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Abstract

This thesis addresses the design and optimization of sparse non-
uniform optical phased arrays (OPAs) for advanced automotive Li-
DAR systems. As autonomous driving technologies advance, the de-
mand for high-resolution, reliable, and compact LiDAR systems has
become increasingly critical. Traditional uniform OPAs, while effec-
tive, face limitations regarding power consumption. This work intro-
duces an innovative approach to designing sparse non-uniform OPAs
that achieve desired performance metrics essential for automotive ap-
plications, including beamwidth, field of view, and sidelobe levels,
while minimizing element count and, consequently, energy consump-
tion.

Through mathematical modelling and simulation, we formulate
the problem of sparse OPA design as an optimization problem, lever-
aging techniques from compressive sensing to identify the most effi-
cient element arrangements. We propose using the sparse array syn-
thesis method to formulate the sparse OPA design problem, utiliz-
ing algorithms such as LASSO, thresholding, and iterative reweighted
l1-norm minimization to achieve optimal sparse configurations. Our
results demonstrate substantial improvements in effectiveness, offer-
ing a practical solution to the constraints posed by current LiDAR
systems. This thesis contributes to the field by providing a compre-
hensive framework for the design of sparse non-uniform OPAs, high-
lighting the trade-offs and benefits of various design strategies. The
findings advance our understanding of OPA design principles.
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Abstract

This thesis addresses the design and optimization of sparse non-uniform optical phased
arrays (OPAs) for advanced automotive LiDAR systems. As autonomous driving tech-
nologies advance, the demand for high-resolution, reliable, and compact LiDAR systems
has become increasingly critical. Traditional uniform OPAs, while effective, face limi-
tations regarding power consumption. This work introduces an innovative approach to
designing sparse non-uniform OPAs that achieve desired performance metrics essential
for automotive applications, including beamwidth, field of view, and sidelobe levels,
while minimizing element count and, consequently, energy consumption.

Through mathematical modelling and simulation, we formulate the problem of
sparse OPA design as an optimization problem, leveraging techniques from compres-
sive sensing to identify the most efficient element arrangements. We propose using the
sparse array synthesis method to formulate the sparse OPA design problem, utilizing al-
gorithms such as LASSO, thresholding, and iterative reweighted l1-norm minimization
to achieve optimal sparse configurations. Our results demonstrate substantial improve-
ments in effectiveness, offering a practical solution to the constraints posed by current
LiDAR systems. This thesis contributes to the field by providing a comprehensive
framework for the design of sparse non-uniform OPAs, highlighting the trade-offs and
benefits of various design strategies. The findings advance our understanding of OPA
design principles.
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ŵ has multiple forms. The evolution is from one form to another along
the increasing ϵ. The sorted amplitude distribution shows the transition
in amplitude. No pattern is found in the transition behaviour along the
increasing ϵ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Introduction 1
In recent years, LiDAR (Light detection and ranging) technology has emerged as a
cornerstone in the realm of remote sensing and autonomous systems. Especially in
automotive applications, LiDAR systems are pivotal in capturing detailed and accurate
three-dimensional information about the surroundings. This information is used for
advanced driver-assistance systems (ADAS) and autonomous driving vehicles.

A typical LiDAR system emits a pulsed light wave towards a target direction. When
the pulse bounces back and is captured by the receiver, the distance to the object in
the target direction can be calculated based on the time of flight (ToF). By steering
the beam and repeating this measurement process in multiple directions, the system
acquires several distance measurements of its surroundings [4]. These distance measure-
ments can then be used to generate a 3D point cloud representation of the environment,
as shown in Fig.1.1.

Figure 1.1: An example of 3D map from LiDAR (Source: Velodyne Lidar, Inc.)

LiDAR has demonstrated superior performance over radar in terms of angular res-
olution and accuracy due to its significantly smaller working wavelength. Additionally,
LiDAR excels in providing accurate objective classification through point clouds, offer-
ing a detailed representation of the shape and distance of surrounding objects [5]. As
an active sensor, LiDAR’s robustness to ambient lighting conditions significantly sur-
passes that of the passive sensor camera, showcasing its advantage in various lighting
scenarios [5, 6]. With the increasing demand for more sophisticated LiDAR solutions,
researchers and engineers are actively exploring innovative technologies to further en-
hance the performance, efficiency, and adaptability of these systems.

1
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Figure 1.2: A sensor-coverage diagram for ADAS functions (Source: Lumentum Holdings,
Inc.)

1.1 Requirements for Automotive Applications

Automotive applications require LiDAR systems for multiple ADAS functions, includ-
ing functions such as parking assistance and object detection for collision avoidance.
A diagram Fig.1.2 demonstrates these functions and corresponding coverage. The re-
quirements depend on the specific ADAS function and the target scenario, including
speed, characteristics of objects, the direction of detection (front, side, or rear).

Among the various ADAS functions, collision avoidance requires high-resolution
object detection over long distances, up to 200 m, and a specific field of view (FOV) that
covers the road ahead, warning the driver if objects appear in the vehicle’s trajectory.
Higher speeds require longer detection ranges to provide sufficient time for the vehicle
to react and stop safely. For instance, detecting potential static obstacles on highways
requires a detection range of 200 m to enable emergency braking at high vehicle speeds
[1], underscoring the need for high-resolution detection.

As the LiDAR-based detection algorithms perform on the point clouds, Fig.1.3
illustrates the working principle of LiDAR in generating point clouds. Recall that
LiDAR generates point clouds by calculating the ToF. Assuming the reflected beam is
collimated with the emitting beam, LiDAR detects the blocks (in grey) along the blue
arrow in Fig.1.3 by projecting the light on the target block (in black) and calculating
the ToF of the reflected light.

The general definition of angular resolution is the minimum angular distance be-
tween two objects that can be resolved. According to the working principles of the
LiDAR system, the angular resolution refers to the angle of two adjacent scanning

2
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Figure 1.3: The illustration of the working principle of LiDAR system in generating point
clouds. The red cone represents the laser beam. The spread area determines the minimum
size of the block at a given distance r (ϕh is the horizontal beamwidth, ϕv is the vertical
beamwidth, and r is the distance) [1].

points (centre of a block) [1]. As shown in Fig.1.3, the minimum angle of two adjacent
scanning points depends on the size of the beam spread area, which determines the
smallest scanning block size. The beam spread area can be measured by beamwidth in
angle (ϕh and ϕv in Fig.1.3). Moreover, the object detection algorithms must be con-
sidered in determining the required angular resolution as it directly affects detection
performance. Thus, the range of detection, point clouds based algorithms and size of
object determine the required angular resolution, equivalent to the width of the laser
beam (ϕh and ϕv).

In this project, we focus on an extreme scenario, driving on a highway, and a specific
ADAS function, forward vehicle collision warning, which requires the longest detection
range due to the high speed, resulting in the highest angular resolution within a field of
view enough to cover the road in front. According to [1], the reasoning for the specific
requirements is as follows:

• Detection Range: The minimum detection range is 200 m to avoid forward
collisions, assuming the subject vehicle is at a speed of 140 km/h. The overtaking
manoeuvre requires a warning distance of 180 m, assuming both subject and
oncoming vehicles are at 100 km/h on the road without designated overtaking
lanes [1].

• Field of View (FoV): The field of view is determined by the range and the width
of the road that needs to be covered. It increases when the road in front is not
straight. A more curved road requires a larger field of view to cover the full lane
width. For the forward vehicle collision warning system, detecting a preceding
vehicle at a curve with a radius of 250m requires a horizontal FoV of 18◦.

• Angular Resolution: The angular resolution refers to the minimum angular

3



distance of two scanning points, which is equivalent to the beamwidth of the laser
light. According to the analysis in [1], the horizontal angular resolution is 0.07◦

on average (over different types and positions of objects) for a distance of 200 m
with the detection algorithm of PointPillars [7].

• Wavelength: The typical wavelength choices are 905 nm and 1550 nm. The
actual wavelength value does not affect the design, as the distance is measured in
wavelength.

According to the discussion above, the requirements of LiDAR systems for automotive
applications can be summarized as:

• 200 m range of detection

• 18◦ horizontal field of view

• Horizontal 0.07◦ wide laser beam

1.2 Optical Phased Array

The LiDAR system can be classified into four types according to the scanning ap-
proaches [8]. There are three ways to steer the beam: mechanical rotation, micro-
electro-mechanical system (MEMS) and optical phased array (OPA). Among them,
the OPA is believed to be the most promising technology and garnered considerable
attention from the automotive industry for its fast scanning speed and potential inte-
gration on chip. Unlike the physical steering methods, OPAs utilize the wave nature
of light and the interference of wavefields to control laser beam directions dynamically.
This working principle is the same as phased array radar, steering the beam by ma-
nipulating the relative phase of individual antennas. This steering method results in
a solid-state LiDAR, a revolutionary departure from traditional mechanical steering
methods.

Leveraging Silicon Photonics (SiPh), OPAs can be implemented with silicon-based
modules, such as dielectric waveguides, phase shifters, and grating couplers (optical
antennas). For this reason, OPAs can be made as photonic integrated circuits (PIC)
using fabrication techniques from the semiconductor industry. Therefore, photonic and
electronic circuits can be integrated into a single chip. There are several benefits from
single-chip OPAs compared to other types of LiDAR systems [4, 9]. Firstly, it reduces
the size and weight because it eliminates the bulky mechanical parts. Secondly, avoiding
mechanical components offers robustness toward mechanical shocks and vibrations,
enabling LiDAR to work in harsh environments. Finally, avoiding expensive optical
components, such as lenses, and the compatibility of PIC with existing semiconductor
technology dramatically reduces the costs. Single-chip OPAs use the same fabrication
process for both photonic and electronic parts. This indicates the whole system can be
made on the wafer, reducing the cost of large-scale manufacture.
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1.2.1 Architecture and Components of OPA

A typical OPA has the components of the laser source, waveguides, power splitters,
phase shifters and grating couplers (optical antennas). The introduction to the working
principle of these key components in SiPh is as follows:

• Waveguides: Waveguides in OPAs are the part through which optical signal
travels. They are akin to the wires in an electrical circuit but for light. These are
commonly made from silicon-based dielectric materials in SiPh.

