
Bachelor Thesis
Enabling the creation and hosting of
cooperative online escape events in
M.O.R.S.E. without programming
experience
Elwin Duinkerken
Gijs Groenewegen
Wessel Thomas
Bram Verboom
Timo Verlaan

in affiliation with Raccoon Serious Games

Bachelor Thesis
Enabling the creation and hosting of
cooperative online escape events in
M.O.R.S.E. without programming

experience
by

Elwin Duinkerken
Gijs Groenewegen
Wessel Thomas
Bram Verboom
Timo Verlaan

to obtain the degree of Bachelor of Science
in Computer Science and Engineering
at the Delft University of Technology,

to be defended publicly on Wednesday July 1, 2020 at 12:00 AM.

Project duration: April 20, 2020 – July 1, 2020
Thesis committee: T.A.R. Overklift Vaupel Klein, ir. TU Delft, supervisor

H. Wang, dr. ir. TU Delft
J.W. Manenschijn, BSc Raccoon Serious Games, client

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This is the report for the Bachelor End Project created by Elwin Duinkerken, Gijs Groenewegen, Wessel
Thomas, Bram Verboom and Timo Verlaan as a part of the Bachelor Computer Science program at Delft Uni-
versity of Technology. Over the course of ten weeks, we have extended an existing system for creating and
managing escape events in such a way that the production and hosting of external web pages is possible.
This project was commissioned by Raccoon Serious Games.

Our deepest thanks to everyone at Raccoon Serious Games for not only all the support, advice and fun
times they gave us during the project, but also for putting in the effort to really make us feel part of the team
while we were there, with various activities, weekly (digital) drinks and transforming the office to make it pos-
sible for us to visit in the trying times caused by COVID-19. A special thank you to co-founder Jan-Willem
Manenschijn, for taking the time to coordinate, evaluate and validate all the work we put in during these ten
weeks, sculpting the product to fit the needs of Raccoon Serious Games.

Finally, we would like to thank our coach ir. Thomas Overklift Vaupel Klein for always finding time in his
busy schedule to guide our process, provide feedback where it was needed and offer his assistance when
required.

Elwin Duinkerken
Gijs Groenewegen

Wessel Thomas
Bram Verboom
Timo Verlaan

Delft, June 2020

iii

Summary
The M.O.R.S.E. system is a tool for creating and managing large escape events, mainly used for local es-
cape events. The tool is designed for only a limited range of puzzle types and styling options because most
of the puzzles require physical items in order to solve a puzzle and only the answers have to be entered in
M.O.R.S.E. Because of this design, it is really difficult to create online escape experiences, especially rich and
immersive ones. It also requires a lot of programming outside of the M.O.R.S.E. system to do so. Raccoon
Serious Games , the client, does not have many employees with programming experience and, therefore, it
is not feasible for them to create the rich and immersive online escape experiences they want.

To be able to create such immersive experiences, we are extending M.O.R.S.E. with editable domains and
web pages. Game designers can add domains and web pages to the existing event schedule and then puz-
zles can be created for web pages. Players can view one or multiple of these domains and for each domain,
the active web page will be served.

Web pages can be created and stored in the domains, but the actual contents of the web pages still have
to be made. Because making web pages is often a programming intensive task, a page builder has been cre-
ated in M.O.R.S.E. This page builder allows the user to load and save web pages created in the M.O.R.S.E.
system. It uses a drag-and-drop system to place building-block elements inside the web pages and allows for
directly visible styling of those elements. Because of this, the user does not need programming knowledge of
the underlying implementation of the web pages. It also facilitates the linking between M.O.R.S.E. features
and the domains such as puzzles and triggers for buttons. Using the import and export functionality, users can
easily copy previous web pages created with the page builder. This is not only limited to internal web pages
but can also be used to import external code from outside the page builder. With user-friendly features such
as the ability to undo and redo changes, the page builder tries to make creating web pages as easy as possible.

An important aspect of the escape games hosted by Raccoon Serious Games is team building. We ex-
tend upon this notion by adding roles and a leaderboard screen to M.O.R.S.E., both of which increase the
need and opportunity for interaction between players. The addition of roles allows game designers to en-
force cooperation in their escape events, by restricting the access to resources required for solving a puzzle
to only a subset of the players in a team. This way they have to cooperate and combine their information
and resources to solve all puzzles. The addition of leaderboards is also an extra incentive for a player in a
team to work together efficiently because this will positively impact their score and, therefore, ranking on the
leaderboard.

v

Contents

1 Introduction 1

2 Problem Research 3
2.1 Problem context . 3
2.2 Analysis . 3

2.2.1 Online escape experiences . 3
2.2.2 M.O.R.S.E. 4

2.3 Definition of the sub-problem . 5

3 Design 7
3.1 Domains . 7

3.1.1 Schedule . 7
3.1.2 Internal and external domains . 8
3.1.3 Web pages . 8

3.2 Player interaction . 9
3.2.1 Roles . 9
3.2.2 Leaderboard . 11

3.3 Page builder . 11
3.3.1 WYSIWYG editor . 11
3.3.2 BuilderLibrary . 12
3.3.3 Linking puzzles in the page . 13

3.4 Hosting . 14
3.5 Extensibility . 15
3.6 Backwards compatibility . 15

3.6.1 Roles . 15
3.6.2 Domains . 16
3.6.3 Page builder . 16

3.7 Summary . 16

4 Implementation 19
4.1 Current implementation . 19

4.1.1 Architecture . 19
4.1.2 Frameworks. 20
4.1.3 Components . 20

4.2 Domains . 21
4.2.1 Web pages . 21
4.2.2 Users . 21
4.2.3 Additions to rulesets and schedules . 22
4.2.4 Puzzles . 23

4.3 Player interaction . 23
4.3.1 Roles . 23
4.3.2 Leaderboard stage . 28

4.4 Page builder . 28
4.4.1 Page builder tab . 28
4.4.2 Connection to M.O.R.S.E. 30
4.4.3 Builder library . 31

4.5 Summary . 33

vii

viii Contents

5 Testing 35
5.1 Verification . 35

5.1.1 Unit tests . 35
5.1.2 Manual tests . 35
5.1.3 Backward compatibility . 35
5.1.4 Scalability test . 36
5.1.5 Static analysis . 36

5.2 Validation . 37
5.2.1 Weekly client demonstrations . 37
5.2.2 Playtests . 37

5.3 Summary . 38

6 Process 39
6.1 General intentions . 39
6.2 Workflow . 40

6.2.1 Engineering methodology . 40
6.2.2 Task division . 40

6.3 Setbacks . 40
6.4 Retrospective . 41

7 Discussion 43
7.1 Does it meet the requirements? . 43

7.1.1 Functional . 43
7.1.2 Non-functional . 43

7.2 Does it solve the problem?. 44
7.2.1 According to us . 44
7.2.2 According to the client . 44

7.3 Ethical implications . 45
7.3.1 Private user data . 45
7.3.2 URL masking . 45

8 Conclusion 47

9 Recommendations 49
9.1 Graphical User Interface (GUI) . 49
9.2 Scalability . 49

9.2.1 Roles . 49
9.2.2 Domains . 49
9.2.3 Page builder . 50

9.3 Future improvements. 50

A Project plan 53

B Requirements 57

C Research 63

D Admin manual 79

E Scalability Test 99

F Project description 101

G Playtest Webshop 103

H DigiHacked Playtest 107

I Infosheet 109

Bibliography 111

1
Introduction

Raccoon Serious Games is a company that develops and organises escape room inspired events for large
groups, as well as smaller groups [1]. Their escape events are more generally called ‘Serious Games’. Seri-
ous Games are not only designed to entertain but also to educate or create awareness of a certain topic [2].
The goal of these events is for players to learn something from these experiences and to stimulate team build-
ing. If such events can incorporate online activities, such as gathering information from websites or entering
login credentials, this could be a valuable expansion of the possibilities of escape events.

Our Bachelor End Project (BEP) focuses on the existing Massive Online Reactive Serious Escape 2.0
(M.O.R.S.E.) system where escape game events can be created, updated and hosted. It is designed for
the administrators that develop the events, the game hosts and also the players of the events. Puzzles, logis-
tics and other essential components for escape events can be defined in the system. However, creating an
online escape experience is not within the realm of possibilities. An example of such an experience is called
‘DigiHacked’1. The participants learn about the danger of scamming and hackers while playing the game,
which can be done entirely online. The production of external web pages that are used in such an event and
communicating with them is very troublesome in the current version of the M.O.R.S.E. system and it is not
possible to track the progress of the players in puzzles on external web pages. It would, therefore, be ideal if
M.O.R.S.E. could be upgraded in such a way that users would be able to create online escape experiences
like DigiHacked.

