. As shown in Table 2.1, the two initial designs converge to the same optimal design. Figure 2.17
gives an example of the iteration history and also the convergence curve.

Table 2.1: Optimal designs of the RVE geometry parameters

Design point a b a/b κez

Initial 1 0.9309 0.5251 1.7728 46.9077
Optimal 1 0.6773 0.5522 1.2265 45.9947

Initial 2 0.6798 0.552 1.2315 46.0577
Optimal 2 0.6774 0.5522 1.2265 45.9947
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Figure 2.17: Optimization process convergence history.

To further research whether the optimum design in Table 2.1 is a global or local optimum, the relationship
between objective function and the ratio a/b is roughly plotted in Figure 2.18. This curve is not strictly convex
for the beginning local minimum. The previous two initial design points in Table 2.1 locate at the valley-
shape domain such that converge to the global optimal design. When another initial point, for example,
sa = [0.54, 0.5679] with ratio a/b = 0.9560 is tested, the optimization process is stopped at the left-most point
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in Figure 2.18. This phenomenon shows that the final optimal design of this objective function depends on
the initial design point.
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Figure 2.18: Objective function value with design variables ratio a/b.

With regards to finding the global optimal with an arbitrarily given initial design point, the Simulated Anneal-
ing algorithm [62] or other global optimization algorithm may provide a solution.

2.6. Conclusion
In this thesis, a new GFEMsd formulation and its implementation for solving high thermal gradients in com-
posites are presented. The feature of GFEMsd is that by combing the formulations of GFEM and IGFEM,
enriched DOFs are added to both the original mesh nodes and the interface nodes. This variation in the for-
mulation of GFEMsd eliminates mesh refinement issue when dealing with material discontinuity problems
showing high thermal gradients. It was shown that GFEMsd achieves more accurate solutions with less com-
putational cost than IGFEM. Moreover, this method can capture the temperature gradient smoothly as the
ratio of the material mismatch across material interfaces increases. We also investigate the application of
GFEMsd for 3D twill pattern composite. The geometric configuration of twill composite is well resolved by
using a level set function, which parameterizes modelling of twill composite geometry. Based on effective
heat conductivity of the composite model, fiber shape optimization is conducted to find the minimum effec-
tive heat conductivity subject to a given constant fiber volume. The results indicate that GFEMsd solver can
provide optimized designs in terms of enhanced thermal performance.



3
Reflection

3.1. Choice of Research Project
When choosing the research project for my master’s thesis, I was intrigued by the interdisciplinary project
“Computational Modelling of the Next Moon-Landing Composite Material”. The service environment on the
moon is severe, so components of moon-going equipment need to withstand high temperature and experi-
ence high thermal gradients. Composites are often used in this field of work because of their excellent mate-
rial properties. Furthermore, composites are also utilized in maritime engineering and civil engineering, etc.
Results from this project are thus widely applicable, versatile, and can be used to solve various engineering
problems.

3.2. Process of The Project
The main challenges of the project were: (i) how to tackle with material weak discontinuities in composite,
(ii) how to capture high thermal gradients accurately. To solve these problems, I proposed a New Generalized
Finite Element Method with spread and discrete enrichments (GFEMsd) to address high thermal gradients
in composites. Also, a fiber shape optimization scheme is conducted to achieve the best balance between
work performance and cost-effectiveness balance of the 3D twill composite. To complete this thesis project,
I finished the following tasks:

• Literature survey: The first step was to perform an extensive survey of literature related to the project,
which aimed to identify a “research gap”. Literature about heat conduction problems, high gradients and
composites was studied. Based on the literature survey, I proposed GFEMsd, which combines both Gener-
alized Finite Element Method and Interface-enriched Generalized Finite Element Method formulations to
solve high thermal gradients in composites. This stage took me about three months.

