
An Empirical Analysis on the Performance of
UniXcoder

Tim van Dam
Supervisors: Maliheh Izadi, Arie van Deursen

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



An Empirical Analysis on the Performance of
UniXcoder

Tim van Dam
Delft University of Technology

Delft, The Netherlands

Abstract—Numerous papers have empirically studied the per-
formance of deep learning based code completion models. How-
ever, none of these papers considered nor investigated whether
good performance on statically typed languages translates to good
performance on dynamically typed languages. A lack of available
type information can make code completion more difficult, as
many types are interacted with differently. However, natural
language in the form of comments could compensate for a
lack of available type information. This paper evaluates whether
UniXcoder, a state of the NLP model, is able to perform code
completion on both dynamically and statically typed languages
with similar performance. Furthermore, the impact of the pres-
ence of type annotations and comments is assessed. We show
that UniXcoder is able to utilize type annotations and comments
in order to improve code completion performance, and that
using only singleline comments yields better results than using
all comments in the source code.

Index Terms—code completion, type annotations

I. INTRODUCTION

While many developers use dynamically typed program-
ming languages for their relatively low barrier of entry and
ease of use, dynamically typed languages are not always su-
perior to statically typed languages. In fact, it is hard to prove
that dynamically typed languages lead to faster development
times at all – even when explicitly trying to find instances
where this is the case [1]. Not only humans might encounter
difficulties when dealing with dynamically typed languages:
simple code completion models may be unable to provide
valuable suggestions, as the type of variables often directly
dictates how this variables can be interacted with. When such
information is unavailable, the lack of type information might
make for poor code completions. However, deep learning code
completion models – which have become more mainstream
recently – may not suffer from this issue. Deep learning
has already shown competence in the area of type inference:
models such as LambdaNet [2] and TypeBERT [3] are able
to accurately predict the types of variables in JavaScript code.
But whether code completion models are similarly able use
context to make predictions that make sense given variables
types in dynamically typed languages has never been studied.

Code completion models such as CodeT5 [4] and
UniXcoder [5] are able to use comments in order to aid
understanding and thus code completion. But whether in-
formation embedded in comments is competitive with the
availability of type information, and how the presence of both
influence performance has not been studied before. This paper

addresses this knowledge gap by evaluating the performance
of UniXcoder [5], a state of the art pre-trained model that
can perform various programming language (PL) tasks. In
addition to source code, UniXcoder considers natural language
embedded in comments and the structure of the code through
flattened Abstract Syntax Trees (ASTs) to improve code
understanding. UniXcoder achieves state of the art results for
the code completion task, beating models such as CodeT5 [4],
CodeGPT [6] and GPT-2 [7] on both Exact Match and Edit
Similarity for the PY150 [8] and JavaCorpus [9] datasets [5].

We collect three datasets containing a total of 2,232 Type-
Script repositories. From this data we extract functions and
use the TypeScript compiler to create equivalent JavaScript
functions. Then, we use UniXcoder to perform line completion
on equivalent partial TypeScript and JavaScript functions to
establish the effect of the presence (or lack thereof) of type
annotations and comments. Additionally, we investigate the ef-
fects of limiting the comments to only singleline and multiline
comments.

Results show that a presence of type annotations improves
the code completion performance of UniXcoder. This also
applies to comments, as the presence of comments is shown
to be beneficial for performance. Additionally, we show that
using only singleline comments leads to better results than
using all comments.

In short, the contributions of this paper are:

• We perform an empirical analysis of UniXcoder on
dynamically and statically typed languages;

• We establish the relevance of comments and type anno-
tations for UniXcoder;

• We publicly provide our datasets, source code, and fine-
tuned models1.

The paper follows the following structure: section II de-
scribes the problem, section III discusses the background of
this work and summarizes related work, section IV describes
the approach used to compare code completion on dynamically
and statically typed languages, and section V explains how this
approach is applied. Then, section VI will discuss the results of
the experiment, after which section VII interprets these results.
Potential threats to validity are reviewed in section VIII, after
which section IX concludes the paper. Finally, responsible
research concerns are discussed in section X.

1https://github.com/timvandam/rp

https://github.com/timvandam/rp


II. PROBLEM DEFINITION

Code completion models have shown their use in statically
typed and dynamically typed languages alike. However, while
these models have been empirically studied, there have been
no attempts at analyzing how the presence of type informa-
tion influences the performance of code completion models.
Addressing this knowledge gap may outline how well code
completion models are able to infer type information based
on the context, or could indicate that current models need to
be expanded in order to improve. Similarly, it may determine
the effects that comments have on the performance of code
completion on dynamically typed languages in contrast to
statically typed languages.

In theory additional type information should be able to make
code completion models more accurate, as they are given
a more comprehensive description of the source code. The
same can be said about comments, which are typically used to
describe complete complete functions with docblocks, or used
to annotate smaller parts of code with singleline comments.
The difference between the two is that type annotations are
placed in a structured manner, whereas comments are not
guaranteed to follow a specific structure (docblocks do follow
some structure, but do not follow an ordering and can contain
a wide range of different information).

Establishing the relation between the presence of types and
comments to code completion performance in dynamically and
statically typed languages gives an understanding into what
elements of source code can be used in order to improve code
completion performance.