• Laser source: A laser source is to provide the optical signal that the OPA
manipulates. The choice of the source depends on the structure. 1D OPA requires
a tunable laser source to achieve 2D beam steering by adjusting the wavelength,
while 2D OPA is capable of 2D single-wavelength beam steering [4, 10].

• Power splitters: Power splitters, also known as beam splitters, are devices dis-
tributing the optical power among waveguides. There are various types of power
splitters, including Y-Splitter and Multi-mode Interferometer (MMI) [2,10]. Both
types of power splitters can distribute the optical power equally into two paths,
which is commonly required in SiPh OPA architectures.

• Phase shifters: Phase shifters are used to control the phase of light in each
waveguide by introducing phase delay. Different phase-shifting methods exist,
including thermo-optic and electro-optic phase shifters. Despite using thermo
or electro effect, the phase shifter works by changing the refractive index of the
waveguides. The thermo-optic phase shifter is the most commonly used type be-
cause electro-optic phase shifters are typically incompatible with CMOS manufac-
turing processes, resulting in an expensive implementation. Thermo-optic phase
shifters introduce low optical losses with CMOS technology, while the power con-
sumption is up to order of tens and hundreds of milliwatts to perform a π phase
shift depending on the materials and designs [11].

• Grating couplers: Grating couplers are optical antennas. These components
emit the light from the waveguides into free space. It is called the grating coupler
due to the element coupling the guided and free-space waves with grating. There
are straight waveguide grating couplers and arc grating couplers [12]. Straight
waveguide grating couplers are suitable for 1D OPA, and arc grating couplers are
suitable for 2D OPA.

Depending on the geometry arrangement, two OPA structures, 1D and 2D, exist.
This project will focus on the relevant algorithm for 1D OPAs and leave the 2D OPAs
as future work. A schematic diagram of 1D OPAs is shown in Fig.1.4. The 1D OPA
uses the straight waveguide grating antenna. By controlling the phases of each grating
coupler, the beam can be steered along the direction of θ. Another dimension (ϕ) of
steering is achieved by changing the frequency of the laser source [12–14].

Depending on the architecture, the OPA can have additional controls over amplitude
so that the OPA can achieve a better performance [10]. This amplitude control can be
achieved with the Mach-Zehnder Modulator (MZM) as shown in Fig.1.5. It consists
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Figure 1.4: The schematic of a typical 1D OPA structure. The beam steering along the θ
direction is achieved by applying phase shifts. The beam steering along the ϕ direction is
achieved by varying the wavelength.

of an integrated optical interferometer with two branches, where an input light beam
is split into two paths that are then recombined. Differently changing the refractive
index of the optical paths introduces two phase shifts to the two paths. Depending
on the phase difference between the two branches, the recombination is constructive or
destructive interference, thus controlling the output intensity and phase. The schematic
diagrams of two types of OPA are shown in Fig.1.6, depending on whether there is the
capability to control the amplitude. Our work is based on the architecture as shown in
Fig.1.6b.

Figure 1.5: A photo of Mach-Zehnder Modulator [2]. MZM modulates the optical signal by
changing the refraction index of two branches. The output signal has an amplitude and phase
depending on phase shifts and their difference.

1.2.2 Radiation Pattern and Array Factor

In the field of array theory, the concept of the array factor plays a pivotal role in the
analysis and design of antenna arrays. It is a fundamental function that quantifies
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(a) The schematic of OPA with control of
phase.

(b) The schematic of OPA with control of am-
plitude and phase.

Figure 1.6: The schematics of two types of OPA structure. The distinction is the controlla-
bility of the excitation amplitude of each antenna.

the collective radiation pattern resulting from the geometric arrangement and phase
relationships of individual antenna elements within an array.

Unlike the elemental pattern, which is determined by the physical and electrical
properties of a single antenna, the array factor captures the impact of the spatial
distribution and phase differences of multiple antennas working accordingly. This in-
teraction significantly influences the overall radiation characteristics, such as beam
direction, shape, and width. The array factor, therefore, is integral for antenna arrays
to achieve specific radiation objectives, including beam steering, shape control, and
sidelobe reduction.

The total radiation pattern of an antenna array is effectively modelled as the multi-
plication of the individual element pattern and the array factor [15]. The array factor
can be seen as the total radiation pattern of an array with only isotropic radiators. A
single isotropic radiator has a field:

w
e−jkr

r
(1.1)

where the w is the excitation (including amplitude and phase), the r is the distance
from a point to the isotropic radiator, k is the wavenumber k = 2π

λ
, and λ is the

wavelength.
Considering a geometrical arrangement of placing N isotropic radiators along the

x-axis with each location at xn as shown in Fig.1.7, the total radiation pattern in the
xy-plane is:

B =
N∑
n=1

wn
e−jkrn

rn
(1.2)
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Figure 1.7: The geometry of the array arrangement for this project. The origin is the reference
point for the phase shift. Under the far-field assumption, the phase difference between each
element and the reference point is due to the xn sin θ.

Assuming the field point is in the far field, where the wave is plane, the vectors from
each element to the point are approximately parallel. Therefore, rn = r − xn sin θ
and the difference in distance for nth element is xnsinθ ≪ r. This small difference is
neglectable in the denominator of (1.1) and significant for the exponential term in the
numerator. Therefore, the (1.2) can be factored out as:

B =
e−jkr

r

N∑
n=1

wne
jkxn sin θ (1.3)

The leading term is constant for a given radial distance r. Next to the constant term,
the summation is the array factor, a function of angle θ. The array factor captures the
collective radiation pattern, denoted by:

p(θ) =
N∑
n=1

wne
jkxn sin θ (1.4)

The above expression of array factor can be written in a vector product form:

p(θ) = sH(θ)w (1.5)

where s = [ejkx1 sin θ, ejkx2 sin θ, ..., ejkxN sin θ]H ∈ CN×1 is the steering vector and w =
[w1, w2, ..., wN ]

T ∈ CN×1 is the excitation vector.
The array factor has a determining impact on the width of the mainlobe of the

overall radiation pattern. It also determines the beam direction for beam steering. In
other words, the beamwidth and beam direction of the overall radiation pattern mostly
rely on the array factor regardless of the elemental pattern. Therefore, working with
the array factor is sufficient for designing a small beamwidth array [15]. Since the
array factor is the determining term for array design and beam steering, and we are
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Figure 1.8: An example of beampattern of a uniform spacing linear array with N = 11 and
spacing of 1.5 wavelength.

also using isotropic radiators, the terms “array factor” and “beampattern” are used
interchangeably in the following chapters.

An example of a beampattern is shown in Fig.1.8, where the beampattern is nor-
malized to its maximum value equals 1, allowing the comparison across different de-
signs. Regarding the beampattern, the following concepts are important throughout
this project:

• Mainlobe: This is the primary lobe of radiation and represents the direction in
which the radiation strength is the strongest. The mainlobe is the most significant
part of the radiation pattern.

• Beamwidth: Beamwidth refers to the angular width of the mainlobe, typically
measured between points at which the radiation pattern falls to half its peak value
(-3dB points), namely half-power beamwidth. Beamwidth is a critical parameter
as it determines the revolving power of the OPA LiDAR system, as explained in
Section 1.1.

• Sidelobes: There are lobes at angles other than the target direction. Sidelobs
are usually undesirable as they represent the power leakage in unwanted direc-
tions. The level of sidelobes is a critical factor in array design, as they can cause
interference and reduce the system’s overall performance.

• Grating lobes: Grating lobes have the same intensity as the mainlobe but in un-
wanted directions. They are essentially replicas of the mainlobe due to the larger
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than half-wavelength periodic spacing. Grating lobes are particularly problematic
as they project the light with equal intensity into directions more than the tar-
get direction, causing ambiguity. An example is given in Fig.1.9. Although the
elemental pattern can mitigate this issue in the overall beampattern, this project
focuses on designing a beampattern that has no grating lobes over twice the field
of view region.

As explained in Section 1.1, an ideal beampattern should have a beamwidth meet-
ing the application requirement with no sidelobe and grating lobe free range twice
than required FoV. The existence of grating lobes and too large peak sidelobe levels
significantly reduce the resolving power.

Figure 1.9: The illustration for the effects of grating lobes and sidelobes. The beampattern
is illustrated as blue lobes.

An example is shown in Fig.1.9, assuming the OPA LiDAR system generates a
beampattern as blue lobes, the interference in green is placed in the direction of the
grating lobe and the target in orange is in the direction of mainlobe, and both have the
same reflecting ability. In this scenario, the LiDAR receives the reflected beam from
the interference first and then the target, with equal intensity, causing ambiguity in
determining direction. Additionally, if an interference (in black) with a stronger ability
to reflect beam is in the direction of peak sidelobe and closer to LiDAR, it might also
cause ambiguity, depending on the level of sidelobe and the ability to reflect. In a word,
the grating lobes and sidelobe can reduce the detection performance.

Although the grating lobes exist, a native way to handle it is only using grating lobe
free range and steering the beampattern within half of this range. A physical obstacle
can block the emission of the unwanted part of the beampattern, allowing only the
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desired beam out. This also leads to the definition of the field of view of a beampattern
as half of the maximum grating lobe free range.

1.2.3 Performance Metrics

Based on the above discussion, the metrics to assess the performance of resulting sparse
OPA designs are summarized as:

• The beamwidth of the mainlobe of the beampattern

• The peak sidelobe level

• The field of view of the beampattern, defined as the half of the grating lobe free
region

• The number of elements required to generate the beampattern

1.2.4 Beam Steering

The phased array provides the advantages of beam steering by phase shifting. By
timing these phase shifts, the waves from different elements constructively interfere in
a desired direction, effectively ‘steering’ the beam. This method allows for rapid and
precise adjustments of the beam’s orientation without the need for physical movements
of the antenna array.