• H ybr i d a implementation: The next step was implementing GFEMsd formulation in Hybrida which is
an in-house Python-based finite element library. It was challenging for me to start coding in Hybrida because
Hybrida is an open library and all the group members can work on it, leading to a relatively messy code style in
it. Several weeks were spent in getting familiar with Hybrida. After this, I started to write GFEMsd formulation
codes, including dofs-manager, boundary conditions, and post-processing, etc. I then verified the codes with
an equivalent 1D heat conduction problem with an exact solution. The verification took me even longer time
than writing codes. The carelessness I had which wrote codes paid for the price. Fortunately, by taking the
advice of my supervisor and help of group members, I finally found the bugs in codes and got the right result.
Later, 2D heat conduction problems were also verified to test the applicability of GFEMsd.

• 3D twill composite problem: Having verified the accuracy of GFEMsd in 2D problems, then I moved to
simulate the heat conduction problem in practical composite structure. I contacted Rahul Sharma who is
also the project supervisor from the company ARCEON, showing my project progress to him. Rahul gave me
3D CAD drawings of their twill pattern composite, and I began to do the heat simulations. Because of the
complex morphology of fibers in twill composite, it was really difficult to establish the geometric model and
conduct the meshing process. The first try was to use 3D modelling software to create the fibers’ architec-
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ture directly, and then created the required mesh by immersed meshing in Hybrida. However, this was not
working due to the parallel element edges of the fiber surface mesh and background mesh. Later, I found
that using a levelset function to define the shape of fibers was an efficient way to create geometric models.
This method also enabled me to change fiber geometric parameter easily. Next, I simulated the 3D twill com-
posite heat conduction problem in a Representative Volume Element (RVE) model and got desirable results.
Then, to better understand the macro thermal property of twill composite, the effective heat conductivity of
RVE model was derived. Finally, I conducted a fiber shape optimization aiming to maximize thermal perfor-
mance of twill composite.

While finishing these three tasks, I made steady progress towards my thesis project. During my thesis project I
got valuable advice and help from my supervisor and group members when I was confronted with difficulties.
Figure 3.1 shows the final timeline for my thesis project.

2020 2021

09 10 11 12 01 02 03 04 05 06 07 08 09 10 11

Literature survey

Learning Hybrida

GFEMsd Implementation

CSC PhD application

2D Numerical Examples

3D Numerical Examples

Writing Thesis

Figure 3.1: Final timeline for the thesis project.

3.3. Personal Improvement during The Project
The experience of working on thesis project was specious for me. From choosing the project to writing my
thesis report, I have learned a lot during the process. Due to the influence of COVID-19, most of the time I
was studying in my room, and I needed to overcome the loneliness and avoid slacking off. To complete the
project as planned, I had to be self-motivated, which turned out to be very important. This also taught me
useful time management skills. Always being to finish tasks as early as possible and never underestimate your
work, because you will run into unexpected difficulties and challenges that you cannot plan for when you try
to solve some problems. Setting aside time for these is a wise choice.

Besides these, I also obtained some professional skills. The Python coding experience which will be very
useful for my the later study and work. Furthermore, the problem finding, searching of applicable methods,
and problem-solving methods I learned were instrumental in helping me cultivate good thinking habits.

3.4. Future Work Prospections
Looking back at my thesis work, there are some aspects that can be further researched. The spread enrich-
ments in current GFEMsd work may not be the most suitable one, and better enrichments need to be found.
In the optimization of 3D twill composite fiber shape, I used only two design variables; however more vari-
ables can be added, like fiber orientation angles. In addition, more efficient global optimization algorithm
and topology optimization scheme could also be used in future applications of GFEMsd to solve twill com-
posite optimization problems.
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Enriched Finite Element Methods

Enriched Finite Element Methods, such as Generalzied Finite Element Method (GFEM) and Interface-enriched
Generalzied Finite Element Method (IGFEM) can be used for solving the high thermal gradients heat transfer
problem in composite. Here, we present the formulations of the GFEM and IGFEM as the supplements for
GFEMsd method.