In this final report, we will share the findings, achieved results and resulting conclusions of our project. To
first give a good view of the problem, we define the issues at hand and examine the M.O.R.S.E. system along
with the given example of an online escape experience called DigiHacked. This is all covered in section 2,
to create a better understanding of what is currently missing in the current system and what this project will
roughly include. After the required background in the previous chapter, we present the abstract layer of our
solutions to the problems stated in section 3 and discuss the way these solutions are going to be woven into
the existing system. After the abstract layer, we show and discuss the concrete layer of implementation in
section 4 where more technical details are given as to how we engineered the system to induce the new func-
tionalities. Of course, we have to show that the new functionalities do consistently what is intended, for which
we look at section 5. This section gives the details of our testing processes and how we involved our client
as well. After the previous three sections that explain what we did and how we did, we take stock in section
7. We review the process we made in comparisons with our expectations set at the start of the project and
discuss the extent we met the demands of our client, Raccoon Serious Games. Ethical implications of our
process are put under further scrutiny and the last part of the section is regarding the group dynamic and the
approach that was taken towards development during the project are also be highlighted. To bring a close to
the report, we give our thoughts and recommendations of the final version of the system, regarding its current
capabilities, its limitations and what extra features could be added in future endeavours to further improve
M.O.R.S.E. 2.0.

1https://digihacked.raccoon.games/

1

https://digihacked.raccoon.games/

2
Problem Research

2.1. Problem context
M.O.R.S.E. is a tool for creating and hosting escape events. In these events, the participants are divided into
teams where they receive a set of questions and puzzles that needs to be solved to complete the event. For
certain puzzles, teams can receive physical items from the project staff that contain the necessary information
to find a solution. Raccoon Serious Games developed one of these escape events outside of the M.O.R.S.E.
system called DigiHacked. DigiHacked is an online escape experience that provides an immersive experience
that shows us the dangers of the online world.

DigiHacked is a great example of an online escape experience that reveals what is lacking in the current
M.O.R.S.E. system. We will discuss online escape experiences more in detail in section 2.2.1. While play-
ing DigiHacked, you are guided through several external websites that serve as different front-ends, each of
which is providing their respective puzzles. In contrast to events made in M.O.R.S.E. , where all puzzles and
questions are shown only on the M.O.R.S.E. front-end, DigiHacked provides an additional layer of reality, due
to the realistic websites. In DigiHacked, there is also a lot more emphasis on teamwork, since it is necessary
to properly cooperate with each other in order to solve the puzzle. Nobody is able to solve the puzzle alone,
whereas events created in M.O.R.S.E. are solvable if you are alone. With all this in mind, we find that the
main question that we need to answer is; How can we facilitate the creation of interactive puzzles on
immersive web pages in M.O.R.S.E. that have a good emphasis on cooperation where programming
experience is not required?

2.2. Analysis
Since this is a very broad question, we needed to split it up into different smaller problems. To properly define
these smaller problems, we first needed to dive further into online escape experiences and the M.O.R.S.E.
system, so that it is clear what we are dealing with and to get a more detailed view of the tasks needed to be
done and how we came to conclude what the sub-questions were that needed to be asked in order to solve
the main question.

2.2.1. Online escape experiences
The final goal of the project is to be able to implement online escape experiences such as DigiHacked in the
M.O.R.S.E. system without the need for any programming experience. To be able to create such experiences,
the functionality of DigiHacked had to be investigated at the start of the project.

DigiHacked is an experience that aims to teach about phishing and similar malicious actions by tricking play-
ers into being the victim of one of these actions. Afterwards, these malicious actions are explained and ways
of identifying them are discussed. For this experience, players form teams and receive only part of the infor-
mation that is needed to solve the task at hand. Although DigiHacked is just one specific example of such
an experience, it contains many key features that are also important for other online escape experiences .
Instead of focusing on the specifics, we will explain the main flow of the game for a player. For a more de-

3

4 2. Problem Research

tailed explanation including the different types of attendees and their contributions to DigiHacked please have
a closer look at section C.3 in Appendix C.

Player experience
Once a player has received their player code from the host, they can use this to log into the system. The
logged-in player can then define their name. Each of the players is assigned to a team and the players in this
team can specify their team name. The teams each will go through the same experience. Before the game
has started the players can read a quick introduction to the game. After the host starts the game, the player
sees the main area of the game.

For each group, there are certain player roles to be assigned. Each player gets assigned one or multiple
roles within the game, dependant on how the number of players and the number of roles. These roles define
what systems that player can access. For example, a security guard has access to security cameras in a
room. This separation of roles makes communication between the different players crucial.

The main area of the game is a visual screen where each player can access a few different front-ends.
These front-ends range from simple text views to front-ends where there is some user interaction built-in. An
example would again be the security camera feed, where the player can rotate the camera or zoom in to focus
on a certain clue. In addition to front-ends inside the main interface of the game, players must also interact
with external sites. The actions of the players on these external sites are linked back to the team they belong
to. Also, previous actions of someone in a team influences the game behaviour for all of them. For example,
when one player in the team transfers a sum of money, all the players have to accept this transfer. In one of
the front-ends, the player could get sent a link to their mobile phone by entering their phone number. The link
was then sent as an SMS, to allow the player to use their phone’s camera for two-factor authentication for a
certain web app. Once a team completes the game they can see the leaderboard with the scores of all teams.
In the case of DigiHacked, it is shown whether each team has transferred the money to the correct company
or a group of hackers. Lastly, when the host has started the playback of a video to provide more background
information, all players are redirected to the screen where that video is playing.

2.2.2. M.O.R.S.E.
M.O.R.S.E. is the system currently used to create and manage escape room events for large groups of peo-
ple. M.O.R.S.E. excels at escape events at physical gatherings. There are multiple roles for such an event.
There are the teams, which are solving the puzzles. All the teams are divided into clusters. For each cluster,
there is an available foreman that tracks the progress and gives hints. Then there is the project desk staff.
They help the foreman and hand out physical puzzle pieces to each team. Finally, there is also the host and
the admin, who have control over the event while it is running. They can change the puzzle order and can
decide what should happen with wrong and correct answers. They are in full control of M.O.R.S.E. while it is
running. The difference between a host and an admin, is that the admin is the only person who can create
and delete an event. All the staff allows for the experience of people solving puzzles in teams and entering
their answers on the M.O.R.S.E. event website to progress through the event and complete more puzzles.

All the logic about the transitions and availability of puzzles during an event is handled by ‘rulesets’ in the
M.O.R.S.E. system. The ruleset is a list of rules about the event, automatically executed by M.O.R.S.E. dur-
ing the event. Every rule is divided into three parts: the triggers, the conditions and the actions. Firstly, the
triggers define when the rule should be checked. An example of that would be: when the host pauses the
event, a certain rule should be checked and possibly executed. Then the actions in M.O.R.S.E. make mod-
ifications to the state of the event. For example, teams can be moved to different screens and hints can be
given to teams. The possible set of actions is predefined and can be set to apply to different targets in the
event. For every combination of a trigger with one or more actions, extra conditions can be set in place to
further specify how your event should behave.

The schedule available in M.O.R.S.E. gives an overview of the, often very large, events as well as handle
the event flow. It shows the order of screens and groups of puzzles which can be made available for teams,
clusters or even everyone in the event.

As with the previous section 2.2.1, more detailed information regarding all that M.O.R.S.E. can do, can be

2.3. Definition of the sub-problem 5

found in appendix C.6 in C.4. If you are more interested in technical details regarding the implementation, you
can skip forward to section 4.1, where we address how M.O.R.S.E. is currently structured and what frame-
works are used.

2.3. Definition of the sub-problem
Now that we have more detailed information about the context of the problem, we are now ready to split the
whole problems up into smaller problems.