Recall that the expression of the array factor is:

p(θ) =
N∑
n=1

wne
jψn (1.6)

where ψn = kxn sin θ denoting the phase shift of n-th element. The peak of the main
beam is the maximum value of the array factor, which occurs when radiations from
all n elements are constructive adding, ψn = 0 for all n. The peak can be steered by
adding phase shift, δn, to ψn. For the linear array with the geometrical arrangement as
shown in Fig.1.7, the phase of n-th element is

ψn = kxn sin θ + δn (1.7)

To steer the main beam to the target direction, θt, the δn should be selected so that
ψn = 0 at θ = θt. Therefore,

δn = −kxn sin θt (1.8)

This phase shift is linearly progressive along the x axis.
For a set of excitations, w, generating a beampattern, steering this beampattern to

the direction of θt can be written as

p(θ) = sH(θ)(w ◦ δt) (1.9)

where δt = [eδ1 , ..., eδN ]T ∈ CN×1 collects the progressive phase shifts and ◦ is the
Hadamard product.
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Figure 1.10: The schematic diagram of beam steering, where the origin is phase reference

1.2.5 Motivations for Sparse and Non-uniform Spaced OPA

Automotive applications require a beampattern with a small beamwidth. According to
the Rayleigh criterion, the resolving power, namely angular resolution, of a system is
determined by the wavelength and aperture:

∆θ ≈ 1.22λ

D
(1.10)

where ∆θ is the minimum resolvable distance in radians, λ is the wavelength of light,
and D is the aperture diameter. The angular resolution in OPA is the beamwidth of
the mainlobe. Therefore, the beamwidth of the mainlobe is only determined by the
aperture and the working wavelength.

1.2.5.1 Uniform Linear Array with Half-wavelength Spacing

To form such a beampattern, the most naive solution is to use a uniform linear array
(ULA), meaning an array with uniformly spaced identical antenna elements arranged
along a line, with half-wavelength elemental spacing to cover the required aperture. The
reason for this spacing is that the half-wavelength spacing guarantees that no grating
lobe appears in the beampattern. As shown in Fig.1.11a, the mainlobe’s beamwidth
decreases with the number of elements increases.

However, this naive solution is infeasible for an optical phased array design that
meets the required beamwidth. The half-wavelength spacing is too small in the optical
application, and the number of necessary elements is large, causing challenges in power
storage and cooling of the system. According to the Rayleigh criteria, achieving an
angular resolution of 0.07◦ requires an array aperture up to 1000λ. For a ULA with
half-wavelength spacing, the total number of elements required to cover such an aper-
ture is 2000. The phase shifters use the thermo-optic effect, namely heating, to alter the
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phase for each element. 2000 elements mean power consumption of around 10 Watts
for only the phase shifting part, given 9.6 mW for a π phase shift [16] and assuming
a linear relationship between power and phase shifts with uniform distribution over
[0,2π]. Using Mach-Zehnder Modulators (introduced in Section 1.2.1) for amplitude
control in OPAs necessitates phase shifters, thereby further increasing total power con-
sumption. Such power consumption poses a challenge to energy storage for automotive
applications. Moreover, given a working wavelength of 1550 nm, the physical length
of this array is around 1.55 mm. Such an amount of heat generated in this small area
also poses a challenge to the cooling of the system.

The half-wavelength spacing also causes interference between waveguides, namely
crosstalk, in OPAs. The OPAs use dielectric waveguides, which are hard to confine elec-
tromagnetic waves compared to metals used in RF. Although effects have been done
on materials, the spacing larger than half-wavelength helps reduce crosstalk dramati-
cally [17, 18]. Therefore, the minimum spacing for OPA is set to be one wavelength.

(a) The beampatterns with increasing number of
elements

(b) The beampatterns with increasing elemental
spacing

Figure 1.11: The beampatterns of achieving the same aperture by only increasing the number
of elements and only increasing the elemental spacing.

1.2.5.2 Sparse and Non-uniform Array Configuration

To address the issue of power consumption, employing fewer elements to cover the
necessary aperture is beneficial. By increasing the uniform spacing between elements,
as illustrated in Fig.1.11b, the same aperture can be achieved with larger spacing and
fewer elements, which maintains the beam pattern’s mainlobe beamwidth. Importantly,
the decrease in the number of elements leads to reduced power consumption, mitigating
heating problems. Meanwhile, this large uniform spacing design mitigates the crosstalk
issue by increasing the distance between waveguides.

However, the trade-off is the reduced field of view due to the grating lobes. Shown
in Fig.1.11b, the field of view almost halved when the spacing increased from 1.5 to 2.5
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for a slightly narrower beamwidth. To perform a range detection of target direction
without ambiguity (Fig.1.3), no grating lobe must appear in the field of view when
steering the beam. Therefore, the useful part of the beampattern is smaller since the
grating lobes appear. This is unavoidable due to the periodic appearance of elements.

The problem of reduced FoV can be mitigated with an aperiodic spatial arrangement
of elements, resulting in a non-uniform linear array [18, 19]. The above description
for the desired OPA fits the definition of the counterpart in the antenna community,
sparse array antenna, according to the “IEEE Standard for Definitions of Terms for
Antennas” [20]. The definition of sparse array antenna highlights three characteristics:

• Substantially fewer elements than conventional uniformly spaced array

• Same beamwidth with the conventional uniformly spaced array

• Interelement spacings can be chosen so that no grating lobes and sidelobes issues
arise

By definition, the last characteristics of sparse array antenna implies a non-uniform
element spacings. In other words, non-uniform spacing is not the requirement but
a means to achieve a beampattern that meets the requirement. We apply the same
definition to our OPA design problem. Thus, automotive applications require a sparse
OPA to generate a beampattern that meets the angular resolution for collision avoidance
with fewer elements involved.

In summary, fulfilling the requirements of automotive applications using a uniform
linear array with half-wavelength spacing is not feasible. Therefore, the sparse optical
phased array emerges as the optimal solution. By reducing the number of elements
and associated phased shifters, it significantly lowers power consumption, facilitates
cooling of the LiDAR system, minimizes crosstalk between waveguides, and expands
the field of view compared to a uniform OPA. Thus, the goal is to identify an optimal
sparse OPA configuration that meets specific design requirements, such as beamwidth
and field of view.

1.3 Literature Review

The prior works address the general sparse OPA design problem, including various
hardware architectures and design strategies. For example, a work of designing a 2D
sparse OPA with only phase control by removing elements on a 2D grid [10] and another
work of designing a 1D sparse OPA with full excitation control by moving elements on
a continuous line [21]. To systematically analyze the existing literature, three binary
classification criteria are used:

• 1D architecture or 2D architecture

• With or without controllability of excitation amplitude

• Positions of elements can be on a grid (finite and discrete) or off-grid (infinite and
continuous)

These three binary criteria classify the sparse OPA design problem into 8 categories.
Every prior work can be classified into one and only one category.
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Figure 1.12: A visualization of 3D binary classification of the OPA design problem

Architecture Grid Off-Grid

1D Amplitude Control This project [21]

1D No Amplitude Control [22–25]

2D Amplitude Control

2D No Amplitude Control [10]

Table 1.1: The classification of all OPA architectures and the corresponding algorithm to
solve the sparse OPA design problem.

1.3.1 Algorithms

Despite the difference in OPA architecture, the primary algorithms used in sparse OPA
design are evolutionary algorithms, including the genetic algorithm (GA) and parti-
cle swarm optimization (PSO). Both algorithms are inspired by biological evolution:
GA simulates natural selection by encoding the parameters into various individuals
(candidate solutions) and randomly explores the solution space through crossover and
mutation. PSO represents parameters within a solution space, using moving particles
to seek the optimal solution. In essence, evolutionary algorithms engage multiple en-
tities (individuals or particles), each representing a potential solution, to explore the
solution space randomly. This search method is designed to identify the global optimal
solution.

For sparse OPA design challenges, the elemental position, xn, features in the expo-
nential term of (1.4), making direct optimization against element position or spacing
nonlinear. Evolutionary algorithms are well-suited for such nonlinear problems, as they
do not require a gradient. Consequently, the majority of algorithms for sparse OPA
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design employ either GA [10,22–24] or PSO [21,25].
However, evolutionary algorithms do not ensure the discovery of the optimal solu-

tion, a problem exacerbated by high-dimensional problem spaces. Both GA and PSO
depend on deploying numerous entities within the solution space to achieve adequate
coverage. In OPA design, where parameter counts may reach 1000, the curse of di-
mensionality dictates that an extensive number of entities is required to thoroughly
search the space for the optimal solution, challenging the effectiveness of GA and PSO
in finding the optimal solution.

Furthermore, existing works face limitations in configuring sparse OPAs. Algorithms
that encode elemental spacings fix the number of elements [21–25], complicating the
task of identifying an OPA configuration with the minimum necessary elements to
meet specified beampattern performance criteria. While encoding active status and
incorporating solution sparsity into the fitness function [10] can enhance the search for
sparse solutions, it does not offer precise control over the sparsity of the outcomes.

1.4 Research Question

The discussion above reveals a significant gap in sparse OPA design research: existing
algorithms struggle to efficiently identify the sparsest OPA configuration (minimum
number of elements) that satisfies desired beampattern characteristics (e.g., beamwidth
and field of view) while maintaining element spacing above a specified threshold.

Consequently, this project poses the following research question: How can the spars-
est OPA configuration be identified to meet the requirements of automotive applica-
tions?
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Problem Formulation 2
In this chapter, we present the methods used to formulate the research objective as an
optimization problem. These methods address two main challenges: mathematically
describing the constraints related to the beampattern and quantifying the sparsity level
of a sparse OPA. Ultimately, the research objective is formulated as the best subset
selection of the excitations. This formulation bypasses the nonlinearity associated with
directly optimizing the positions of elements, thus simplifying the problem. We then
introduce several algorithmic techniques from the field of compressive sensing that
have been effective in deriving sparse solutions. Employing these techniques allows
us to address the sparse OPA design challenge and achieve the desired sparse OPA
configurations.

2.1 Sparse OPA Design

The OPA is still an antenna array, to which the general array design theories apply.
Various useful methods exist in array design, including array thinning, array synthesis,
and the combination of these two methods known as sparse array synthesis. Array
thinning bypasses the nonlinearity associated with determining an element’s position
within a sparse array. This is achieved by deactivating elements within a ULA, re-
stricting element positions to a predefined grid, rather than a continuous range. Array
synthesis, on the other hand, provides a means of obtaining the excitations needed for
an array to produce a beampattern that satisfies specific metrics. Sparse array syn-
thesis integrates the concept of array thinning into array synthesis, offering an efficient
approach to achieving a sparse array configuration using a grid. The following sections
will provide a more detailed explanation of these concepts.