III. BACKGROUND AND RELATED WORK

A. UniXcoder

UniXcoder is a state of the art pre-trained model that
leverages multiple modalities in order to facilitate several code
understanding and generation tasks [5]. Similar to other mod-
ern code completion models, UniXcoder is transformer-based,
using an encoder-decoder architecture for most tasks, and a
decoder-only architecture for code completion. In addition to
source code, comments and flattened abstract syntax trees
(ASTs) were used during pre-training in order to improve
understanding. To this end, UniXcoder was pre-trained us-
ing masked language modeling [10, 11], unidirectional lan-
guage modeling [12] and denoising [13]. UniXcoder performs
slightly better on the code completion task when considering
comments, but different types of comments such as singleline
and multiline comments are not considered individually [5].

B. Related Work

Using deep learning to facilitate natural language processing
tasks is an active topic of research with widespread real-
world applications. It is consequently no surprise that there
exist a plethora of works surrounding code completion us-
ing deep learning. Especially transformer-based models have
seen great discussion recently. The following section reviews
transformer-based models, other studies into the effectiveness

of code completion models, and alternative ways deep learning
is applied to deduce variable types based on context.

1) Transformer Models: Recently, transformer-based [14]
models have shown great promise in the area of Natural
Language Processing (NLP).

BERT [10], a bidirectional transformer model, showed the
value of being able to consider both the left and right context
during natural language processing tasks, which previous
models like ELMo [15] and GPT [12] could not do. Bidirec-
tionality was achieved by using masked language modeling
(MLM) for pre-training. Similar to Baevski et al. [11], tokens
are randomly masked and predicted during pre-training, after
which the model is tasked to predict these masked tokens using
both the left and right context of tokens. This is valuable
in languages where words later on in a sentence determine
conjugations, but also in programming as it is not a purely
linear activity.

BERT was fine-tuned and evaluated using the GLUE bench-
mark [16], where it outperformed all other models at the time.
Similar results were achieved for the SQuAD v1.1, SQuAD
v2.0 and SWAG benchmarks.

With BERT, Devlin et al. highlighted the value of bidirec-
tional pre-training, and showed that pre-trained models can be
specialized to suit a wide range of NLP tasks.

Liu et al. improved further upon BERT with RoBERTa [17],
and aimed to show that the performance of BERT can be
further improved by optimizing some design choices. The
primary changes consist of using a larger dataset, training
longer and on longer sequences, no longer training using next
sentence prediction, and improving MLM such that it masks
dynamically instead of determining the mask pattern once at
the start. Overall, the results of this modified pre-training
procedure showed that BERT-based models can be more
effective than previously thought. Similarly to the original
BERT [10], RoBERTa achieved state of the art results on
several benchmarks including GLUE and SQuAD. BERT and
RoBERTa can also play a role in automatic code completion,
as shown by Feng et al.’s CodeBERT [18], which builds on
top of RoBERTa.

Differently from BERT and RoBERTa, Raffel et al.’s Text-
to-Text Transformer (T5) [13] is a transformer encoder-
decoder. The aim when creating T5 was to analyze the
current state of models that solve NLP tasks, and to use this
information to build a state of the art model that combines this
information. This was achieved by treating every NLP task as
a text-to-text (i.e. sequence to sequence) task, where even the
task is described in the input text. T5 achieved state of the art
results on many benchmarks covering a number of NLP tasks,
including GLUE and SQuAD. T5 was found to be comparable
in performance with task-specific architectures, even though
T5 itself is relatively general. As with BERT/RoBERTa, T5
has a programming analogue: CodeT5 [4].

2) Studies About Code Completion Effectiveness: Ciniselli
et al. [19, 20] aimed to analyze the performance of state of
the art transformer-based code completion models. T5 [13]
and RoBERTa [17] were used for this analysis. Performance

2



was tested on several levels of granularity: single tokens
(token-level), statements (construct-level) and even complete
code blocks (block-level) on two datasets, containing Java
methods and Android app methods from open-source GitHub
repositories. While Android apps are also written in Java,
taking only methods from such apps could help learning as
the same API is used across all methods.

It was shown that deep learning code completion models are
viable, and that especially the T5 model does well. However,
the success of these models when tasked to predict longer
sequences is limited. As only Java was used for evaluation the
results are not completely generalizable – it is impossible to
determine whether these successes are transferable other lan-
guages, including dynamically or gradually typed languages.
Additionally, while this analysis established performance dif-
ferences depending on the granularity level, it did not attempt
to determine other variables that could affect performance,
such as comments or variable names.

3) Type Prediction: Several previous works have demon-
strated the ability to infer the types of variables and functions
in dynamically typed languages depending on their context [2,
3, 21, 22].

DeepTyper [22] shows how deep learning can be applied to
infer types in dynamically typed languages such as JavaScript
and Python in order to ease the transition from untyped
code to gradually typed code. DeepTyper uses a GRU-based
RNN trained on predominantly TypeScript files sourced from
the top 1,000 GitHub projects with the most stars. Before
learning, types were removed from these files, after which
inferred types were compared against the source TypeScript
files during evaluation. DeepTyper’s output includes both a
predicted type and the confidence it has in its prediction. The
precision of DeepTyper is lower than that of JSNice [23], a
statistical code property prediction model, however JSNice
often opts not to return a potential type when it has low
confidence, lowering its recall. Hence Hellendoorn et al. find
that DeepTyper qualitatively outperforms JSNice. Combining
DeepTyper with JSNice (using the former only when the
latter is unable to determine the type) performed significantly
better than using either alone. Using multiple tools this way
could prove useful when attempting to complete dynamically
typed code: an accurate type prediction system could work
together with a code completion model made for statically
typed languages.