The first problem we need to consider is ensuring players can access the different front-ends and that they can
interact with them, just as we have seen in DigiHacked. The current M.O.R.S.E. system can track progress
and process player input. With the use of multiple front-ends on external websites, tracking and processing
are not as straight-forward as it is now. These front-ends should all have access to the same data so they too
can remember which groups completed what puzzles and which stage of the event they should show to a cer-
tain group. They should also be able to accept input from the players and have the M.O.R.S.E. system check
that input. To successfully deploy online escape experiences like DigiHacked in M.O.R.S.E. after this project,
an answer is required for the first sub-question; How do we link the external websites to M.O.R.S.E. and
track the players’ progress across these multiple websites? The idea’s of how we arranged the domains
is covered in section 3.1 with the low-level explanation of the implementation given in section 4.2.

The second matter at hand is the adjustment to the player interaction that needs to be done. To be able
to create a competitive environment between teams, while also having the opportunity to enforce teamwork
between participants. For these stated aspects, the sub-question is asked; How do we enforce teamwork
and incorporate competitive elements in online escape experiences? The concepts of how we wanted to
include this into the existing system are discussed in section 3.2 whereas exact implementation and workflows
are debated in 4.3.

The third problem is the production of the external websites that are used as front-ends for the participants.
Developing the websites for online escape experiences like DigiHacked did require a fair amount of program-
ming experience. DigiHacked has shown that Raccoon Serious Games is perfectly capable of creating such
an event, yet a more efficient workflow would be preferable, due to the small number of employees with pro-
gramming experience. Therefore, we had to find an answer to the third sub-question; How do Raccoon
employees develop a customised external website, without having to rely on programming experi-
ence? Trying to answer this question, we need to keep various aspects in mind that need to be dealt with,
such as the difficulty of usage and the easy development of prototypes to allow for a flexible workflow. The
solution we opted for is a self-developed page builder. The concepts of this page builder are explained in
section 3.3, with a more technical explanation of the implementation in section 4.4.

Based on the analysis we did on M.O.R.S.E. and online escape experiences along with our defined prob-
lems, we put together a list of requirement for the entire project that build towards a product that solves
these problems. We made different list of requirements with priorities for each type of stakeholder within a
M.O.R.S.E. event, along with a general distinction between functional and non-functional requirements. The
entire list can be found in appendix C.10.

3
Design

This chapter outlines the design decisions that are made based on the requirements that were gathered during
the research phase of the project but also taking into account how to find the best possible answer to the ear-
lier specified (sub)questions in section 2. Ease of use, maintainability, extensibility, backwards compatibility
and the amount of programming experience required are kept in mind throughout the design of the project.
In addition, we made sure to keep the design of the functionality to be added consistent with the existing
functionalities.

In the previous chapter, we stated several questions. The proposed solutions for the first, second and third
sub-question are described in respectively section 3.1, 3.2 and 3.3. Then to complement the solution for the
first sub-question, we will introduce our conceptual design for hosting all the different front-ends that are going
to be present in the future. With the future in mind, we also explain in 3.5 how we are going to make sure that
the extensibility of the system is in decent shape.

3.1. Domains
In this section a design is presented that will help answer the sub-question how external websites could be
linked to M.O.R.S.E. and how to track their progress across them. One of the missing features that is needed
to design the online escape experiences without programming experience is the ability to create different front-
ends. The front-ends have both a structure inside M.O.R.S.E. as well as their visual elements. This section
highlights the structure of these front-ends, the visual aspect is explained later in section 3.3. In M.O.R.S.E.,
there are already M.O.R.S.E. pages which can be used to create somewhat more custom layouts. However,
for the use case of custom created front ends they are too limited. These M.O.R.S.E. pages are static and
adding puzzles to them is impossible. In addition, these M.O.R.S.E. pages are always rendered with the
M.O.R.S.E. layout surrounding them, see figure 3.1 for an example of such a page. This makes them less
suitable to use for fully immersive experiences. To keep backwards compatibility with events that do use these
M.O.R.S.E. pages, a new system of web pages is needed while keeping the old one intact.

To make a distinction between different front-ends as described in 2.2.1, domains are chosen. For the
players, this is intuitive as they are familiar with the concept of domains or websites already, since websites
on the internet are structured the same way. The game designers are familiar with domains in the same way,
and an additional level is added for web pages. Domains are a collection of web pages, where each web page
could represent a view of an application. This is in line with most domains where each domain represents a
different application.

3.1.1. Schedule
In M.O.R.S.E. , there exists a schedule where all the different views which players can see are represented.
Within these separate views, it is also specified where certain questions are asked to the players. Since these
views are very similar to the domains and web pages, they can be extended using inheritance to hold new
schedule types for domains and web pages. This design makes it easy for existing game designers to be able
to create new domains and web pages because they are already familiar with the schedule editor. In figure

7

8 3. Design

Figure 3.1: An example of an existing M.O.R.S.E. page

3.2, a sketch of how the domains and web pages would fit into the current schedule is drawn.

3.1.2. Internal and external domains
There are two domain types, internal and external. The term domains in this case, refers to the simulated
domain by M.O.R.S.E. to give the impression the player is on a real domain. Internal domains can be viewed
with the existing M.O.R.S.E. view surrounding it. The internal domains are easier to navigate to and from
because the M.O.R.S.E. layout is still present. However, the layout makes it less immersive. To increase
immersion, the external domains type exists. When the user visits such an external domains, none of the
M.O.R.S.E. layout is present. This allows game-designers to create fully custom experiences.

3.1.3. Web pages
Web pages are part of the schedule as well, but they must always be inside a domain schedule. Since do-
mains are a collection of web pages, it is possible to add multiple web pages to a single domain. This creates
the link between the domains and web pages. Although the web pages is created here, the look of the page
can only be changed in the page builder. In the existing M.O.R.S.E. schedule a player can only be in one
schedule at the same time. Different domains can be viewed at the same time, for example with multiple tabs
or windows. In addition, players can view multiple domains at the same time, since for certain puzzles you
have to combine information from multiple domains to find the solution. Although multiple domains can be
viewed at the same time, only the active web page of each domains is visible to the player. This allows for
moving players from one web page to another with the rulesets just like the existing schedule-items, although
with a different yet similar looking action.

Web pages are also a collection themselves, since multiple puzzles can be added to the pages. When creat-
ing a puzzle inside a web page, the visual elements are not added to the page yet. Since the program could
not possibly know where the game designer would want to place the puzzle on the page, this is a deliberate
choice. To keep the editing of the visual elements of web pages in one place, the elements of the puzzles can
be added in the page builder.

This brings the design back to the sub-problem of how the players’ progress across web pages can be tracked.
The puzzles on the pages allow the system to track the progress through the system by tracking their progress
across the puzzles on the web pages.

3.2. Player interaction 9

Figure 3.2: The design of domains and web pages within the schedule

3.2. Player interaction
In trying to answer our second sub-question ‘How do we enforce teamwork and incorporate competitive ele-
ments in online escape experiences’, as stated in section 2, we now discuss our design for such competitive
and cooperative elements in M.O.R.S.E. By enabling a game designer to enforce teamwork and incorporate
competitive elements, the resulting games could also prove to be a great team-building experience, which is
an important goal of the escape events designed and hosted by Raccoon Serious Games. The leaderboards
described at the end of this section provide exactly such a competitive experience that is required for a team-
building exercise, because players can only get to the top of the leaderboard by working together. This is
aided by the addition of roles, that we discuss below. Roles allow the game designer to restrict the access
to specific resources for some players in a team, which means teams have to cooperate and combine their
information in order to solve the challenges presented to them.

3.2.1. Roles
As described in section 2.2.2, one of the missing features in the current version of M.O.R.S.E. is the ability
for players to be assigned roles which dictate their possible actions within the game. By incorporating such
functionality, especially in combination with the new domains, immersive gameplay experiences can be cre-
ated that force players in a team to cooperate. To this end, we first study the use case of the aforementioned
roles in DigiHacked, in order to identify what the requirements are for this module. Then we specify the re-
quirements for a more generic use case and identify the different perspectives in this part of the application:
the player and the game designer.

Specific use case: Digihacked To elaborate on why such roles are required, consider the specific case
of DigiHacked, where players work together in teams to transfer money to another hypothetical company, for
which they have to log in on several sites and collect the information and clues necessary to do so. DigiHacked
has already been discussed in section 2.2.1, so in this paragraph, we only focus on its player role aspect. A
key element in the cooperation between players is the fact that each participant only has a limited subset of all
available information in the game. Only by working together and combining this information can the puzzles be
solved and the game completed. Some of the roles in DigiHacked include the project manager, who, among
other things, has access to a memo describing what the objective of the game is, and a security guard who
has access to a virtual environment showing a security camera feed. These examples clearly illustrate the
need to be able to restrict access to specific resources for players, based on their role within the game.