2.1.1 Array Thinning

Array thinning is an approach to achieve a sparse array by deactivating elements within
a ULA. Recall the expression of array factor (1.4), where the elemental position, xn, is
a factor in the exponential function. Consequently, the beampattern has a nonlinear
dependency on elemental position, complicating the geometric design of the antenna
array. Array thinning bypasses this challenge by using a grid (as represented by the
ULA) to discretize xn’s continuous range into a finite set of candidate positions. As a
result, the sparse array design problem is transformed into the task of selecting a subset
of these candidate positions. The discretization inherent in this grid-based approach
results in element spacings that are multiples of the grid spacing, effectively establishing
a minimum spacing requirement for the resultant sparse array configuration.

An example is thinning an N -element ULA with uni-norm excitation, where the
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phase is adjusted to peak in the desired mainlobe direction, θt. This adjustment
effectively represents a progressive phase shift along the x-axis. By substituting
wn = e−jkxn sin θt into (1.4) and introducing a binary selecting term, an ∈ {0, 1}, for
each element, the beampattern can be expressed as:

p(θ) =
N∑
n=1

ane
jkxn(sin θ−sin θt) (2.1)

Thinning an array to enhance the beampattern—particularly to reduce peak sidelobe
levels and minimize grating lobes—poses a combinatorial optimization challenge. This
approach results in sparse array configurations.

2.1.2 Array Synthesis

The concept of array synthesis plays a pivotal role in antenna design [15]. Its pri-
mary goal is to engineer an antenna array with excitations that yield a beampattern
possessing specific characteristics. Array synthesis first requires a model to represent
these desired characteristics approximately, such as small beamwidth and low sidelobe
level. Subsequently, the objective is to match the beampattern of the actual array
model,—represented by the array factor as defined in (1.4)—with the desired beampat-
tern. In essence, array synthesis methods design arrays whose array factors approximate
the desired beampattern.

The matching between the desired and the generated beampatterns is typically
executed across a finite set of sampling points within the specified region of interest,
[θmin, θmax], with the remaining portion of [−π, π] designated as “don’t care” regions.
This region of interest is twice the field of view, ensuring that grating lobes remain
absent within this critical area. An example of the desired beampattern is illustrated
in Fig.2.1, in which the pencil shape beam indicates the ideal beamwidth and the ideal
sidelobe level is 0. Consequently, the array synthesis method poses the requirements
for beampattern in the resulting array configuration.

Using a uniform sampling strategy across [θmin, θmax], we define a set of L sampling
points of θ as follows:

Θ = {θl|θl = θmin +
l − 1

L− 1
(θmax − θmin), l = 1, ..., L} (2.2)

The value of L should be chosen to guarantee the sampling interval is less than half
of the beamwidth, well capturing the characteristic of beamwidth. This requirement
can be interpreted as a natural extension of the Nyquist sampling theorem. Given
an analytical function pd(θ) defined on [θmin, θmax] that describes the characteristics
such as beamwidth and sidelobe level, the matching between the physical model and
the desired beampattern is performed over L sampling points. For a N -element linear
array, the expression for the array factor in vector product form is (1.5). Thus, the
matching between the desired and generated beampattern results in L equations:

pd(θl) = sH(θl)w l = 1, ..., L (2.3)
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Figure 2.1: An example of the desired beampattern. It captures all requirements regarding
the beampattern, including beamwidth, field of view, and ideal sidelobe level.

These L equations form a system of linear equations that can be written in a matrix
product form. Define a desired beampattern vector that collects the samplings of the
desired beampattern:

pd =


pd(θ1)
pd(θ2)

...
pd(θL)

 ∈ CL×1 (2.4)

and a steering matrix stacking multiple steering vectors

S =


− sH(θ1) −
− sH(θ2) −

...
− sH(θL) −

 ∈ CL×N (2.5)

Therefore, the system of equations is a matrix equation

pd = Sw (2.6)

where the desired pattern vector pd is known, S is known once the working wavelength
and the array’s geometry are known. The complex excitation vector w is the only
unknown in (2.6). Thus, the array synthesis problem can be interpreted as an inverse
problem, determining an excitation vector w with given pd and S.

Since the desired beampattern is usually ideal (sidelobe level is 0), a perfect match
on all sampling points is impossible. This infeasibility means the system of linear
equations is inconsistent, for which a least square solution for the excitation vector
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wLS can be found. For example, given an array (S) and a desired beampattern (pd),
the least square solution wLS is the best in the sense of resulting in the minimum error
∥SwLS − pd∥2, the Euclidean distance in the pattern space, CL.

2.1.3 Sparse Array Synthesis

Array thinning results in a sparse array configuration and imposes the minimum spac-
ing requirement on the result, while array synthesis imposes the requirements regarding
the beampattern. Thus, combining the idea of the array thinning method with the ar-
ray synthesis approach results in the sparse array synthesis method. This method can
accommodate all requirements and constraints for the resulting sparse array configura-
tion, including beamwidth, field of view, sidelobe level, and minimum spacing. Sparse
array synthesis deactivates elements by setting the corresponding excitation wn to zero.
This approach uses an excitation vector ŵ to determine a subset of the ULA and the
corresponding excitations to generate the optimal beampattern [26–28].

Therefore, the research objective of this project, described in Section 1.4, can now
be addressed by the sparse array synthesis method, seeking a set of excitations for a
ULA that maximizes the number of zeros given a desired beampattern. We now express
the above problem statement mathematically as follows:

argmin
w∈CN

∥w∥0

s.t. ∥Sw − pd∥2 ≤ ϵ
(2.7)

where ∥·∥0 is the l0-norm defined as the number of nonzero entries of a vector, and ϵ ≥ 0
determines the maximum permissible error between generated and desired beampat-
terns. This problem formulation utilizes a grid to obtain the sparsest OPA configuration
by minimizing the number of nonzero entries in the excitation vector w given that the
deviation of the generated beampattern from the desired one is less than what ϵ de-
termines. This formulation ensures the minimum spacing by using a grid and imposes
all the requirements regarding beampattern with the constraint of ∥Sw − pd∥2 ≤ ϵ.
The notation w ∈ CN indicates that the solution represents an OPA structure with
amplitude control (as depicted in Fig:1.6b), which is the focus of this project.

The above formulation (2.7) is essentially a best subset selection problem, recognized
nonconvex and NP-hard [29]. Although exhaustive search may be feasible for small-
scale problems, the efficiency decreases when the problem has a large N . The OPA
design problem has a value of N up to thousands, further complicating the issue.
Fortunately, algorithmic advancements within the compressive sensing paradigm have
facilitated effective and efficient solutions to the problem (2.7) based on the sparse
array synthesis method. The next section will introduce the algorithms that effectively
and efficiently solve this problem.

2.2 Sparsity-Promoting Algorithm

Over the last few decades, compressive sensing (CS) has developed significantly in sig-
nal processing and applied mathematics. The CS theory states certain signals can be
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reconstructed from fewer samples than those required by the Nyquist-sampling strat-
egy, sensing signals in a compressed fashion, as its name implies. The CS framework
consists of two parts: the theory of sampling scheme design to enable recovery and the
algorithms to reconstruct sparse solutions. These sparse recovery algorithms, which
promote sparsity and reconstruct the sparse solution, are at the heart of CS. As the
name implies, sparse recovery algorithms emphasise recovering a signal known to be
sparse as prior. However, the task in this project is to design the sparsest array with-
out prior knowledge of the solution, making the term “recovery” somewhat imprecise.
Hence, we refer to it as sparsity-promoting algorithms to emphasise that the algorithm
enforces sparse solutions. Typical sparsity-promoting algorithms include Basis Pursuit
and its variants line LASSO [30], Thresholding Algorithms, and Greedy Algorithms like
Orthogonal Matching Pursuit. The following sections will present the useful algorithms
for our problem formulation.

2.2.1 LASSO Problem

Among these algorithms, the basis pursuit algorithm, particularly its variant LASSO,
is our focus. The LASSO problem is a method of regression analysis that shrinks
coefficients and sets some to zero. Unlike solving problem (2.7) with an l0-norm, LASSO
solves the problem with an l1-norm, serving as the convex relaxation of the l0-norm.
Therefore, the research objective to find the sparsest OPA that meets the requirements
as in Section 1.1 is formulated as:

argmin
w
∥w∥1

s.t. ∥Sw − pd∥2 ≤ ϵ
(2.8)

where ∥w∥1 =
∑N

n=1 |wn|, pd encapsulates the beampattern characteristics, S ensures
the minimum spacing, ϵ determines the largest allowable matching error.

The geometrical interpretation of problem (2.8) is shown in Fig.2.2a using a two-
dimensional example. The rectangle represents ∥w∥1, and the elliptical contours are
∥Sw−pd∥2 at different values. The centre of the elliptical contours is the least square
solution, ŵLS, attending the minimum error for ϵLS = ∥SŵLS − pd∥2. In the form
of (2.8), minimizing ∥w∥1 shrinks the rectangle, and ϵ defines the largest permissible
ellipse. An increasing ϵ enlarges the ellipse and contracts the rectangle. Therefore,
the optimal solution for a given ϵ is the intersection of the smallest rectangle and the
largest ellipse, yielding the minimum l1-norm solution. Due to the geometry of the l1-
norm, the optimal solution will most likely be at the rectangle’s corners, promoting zero
coefficients. This effect contrasts with the l2-norm scenario (Fig.2.2b), where solutions
seldom contain zero entries due to the shape of l2-norms (the circle represents ∥w∥2).