A.1. Generalzied Finite Element Method
In GFEM computations, the domain is usually discretized by an finite element mesh that in general does not
conform to the geometry of material interfaces, i.e., geometry non-conforming mesh. In contrast to Finite
Element Method (FEM), which usually uses mesh refinement to capture high thermal gradients, GFEM solves
this problem by enriching the solution space near material interfaces and high thermal gradients region to
add the missing solution information in FEM. In GFEM, this is done by choosing a set of enrichment functions{
ϕi j (x) : x →R|Ni (x) 6= 0

}nenr
j=1 , where nenr is the number of enrichment function associated with node i . Then,

a temperature approximation using GFEM takes the form

uh(x) =
n∑

i=1
Ni (x)ũi︸ ︷︷ ︸
FEM

+
n∑

i=1
Ni (x)

nenr∑
j=1

ϕi j (x)ûi j︸ ︷︷ ︸
GFEM

(A.1)

where the first term is the standard FEM approximation and the second term is the GFEM contribution to
the solution field. Ni is the standard FEM shape function, ũi and ûi j are the standard and enriched DOFs,
respectively. It should be noted that, now ũi at node i does not represent the field solution value, losing its
original physical meaning based on Equation (A.1). The value of temperature at node i is then obtained as
ui = ũi +∑E

j=1ϕi j (x)ûi j due to the existence of enriched DOFs. A detailed description of GFEM can be found
in reference [49].

A.2. Interface-enriched Generalzied Finite Element Method
IGFEM, proposed by Soghrati et al. [29] was derive for problems containing weak discontinuities. In this
method, the discretized background meshes are also non-conforming in the domain, but the cut elements,
i.e., elements cut by the material interfaces, are divided into small conforming sub-elements along the in-
terfaces. At the intersection of elements edges and material interfaces, enriched nodes are created and as-
sociated with enriched DOFs αi , they serve to resolve the kinematics of a weak discontinuity. A temperature
approximation through IGFEM has the form

uh(x) =
n∑

i=1
Ni (x)ũi︸ ︷︷ ︸
FEM

+
nenr∑
i=1

ψi (x)αi︸ ︷︷ ︸
IGFEM

(A.2)

where ψi (x) is the IGFEM enrichment function, that is constructed by means of Lagrange shape functions of
integration elements. In this formulation, the node value ũi andαi maintain their original physical meanings
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in the field solution. The reader can refer to reference [29] for a more detailed description of IGFEM.



B
Mathematical Equation of The Twill

Composite Fiber Centerline

To clarify the centerline position of the twill composite fiber, let us take the blue fiber in Figure B.1 as an
example. The red dashed line is the fiber centerline and split into seven segments as shown in Figure B.2. The
centerline locates in x-y plane, the left-most point’s coordinate is defined as (0,0.1), then l1 to l7 segment
centerline coordinates are defined based on this point’s coordinate.

x

y

Figure B.1: Schematic of the fibers projection defined in 2D x-y plane.

x

y

l5 l6 l7l3 l4l2l1

Figure B.2: Schematic of the fiber centerline defined in x-y plane.

The l1 to l7 segments’ positions are described in x-y mathematics function.

l1: This part centerline l1 is a straight line, the position is 0 <= x <= 1, y = 0.1.

l2: This part centerline l2 is a partial curve of a circle with radius R = 5.05, circle center locates at (1, -4.95).

Then the position is 1 <= x <= 2, y =−4.95+
√

R2 − (x −1)2.

l3: This part centerline l3 is a partial curve of a circle with radius R = 5.05, circle center locates at (3, 4.95).

Then the position is 2 <= x <= 3, y = 4.95−
√

R2 − (x −3)2.

l4: This part centerline l4 is a straight line, the position is 3 <= x <= 5, y =−0.1.
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l5: This part centerline l5 is a partial curve of a circle with radius R = 5.05, circle center locates at (5, 4.95).

Then the position is 5 <= x <= 6, y = 4.95−
√

R2 − (x −5)2.

l6: This part centerline l6 is a partial curve of a circle with radius R = 5.05, circle center locates at (7, -4.95).

Then the position is 6 <= x <= 7, y =−4.95+
√

R2 − (x −7)2.

l7: This part centerline l7 is a straight line, the position is 7 <= x <= 8, y = 0.1.

The other seven fibers positions can also be derived as this example shown.