10 3. Design

Generic use case Having identified the way player roles are used in DigiHacked, we can now establish a
more generic set of requirements where the implementation in section 4.3 has to comply with. Since the set
of requirements depends on whether the user is designing or playing the game, the design for this feature set
is split up in two parts; the part of the player, and the part of the game designer. When looking at the player
perspective, the requirements are fairly straightforward because all the player will notice about the role aspect
of the system, is whether or not access to a requested resource is granted. In addition, the player should also
be able to identify what their role is within the game. It is then up to the game designer to make sure that the
corresponding permissions actually make sense. For example, it would hardly make sense to the player with
the role of the project manager to be denied access to the mail account of the project manager. Below we
discuss the requirements for both the player and the game designer.

Figure 3.3: UML Use case diagram illustrating the design of all human actors required in the roles component of the system. a) the team
that is already present in the current version of M.O.R.S.E. b) the role a player can login to and interact with during the game. c) the
game designer responsible for setting up and configuring roles.

In order for the system to know if a player has access to a resource, the player should be uniquely identifi-
able. This can be done in either of two ways: every player can be provided with a unique login code, which is
then coupled to a type of role (either automatically or by letting the player choose for themselves); or by letting
all players in a team log in with the same credentials and then storing the role of the player in the session. A
disadvantage of the latter option is, that if the player somehow closes the session and opens a new one (for
example if an error occurs on their device) they have to log in again, and the system will no longer know what
their role is in the game. An advantage, however, would be that all players log in with the same code, which
is much easier from an organisational perspective. Despite this, the former method, illustrated in figure 3.3b,
is adopted because it is much more compatible with the system already in place. However, since we kept the
backward compatibility of the product in mind, we also left the option in to have all teammembers with the team
code, meaning no one has a role and everyone has access to all domains, which is represented in figure 3.3a.

The requirements for the game designer are more complex because they are responsible for defining the
roles and their permissions within the game. First of all, the game designer should be able to add and remove
roles from the game. Rather than creating an entirely new web page in M.O.R.S.E., an obvious place to pro-
vide this functionality is the ‘Teams / Clusters’ tab that already exists in M.O.R.S.E., since the management

3.3. Page builder 11

of roles is closely related to the management of players. In addition, game designers should also be able to
specify for each role, what corresponding resources should be granted access to. For this too, could a new
tab in M.O.R.S.E. be created, but it would make more sense to do this in the tab where resources are man-
aged, which is in the ‘Schedules’ tab. In the ’Schedule’, the game designer should be able to specify for each
relevant schedule and schedule item what roles are allowed to access it. If a role is not allowed to access a
schedule, it should also not be able to access the nested schedules and schedule items, because they will
be impossible to reach in the first place. Although this functionality could technically be implemented for all
types of schedules and schedule items, the client indicated this is only necessary for the domains and web
pages described in section 3.1, which is also what we will adhere to. The entire design of the game designer
perspective is shown in figure 3.3c.

3.2.2. Leaderboard
It is a huge addition to an event if everyone present gives it their all to win. No one wants to cooperate in
a team where half the members can’t be bothered to do anything. For a lot of people it helps a lot if there
is a sense of competition, or that there is something to be won or lost. A frequently shown leaderboard that
engages and excites all the participants to try even harder to win, can contribute to that competitive setting.
However, there is already a projector where a leaderboard is shown, and there is also a leaderboard shown
while you are answering question in M.O.R.S.E. So why do we need another one?

The current leaderboards are quite basic and not very easy to customise per player. The best you can do
now is a custom message that can be shown on the projector, however, that message takes the place of
the leaderboard and is a message to everyone, not a personal one for your team. So the only way to show
customisation, is to remove the leaderboard on the projector.

To this end, we designed a solution to have a leaderboard possibly available at all times to the players, that
could also contain customised messages without taking away all the already present elements. For this we
want to recycle as much as possible from the leaderboard on the projector, since we do like the styling with
which it was made.

3.3. Page builder
One of the defined subquestions in section 2 was how the game designer could be able to customise web
pages without having to rely on programming experience. We created a new tab in the M.O.R.S.E. menu,
where we implemented a page builder which is an editor that allows the user to design the style of the web
pages from the schedule. The user should be able to create professional and realistic-looking web pages. In
addition, it is important that the user can utilise the product with minimal to no programming knowledge and
experience. This section describes the design of the page builder.

3.3.1. WYSIWYG editor
When creating a product for creating web pages that does not require programming experience, the WYSI-
WYG (What You See Is What You Get) principle is a possible solution. This means that the effects of the
actions on the final result performed by the users are directly visible. Current editors that claim to be WYSI-
WYG often edit a copy of the data instead of the editing the data directly and can thus better be classified as
‘What you see is what you will get’ systems [3]. The kind of system that is directly editing the data is described
by the TAXATA (Things are exactly as they appear) [3] principle.

For the page builder, the ‘What you see is what you will get’ version of the WYSIWYG principle is used.
The web pages that the user is editing is a copy of the web page stored in the database on the server and
is only updated when the user saves the web page. There are three main reasons for this. First, the user
can experiment with design and changes on the web page and throw the changes away if the result of the
experimenting is not to their liking. This would not be possible with the TAXATA principle because changes
are saved on every action. Reverting to a working version you had before takes a lot of undo actions, which
is not preferable because of the number of possible actions needed for reverting. This could be solved keep-
ing track of saved versions of the work by the user, but this would require a lot of extra logic on the server.
Second, updating every modification to the web page to the database on the server does massively increase
the communication with the server. Since the M.O.R.S.E. system already has quite some latency, this is not

12 3. Design

preferable, because increased communication with the server slows the system even more. The third and
last reason is that with the current design of the domains, web pages saved in the database are automatically
publicly visible for players in M.O.R.S.E. This is something that is not preferable when running an escape
room experience and modifying the web pages, because players are able to see half working web page. One
option is not modifying the web pages whilst running an event, however, this also eliminates or hardens the
option to fix bugs in the web page during the event.

As said, the page builder edits a copy of the web page that is stored in the database. The web page is
stored using HTML and CSS and is displayed to the user in a graphical representation, just as how the web
page would look like when visited by the players of the online escape experiences. This follows the description
of the WYSIWYG principle almost directly. However, there are two minor differences. One is that the web
page is not viewed in the same dimensions as one would see it in a real page. This is because there is space
around the edges for menu’s that allow the modification and storage of the web pages in the page builder.
This design for this is visualised in figure 3.4. The other difference is that the page builder adds some visuals
to the web page to clarify the current selections by the user and to make some elements draggable. When
clicking an element, it is surrounded by a green border and a description of what kind of element is selected.

Elements such as videos and audio, which have click functionality in them are difficult to select using the
page builder. Therefore, a box with a drag icon has been placed in the top-left corner of the element to allow
selection and dragging.

Those menu’s allow for the user to visually drag and drop elements into the web page, as well as replace
those elements, again conforming with the WYSIWYG principle. The modification of those elements is in line
with the WYSIWYG principle, because changes made to the properties of the element are directly visible on
the web page.

Because the user can directly edit the canvas on which the web page is drawn, they do not need the pro-
gramming experience required to understand the underlying code. This same principle has been applied to
the menus in the page builder as much possible.

3.3.2. BuilderLibrary
The existing M.O.R.S.E. website is built with Angular 1. One way of implementing the page builder is to gen-
erate Angular components which can then be compiled and served to the users. The main benefit to this is
that there is a perfect integration with the rest of the M.O.R.S.E. system, which already works with Angular. A
problem with this approach is that the generated web page needs to be recompiled dynamically every time a
web page is created or changed. One of the more bigger downsides, however, is that there is no easy way to
import other web pages or templates that are not made with Angular. A major prerequisite for the web page,
is that it follows the WYSIWYG design as discussed in the previous chapter 3.3.1. If the generated web page
is so closely integrated into Angular, the other M.O.R.S.E. components might accidentally influence the look
of the web page.