This example highlights the shrinkage nature of the LASSO problem, which can be
generalized to high-dimensional space. Therefore, the problem of (2.8) is expected to
provide the sparsest solution for a specified ϵ. By tuning the hyperparameter ϵ, the
LASSO problem trades the matching quality for the coefficients’ sparsity. Two extreme
examples are: Firstly, too large ϵ allows a very loose matching, then the ∥w∥1 shrinks
to zero, meaning an array without elements. The error term reach its maximum of
ϵmax = ∥pd∥2 when the w = 0. Secondly, an overly restrictive ϵ (for example, ϵ = 0)
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results in an infeasible problem because the exact match is impossible. The smallest
feasible ϵLS is given by the least square solution, which falls to promote sparsity, as we
will show in the next chapter. Therefore, the meaningful range of ϵ is [ϵLS, ϵmax]. Since
the problem (2.8) is convex, the off-the-shelf solver can efficiently solve this problem.
For this project, we employed CVX to solve this LASSO problem [31,32].

(a) The geometrical interpretation of the LASSO
problem where a l1-norm is used. Due to the shape
of l1-norm ball, the solution tends to have zero
entries.

(b) The geometrical interpretation of the Ridge
problem where a l2-norm is used. Due to the shape
of l2-norm ball, the solution tends to have only
nonzero entries.

Figure 2.2: The geometrical interpretation of LASSO and Ridge problem, in which the dif-
ference is the norm used. The centre of the elliptical contour is the least square solution.

2.2.2 Thresholding

As we will see in Section 3.3, the solution to the LASSO problem is not always as
sparse as expected. This might be attributed to the properties of matrix S, which
plays a crucial role in CS problems. Generally, in CS problems, the matrix is designed
to process properties that enable sparse recovery following measurements acquisition.
This manipulation of S is achieved through proper sampling schemes. However, in this
project, the matrix S is predetermined by the grid and sampling strategy of the desired
beampattern at the beginning, making efforts for improvement challenging.

Given the matrix S is fixed by the formulation of the problem, one intuitive approach
is to apply another type of sparsity-promoting algorithm, thresholding, to sparsify the
results of LASSO problem, denoted as ŵ. The thresholding algorithm retains the k
largest entries to yield a k-sparse solution, ŵk. A detailed analysis of the effects of
thresholding on the beampattern will be conducted in the next chapter. A general
observation is that as more of the smallest entries are removed from ŵ, the overall
sidelobes of the beampattern are elevated, while the mainlobe remains almost unaf-
fected. This overall elevation of the sidelobe region can be interpreted as immersing
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the beampattern in a noise-like floor. Yet, this elevation process stops once the number
of nonzero entries is significantly reduced. If k is too small, there is a substantial alter-
ation in the shape of the mainlobe. Therefore, thresholding the results of the LASSO
problem allows for the exploration of the smallest k that results in a beampattern ful-
filling the performance requirements, trading off the performance of the beampattern
for the reduction in the number of elements.

2.2.3 Reweighted l1-norm Minimization

As the formulation of (2.8) fails to deliver sparse solutions, the question of whether the
l1-norm properly approximates the behaviour of l0-norm arises. It is necessary to revisit
the usage of l1-norm as the approximation for l0-norm. Although the l1-norm is the best
convex approximation for l0-norm, their difference is not neglectable. Minimizing the
l0-norm equally penalizes all nonzeros entries, while reducing the l1-norm more heavily
penalizes large entries. The illustration of the difference from a geometrical perspective
is shown in Fig.2.3.

(a) (b) (c)

Figure 2.3: An 3D illustration of weighting l1-norm minimization to enhance the sparsity of
solution [3]. a) Sparse solution x0 with one nonzero entry is the intersection between the
feasible set (red line) and the ∥x0∥1. b) A solution x ̸= x0 with two nonzero entries exists for
which ∥x∥1 < ∥x0∥1. c) Weighted l1-norm ball. No solution x ̸= x0 for which ∥Γx∥1 ≤ ∥Γx0∥1

To bridge this difference between two norms, an iterative reweighted l1-norm min-
imization better mimics the l0-norm and enhances sparsity [3]. The core principle of
this approach involves iteratively reweighting the l1-norm of the excitations, assigning
lower weights to larger coefficients and higher weights to smaller coefficients. This iter-
ative reweighting process effectively encourages the algorithm to minimise the smaller
coefficients, leading to a sparser solution. The algorithm of iterative reweighted l1-norm
minimization is described as Algorithm 1.

The reweighted l1-norm approach alters the shape of l1-norm ball as Fig.2.3c. Thus,
it produces solutions closer to the true l0-norm minimization, which directly targets
sparsity but is computationally intractable for large-scale problems. By iteratively
updating the weights and solving a series of weighted l1-norm minimization problems,
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the reweighted l1-norm method efficiently enhances the sparsity of the solution. As we
will see in the next chapter, this iterative reweighted l1-norm minimization promotes
sparse solutions meeting our research goal.

Algorithm 1: Iterative Reweighted l1-norm Minimization

Input: Desired beampattern pd, Steering matrix S, Hyperparameter ϵ, Number of
iterations M , Stability term α, Diagonal weighting matrix Γ with γ1, ..., γN
on the diagonal and zeros elsewhere.

initialize Γ1 = IN ;
for m← 1 to M do

ŵ(m) = argminw ∥Γ(m)w∥1 s.t. ∥pd − Sw∥2 ≤ ϵ
γm+1
n = 1

|ŵ(m)
n |+α

for n = 1, 2, ...N

Output: The optimal set of excitations ŵ(M)

2.3 Summary

This chapter introduced the methods utilized in this project and accordingly formulated
our research objective into an optimization. Following the mathematical formulation of
the research objective, we introduced some useful techniques from compressive sensing
to solve the problem.

We began by detailing the method of sparse array synthesis and explaining how this
approach copes with the requirements and constraints of sparse OPA design problems.
Subsequently, we formulated the OPA design challenge as the best subset selection
problem, as indicated in (2.7), essentially identifying the sparsest OPA configuration
through the determination of the sparsest excitation vector for a ULA. This formulation
essentially identifies the sparsest OPA configuration by determining the sparsest exci-
tation vector of a ULA. The LASSO problem applies a convex relaxation to the original
nonconvex cost function, transforming the problem (2.7) into (2.8). The LASSO, being
convex, allows for finding a globally optimal solution. However, as will be discussed in
the next chapter, the LASSO problem did not meet our objectives. A thresholding algo-
rithm was then implemented as a remedy for the LASSO problem’s failure, promoting
sparsity based on the LASSO results. We also revisit the differences between the two
norms employed, clarifying the reasons for the LASSO problem’s inadequacy. To more
accurately approximate the l0-norm, we employed a reweighted l1-norm minimization
algorithm. The simulation results of these algorithms will be presented in Chapter 3.
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Results and Analysis 3
In the previous chapter, we formulated the research question, finding the sparsest OPA
that meets the requirements of automotive applications as a best subset selection prob-
lem and introduced algorithms that solve this problem.

In this chapter, we present the results of previously formulated problems and analyze
them as solutions for solving a mathematical problem and for designing sparse OPAs
for automotive applications.

3.1 Simulation Setups

The simulation is performed with parameters specified as:

• The grid spacing is set to one wavelength.

• The number of grid points is set to N = 1100.

• The function of the desired pattern is defined on [−18◦, 18◦] as:

pd(θ) =

{
0 otherwise
1 |θ| ≤ 0.035◦

(3.1)

• The number of samplings on the beampattern is set to L = 1100.

The one wavelength spacing is to meet the minimum spacing requirement, prevent-
ing crosstalk. Despite the capability of a one-wavelength spaced ULA to be grating lobe
free over a wider FoV of [−90◦, 90◦], we maintain this spacing to allow the algorithms
to selectively deactivate elements. This approach forms a sparse array configuration
by using only the necessary elements, with the dense grid enabling a finer selection
of candidate positions for optimal performance. In other words, the one wavelength
spacing is the finest grid that prevents the crosstalk between waveguides.

With the given grid spacing, the number of grid points is set to N = 1100 so that the
total coverage of the grid is greater than the aperture required by the Rayleigh Criterion
(1.10). By having a grid covering the required aperture, the desired beamwidth is
guaranteed to be achievable.

The desired pattern is defined to capture the ideal characteristics of the radia-
tion pattern, such as beamwidth, FoV, and sidelobe level, over an angular range of
[−18◦, 18◦], double the required FoV. This ‘pencil beam’ pattern focuses the OPA’s
projection narrowly, akin to the sharp focus of a pencil’s point, directing the laser light
precisely at the target. With the given desired pattern, the number of samplings is set
to L = 1100 so that the sampling interval on the pattern is smaller than the desired
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beamwidth. This guarantees the characteristic of the beampattern is well captured in
terms of beamwidth.

The parameters above are necessary to simulate the results for (2.7). The interpre-
tation of the simulations with these parameters is finding a sparse OPA configuration
from an 1100-point grid. The grid spacing is set to meet the minimum spacing require-
ment. This configuration generates a beampattern matching the desired beamwidth
and sidelobe level.

3.2 Framework of Analysis

The solution to the previously formulated problem is ŵ, the excitation vector. This
vector indicates where and how much power should be fed. By plotting the amplitude
of the excitation across the grid, we can learn the spatial distribution of the excitation.

The definition of the sparsity is the number of nonzero elements in a vector. A spars-
est OPA configuration corresponds to the ŵ with the fewest nonzero entries. Therefore,
identifying the zero entries is crucial. The result ŵ is a numerical solution that includes
entries close to zero rather than exactly zero. Although entries close to zero can be
treated as zeros, “close to zero” is a relative concept rather than an absolute thresh-
old, making identifying zero entries challenging. The appropriate threshold level for
distinguishing zeros from nonzeros depends on the maximum values and the distribu-
tion of entry amplitudes. Thus, a suitable method for separating and identifying zeros
and nonzeros involves sorting the entries of ŵ in descending order and identifying the
transition from nonzeros to close-zeros. Entries after this transition are considered
close-zero and should be set to zero. This approach ties the sparsity of the results ŵ
to the transition in the sorted amplitude distribution of ŵ.

The excitation vector ŵ generates the corresponding beampattern, denoted by p̂ =
Sŵ. This pattern is the focus of our analysis regarding the beampattern characteristics.
The beampattern is examined in terms of beamwidth, peak sidelobe level, and peak to
sidelobe level ratio (PSR).

Based on the above reasoning, the results are analyzed from three perspectives:

• The performance of the beampattern, p̂, in terms of beamwidth, peak sidelobe
level and PSR.

• The amplitude spatial distribution of the ŵ over the grid.