Similar to DeepTyper [22], Malik et al.’s NL2Type [21]
shows that natural language information in comments, function
and parameter names can be exploited in order to predict
types in dynamically typed languages. This is achieved using
a LSTM-based RNN that learns from type-annotated source
code. Over 160,000 open-source JavaScript files were used
for learning and evaluation, which resulted in both a high pre-
cision and a high recall. This approach outperformed previous
state of the art models including JSNice and DeepTyper. This
work shows that natural language information can successfully
be exploited to accurately predict types in dynamically typed
languages, and that type prediction tools can serve as a tool

to detect inconsistencies between type annotations and natural
language descriptions.

Similar to DeepTyper [22] and NL2Type [21], Wei et al.’s
LambdaNet [2] shows that deep learning can be applied to
provide untyped code with type annotations in gradually typed
languages like TypeScript and Python. LambdaNet uses a
GNN after first modeling the types in the source code as a type
dependency graph. Like DeepTyper, This GNN is trained on
TypeScript files sourced from the top 1,000 GitHub projects.
However in contrast to DeepTyper, LambdaNet is able to
predict user and third party types, while DeepTyper is only
able to predict types from a fixed vocabulary. The results
show that LambdaNet outperformed state of the art models,
including both JSNice and DeepTyper, when comparing their
accuracy over library types.

Like LambdaNet [2], TypeBERT [3] is able to infer user and
third party types. However, it takes a much simpler approach
by applying BERT-style pre-training, after which it is fine-
tuned on a large set of TypeScript data. While TypeBERT does
not outperform LambdaNet on user and third party types, it
significantly outperforms LambdaNet on prediction the top-
100 most common types, achieving an exact match accuracy
of 89.51% and a top-5 accuracy of 98.51% [3]. This once more
shows that type prediction tools can be an extremely powerful
resource when transforming code without type annotations to
code with type annotations.

Overall, these works show that a potential gap in code com-
pletion performance between dynamically and statically typed
languages as a result of the presence of type annotations is not
necessarily a problem, as type inference models can be used to
add type information to dynamically typed code. Languages
where type annotations are optional such as TypeScript and
Python 3 can similarly benefit from these models.

IV. METHODOLOGY

UniXcoder is fine-tuned and tested on several datasets
in order to establish whether there is a significant relation
between code completion performance and the presence of
natural language in the forms of type annotations and com-
ments. As shown in fig. 1, the method consists of three main
phases: data transformation, pre-processing and fine-tuning.
During data transformation, functions are extracted from the
TypeScript datasets and split into JavaScript and TypeScript
train, development and test sets. During pre-processing the
literals and specific comments are removed from the data, after
which the model is fine-tuned and applied on the test set. The
following section explains how these phases work in detail.

A. Data transformation

The data transformation phase is responsible for creating
JavaScript and TypeScript train, development, and test sets.
The reason why this phase occurs prior to pre-processing
is because this phase relies on the TypeScript compiler to
create the JavaScript sets, and the pre-processing phase leads
to uncompilable code.

3



Fig. 1. Experiment Pipeline

First, functions – including potential leading comments – are
extracted from the TypeScrript datasets using the TypeScript
compiler. This data format is similar to the CodeSearchNet
dataset [24], as used by UniXcoder during pre-training. As
TypeScript does not require type annotations, there may be few
type annotations in the code. In order to amplify the effects
of type annotations, the TypeScript compiler is optionally
used to add type annotations to these functions in places
where they were not added, given that these type annotations
can be inferred by the compiler. This process, for instance,
converts const x = 1; to const x: number = 1;.
Third party dependencies of the repositories in the dataset are
installed prior to running this process, as code might contain
type annotations defined in a third party dependency. This step
was only executed for one of the datasets due to the high
computation time required.

The functions are then split into a train, development, and
test set according to a 75/5/20 split. The functions in the
development and test set are used to create line completion
tasks by first tokenizing the source code according to the
ECMAScript lexical grammar specification [25]. Secondly,
20% of the tokenized lines are randomly selected, after which
a /*<mask>*/ comment token is placed in front of a
randomly selected token in each of the selected lines. This
comment token serves the purpose of indicating where we
want to perform a line completion, and allows us to create
an equivalent JavaScript version of this line completion task.
The latter is achieved by feeding a detokenized version of the
code (with mask comments) through the TypeScript compiler,
resulting in JavaScript code with the same /*<mask>*/
comments. Finally, the JavaScript and TypeScript code with
mask comments is converted into line completion tasks con-
sisting of inputs (i.e. left contexts) and ground truths by:

1) Splitting the masked code on mask comments, resulting
in a number of substrings.

2) Obtaining ground truths by taking the first line of all
but the first substrings. Note that the first substring is
not considered as it occurs before any mask comments,
while ground truths are situated behind mask comments.

3) Obtaining inputs by concatenating all substrings that
occur before each ground truth.

This process results in line completion tasks for both the
development and test set in JavaScript and TypeScript.

A JavaScript equivalent of the train set is generated by
applying the TypeScript compiler directly to the functions in
the train set.

B. Pre-processing

Pre-processing makes the previously created JavaScript and
TypeScript sets suitable for use with UniXcoder. The same
pre-processing process is applied to the train, development
and test set.

First, number and string literals are normalized by replac-
ing them with special tokens, ⟨NUM LIT⟩ and ⟨STR LIT⟩
respectively. Line breaks are replaced by the ⟨EOL⟩ token.