Because of these downsides, we decided to take a different approach for the page builder. For the final
design, the page builder contains an iFrame 2 which acts as a completely standalone web page. This means
there is no accidental way the other components can influence the styling or behaviour, since all the CSS and
the events are not propagated through the iFrame. The web page inside the iFrame only consists of normal
HTML, CSS and Javascript without any frameworks. A benefit for this design is that it is trivial to import any
existing outside web page or template as long as it only contains normal HTML, CSS and Javascript. The
exact implementation can be found in chapter 4.4.

The page builder is designed in a way where all the logic is separate from the other Angular components.
This separation makes it easier to control the flow of the program. All the changes that are made to the web
page are executed via the BuilderLibrary. If this was not the case, it would be hard to add more complex
features to the page builder, such as restoring the web page to a previous state. In our design, this is much
easier to implement, since all the user actions are executed from the BuilderLibrary.

1https://angular.io/
2https://www.w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html

3.3. Page builder 13

Figure 3.4: The design of the page builder UI.

Figure 3.5: Overview of the BuilderLibrary.

The sidebar and the top menu of the page builder are made
with Angular components, and never make any direct changes
to the web page. If there is a change they want to make, a func-
tion is called in the BuilderLibrary which handles the request and
makes sure it carries out the right behaviour. The BuilderLibrary
can potentially call other modules internally. These internal
modules are not accessible to the outside since they might acci-
dentally be used inappropriately. A simple call to the BuilderLi-
brary might need to do multiple things to get the desired effect,
such as remembering previous states of the web page, dese-
lecting old elements or doing some cleanup of old memory.

The BuilderLibary also contains some data that is avail-
able to the outside modules, such as the Angular compo-
nents. All the shared data is accessible for the Angular compo-
nents to see, but they should not changes the values directly.
The BuilderLibrary is responsible for setting the correct values.
Some of the outside menu’s might need to know when a certain
event happens. This could be accomplished by letting the menu
continuously check for if a certain value changes in the shared
data. This is, however, not the design we think is most efficient
and appropriate for this problem. Therefore, the BuilderLibrary can store certain event listeners, where out-
side modules can add listeners for a certain event. If the event occurs, the outside module is called by the
BuilderLibrary with a specified callback function.

3.3.3. Linking puzzles in the page
Maybe the most important requirement for the page builder, is the ability to have puzzles on the web page
which can be solved by the players using the existing M.O.R.S.E. system. When a player wants to submit
an answer to a puzzle on a web page, a message needs to be send to the M.O.R.S.E. server. This means
that a script needs to be executed on the client when for example a button on the web page is pressed. This
script contains the code which sends a message to M.O.R.S.E. with the answer the player wants to submit.
There are two possible moments where this script can be attached to the button. The first option is the attach
the script to the button in the page builder already. This seems like a pretty straightforward solution because
the page builder is the place where the actual button is created and the script is a part of the button. The

14 3. Design

Figure 3.6: How an external website is connected to a domain on M.O.R.S.E.

second option is to inject the script at runtime when the web page is served to a player that is visiting the web
page. We decided to go for the latter option, because the submission of puzzle requires some information
which is not known yet in the page builder, for example the id of the player that want to submit the answer.
When the script is injected the moment the web page is served to the player, this problem becomes trivial to
solve, because all the necessary data and subscriptions to meteor are already present. With this approach,
all the communication to M.O.R.S.E. on the external web pages can use the exact same functionalities as the
existing internal ones.

The problem that remains with this approach is the fact that the right scripts needs to the attached to the
right elements on the web page. There might be several buttons, some of which might not even be part of
a puzzle at all or a different puzzle. The solution for this, is to mark the elements that are part of a puzzle
with the id of that puzzle. The can be done by setting a custom attribute of the element. This way, all the
right elements can be found on the web page by searching for elements that have this attribute. The exact
implementation of how this is done can be found in section 4.4.2.

3.4. Hosting
To increase the level of immersion of the external web pages, they will have to be hosted online. There are two
main parts of hosting a web page online. The first part is buying the domain for a website. This is something
that we cannot do automatically for the employees of Raccoon games. The second is putting the website
online and connecting it to M.O.R.S.E. This is the biggest and hardest part and something we can (mostly) do
for employees of Raccoon games.

At the start of the project, different ideas for this part of the hosting and tracking had been researched and
thought out, see appendix C.6 for the options that we considered. Ideas such as to use domain name shad-
owing on a DNS level or cross domain tracking for cookies were considered. Out of these ideas, the iFrame
container has been chosen. To further explain, the idea is that an iFrame will be placed on the external web-
site. This iFrame shows a web page hosted on the M.O.R.S.E. domain. Because the original web page is
hosted on the M.O.R.S.E. domain, the user session and cookies remain intact and the already existing frame-
works for communication with the server of M.O.R.S.E. can be re-used.

The file containing the iFrame only has to be set to the correct web page on the M.O.R.S.E. domain and
then uploaded to the external website. This does require some programming experience because the ‘src‘
attribute of the iFrame tag in the HTML file has to be modified before uploading it to the server.

3.5. Extensibility 15

Although this task does require a bit of programming experience, it also massively increases the immer-
sion. The player of an event will have to navigate to actual external web pages and can see the real looking
web page created in M.O.R.S.E. Thinking that they are on a real web page and interacting with it offers the
immersion that Raccoon games is looking for.

3.5. Extensibility
To allow additions in the future to be as streamlined as possible extensible should be kept in mind throughout
the design of the components. For page builder blocks, properties in the page builder and puzzles on web
pages the extensibility is explained below.

In the page builder, there are blocks which can be drag-and-dropped into the web page. All these blocks
are generated from JSON objects. This means that it is very easy for future developers to add new blocks to
the page builder.

To allow better and more advanced modification of elements in the page builder, new properties can be added
or existing properties can be modified. All the visual components in the side menus of the page builder that
allow for property modification of elements in the web page are generated by a properties file in the builder
library. Therefore, the user does not need to understand the Angular and Meteor based client code to simply
add new properties. Of course, when adding a new and visually different property type in the page builder
that needs other modification tools than the already existing ones, new client code has to be written.

If in the future new puzzle types would be added, the design of how the visual elements for puzzle types
are created is important. To allow specifying these puzzle elements easily, a structure should be present that
defines which elements belong to a puzzle type and what their attributes must be. Per puzzle type, a list should
be defined of what HTML elements that puzzle type exists of. In addition to the elements themselves, their
properties should be definable. For example the HTML tag and their type, ‘input’ and ‘password’ respectively
for a simple password puzzle. This design allows to easily create new puzzles types in the future with custom
HTML elements.

3.6. Backwards compatibility
The addition of the aforementioned features requires some alteration of the database and functionality of the
existing system. One very important consideration in the design process of these changes is that it has to be
fully backwards compatible, that is, old events that do not use this new functionality should still work in the new
system. It should also be possible to add roles, domains and such to these events because the client already
has a multitude of events in place in the old version of M.O.R.S.E., which they intend to migrate to the new
version. In this section, we discuss how each of the new modules is designed to adhere to this requirement
and in 5.1.3 we demonstrate having done so by manually testing the backward compatibility of our application.
In general, it holds that features have been designed as an extension or addition to the system, rather than
replacing or overwriting an old feature. As a consequence, all original functionality will still be in place and left
mostly untouched.

3.6.1. Roles
As described in 3.2, the addition of roles to teams requires a couple of changes to the database and the way the
current login system works. The key idea behind the design that has to make this work is that roles are simply
a special type of team. Rather than implementing an entirely separate system that handles management
and logging in for roles, we use the system that is already in place and extend it, such that it supports both
regular teams, and roles within teams. By making all these extensions optional fields in the database and
not restricting any of the program logic to roles specifically, we ensure that the regular teams still works as
well. As a consequence, the original functionality remains intact, because the regular teams can still be used
alongside the newly added roles.

16 3. Design

3.6.2. Domains
In a similar fashion to how the roles are designed, the new domains are implemented alongside the pages
that M.O.R.S.E. already supports. This way old events that use the M.O.R.S.E. pages can keep on using
these pages and, where desirable, gradually migrate to use the new domains instead. As described in 3.1,
the addition of domains to M.O.R.S.E. means new types of schedules are added to the system and although
schedules are strongly intertwined with M.O.R.S.E., new schedules can be added fairly easily by inheriting
from the other classes that already exist. This way the old schedules are left unaltered and it ensures that
they will still function as they did before.