• The distribution of the amplitude of ŵ sorted in a descending order

The first aspect is in the pattern domain, meaning it involves the analysis of beam-
pattern performance. The last two aspects relate to the excitation domain: the second
aspect aids in analyzing the geometrical distribution of the excitation power, while the
third aspect reveals the sparsity of the resulting excitation vector ŵ.

3.3 Results of LASSO

This section presents the results obtained by solving the LASSO problem (2.8) using
various values for the hyperparameter ϵ. This ϵ can be interpreted as the permissible
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matching error between the generated and desired patterns. According to the geomet-
rical interpretation shown in Fig.2.2a, the meaningful range for ϵ is determined by the
least square solution and the solution where all entries are zero.

The least square solution is given by ŵLS = S†pd, where the S† is the pseudo-
inverse of matrix S. Conceptually, obtaining this least square solution is equivalent to
solving the optimization problem:

ŵLS = argmin
w
∥Sw − pd∥2 (3.2)

The matching error ϵLS corresponding to ŵLS serves as the lower bound of the range for
ϵ. This is a feasible bound since values below this bound are infeasible. However, the
pseudo-inverse approach failed to deliver a solution due to the large condition number
of matrix S, causing numerical issues. Therefore, the optimization approach was used
to determine the ϵLS. The zero solution ŵ = 0 provides the upper bound for ϵ. The
problem (2.8) aims to minimize ∥w∥1, shrinking the l1-norm ball in CN . The minimum
achievable value of ∥w∥1 is 0, corresponding to a zero vector. This zero vector results
in a matching error ϵmax that only depends on the desired pattern and its samplings.

Increasing the ϵ allows the l1-norm ball shrink further, resulting in a decreased ∥ŵ∥1
value. The solutions of solving the LASSO problem (2.8) at two boundary conditions
are known: one with all zeros and another with excitation distribution as shown in
Fig.3.1. Based on these two results, the expectation is that increasing ϵ between two
boundary values will progressively reduce the sparsity in ŵ.

A series ϵ values were unevenly selected from the [ϵLS, ϵmax]. These values of ϵ
are depicted in Fig.3.2a. The ∥ŵ∥1 values obtained by solving problem (2.8) with
these ϵ are illustrated in Fig3.2b. The ∥ŵ∥1 exhibits three almost linearly decreasing
stages with distinct slopes on a logarithmic scale. This decrease in ∥ŵ∥1 aligns with
the geometrical interpretation; a larger ϵ permits greater relaxation for the matching
constraint and further shrinkage of the l1-norm ball, leading to a smaller ∥ŵ∥1. This
summarizes the high-level impact of the ϵ on solving the LASSO problem (2.8). A
more detailed examination of the LASSO problem results will be presented below. For
simplicity, only selected typical results will be discussed.

Firstly, the results are analyzed in terms of beampattern, represented as p̂ = Sŵ.
Beampatterns for different values of ϵ are shown in Fig.3.3. From the plot, it is evident
that all beampatterns exhibit a similar pencil-beam shape. Given that the intensity is
represented on a logarithmic scale, the sidelobe regions at both ends can effectively be
considered zero, despite the graphical differences. Thus, the most notable distinction
among these beampatterns lies within the mainlobe. It is observed that beampatterns
associated with larger ϵ values present a lower peak at the mainlobe. From this, it can
be concluded that the matching diminishes as ϵ increases. This observation aligns with
expectations, given that ϵ serves as a direct control mechanism over the match between
the generated and the desired patterns through the constraint ∥Sw−pd∥2 ≤ ϵ in (2.8).

Due to the form of the constraint ∥Sw − pd∥2 ≤ ϵ, it is logical to associate ϵ
with the concept of mean square error (MSE), which is the average of the squares of
the differences between the desired and generated patterns. Ideally, if the matching
error represented by ϵ were evenly distributed across all sampling points, this error
could be interpreted as noise. Linking ϵ to the noise level via MSE would enhance the
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(a) The spatial distribution of the least square solution ŵLS .

(b) The sorted amplitude distribution of the least square solution ŵLS .

Figure 3.1: The solution of solving least square problem (3.2). As shown in (a), the most
excitation power is allocated at two ends of the grid. There is very little power is distributed
at the centre of the grid. Although there are many small entries, the least square solution has
no clear transition in the sorted amplitude distribution (b). The least square solution does
not promote sparsity in the solution.

(a) The values of ϵ used for simulation (b) The resulting l1-norm vs ϵ

Figure 3.2: The series of simulations with different ϵ as in (a) and the results l1-norm of the
excitation vector in (b). As shown in (b), the l1-norm decreases rapidly when ϵ is around the
lower bound. It also reaches zero at ϵmax. The variation in the middle is nearly linear in the
log scale.

interpretability of the algorithm, aiding users in designing optimal OPA configurations.
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Figure 3.3: The generated beampattern with increasing ϵ. The most significant difference is
at the mainlobe region.

However, if ϵ serves merely as an aggregate indicator of beampattern matching, its
utility is more limited. Unfortunately, the following analysis of how beampatterns
evolve with increasing ϵ reveals that the most pronounced changes occur within the
mainlobe. This observation undermines the idea of interpreting ϵ directly as noise
affecting the generated pattern, suggesting that the matching error is not uniformly
distributed across the beampattern. This realization indicates that while ϵ is a valuable
parameter for controlling the overall fit between the desired and generated patterns, it
may not offer a straightforward correlation with noise in the way one might hope for
enhancing algorithm interpretability.

The expression of the beampattern matching constraint is given by:

∥Sw − pd∥2 =

√√√√ L∑
l=1

(sH(θl)w − pd(θl))2 ≤ ϵ (3.3)

where ϵ2 can be interpreted as the maximum power of the ‘noise’. This interpretation
suggests that as ϵ changes, the value of ϵ2 represents a cap on the total deviation
between the desired and the generated beampatterns across all sampling points. For
meaningful comparison across different values of ϵ, it’s necessary to normalize ϵ2 to
unit power. This normalization process ensures that comparisons of the deviations
at different sampling points are made on a consistent basis, regardless of the total
deviation specified by ϵ. After normalization, the term (sH(θl)w − pd(θl))2 represents
the fraction of the total deviation (expressed as a percentage of ϵ2) that is attributed
to the sampling point θl.

The distribution of normalized squared matching error, as illustrated in Fig.3.4,
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provides insight into how the allowable deviation is allocated across the beampattern.
This detailed examination reveals that treating ϵ directly as a representation of noise
on the beampattern might be overly simplistic. The distribution of squared errors
suggests that deviations from the desired pattern are not uniformly distributed as
one might expect from traditional noise. Instead, these deviations are influenced by
the specific values of ϵ and how the optimization algorithm allocates the allowable
deviation across different parts of the beampattern, particularly affecting areas like
the mainlobe and sidelobes differently. This nuanced understanding underscores the
complexity of interpreting ϵ solely as noise and highlights the importance of considering
how deviations are distributed across the beampattern when using ϵ to guide the design
of OPA configurations.

Figure 3.4: The percentage of the squared matching error (ϵ2) distribution over the beam-
pattern. The most amount of ϵ2 is around the mainlobe regardless of the value of ϵ. There
is clearly a trend of increasing ϵ gathering the matching error to the mainlobe. There is a
significant error outside the mainlobe for the small ϵ. For the largest ϵ in the figure, all error
is on the two sampling points at the mainlobe.

The impact of increasing ϵ on the resulting beampattern is clear and consistent:
increasing ϵ reduces the peak of the mainlobe and concentrates the matching error
within the mainlobe. However, the evolution of the results, in terms of ŵ, demonstrates
inconsistency. The amplitude spatial distribution, as shown in Fig.3.5a reveals that as
ϵ increases from its lower bound, the excitations at both ends decrease, whereas the
excitations in the middle increase. This phenomenon is evident when comparing the
blue plot in Fig.3.5a with Fig.3.1a. With an increase in ϵ, ŵ evolves towards the
solution marked in yellow. This process significantly diminishes the excitations at both
ends. In the yellow solution, smaller excitations are interspersed among larger ones,
resulting in a pronounced variation in amplitude along the grid. The larger excitations
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create an envelope. Continuing to increase ϵ shifts the solution towards the one in
green, flattening the excitation envelope and minimizing variation across the grid. A
visual inspection of the green plot in Fig.3.5a suggests that this configuration might
possess the most active elements. This conclusion is further supported by Fig.3.5b.
Subsequently increasing ϵ reduces the excitations to zero from the grid’s ends until all
entries reach zero, as depicted by the solution in purple.

The evolution of ŵ in terms of spatial distribution unfolds in three stages, yet no
obvious pattern emerges regarding the sparsity of the solutions. Defining sparsity as
the transition location in the sorted amplitude distribution reveals that the solution in
blue offers an OPA configuration even sparser than the one in green. This observation
underscores that compromising on the beampattern quality does not necessarily lead
to an enhancement in sparsity. Given these findings and the accompanying analysis,
it is evident that the LASSO formulation fails to yield the sparsest OPA design that
meets the specified beampattern criteria.

ϵ Peak Mainlobe Peak Sidelobe PSR ∥ŵ∥1 ∥ŵ∥2 Beamwidth

0.3947 0.5240 -16.2664 16.7904 1.0963 0.0501 0.05

0.5056 -1.7914 -19.7477 17.9563 0.8136 0.0371 0.05

1.0309 -10.2197 -32.0383 21.8186 0.3083 0.0106 0.06

1.3716 -30.0856 -51.4833 21.3977 0.0313 0.0016 0.14

Table 3.1: The quantified beampattern characteristics of the results of solving LASSO prob-
lem.

Table 3.1 presents a summary of the characteristics of results. This examination
use a highly refined sampling resolution, L = 200001, to ensure detailed accuracy
in beamwidth and sidelobe characteristics. Such a large L aims to secure a precise
measurements, particularly of the mainlobe beamwidth. The odd value of L guarantees
that the beampattern’s peak is directly sampled, thus enabling accurate peak level
assessments. Based on the previous results and the associated analysis, we can conclude
that this LASSO formulation fails to deliver the sparsest OPA design with the given
beampattern requirements.