Each dataset is pre-processed several times, each with slight
differences in the way comments are handled. There are four
different ways comments are handled in order to test their
effect on completion performance:

1) Remove all comments.
2) Do nothing – keep comments as-is.
3) Keep only singleline comments.
4) Keep only multiline comments.

C. Fine-Tuning

After pre-processing, we fine-tune UniXcoder on the
JavaScript and TypeScript train sets individually using the

4



Adam optimizer with an initial learning rate of 2e-5 for 10
epochs using an NVIDIA V100S [26]. The epoch that leads
to the highest Exact Match (EM) score on the development
set is applied on the test set.

D. Post-processing

After the fine-tuned model has been applied to all the
test data, its predictions are post-processed. Post-processing
consists of normalizing the spacing of code tokens (including
linebreaks), removing all comments, and replacing tokenized
versions of literals with default literals: ⟨STR LIT⟩ becomes
"", and ⟨NUM LIT⟩ becomes 0. For consistency, this process
is applied to both the prediction and the ground truth.

V. EXPERIMENT DESIGN

A. Research Questions

The goal of this work is to provide an insight into the rela-
tion between code completion performance and the presence
of comments and type annotations. Accordingly, it answers
the following research questions:

RQ1: How is the performance of UniXcoder code comple-
tion affected by presence of type annotations in source code?

This research question investigates whether UniXcoder ben-
efits from the presence of type annotations. As mentioned,
type annotations convey valuable information in a structured
manner, which could increase code completion performance.

RQ2: To what extent is the performance of UniXcoder code
completion affected by presence of comments?

This research question explores how the performance of
UniXcoder is affected by the presence of comments. The rel-
evance of this research question lies in the fact that comments
could function similarly to type annotations when it comes to
aiding the understanding abilities of UniXcoder. Consequently,
the extent to which comments improve performance warrant
investigation.

RQ3: To what extent does presence of comments in contrast
to presence of type annotations aid UniXcoder code comple-
tion performance?

This research question explores how type annotations and
comments compare when it comes to their effect on code
completion performance.

B. Evaluation Metrics

The predictions by the fine-tuned UniXcoder models are
compared to the ground truths using a number of metrics. The
following metrics are considered: Exact Match, Levenshtein
Similarity, BLEU-4, ROUGE-L, and METEOR.

Exact Match (EM) directly compares the ground truth to
the prediction, resulting in a boolean value. The Exact Match
score over an entire dataset is expressed as a percentage.

Levenshtein Similarity (Edit Similarity) compares the
ground truth to the prediction on a character-by-character
basis. Wrong characters (substitutions), too many characters
(insertions) and too few characters (deletions) increase the
levenshtein distance by 1. Levenshtein similarity is a number
in the range [0, 1] that is computed by dividing the levenshtein

distance by the length of either the prediction or the ground
truth, depending on which is longest.

BLEU-4 is a variant of BLEU (BiLingual Evaluation Un-
derstudy) that deals specifically with n-grams with n ∈ [1, 4].
BLEU compares the ground truth to the prediction by comput-
ing the ratio of n-grams that occur in both the prediction and
the ground truth (not exceeding the total amount in the ground
truth) to the total amount of n-grams in the ground truth. This
is done for each n in some range, after a weighted sum of
the results is computed to get the final BLEU score [27].
In this work BLEU-4 is applied by treating each code token
– as per the ECMAScript lexical grammar specification [25]
– as a unigram, and gives each value of n equal weight. A
smoothing technique proposed by Lin et al. [28] is used to
prevent division by zero when the prediction has fewer than
four tokens.

ROUGE-L is a variant of ROUGE (Recall-Oriented Un-
derstudy for Gisting Evaluation). ROUGE-L uses the Longest
Common Subsequence (LCS) algorithm in order to find the
largest n-gram that occurs in both the prediction and the
ground truth. ROUGE-L computes precision and recall and
uses them to compute an F1 score [29]. As with BLEU,
each code token corresponds to a unigram when ROUGE-L is
applied.

METEOR, or Metric for Evaluation of Translation with Ex-
plicit ORdering, compares the ground truth and the prediction
by mapping their respective unigrams, and computes a score
over this mapping based on its precision and recall. METEOR
has been shown to be better at capturing human judgement
over a complete dataset than BLEU [30]. Opposed to BLEU,
METEOR puts more weight on recall, which has been shown
to align closer to human judgement than precision [31]. Once
more, each code token is treated as a unigram.

C. Datasets

The experiment uses several openly available TypeScript
datasets. The first dataset, TS1K-18, includes the top 1,000
starred GitHub repositories that predominantly consist of
TypeScript code. This dataset is identical to that used by Hel-
lendoorn et al. [22] and Wei et al. [2], and was created in
2018. However, as not all of these repositories are available
anymore the dataset used in this paper is limited to 709
repositories.

An additional dataset, TS1K-18-E, was generated based
on TS1K-18 by making all implicit types explicit using the
TypeScript compiler, as explained in section IV. Since not all
repositories include a tsconfig.json file – which is used
to configure the TypeScript compiler – not all repositories in
the previous dataset are included in this dataset. Additionally,
some repositories depend on third party dependencies which
could not be installed, which made it impossible to infer third-
party types. As a result this dataset is 33.63% smaller than
TS1K-18.