C
Analytic Effective Heat Conductivity of A

Simple Cubic Composite Model

Figure C.1 shows a 3D two material cubic model with heat conductivity κ1 and κ2. The cubic model is split
into two cuboid material phase with vertical length l1 and l2. Neumann boundary condition is prescribed on
the top surface with heat flux value q . The bottom surface is prescribed with Dirichlet condition T1. After heat
transfer equilibrium, the top surface will end in a temperature T2. The temperature in the material interface
is set as Tm . Due to the fact that the material interface is a level plane, the above-mentioned temperature
are all uniform, which are considered as average temperature in these surfaces. Then with the definition of
Neumann boundary condition, we have the following temperature equation

T2 −Tm = q · l2

κ2
(C.1a)

Tm −T1 = q · l1

κ1
(C.1b)

T2 −T1 = q · l

κe
(C.1c)

Where ke is the effective heat conductivity of the cubic model, l = l1 + l2 is the model total vertical length.
Equations (C.1a) and (C.1b) are defined in each material phase, and the Equation (C.1c) is defined on the

whole model domain. Adding Equations (C.1a) and (C.1b) together, we have T2 − T1 = q

(
l2

κ2
+ l1

κ1

)
, and

then comparing it with the Equation (C.1c), the effective heat conductivity of this two material cubic model,

κe = κ1 ·κ2 · l

l2 ·κ1 + l1 ·κ2
, is analytically derived.

With the above analytically derived composite effective heat conductivity equation, the same cubic model is
simulated to obtain the temperature field. The numerical effective heat conductivity in z direction is κen =
50×2

74−10
= 1.5625, which can be directly obtained by using the Equations (2.28) and (2.29). The corresponding

analytic effective heat conductivity is κea = 5×1×2

1×0.9+5×1.1
= 1.5625. These two effective heat conductivity

values are the same, which verifies the numerical method to determine the effective heat conductivity of
composite model.
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2 mm

2 mm

2 mm

q = 20 W/mm2

T1

T2

Tm

Figure C.1: 3D cubic model for the effective heat conductivity verification problem.



D
The Fiber Volume with A Cosine Function

Centerline

In the Representative Volume Element model, there are total eight fibers, each fiber has the same geometry,
we then look into one fiber to determine the fiber volume.

The volume of each fiber V f can be calculated as

V f = AL (D.1)

where A is the fiber cross-section area and L is the length of centerline.

The ideal geometry of this model assumes that the centreline position of fiber can be described by a simple
trigonometric form

z(x) = a cos

(
2πx

l f

)
(D.2)

where a and l f are the amplitude and wavelength of the fiber, x is the horizontal location in the fiber arbitrary
point.

Fiber centerline length L can be calculated by curve integration

L =
∫ l

0

√
1+

(
d z

d x

)2

dx

=
∫ l

0

√√√√1+
[

2πa

l f
sin

(
2πx

l f

)]2

dx

(D.3)

Equation (D.3) integral function has no explicit form, which is difficult to integrate using curve integration.
But this can be transformed into the second kind complete elliptic integral, defined as

E(φ,k) =
∫ φ

0

√
1−k2 sin2(θ)dθ

= π

2

∞∑
0

(
2n!

22n(n!)2

)
k2n

1−2n

(D.4)

with φ ∈
(
0,
π

2

)
and k ∈ (0,1).

Due to the fact that the curve length of sinusoidal function is equal to cosine function if the amplitude and
wavelength are the same. Then Equation (D.3) can be rewritten with the substitution of sinusoidal function
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z ′(x) = a sin

(
2πx

l f

)
and the trigonometric identity sin2α+cos2α= 1. That is

L =
∫ l f

0

√√√√1+
[

2πb

l f
cos

(
2πx

l f

)]2

dx

=
∫ l f

0

√√√√1+ 4π2b2

l 2
f

[
1− sin2

(
2πx

l f

)]
dx

(D.5)

Let θ = 2πx

l f
, k2 =

4π2a2

l 2
f

1+ 4π2a2

l 2
f

, dx =
l f

2π
dθ. Defining the variable x varies from 0 to

l f

4
, or

1

4
length of the

centerline, then the corresponding value θ domain is θ ∈ [0,
π

2
], the length of the centerline with a cosine

function can be obtained by standard elliptical integration as follows

L = 2

π

√
l 2

f +4π2a2
∫ π

2

0

√
1−k2 sin2(θ)dθ

=
√

l 2
f +4π2a2

∞∑
0

(
(2n)!