3.4 Results of Thresholding

The previous section presents the results of solving the LASSO problem (2.8). Ac-
cording to the results and analysis in the previous section, we concluded that this
formulation fails to achieve the objective of finding the sparest OPA configuration that
meets automotive requirements. This section demonstrates the results of applying the
thresholding algorithm to the solutions obtained problem (2.8).

As explained in Section 2.2.2, the thresholding operation acts on the excitation
vector ŵ. It retains the k largest entries of ŵ and sets the remaining entries to zero,
resulting in a new excitation vector denoted by ŵk. This method ensures an excitation
vector ŵk with exactly k nonzero entries, representing an OPA configuration with k
active elements. Although determining the optimal choice for k remains a challenge,
thresholding provides a means to generate a sparse excitation and, consequently, a
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(a) The amplitude distribution of ŵ over the grid.

(b) The sorted amplitude distribution of ŵ.

Figure 3.5: The results ŵ in terms of spatial distribution (a) and the amplitude distribution
sorted in descending order (b). The spatial distribution of ŵ has multiple forms. The evo-
lution is from one form to another along the increasing ϵ. The sorted amplitude distribution
shows the transition in amplitude. No pattern is found in the transition behaviour along the
increasing ϵ.

sparse OPA configuration. Thresholding introduces errors in the excitation vector,
quantified by the error vector:

ew = ŵ − ŵk (3.4)

which contains the entries that have been set to zero.
An instance demonstrating impact of thresholding is presented in Fig.3.6, using the

solution ŵ at ϵ = 0.50558 from the previous section (depicted in yellow in Fig.3.3). The
range of feasible k values is the set of integers between [0, 1100]. When k = 1100, it sig-
nifies the original solution without thresholding. For simplicity of demonstration, only
three selected values of k and their corresponding excitations and beampatterns are dis-
cussed. The difference between the original excitation vector and the post-thresholding
excitations are shown in Fig.3.6, illustrating the error introduced by thresholding at
different k values. Since thresholding consider only amplitude, the locations of these
errors on the grid depend on the original spatial distribution of ŵ, i.e., the smaller val-
ues in ŵ are set to zero first. Regardless of where the zeroed entries in ŵ are located,
the thresholding algorithm consistently delivers a sparser solution by reducing k.

The k-sparse excitation generates a beampattern p̂k = Sŵk. The corresponding
beampatterns are shown in Fig.3.7. The error introduced in the excitation vector ŵ
affects the generated beampattern through p̂ = Sŵ. Two distinct impacts of threshold-
ing are observed: first, the peak of the mainlobe decreases with a decrease in k; second,
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(a) The error introduced in excitation vector when k = 500

(b) The error introduced in excitation vector when k = 100

Figure 3.6: The error introduced in ŵk by thresholding the excitation vector to k sparse. The
nonzero entries in these plot are the entries that have been forced to zero.

the beampattern becomes immersed in a noise-like floor. Comparing beampatterns for
k = 1100 and 500, the peak is reduced, and the sidelobe region is elevated, creating
a nearly uniform noise floor. However, the error introduced in the beampattern is not
perfectly uniformly distributed. For k = 500, spikes emerge around ±15◦, becoming
more notable as k is further reduced to 100, as shown in Fig.3.7, where additional spikes
appear ±5◦.

These observations indicate that thresholding the excitation vector ŵ introduces a
noise-like error on the beampattern. To substantiate this claim, the differences between
the beampatterns |p̂− p̂k| are depicted in Fig.3.8, showing the error spread across the
beampattern. The yellow horizontal line represents the mean of |p̂−p̂k|, further proving
that thresholding spreads the error in the beampattern.

Denoting the ep = p̂− p̂k ∈ CL and ew = ŵ − ŵk ∈ CN , the relationship between
ep and ew is given by:

ep = Sew (3.5)

The power of the error in beampattern can be expressed as:

eHp ep =(Sew)
HSew

=eHwS
HSew

(3.6)

The characteristic of matrix SHS is pivotal in determining the power of error in the
beampattern. (In this project, as the excitations are distributed in space rather than
time, the excitations are measured in power rather than energy.) As shown in Fig.3.9,
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Figure 3.7: Beampatterns of thresholding the excitation vector at different k

the matrix SHS closely resembles an identity matrix scaled by L = 1100, allowing
equation (3.6) to be approximated as:

∥ep∥22 ≈ L∥ew∥22 (3.7)

where ∥ep∥22 = eHp ep and ∥ew∥22 = eHw ew. This equation establishes a power relationship
between the error in the excitation and the error in the beampattern, suggesting that
SHS ≈ LI.

The ∥ep∥22 can also be expressed as

∥ep∥22 =∥p̂− p̂k∥22

=
L∑
l=1

|pl − pk,l|2

≈L∥ew∥22

(3.8)

This expression can be further interpreted in terms of the root mean square error
(RMSE), which measures the average amplitude deviation of the entries in vector
p̂k from corresponding entries in vector p̂. The average deviation in p is given by

ēp =

√
L∥ew∥22

L
= ∥ew∥2. Since the sidelobe region for beampattern generated by ŵ

is predominantly zero, the noise floor in the sidelobe region can be expected to be
approximately ∥ew∥2. This interpretation directly relates the error in the excitation
vector to the observed error in the beampattern, providing a guideline for selecting the
smallest k for a given excitation vector ŵ and an acceptable peak sidelobe level. Table
3.2 summarizes the characteristics of the thresholding results. This examination uses
a number of samplings L = 200001.
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(a) The error distribution of the beampattern when k = 500

(b) The error distribution of the beampattern when k = 100

Figure 3.8: The plot of power difference between original beampattern (p) and beampattern
after thresholding (pk). (a) k = 500. (b) k = 100. The horizontal line in yellow indicates the
mean of all differences across the beampattern.

k Peak Mainlobe Peak Sidelobe PSR ∥ŵk∥1 ∥ŵk∥2 Beamwidth

1100 -1.7914 -19.7477 17.9563 0.8136 0.0371 0.05

600 -2.3230 -20.6874 18.3644 0.7653 0.0369 0.05

100 -12.2631 -15.9424 3.6793 0.2437 0.0244 0.09

Table 3.2: The quantified beampattern characteristics of the results of thresholding the results.

However, due to the presence of spikes as illustrated in Fig.3.7, this approach only
offers a coarse guideline for determining the optimal k based on specific performance
metrics. While a direct analytical relationship between the spikes and the thresholding
level k is not readily available, conducting an exhaustive search for k values can identify
the smallest k that leads to a beampattern with a peak sidelobe level that meets accept-
able standards. Since the requirement for beamwidth can be addressed by solving the
LASSO problem (2.8), combining the LASSO formulation with thresholding effectively
achieves the goal of identifying the sparest OPA configuration that satisfies automotive
requirements.

3.5 Results of Enhancing Sparsity via Reweighted l1-norm

The previous section demonstrated the effectiveness of thresholding in promoting spar-
sity within the excitation vector ŵ, utilizing the results of the LASSO problem (2.8) as
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Figure 3.9: The plot of the real part of matrix SHS. The diagonal entries are all 1100 (L).
Therefore, the matrix is almost an identity matrix multiplied by scale 1100 (L).

input. Thresholding compensates for the LASSO problem’s shortcomings in controlling
of the level of sparsity. An alternative approach involves enhancing the sparsity at the
stage of solving problem (2.8) itself. As discussed in Section 2.2.3, the difference be-
tween the l0-norm in (2.7) and its l1-norm approximation in (2.8) is significant. Relying
on the l1-norm as an approximation to solve for the original problem is not always de-
pendable. Employing the iterative algorithm (1), the reweighted l1-norm more closely
approximates the l0-norm, enhancing sparsity.

The convergence of the algorithm, for varying values of ϵ, is depicted in Fig.3.10.
Initially, the optimization process is equivalent to standard l1-norm minimization, where
the objective function is simply the sum of the absolute values of all entries in w.
The impact of applying a weighted l1-norm becomes evident from the second iteration
onwards, transforming the objective function into a weighted sum of the a weighted
sum of absolute values of all entries. This adjustment makes the weighted l1-norm
behave more closely to the l0-norm, which quantifies the number of nonzero entries. As
a result, an increase in ∥Γ(m)w∥1 is observed from the first to the second iteration for
every ϵ value. Subsequent to the second iteration, the optimal value of the objective
function demonstrates a consistent decrease with each iteration, indicating that the
algorithm achieves convergence.

An example illustrating the convergence and the impact of reweighted l1-norm min-
imization is presented in Fig.3.11. This figure displays the distributions of excitation
vector at each iteration when solving the LASSO problem iteratively with ϵ = 0.50558.
The initial result, depicted by the blue line from Section 3.3, shows a notable change
at the next iteration (the orange line), where a sharp transition in the sorted ampli-
tude distribution becomes evident. This sharp transition continues to evolve towards
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Figure 3.10: The optimal value of the objective function at each iterations when ϵ takes
different values. The increase in the value of ∥Γ(m)w∥1 from the first to the second iteration
is due to the weighting of l1-norm. The convergence starts from the second iteration.

convergence in subsequent iterations, a behavior consistent across any ϵ value.

Figure 3.11: The curves of sorted amplitude distribution. The results converge with iterations.

These iterations also affect the beampattern. Fig.3.12 compares the beampatterns
from the first iteration to those after convergence, revealing a noise floor similar to
that introduced by the thresholding algorithm. Thus, iterative reweighted l1-norm
minimization effectively elevates the sidelobe region in the beampattern in exchange
for a reduced sparsity in excitation vector ŵ.

For any given ϵ, the last iteration’s solution is considered as the final one. When
comparing the final solutions across different ϵ values, as shown in Fig3.13, the position
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Figure 3.12: The beampatterns at the first and the last iteration. The difference is due to
iterative reweighting the l1-norm.

of the transition shifts leftward with increasing ϵ, directly impacting the sparsity of
ŵ. Unlike the results from the LASSO problem depicted in Fig.3.5b, which failed
to establish a consistent relationship between sparsity and ϵ, the reweighted approach
demonstrates a clear monotonic relationship. Fig.3.14 illustrates the spatial distribution
of the resulting excitations, with a clear comparison made to the LASSO outcomes
in Fig.3.5a, showcasing the sparsity enhancement. In terms of the beampattern, as
depicted in Fig.3.15, an increasing ϵ correlates with a decrease in the peak sidelobe
ratio (PSR). However, determining an ϵ value that achieves a specific PSR remains a
challenge due to the absence of an analytical expression connecting ϵ and PSR. Thus,
the empirical tuning of ϵ is necessary.