Similar to TS1K-18, the third dataset consists of all Type-
Script files in the top 1,000 starred GitHub TypeScript repos-

5



TABLE I
DATASETS USED FOR FINE-TUNING AND EVALUATION

TS1K-18 TS1K-18-E TS1K-22

#Repositories 709 523 1,000
#Functions 61,181 40,604 165,423
#LOC 1,261,692 913,773 3,465,559
Type Explicitness 48.66% 87.74% 45.79%

itories. This dataset was generated specifically for this study
on June 9th 2022 using the GitHub API.

Table I shows the size of the datasets in terms of the amount
of repositories, functions and lines of code (LOC) in these
functions. Additionally, it displays the type explicitness of
the functions in these datasets. Type explicitness refers to the
amount of type annotations present in the code relative to the
total amount of type annotations that are possible.

VI. RESULTS

The predictions made by UniXcoder on the various datasets
were used to compute the aforementioned metrics as displayed
in table II. The following section will highlight relevant results.

TypeScript models consistently outperformed JavaScript
models by small margins, achieving the highest scores on each
metric across all datasets. The largest discrepancy between
JavaScript and TypeScript performance was found on the
TS1K-18-E dataset, where TypeScript outperformed JavaScript
by substantially higher margins than on the other datasets.
Overall, TypeScript models trained on data with comments
performed best.

Models trained on datasets with all comments did not
achieve better performance than models trained exclusively on
data with singleline or multiline comments. Across all datasets,
models fine-tuned on data containing only singleline or mul-
tiline comments performed better on every metric relative to
the baseline, which contains all comments. This is the case
for both TypeScript and JavaScript.

Models trained on datasets containing exclusively singleline
comments outperformed the baseline dataset models on almost
all metrics. The only exception was TS1K-18-E, where the
JavaScript model fine-tuned on the dataset with singleline
comments performed worse than the baseline on exact match
and BLEU-4. Both JavaScript and TypeScript showed the best
performance on datasets containing only singleline or multiline
comments.

Models trained on datasets containing exclusively multiline
comments did not always outperform the baselines. In TS1K-
18, the fine-tuned models trained on data with multiline
comments even failed to beat the models trained on data
without comments.

JavaScript models fine-tuned on datasets with comments
outperformed TypeScript models fine-tuned on datasets with-
out comments several times. Namely, for TS1K-18, the sin-
gleline comment JavaScript model achieved a higher score
for edit similarity, for TS1K-18-E the multiline comment
JavaScript model achieved a higher score for BLEU-4, and

for TS1K-22 the singleline JavaScript model achieved a higher
score for edit similarity, BLEU-4 and METEOR. Note that in
all these cases the outperformance by the JavaScript models
was minimal.

VII. DISCUSSION

A. Type Annotations

The results support the rationale of type annotations leading
to increased performance, as UniXcoder models fine-tuned on
TypeScript code outperformed their JavaScript counterparts on
every single metric and every single dataset. While the outper-
formance by TypeScript models was marginal, the TS1K-18-E
dataset shows that an increased amount of type annotations
can lead to a larger outperformance by the TypeScript models.
As per table I, TS1K-18-E has a type explicitness of 87.74%
compared to the 48.66% and 45.79% of TS1K-18 and TS1K-
22 respectively. These facts suggest a positive correlation
between the presence of type annotations and code completion
performance.

B. Comments

Models fine-tuned on code with comments outperformed
commentless code for each dataset, suggesting that comments
do contribute to language understanding. Additionally, the
results show that JavaScript models trained on commented
code can come close to the performance of models trained
on commentless TypeScript. This demonstrates the value of
comments, but also shows that type annotations can be more
capable at improving code completion performance.

Not all types of comments lead to the same performance
improvement: each dataset showed that keeping only singleline
or multiline tokens leads to better performance than keeping
both. Especially singleline comments appear to improve UniX-
coder performance, as models trained on data containing only
singleline comments outperformed each baseline.

The contents or structure of comments might also have
an effect on performance. For the TS1K-18 dataset, models
trained on commentless code sometimes even performed better
than models trained on commented code. These uncertain
results might be explained by lack of structure or cohesion
of comments making it difficult to interpret. In the case of
multiline comments this could be due to the verbose nature of
JSDoc/TSDoc comments. These types of comments comments
can become extremely large when code examples, explanations
and URLs are added. Many different tags can be added to
such comments, some of which might not provide valuable
information. Combined with the fact that these tags can
practically be placed in an arbitrary order may make them
difficult to utilize for UniXcoder.

The best performance was observed on TypeScript models
that were fine-tuned on data with comments, showing that
comments can add value next to type annotations.

Overall, the outperformance by TypeScript models on every
dataset indicates that type annotations are a valuable addition
to code, and can help code completion models like UniXcoder
in language understanding. This is strengthened by the fact that

6



TABLE II
UNIXCODER LINE COMPLETION RESULTS

Dataset Language EM Edit Sim BLEU-4 ROUGE-L METEOR

TS1K-18 JavaScript 40.41 68.08 55.54 54.41 65.51
TypeScript 40.56 68.26 55.62 54.85 65.78

- w/o comments JavaScript 40.79 67.83 55.50 54.58 65.25
TypeScript 40.99 68.29 55.85 55.28 65.79

- w/ multiline comments JavaScript 40.15 67.60 54.92 54.23 64.77
TypeScript 40.64 67.87 55.27 54.92 65.14

- w/ singleline comments JavaScript 40.95 68.30 55.67 54.97 65.74
TypeScript 41.32 68.69 55.98 55.68 66.08