3.6.3. Page builder
Section 3.3 describes the design of the the page builder. In order to ensure this is fully backwards compatible
with older versions of the system, this entire new module is designed to be a virtually stand-alone application
in a separate tab in M.O.R.S.E., with a very limited set of connections to M.O.R.S.E. In doing so, we guarantee
not only that it can function and be updated independently of the M.O.R.S.E. system, but also that, besides
during the game design process, M.O.R.S.E. can function completely independently from it. This means
events created without the page builder will work fine alongside the page builder since they do not have to
interact with each other in the first place.

3.7. Summary
We now summarise our conceptual ideas for the project. An overview of the design alongside the existing
functionality is shown in figure 3.7. For linking external websites to M.O.R.S.E. and tracking the players’
progress, we introduced the concept of domains and web pages to be added as schedule items in 3.1. Then,
to create more interaction with players on these sites, we adopt the idea of roles, as used in DigiHacked, to
allow the game designer to incorporate teamwork in events, see 3.2. The domains then can be developed
by the game designer in our page builder, proposed in 3.3, without the need for programming experience. Of
course, all domains have to be hosted some way or another and we chose the approach of using an iFrame
container. Since it must be easy to extend the M.O.R.S.E. system, we plan to keep all possible page builder
properties and blocks separate from the more complicated Meteor and Angular code as much as possible,
as described in 3.5. At the end of this project, all the already existing functionality should still be working. In
3.6, we explain our strategy for making sure everything stays intact. By keeping the page builder component
separate from the rest of the system and building the functionality of the roles around the current code base,
rather than trying to weave it in between, we ensure our product stays backward compatible.

3.7. Summary 17

Figure 3.7: An overview of the updated design of M.O.R.S.E. with domains, web pages and roles

4
Implementation

In the previous chapter, we gave our conceptual plans and ideas for how we wanted to solve the questions
stated at the start of the report. For this chapter, we give a more in-depth explanation of how we incorporated
those concepts into the M.O.R.S.E. system.

In 4.1, we explain the code structure of the current implementation along with the frameworks that were
already in place. Then 4.2 will give the implementation details of the domains as a solution for the first sub-
question, namely accessing and interacting with different front-ends. Section 4.3 does the same for the second
sub-question, which was about the cooperation within teams and adding competitive elements, where among
others roles for participating players was offered as an answer. The technical details for the solution for the
third and final sub-question about how one should be able to construct and customise the different front-ends
are given in 4.4, which is about the proposed page builder.

4.1. Current implementation
To provide some context for the following sections, this section is dedicated to sketching an overview of the
current implementation of M.O.R.S.E. Since section 2.2.2 already discusses the general structure and compo-
nents of M.O.R.S.E., we only discuss aspects of M.O.R.S.E. specifically related to its technical implementation.
While many of our choices regarding design and implementation are largely based on their compatibility with
the system that is already in place, the purpose of this section is only to provide context for the subsequent
ones, we limit the scope to implementation details relevant to the features we have added, rather than pro-
viding a full in-depth analysis of the current implementation. For a more thorough discussion of the parts left
undiscussed in this report, we refer to the corresponding bachelor thesis for the initial design of M.O.R.S.E.
2.0 [4]. In this section, we discuss the general architecture of the system we have extended, as well as the
frameworks used and a brief analysis of the structure and implementation of some of the components that are
most relevant to the scope of this project.

4.1.1. Architecture
First of all, we discuss the architecture of the system that is already in place. M.O.R.S.E. uses a client/server
model, where the clients are single-page web apps that run a web browser. Multiple different web apps exist
for different kinds of end-users. For example, there is a separate player app and an admin app. Regardless of
their respective end-users, these web apps communicate with the server about changes in the data and about
actions executed on that data. The client keeps a local copy of a part of the database that is relevant for them,
which is then updated whenever a change occurs in the original database. It is important to note though, that
the client is not allowed to alter the database directly. All changes to the data have to the made by sending a
request to the server, which then updates the database and sends a response, possibly accompanied by the
changes made to the database. All code of the program has been divided into three large sections. A part
for the server, one for the client and a shared part called the imports, that is used by both. The latter ensures
that the client and server are both working with the same data types and functions to act upon this data.

19

20 4. Implementation

4.1.2. Frameworks
M.O.R.S.E. is an application built using TypeScript 1 and uses several frameworks for the management and
rendering of data. We briefly describe the frameworks used, since we ended up using them as well.

Meteor The server uses the Meteor.js2 framework, which is responsible for the interaction with the database
and providing a layer for communication between the server and the client. Meteor provides so-called server
methods that can be called by the client, which are hooks for different pieces of server code that the client
needs to interact with the database. Because not all data should be publically available, Meteor offers a
subscription-based model for distributing the data to the client. The client can subscribe to one or more pub-
lications of the Meteor server, and these subscriptions directly update the clients’ local copy of the database.
This way, the clients’ access to the data can be fully controlled by the publications that offer the data to the
clients.

MongoDB, Minimongo and Astronomy.js MongoDB3 is used as a database, which has a pretty big im-
pact on the overall design of the data structures because Mongo uses a document-based model, rather than a
relational data model. As a consequence, related objects are often stored as nested documents, rather than
separately. In order to convert these documents back into objects that can be used in TypeScript, Astron-
omy.js 4 is used, which provides a document-to-object mapping for MongoDB. This means documents can
be interacted with as if they are regular Typescript objects. It was already mentioned that the client stores a
local copy of a small part of the database. This is done using the Minimongo 5 library.

Angular Since the client serves as a view for the data supplied by the servers publications, this view has
to be updated reactively. That is, whenever a relevant part of the database is updated, the view of the client
should be updated as well. To this end, Angular.js 6 is used. Angular is a front-end framework that uses
components which can be nested into each other, which greatly enhances the modularity of the application
while providing methods to easily make the client fully reactive.

4.1.3. Components
Many of the features we have added are extensions of components that already exist in M.O.R.S.E. In order
to provide a clear context for the following sections that discuss these new features, we will briefly describe
the most relevant components in the system. For a more in-depth description of these components, we again
refer the original M.O.R.S.E. bachelor thesis [4]. Sections that build forth upon an existing component will
also discuss the relevant aspects and attributes of these components, so the description below is meant
solely to provide the reader with some perspective regarding the place and purpose of these components
within M.O.R.S.E.

Users All players and admins in M.O.R.S.E. have a corresponding User object, where their credentials, state
and progress are stored. All information regarding gameplay is stored in a nested object called a UserProfile.

Puzzles Puzzles are arguably the most important components in M.O.R.S.E., because they facilitate the
interaction with the player. A puzzle object stores information about what the question is and what the possible
answers are. Different kinds of puzzles exist, such as open questions and multiple-choice questions. We have
also added two new puzzle types: form puzzles, which are open questions with several inputs, and page visit
puzzles, which (as their name implies) require the player to visit a page in order to solve the puzzle. Both of
these new puzzle types are discussed in section 4.2.4.

Rulesets Rulesets are used to define automated events within M.O.R.S.E. that can be triggered by, for
example, a player solving a puzzle. A rule in the ruleset consist out of three different elements: triggers,
conditions and actions. The triggers of a rule determine when the rule should execute, whereas the conditions
1https://www.typescriptlang.org/
2https://www.meteor.com/
3https://www.mongodb.com/
4https://atmospherejs.com/jagi/astronomy
5https://www.npmjs.com/package/minimongo
6https://angularjs.org/

https://www.typescriptlang.org/
https://www.meteor.com/
https://www.mongodb.com/
https://atmospherejs.com/jagi/astronomy
https://www.npmjs.com/package/minimongo
https://angularjs.org/

4.2. Domains 21

represent extra constraints that have to hold in order for the attached actions to be executed. The conditions
are optional. We have added both triggers and actions to M.O.R.S.E., which have all been documented in the
following sections. Most of them have to do with navigation between, and interaction with web pages.

Schedules All gameplay in M.O.R.S.E. is part of a schedule item. These schedule items dictate the general
flow throughout the game. Rulesets can be used to move a player from one domain to another. The schedule
item where a player is in determines which of the aforementioned gameplay elements they gain access to. We
have added several schedule items to M.O.R.S.E. including domains and web pages, which are discussed in
the next section as well as section 4.3.2.