As illustrated in Fig.3.4, we conducted an analysis on how ϵ2 is allocated in the
deviations between the generated and desired patterns. The distribution of ϵ2 under
the reweighted l1-norm minimization is depicted in Fig.3.16a. Comparing this figure
with Fig.3.4 reveals the impact of iterative weighting on ∥w∥1. Notably, for the same ϵ,
reweighted l1-norm minimization concentrates less error in the mainlobe. For instance,
at ϵ = 0.50558 (highlighted in yellow), the maximum percentage of ϵ2 utilized at the
two central sampling points decreases by more than 10%—from over 30% to under 20%.
This reduction is accompanied by a dispersion of ϵ2 on the remaining sampling points.
This broader distribution is further evidenced in Fig.3.16b, where a significant portion
of ϵ2 is found near ±4◦ and ±13◦. The influence of reweighted l1-norm minimization on
the ϵ2 distribution, as compared to normal l1 minimization approach, remains consistent
across various ϵ values.

Table 3.3 summarizes the characteristics of the reweighted l1-norm minimization
results. This examination is carried out with L = 200001. From these analyses and
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Figure 3.13: The sorted amplitude distribution of converged results when ϵ takes different
values

Figure 3.14: The spatial distribution of excitation with various ϵ

solutions, we can conclude that the reweighted approach is capable of meeting the ob-
jective: finding the sparsest OPA configuration that satisfies automotive requirements.
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Figure 3.15: The beampatterns evolve with the increasing ϵ

(a) The distribution of ϵ2 around the mainlobe
region.

(b) The distribution of ϵ2 across the whole region
of interest.

Figure 3.16: The percentage of the squared matching error (ϵ2) distribution over the beam-
pattern. Compared to LASSO problem, reweighted l1-norm minimization concentrates less
error in the mainlobe.
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ϵ Peak Mainlobe Peak Sidelobe PSR ∥ŵ∥1 ∥ŵ∥2 Beamwidth Sparsity

0.3947 0.5325 -16.2693 16.8018 1.1002 0.0505 0.050 676

0.5056 -0.8837 -18.9251 18.0414 0.9033 0.0477 0.052 418

1.0309 -8.7999 -22.6786 13.8787 0.3631 0.0279 0.096 190

1.3716 -28.3288 -33.9920 5.6632 0.0383 0.0070 0.391 34

Table 3.3: The quantified beampattern characteristics of the results of using the reweighted
l1-norm minimization.
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Conclusions & Future Work 4
This project was dedicated to addressing the challenges associated with sparse OPA
design, utilizing methodologies and techniques derived from the domains of compressive
sensing and antenna design. This chapter summarizes the key findings and significant
contributions of our work. Additionally, it outlines promising directions for future
research and highlights compelling questions arising from this study.

4.1 Conclusions

This project begins by reviewing the background and motivations behind the develop-
ment of sparse OPA. OPAs are considered to be the future of the LiDAR system and
hold significant potential for automotive applications. These applications demand a
LiDAR system capable of a detection range up to 200 meters and an angular resolution
of 0.07 degrees. Given that the phase shifters in OPAs use heating to adjust the phase
for each element, a uniformly spaced OPA necessitates a large number of elements to
meet such stringent requirements, which leads to considerable power consumption and
overheating issues. Sparse OPAs offer a solution by utilizing fewer elements, thereby
addressing these concerns.

Designing a sparse OPA poses challenges, primarily because the position of elements
is incorporated in the exponential term of the antenna array’s beam pattern model.
Consequently, most previous studies have applied evolutionary algorithms, such as
genetic algorithms and particle swarm optimization. However, these algorithms are
ineffective in identifying the minimum number of elements needed to satisfy given beam
pattern requirements.

Focusing on a specific OPA architecture—linear OPA with amplitude control—we
frame the design of the sparsest OPA to meet beampattern requirements within the
sparse array synthesis framework. This methodology also accommodates another design
constraint: the minimum spacing constraint, by utilizing a grid that represents the
candidate positions for elements. Thus, the design process becomes a best subset
selection problem.

In the realm of compressive sensing, a relaxed problem formulation substitutes the
nonconvex l0-norm with the convex l1-norm, leading to the LASSO problem. As a
convex problem, the LASSO problem can be efficiently solved using the CVX solver.
However, the outcomes of the LASSO problem have not always aligned with expecta-
tions: while the resulting beampattern generally shows good performance, the resulting
excitation vector does not consistently achieve the desired level of sparsity. The hyper-
parameter in the LASSO problem inadequately manages the trade-off between solution
sparsity and the beampattern performance, and the difference between the generated
and desired beampatterns is unevenly distributed across the matching range. This in-
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consistency undermines the interpretation of hyperparameter as a mean square error in
beampattern matching. Consequently, the LASSO problem formulation does not fully
meet our research objectives.

An intuitive approach, thresholding, is then applied to achieve a sparse OPA configu-
ration based on the LASSO solution. This method retains a given number of the largest
entries to obtain a sparse solution. Thresholding the excitation vector significantly im-
pacts the sidelobe region of the beampattern, raising the sidelobe levels similarly to
introducing noise to the beampattern. Despite the success in correlating the error
in the excitation vector with the noise floor in the beampattern, spikes significantly
higher than the noise floor were observed. These spikes determine the peak sidelobe
level, a critical performance metric for beampatterns. The strategy combines solving
the LASSO problem to satisfy the beamwidth requirement, then applying threshold-
ing until the peak sidelobe level attains a specified value. This approach effectively
mitigates the limitation of the LASSO problem.

Lastly, a reweighted l1-norm minimization is employed to enhance the sparsity of
the solution. Since the LASSO problem leverages the l1-norm as an approximation of
l0-norm, the intrinsic difference between these norms contributes to the failure of the
LASSO approach. Iteratively reweighting l1-norm provides a closer approximation to
the l0-norm. This method has proven effective in trading off the beampattern perfor-
mance for the solution sparsity, producing a resulting beampattern with characteristics
similar to thresholding effects (introducing a noise-like floor and spikes). Comparing
solutions from the LASSO problem and the reweighted l1-norm algorithm with identical
ϵ values, the latter exhibits less concentration of matching error around the mainlobe
due to spikes away from the mainlobe. In other words, this algorithm redistributes the
allowable error (determined by ϵ) for the beampattern matching (represented by ∥S∥2)
compared to the LASSO problem. Nevertheless, the interpretation of the hyperparam-
eter as a mean square error so that this hyperparameter can be related to the noise floor
of the resulting beampattern is still impractical due to the presence of spikes. Since
there’s no analytical relation between the hyperparameter of the reweighted l1-norm
minimization and the peak sidelobe level, fine-tuning the hyperparameter is necessary
to identify the sparsest OPA configuration with a specified peak sidelobe level.

4.2 Future Work

Several potential directions for future work have emerged throughout this project.
Building on the analysis of the general sparse OPA design problem, as illustrated in
Fig.1.12 and summarized in Table.1.1, future research could extend to developing algo-
rithms for 2D OPAs, algorithms tailored for OPAs with only phase control, or delving
into the exploration of off-grid algorithms that exploit the space between the grid points.
Detailed discussions of each potential direction are presented below.

4.2.1 2D OPAs

The algorithm could be extended to accommodate 2D scenarios. 2D OPAs require
distinct types of grating couplers, as detailed in [10]. Nevertheless, the mathematical
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modelling of 2D arrays is a natural extension of the linear array model. The 2D
problem’s formulation is in the same form as (2.7) as presented in [33]. Therefore, the
algorithms developed in this project are believed to be effective for 2D problems.

4.2.2 Uniform Amplitude Excitation

Given the reduced hardware complexity, OPA architectures without amplitude control
remain favoured if the performance regarding the beampattern achieves an acceptable
level. The absence of amplitude controllers, which require extra phase shifters, reduces
both power consumption and wiring complexity. This challenge could be approached
in two ways. Firstly, instead of optimizing against the excitations, a binary selection
vector for elements with fixed phase shifts can be utilized. This selection vector can be
relaxed into convex form and can be solved effectively [34, 35]. Consequently, the ap-
proach selects a subset of the ULA to match the desired beampattern without altering
the amplitude of excitations. The second approach continues to optimize against the
excitations, as in (2.8), but incorporates an additional constraint on the amplitude of
excitations. Preliminary research on this topic suggests that managing such a constraint
can be challenging, as the constraint of excitations with the same amplitude is non-
convex. However, some inspiring works on waveform designs utilizing unimodular [36]
and constant modulus algorithms exist. There is a paper that claims to be the first to
address the problem of jointly optimizing the phase-only weight and antenna locations
to achieve the desired transmit beampattern for phase-only array systems [37].

To our knowledge, we are the first to address the problem of jointly optimizing the
phase-only (unimodular) waveform/weight and antenna locations to achieve desired
transmit beampattern for colocated MIMO radar and phase-only array systems.

4.2.3 Off-Grid Algorithm

In addition to investigating algorithms tailored for various OPA architectures, ex-
ploring the potential of off-grid algorithms—which exploit the spaces between grid
points—might further enhance the solution sparsity. In CS problems, the grid methods
suffer from the mismatch of the grid points and the true parameters, namely the signal
cannot be sparsely represented by the finite grid points when the true parameters fall
between the grid points [38]. Off-grid algorithms have demonstrated superior perfor-
mance in finding a sparse representation in such a scenario by exploiting the space
between grid points.

Although there is no prior information about the “true” position in the sparse OPA
scenario, it is reasonable to believe that the same improvement in sparse representation
will also apply to sparse OPA design problems. After all, the sparse OPA design
problem is essentially finding a sparse representation using the array factor model
for a given beampattern. In other words, by exploiting the off-grid algorithm, the
solution is potentially sparser. Two inspiring works addressing general array design
challenges, [33,39], serve as references for this exploration.
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