TS1K-18-E JavaScript 38.87 67.47 54.54 54.24 64.77
TypeScript 39.49 68.50 55.27 55.98 65.93

- w/o comments JavaScript 38.17 66.61 53.49 53.40 63.62
TypeScript 39.49 68.03 54.75 55.61 65.19

- w/ multiline comments JavaScript 39.22 67.50 54.76 54.49 64.90
TypeScript 40.10 68.60 55.85 56.30 66.33

- w/ singleline comments JavaScript 38.51 67.67 54.37 54.38 64.99
TypeScript 40.08 68.98 55.61 56.45 66.45

TS1K-22 JavaScript 37.17 64.82 52.25 50.21 62.06
TypeScript 37.78 65.61 52.88 51.39 62.86

- w/o comments JavaScript 37.10 64.28 51.71 49.83 61.29
TypeScript 37.67 64.84 52.09 50.83 61.79

- w/ multiline comments JavaScript 37.27 64.40 51.76 50.01 61.32
TypeScript 37.55 64.81 52.12 50.86 61.75

- w/ singleline comments JavaScript 37.43 65.11 52.50 50.35 62.33
TypeScript 37.98 65.67 53.00 51.40 62.91

the TypeScript models trained on a dataset with an increased
amount of type annotations showed a larger margin of out-
performance over respective JavaScript models. Additionally,
while comments improve UniXcoder performance, comments
are not as capable at improving language understanding as
type annotations are. Not all types of comments lead to the
same performance improvements, which indicates that the
structure or content of comments might play an important
role. However, future work into the effect of the content of
comments is needed to confirm this hypothesis. The results
consistently show that a combination of both type annotations
and certain comments leads to the best result.

VIII. THREATS TO VALIDITY

Threats to internal validity relate to factors unintention-
ally affecting the results. In this work, type annotations and
comments were intentionally changed in order to test their
relation with code completion performance. Other variables
involved in this work are fine-tune parameters and metric-
related parameters. Fine-tune parameters remained the same
throughout the entire experiment to ensure that no comparative
observations can be attributed to a specific fine-tuning configu-
ration. The same applies to parameters relating to metrics; the
tokenization of input sequences required for BLEU, ROUGE-L
and METEOR is always done the same way, according to the
ECMAScript lexical grammar specification [25].

Threats to external validity relate to factors that could
affect the generalizability of the findings. In this work, gen-
eralizability mostly depends on the datasets used. We use
three datasets, of which TS1K-18 has been used in previous
studies [2, 22]. Additionally, the TS1K-22 dataset, which
contains over 2.7 times more lines of code as TS1K-18, was
created specifically for the purpose of using a larger dataset,
which improves generalizability. None of the datasets overlap
with the pre-training data of UniXcoder, as UniXcoder was
not trained on datasets containing TypeScript code. Further
research is required to assure generalizability to other pro-
gramming languages.

Threats to construct validity relate to the validity of
the measurements performed. The evaluation in this work
uses several well-known metrics that are commonly used in
the field of natural language processing [4–6, 14]. Together,
these metrics give a good perspective on the performance of
models all from slightly different angles, as especially BLEU,
ROUGE-L and METEOR are similar but differ in key ways.
Additionally, each respective JavaScript and TypeScript model
for some dataset used equivalent test sets, ensuring that the
results are comparable between the two models.

IX. CONCLUSION

Type annotations and comments add valuable information
to source code, and using this information is key to optimizing

7



language understanding. This work shows that UniXcoder is
able to use both to facilitate this to an extent.

The performance of code completion with UniXcoder is
positively affected by the presence of type annotations. Models
trained and used on code with type annotations outperformed
all models trained and used on code without type annotations.
An increase in the amount of type annotations increased
this performance gap, showing that the presence of type
annotations can help UniXcoder.

The presence of comments has been shown to be beneficial
to code completion performance. However, not all types of
comments are equally effective at enhancing language under-
standing. The relatively unstructured or inconsistent nature
of comments can make it more difficult for them to be
correctly interpreted and used by UniXcoder. However, future
research is needed to confirm whether adding more structure to
comments improves performance (for instance by only using
TSDoc/JSDoc with selected tags).

Type annotations were shown to be a more reliable way of
enhancing performance than comments. As said, the relatively
unstructured nature of comments can make them hard to
exploit. Type annotations do not have this drawback, as they
follow a fixed structure and generally provide information
about tokens very close to the type annotations.

Future work could investigate if the effectiveness of code
completion models can be enhanced by adding type anno-
tations using tools like LambdaNet [2] or TypeBERT [3].
This work has shown that increasing the amount of type
annotations can increase code completion performance, and
using such tools present a great way to increase the amount
of type annotations in both dynamically and statically typed
languages.

Additionally, future work could generalize the findings to
other programming languages. Python 3 is a suitable candi-
date, as it is a dynamically typed languages that optionally
allows users to add type annotations.

X. RESPONSIBLE RESEARCH

A. Reproducibility

This paper heavily relied on pre-existing code that was
published by Guo et al. to make the evaluation of UniXcoder
reproducible [5]. This perfectly demonstrates the importance
of reproducibility. We assure reproducibility by publishing all
resources required to conduct the experiment, including the
source code and datasets. Additionally, all fine-tuned models
– along with their train, development, and test sets – are
published to allow the prediction and evaluation phase to
be reproduced individually. This is beneficial when working
with little computational power, as fine-tuning all models
considered in this paper takes a long time. It also lowers the
barrier of entry for people wanting to experiment with the
fine-tuned models.