4.2. Domains
Inline with the design of the domains proposed in section 3.1.1, inheritance is used for the new schedule
types. The domain schedule items are inherited from the schedule group item. This existing schedule type
could be used to group together other schedule items. A restriction was added such that only web pages
could be added to the domain schedule instead of all schedule types. Just like schedule groups are the base
for domain schedules, the puzzle schedules were used as a base for the web page schedule. Because the
puzzle schedules are also a collection of puzzles, most code could then be used by the web page schedule
as well. However, the existing type-checking was done using a type field, which would not work nicely with
the inheritance we added. Therefore we updated some of the type checking to use the TypeScript keyword
instanceof. A sample conversion can be found below to illustrate this further:

/ / Old sn ippet :
schedule . type === ’ ScheduleGroup ’
/ / Updated sn ippe t :
schedule ins tanceo f ScheduleGroup

By inheriting from the existing schedule item types, the schedules could be stored alongside the existing
schedules in the database. Since domain schedules are more complex than the schedule groups, extra fields
were added for the domain name and whether the domains was external or not. As discussed in section 3.1
external refers to whether the existing M.O.R.S.E. layout will surround that domain. For the implementation,
this field determines which domain component is rendered. The internal domain component extends the
external one to minimize code duplication since the functionality is practically equal, but only the layout is
different. Additionally, a field for the role access was added to allow for access control. More on this topic can
be found in section 4.3.

4.2.1. Web pages
The web page schedules are a bit more complex than their puzzle schedule counterpart. Just as the puzzle
schedules, the web page schedules store the contained puzzle. However, a new link was added to the visual
representations of the pages. This page collection is a separate collection in the database. Although currently,
the mapping of web page schedules to the pages is one to one, the decision to create a separate collection
was deliberate. First, this separates the visuals from the logic behind it. Rarely both the visual elements of a
page are required as well as the schedule logic behind it. For example, when editing the schedule, the content
of the page is irrelevant. Vice-versa this holds for editing the content of the web page using the page builder.
In addition to compartmentalising between the content and the logic, it could allow future extensions of the
system to link multiple schedules to the same web page.

4.2.2. Users
To be able to store which teams or users are on what web pages, the user’s profile was used. This was done
to keep it consistent with the existing storage of what the current schedule item for each team is. As explained
earlier in section 3.1, the system should allow users to access multiple domains at the same time. Therefore,
the user’s profile stores the current web page for each domain for that team. To move a team on a domain
from one web page to another, the corresponding domain entry in the user’s profile has to be updated to reflect
the new web page. Changing this can be done using a new action, which is explained in more detail in section
4.2.3. This implementation also saves the progress on a certain domain. Therefore users can close their
browser without losing any of their progress. When a new team is created, they are automatically assigned
the first web page of every domain schedule. This reduces the number of rulesets needed and improves

22 4. Implementation

Figure 4.1: An entity relation diagram showing how domains, web pages and user profiles relate to eachother

usability for the game designer. For an overview of the relations of users, domains and schedule, see figure
4.1

4.2.3. Additions to rulesets and schedules
Now that we have arranged for the hosting of domains and web pages, we also want to make them interactive
and track the interaction the players have with the web page. This is vital to provide an answer to our first
sub-question asked in chapter 2. The following paragraph explains what has been added in order to provide
different kinds of interactions with web pages.

Page visit trigger It can be useful to know when a certain team has visited a certain web page, but this
would be difficult to find out with using just the M.O.R.S.E. system. Especially if you want to perform other
actions when someone visits a certain web page, additional solutions would have to be programmed. So, for
this specific problem we created the PageVisit trigger. As the name says, this is a trigger that goes off when
a certain web page is visited.

Button trigger Buttons can be used for various purposes on domains. Often you want certain actions to
be executed when a button is pressed, for which you require a certain function to be executed. To greatly
increase the possibilities of the M.O.R.S.E. system, we added a button trigger, which skips the phase of having
to write a function that has to get executed, and causes certain actions defined within the M.O.R.S.E. system
to be done the moment a certain button is pressed. Not only does this allow for more interaction with the
current web page, but to also easier interaction with the M.O.R.S.E. system.

Redirect action As discussed in section 4.2, domains can contain several web pages. We ideally want to
be able to switch between them. For this cause, we implemented a special action that can be called by a
trigger, the redirect action. This prevents that the game designer has to arrange all these redirects by hand.
By specifying a domain and a web page, the action sets the shown page of a domain to the specified page. If
you have the domain opened, the content of the web page will switch towards the specified page. If not, then
the next time you open the domain, then you will see that web page (unless it has been changed again by
another trigger in the ruleset).

Page hint action When a team is stuck on a certain puzzle, the old M.O.R.S.E. system could send a (pos-
sibly predefined) hint to help that team on their way. This is still possible, but with the new adjustments, it
is very well possible for a team to get stuck on a puzzle not placed in M.O.R.S.E. but on a web page. If the
administrators then send a hint, the players might not see it, since it would only show in M.O.R.S.E. and not
on the web page they probably have opened at the time. Therefore, a ruleset action was required that would
show a hint to a team while on a domain. This is now present on the system, in such a way that you get a
similar popup as others, but a page hint does not disappear on its own. It waits until the player clicks it away,

4.3. Player interaction 23

thereby confirming that they have seen and hopefully read the hint. If they accidentally click it away without
reading, they can approach the staff present at the event who then can easily re-execute the action so the
players get shown the same hint again.

4.2.4. Puzzles
The immersive aspect of an online escape experience is mainly caused by puzzles placed on web pages in
such a way that the player is solving the puzzles, without them having the feeling that the puzzle is part of
M.O.R.S.E. but part of the site. This contributes to the puzzle seeming like a real problem.

Since domains and web pages weren’t part of the M.O.R.S.E. system before either, implicitly puzzles on
such web pages weren’t present either. In the page builder explained in 4.4, you can insert various input
elements who can be linked to puzzles created in the schedule editor from the M.O.R.S.E. system. If the
player gives some input to these elements, the system submits them as answers using the regular workflow
of questions within the M.O.R.S.E. system. We made sure the existing puzzle types could be used, but we
also added some new puzzle types of our own.

Form puzzle Even though we can now put puzzles on web pages, there was still an important action often
found on web pages that could still not be added intuitively, namely logging in. A log-in screen could techni-
cally be constructed using two separate text input puzzles, but then you would have to submit these puzzles
separately, while as with real login systems, it gets submitted as a whole. You want two answers getting
verified at the same time.

To not only allow for login puzzles, but also for puzzles with more than 2 input fields at once, we have im-
plemented the form puzzle. This puzzle allows exactly what is described for a login system if you were to
create a form with only 2 input fields. For more complex puzzles, you create a form with more input fields,
allowing the game designer to increase the difficulty of his online escape experience as he wishes. To allow
for even more flexibility with form puzzles, the input type for each of the input fields can be changed. The usual
text, password and number fields can be added for some basic forms. These are however just a small subset
of the available inputs in HTML7. In M.O.R.S.E. we also support more uncommon types such as colour, date,
time, and week.

Page visit puzzle As stated in the problem description, it was hard to keep track of the progress of all the
teams regarding what sites they have found and visited. Since you are not doing something active, but some-
thing passive like visiting the page, it is very hard for the project staff to see what your progress is within the
event regarding the domains. It is quite cumbersome to program something that keeps you updated whenever
a domain is visited.

Mainly for creating such awareness of progress without having to rely on programming experience, we added
the page visit puzzle. This puzzle can only be solved by visiting a specified URL which would be the ‘answer’
of this puzzle. It is not necessary a puzzle that a player conscientiously solves, even though you can use it as
such. The main addition is that the administrator and game hosts can see what web page has been visited
by which team. With this, the earlier stated problem is solved, since not only does the project staff know what
knowledge is available to each team, but also for how long this knowledge has been available. This is very
useful information for deciding if a certain team needs a hint.

4.3. Player interaction
In section 3.2, we explained the conceptual design and motivation for elements for extra player interaction.
We first explain how we wove the roles functionality around the existing system. Then we detail how we have
implemented an additional, more personally customisable leaderboard.