22n(n!)2

)
k2n

1−2n

= 2

π

√
l 2

f +4π2a2E(φ,k)

(D.6)

Then, with the derived fiber length formula Equation (D.6) and the fiber cross-section area A, the fiber vol-
ume can be calculated accordingly.



E
Parameters Mapping of Twill Composite

Model Effective Heat Conductivity

The derivations of the effective heat conductivity in the 3D composite model takes long computational time
to get the numerical solution. Therefore, in the optimization problem, the involved function evaluations is ex-
pensive to conducted, which will pose challenges to the optimization process, specifically for possible global
optimization algorithm. To reduce the computation time, here we introduce a parameter mapping scheme to
fit data collecting the effective heat conductivity at a few design points, using the principle response surface
method and least square method.

As for the optimization problem is this work, the design variables domain are defined as following with the
increasing step size ∆= 0.025 {

a ∈ [0.5, 1] , ∆a = 0.025

b ∈ [0.5, 0.75] , ∆b = 0.025
(E.1)

The design variable combination point is s = [a, b]. With Equation (E.1), total 21×11 = 231 numerical simu-
lations in different s are conducted to get the effective heat conductivity database.

The obtained effective heat conductivity values are stored in each Si matrix, where i = 1,2,3, · · · ,231. The
effective heat conductivity value matrix is S

S = [S1, S2, S2, · · · , SN ] . (E.2)

where N is the total number of the numerical simulations.

After the effective heat conductivity database S is obtained. The next step is to establish a parameter mapping
relationship between the design variables and effective heat conductivity coefficients. There are two design
variables in the optimization problem, a 2-rd polynomial bases Pi with the two design variables combination
ai and bi is used, which serves to map the effective heat conductivity value with design variables.

Pi =
[
1, ai , bi , ai bi , a2

i , b2
i

]
(E.3)

Then for each effective heat conductivity value Si , there is a corresponding parameter polynomial base Pi .
Considering one effective heat conductivity value Si , this value can be approximated by the Pi with a weight-
ing coefficient matrix wα

Si = wα ·Pi +εi (E.4)

where εi is the approximate error.
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When all the values in the S matrix are included, Equation (E.4) can be expanded into

S1 −wα ·P1 = ε1

S2 −wα ·P2 = ε2

S3 −wα ·P3 = ε3

......

SN −wα ·PN = εN

(E.5)

With the coefficient matrix wα, εi in each sub-equation in Equation (E.5) should to be made as small as
possible. By using the least square method, the minimization problem is defined as f = ∑N

i (Si −wα ·Pi )2.
Let A = Pi , B = Si , the expression of wα matrix solution is

wα = (
AT A

)−1
AT B (E.6)

After the weighting coefficient matrix wα is determined, then for arbitrary design point su = [au , bu], the
corresponding unknown polynomial basis is Pu , the effective heat conductivity of the design point su ap-
proximation is

Su = wα ·Pu (E.7)

With this parameter mapping process, if the database S is well constructed, the effective heat conductivity
evaluation of each design point sample can be rapidly performed, and this established method has very high
computation efficiency.

To verified the effectiveness of this parameter mapping method, five points s1 = [0.515, 0.746], s2 = [0.753, 0.62],
s3 = [0.99, 0.51], s4 = [0.503, 0.502], s5 = [0.985, 0.74] locate at the upper, lower and medium values in the de-
sign variables domain are compared with both the numerical and parameter mapping results. As Figure E.1
shows, the parameter mapping method can get accurate effective heat conductivity without the heavy com-
putational load. This ability promotes the use the global optimization algorithm involves numerous objective
function evaluations in the three dimensional composite model to get the global optimal design.

1 2 3 4 5

44

46

48

Point number

κ
e
z

Numerical
Mapping

Figure E.1: Numerical example points to verify the effectiveness of the parameters mapping method.
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