B. Transparency

BLEU, ROUGE-L and METEOR all require parameters or
tokenization. Slight differences in the way these metrics are

applied can wildly change results, and differences in param-
eters makes the metrics incomparable [32]. This highlights
the importance of indicating exactly how each metric is used.
The specification of datasets is similarly important [32], and
plays a big part in reproducibility. For these reasons the
processes applied to obtain the results are described in detail
and transparently, such that it is clear how the data should be
interpreted, and whether it is comparable to data provided in
other studies.

XI. ACKNOWLEDGEMENTS

I would like to extend my sincere thanks to Maliheh Izadi
for the guidance and availability for any questions during the
creation of this work. Additionally, I would also like to thank
Georgios Gousios for providing access to a powerful machine
used extensively throughout creation of this paper, and to
Frank van der Heijden for providing the code used to retrieve
the top-1,000 starred repositories from GitHub to create the
TS1K-22 dataset. Lastly, I would like to thank Marc Otten,
Jorit de Weerdt and Mika Turk for the support throughout this
research.

REFERENCES

[1] S. Okon and S. Hanenberg, “Can we enforce a ben-
efit for dynamically typed languages in comparison
to statically typed ones? a controlled experiment,” in
2016 IEEE 24th International Conference on Program
Comprehension (ICPC), 2016, pp. 1–10. DOI: 10.1109/
ICPC.2016.7503719.

[2] J. Wei, M. Goyal, G. Durrett, and I. Dillig, “Lamb-
daNet: Probabilistic type inference using graph neural
networks,” in 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, 2020. [Online]. Available: https: / /
arxiv.org/abs/2005.02161.

[3] K. Jesse, P. T. Devanbu, and T. Ahmed, “Learning type
annotation: Is big data enough?” Proceedings of the
29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, 2021. DOI: 10.1145/3468264.
3473135.

[4] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5:
Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation,” in Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, 2021.

[5] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J.
Yin, UniXcoder: Unified cross-modal pre-training for
code representation, 2022. DOI: 10.48550/ARXIV.2203.
03850. [Online]. Available: https://arxiv.org/abs/2203.
03850.

[6] S. Lu et al., “CodeXGLUE: A machine learning bench-
mark dataset for code understanding and generation,”
CoRR, vol. abs/2102.04664, 2021. arXiv: 2102.04664.
[Online]. Available: https://arxiv.org/abs/2102.04664.

8

https://doi.org/10.1109/ICPC.2016.7503719
https://doi.org/10.1109/ICPC.2016.7503719
https://arxiv.org/abs/2005.02161
https://arxiv.org/abs/2005.02161
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.48550/ARXIV.2203.03850
https://doi.org/10.48550/ARXIV.2203.03850
https://arxiv.org/abs/2203.03850
https://arxiv.org/abs/2203.03850
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664


[7] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
and I. Sutskever, “Language models are unsupervised
multitask learners,” 2019.

[8] V. Raychev, P. Bielik, and M. Vechev, “Probabilistic
model for code with decision trees,” SIGPLAN Not.,
vol. 51, no. 10, pp. 731–747, 2016, ISSN: 0362-1340.
DOI: 10.1145/3022671.2984041. [Online]. Available:
https://doi.org/10.1145/3022671.2984041.

[9] M. Allamanis and C. Sutton, “Mining source code
repositories at massive scale using language modeling,”
in 2013 10th Working Conference on Mining Software
Repositories (MSR), 2013, pp. 207–216. DOI: 10.1109/
MSR.2013.6624029.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for
language understanding,” CoRR, vol. abs/1810.04805,
2018. arXiv: 1810.04805. [Online]. Available: http: / /
arxiv.org/abs/1810.04805.

[11] A. Baevski, S. Edunov, Y. Liu, L. Zettlemoyer, and
M. Auli, “Cloze-driven pretraining of self-attention net-
works,” CoRR, vol. abs/1903.07785, 2019. arXiv: 1903.
07785. [Online]. Available: http://arxiv.org/abs/1903.
07785.

[12] A. Radford, K. Narasimhan, T. Salimans, and I.
Sutskever, “Improving language understanding by gen-
erative pre-training,” 2018.

[13] C. Raffel et al., “Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer,”
arXiv e-prints, arXiv:1910.10683, arXiv:1910.10683,
Oct. 2019. arXiv: 1910.10683 [cs.LG].

[14] A. Vaswani et al., “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. arXiv: 1706 . 03762. [On-
line]. Available: http://arxiv.org/abs/1706.03762.

[15] M. E. Peters et al., “Deep contextualized word repre-
sentations,” CoRR, vol. abs/1802.05365, 2018. arXiv:
1802.05365. [Online]. Available: http://arxiv.org/abs/
1802.05365.

[16] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman, “GLUE: A multi-task benchmark and
analysis platform for natural language understanding,”
CoRR, vol. abs/1804.07461, 2018. arXiv: 1804.07461.
[Online]. Available: http://arxiv.org/abs/1804.07461.

[17] Y. Liu et al., “RoBERTa: A Robustly Optimized
BERT Pretraining Approach,” arXiv e-prints,
arXiv:1907.11692, arXiv:1907.11692, Jul. 2019.
arXiv: 1907.11692 [cs.CL].

[18] Z. Feng et al., Codebert: A pre-trained model for pro-
gramming and natural languages, 2020. arXiv: 2002.
08155 [cs.CL].

[19] M. Ciniselli et al., “An empirical study on the usage of
transformer models for code completion,” IEEE Trans-
actions on Software Engineering, 2021, ISSN: 1939-
3520. DOI: 10.1109/TSE.2021.3128234.

[20] M. Ciniselli, N. Cooper, L. Pascarella, D. Poshyvanyk,
M. Di Penta, and G. Bavota, “An Empirical Study on
the Usage of BERT Models for Code Completion,”

arXiv e-prints, arXiv:2103.07115, arXiv:2103.07115,
Mar. 2021. arXiv: 2103.07115 [cs.SE].

[21] R. S. Malik, J. Patra, and M. Pradel, “NL2Type: In-
ferring javascript function types from natural language
information,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), 2019,
pp. 304–315. DOI: 10.1109/ICSE.2019.00045.

[22] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Alla-
manis, “Deep learning type inference,” ser. ESEC/FSE
2018, Lake Buena Vista, FL, USA: Association for
Computing Machinery, 2018, pp. 152–162, ISBN:
9781450355735. DOI: 10 . 1145 / 3236024 . 3236051.
[Online]. Available: https://doi.org/10.1145/3236024.
3236051.

[23] V. Raychev, M. Vechev, and A. Krause, “Predicting pro-
gram properties from ”big code”,” in Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’15,
Mumbai, India: Association for Computing Machinery,
2015, pp. 111–124, ISBN: 9781450333009. DOI: 10 .
1145 / 2676726 . 2677009. [Online]. Available: https : / /
doi.org/10.1145/2676726.2677009.

[24] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M.
Brockschmidt, “CodeSearchNet challenge: Evaluating
the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[25] S. Guo, M. Ficarra, and K. Gibbons, 12 ECMAScript
Language: Lexical Grammar, Jun. 2022. [Online].
Available: https : / / tc39 . es / ecma262 / multipage /
ecmascript - language - lexical - grammar . html # sec -
ecmascript-language-lexical-grammar.

[26] Delft High Performance Computing Centre (DHPC),
DelftBlue Supercomputer (Phase 1), https : / / www .
tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

[27] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu,
“BLEU: A method for automatic evaluation of machine
translation,” in Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA: Association for Com-
putational Linguistics, Jul. 2002, pp. 311–318. DOI: 10.
3115 / 1073083 . 1073135. [Online]. Available: https : / /
aclanthology.org/P02-1040.

[28] C.-Y. Lin and F. J. Och, “ORANGE: A method for
evaluating automatic evaluation metrics for machine
translation,” in COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics,
Geneva, Switzerland: COLING, Aug. 2004, pp. 501–
507. [Online]. Available: https://aclanthology.org/C04-
1072.

[29] C.-Y. Lin, “ROUGE: A package for automatic evalu-
ation of summaries,” in Text Summarization Branches
Out, Barcelona, Spain: Association for Computational
Linguistics, Jul. 2004, pp. 74–81. [Online]. Available:
https://aclanthology.org/W04-1013.

[30] S. Banerjee and A. Lavie, “METEOR: An automatic
metric for MT evaluation with improved correlation

9

https://doi.org/10.1145/3022671.2984041
https://doi.org/10.1145/3022671.2984041
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1903.07785
https://arxiv.org/abs/1903.07785
http://arxiv.org/abs/1903.07785
http://arxiv.org/abs/1903.07785
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.1109/TSE.2021.3128234
https://arxiv.org/abs/2103.07115
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
https://tc39.es/ecma262/multipage/ecmascript-language-lexical-grammar.html#sec-ecmascript-language-lexical-grammar
https://tc39.es/ecma262/multipage/ecmascript-language-lexical-grammar.html#sec-ecmascript-language-lexical-grammar
https://tc39.es/ecma262/multipage/ecmascript-language-lexical-grammar.html#sec-ecmascript-language-lexical-grammar
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/W04-1013


with human judgments,” in Proceedings of the ACL
Workshop on Intrinsic and Extrinsic Evaluation Mea-
sures for Machine Translation and/or Summarization,
Ann Arbor, Michigan: Association for Computational
Linguistics, Jun. 2005, pp. 65–72. [Online]. Available:
https://aclanthology.org/W05-0909.

[31] A. Lavie, K. Sagae, and S. Jayaraman, “The significance
of recall in automatic metrics for MT evaluation,”
Machine Translation: From Real Users to Research,
pp. 134–143, 2004. DOI: 10.1007/978-3-540-30194-
3 16.

[32] M. Post, “A call for clarity in reporting BLEU scores,”
2018. DOI: 10 . 48550 / ARXIV. 1804 . 08771. [Online].
Available: https://arxiv.org/abs/1804.08771.

10

https://aclanthology.org/W05-0909
https://doi.org/10.1007/978-3-540-30194-3_16
https://doi.org/10.1007/978-3-540-30194-3_16
https://doi.org/10.48550/ARXIV.1804.08771
https://arxiv.org/abs/1804.08771

	Introduction
	Problem Definition
	Background and Related work
	UniXcoder
	Related Work
	Transformer Models
	Studies About Code Completion Effectiveness
	Type Prediction


	Methodology
	Data transformation
	Pre-processing
	Fine-Tuning
	Post-processing

	Experiment Design
	Research Questions
	Evaluation Metrics
	Datasets

	Results
	Discussion
	Type Annotations
	Comments

	Threats to Validity
	Conclusion
	Responsible Research
	Reproducibility
	Transparency

	Acknowledgements