4.3.1. Roles
In this section, we describe both the data structure and component interaction of the roles module in the
application. In 3.2, we described how the required functionality of the roles can roughly be divided into two
7https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input

24 4. Implementation

parts: the management of roles (the game designers perspective) and the actual usage of those roles (the
players perspective). We will adhere to the same structure in this section since these parts can almost be
perceived as independent. Up until this point, the term ‘role’ has been used to both refer to a type of role
in general, as well as a specific instance of such a role type. Since this section contains a more detailed
description of these roles, we will strictly distinguish between role types and role instances, from here on out.
In the first half of this section, we provide an overview of the data and interactions in the management part of
the roles, where we have look at how role types are created, deleted and assigned permissions. In the second
half, we discuss how players use instances of these roles to login to M.O.R.S.E. to access and interact with
resources such as web pages and puzzles.

Role management: data
The game designer is responsible for creating role types in an event and assigning them the proper permis-
sions, such that each player can only access a subset of the information required to solve a puzzle. Most
functionalities added to support this are located in the admin module of the client. More specifically, in this
admin view, we only add visual elements to the ‘Teams / Clusters’ tab and the ‘Schedules’ tab of M.O.R.S.E.
The addition of roles to M.O.R.S.E. required changes to be made to three of the major data structures in
M.O.R.S.E.: the Event, which stores general information about the configuration of the event; the User, which
stores all account-related data of a player; and the ScheduleDomain, which was added as a part of this project
to facilitate extra front-ends to M.O.R.S.E. Please note that all of those changes are additions of extra optional
fields, rather than actual changes to existing fields. Therefore, these data structure will still behave correctly
when used in the contexts they were originally intended for. The data structures are all implemented as As-
tronomy.js classes, each stored in their own MongoDB collection. Each of the aforementioned classes is
discussed below.

• The Event structure only required a small change, because the only thing that needs to be added for
the desired functionality is a list of all available role types within a system. These types are stored as
GameRoleType objects in an array inside the attribute availableGameRoleTypes in an Event. Such a
GameRoleType only contains a string representing the name of the role. One could argue that the entire
object might then be just as well replaced with a single string, but we chose not to do this because an
object provides much for easier extendability in the future.

• The data structure of User is probably the most significant decision to be made in the implementation
of roles because it directly affects how users will interact with them. Several alternative structures were
considered before deciding to use the User class that already exists and extend upon it, rather than
creating an entirely new class for the new functionality. At first, we were quite hesitant to incorporate
the roles into the User class, because this meant we would have to be very careful not to break any
of the already existing functionality. A huge drawback of implementing an entirely new class, however,
would be that there would be a lot of code duplication since most of the methods for managing user
accounts and logging in to them from as a player were already in place. Because of this, we ended up
implementing the roles as a specific type of User referred to as a ‘GameRoleInstance’, while changing
as little as possible about the way Users behave. By adding fields to the User object that store their
role type, as well as one for storing the team they belong to, we did not have to change any of the
existing attributes of the User class. The fields for role type and parent team are respectively named
‘gameRoleType’ and ‘parentTeamId’ in the User class. Both fields are strings, and optional, such that
they can be left empty if a User is not a role instance. Each User object also has a nested UserProfile
object and, therefore, a role instance will also require one. The second half of this section describes
how such UserProfiles are created for- and synchronized between role instances and teams.

• The ScheduleDomain class was added to M.O.R.S.E. as part of this project to facilitate creating man-
aging groups of web pages in the schedule editor of M.O.R.S.E. This class was only assigned one extra
field, called the rolesWhitelist, storing a whitelist of role types for that domain. A user should only be
granted access to this domain if their role type is included in this whitelist. It would have been possible
to add such whitelists to other schedule items in M.O.R.S.E. as well, but this would have been much
harder since there is an important difference between how the progress is stored in regular schedules
and in domain schedules. A user is at all times considered to be inside a domain schedule, whereas
they can only be in one ‘regular’ schedule at a time. As a consequence, if a role is denied access to a
schedule item that their team is in, they can’t do anything until their team progresses to the next stage.

4.3. Player interaction 25

Figure 4.2: An UML sequence diagram showing how game designers can create role types and instances, and how this affects other
components in the system.

26 4. Implementation

Role management: functionality
Having extended our classes in such a way that they can store all information required for the new functional-
ity, we are able to implement the interaction between these classes. From the game manager’s perspective,
such interaction should include the management of role types, instances of those roles and their permissions.
We discuss each separately below.
In order to be able to add role types to an event, we have added a form on the ‘Teams / Clusters’ tab of
M.O.R.S.E. where the game designer can add a role type by typing a name and pressing return, and remove
roles by clicking the ‘x’ button on the corresponding tile or pressing the backspace key. Role types are dis-
played as a list of rounded badges, which have been implemented using the Material Chip components of the
Angular-material library. Since this only updates the list of types in the front-end and loses track of all types as
soon as the page is refreshed, it has to be connected to the database as well. One of the design principles of
M.O.R.S.E. is that database entries can not be changed from the client. This means that, in order to add the
types to the Event in the database, Meteor methods for getting, adding and removing role types are required.

Having implemented the management of role types, specific instances of the role can still not be used, be-
cause they require entries to be made in the User collection as well. Using the createUser method that was
already in place, new accounts are created for each role type whenever a team is created. And similarly, role
instances will also be created for every team if a new type of role is added. If a role type or user is removed,
their onRemove event handler in the Astronomy.js class is called, in which the corresponding instances are
also removed. This process of creating and removing role types and instances is shown in figure 4.2.

After having defined the types of roles that exist within an event, they can be added to whitelists in the domain
schedules. For this, the same type of material chips are used as for the management of role types, but this
functionality is located in the ‘Schedule’ page of M.O.R.S.E. When these chips are added or removed, they
are also updated accordingly using the ‘Schedule.update‘ Meteor method that was already in place for the
original schedules. How these whitelists are used to grant or deny a player access to a web page is described
in the remainder of this section.

Figure 4.3: A UML diagram showing how
the User and Role class relate to the
TeamPuzzleStatus and UserProfile

Role accounts: data
An important aspect of the gameplay experience of players is the fact that
they can progress throughout the game and reach new puzzles and chal-
lenges. This requires the progress to be stored in the backend as well.
In M.O.R.S.E. the progress of a player is stored in their UserProfile ob-
ject, and their answers to puzzles and whether they have been solved are
stored in an object called a TeamPuzzleStatus. Belowwe discuss how both
are shared or synchronized to allow players to work and progress through
the game together. The data structure of these TeamPuzzleStatuses and
UserProfiles is also shown in figure 4.3.

• A TeamPuzzleStatus is an independent object in the database. Con-
sequently, these objects can easily be shared between teams and
their role instances, because they can use references to the same
objects. In doing so, a team and its corresponding role instances use
the same object to store their progress for each puzzle and, there-
fore, automatically progress together as well.

• Earlier in this section, we already discussed the changes made to the
User class. We also mentioned that each account has its own nested
UserProfile attached. Since these are directly part of the User class,
rather than being referred to, it is not possible to let role instances
and teams share these profiles. Rather than extracting these User-
Profiles from the User class and introducing a new level of indirec-
tion between the two, we chose to synchronize the profiles of role
instances and users. Whenever a profile of a role instance is up-
dated, it sends the changes to the corresponding team’s profile as

4.3. Player interaction 27

Figure 4.4: A UML sequence diagram describing how users can submit puzzles regardless of whether they are a team or a role instance.

well. Similarly, if a team’s profile is updated, the changes are also
forwarded to all corresponding roles.

Role accounts: interaction
Finally, we discuss the interaction between a role instance and its corresponding profile and puzzle statuses
and how these have been implemented. When a player visits a domain, the Angular router ensures that they
are redirected to the correct web page. In order to ensure that role instances can only access the domains
their roles are whitelisted for, a router guard has been added to the ‘/domain’ route in the Angular router. This
router guard will decide whether a user should have access to that route every time the user tries to access
the site. If a team tries to access the domain though, the router guard will always return true, to ensure teams
always have access to all domains.

When a player attempts to submit an answer to a puzzle, an extra check is executed, which identifies whether
the player is a team or a role instance. If the player is logged in as a team, the puzzle will be submitted as
normal, but if the player is a role instance the puzzle is submitted using the instances parentTeamId. This
process is shown in figure 4.4.

One of the main aspects of M.O.R.S.E. is its functionality regarding rulesets and schedules. These should
also work in combination with role instances. Luckily, these all use the UserProfile to interact with the player
and since we have already synchronized those within a team, rulesets and schedules will automatically work
too.

28 4. Implementation

4.3.2. Leaderboard stage
Here we introduce the leaderboard stage, which can be added in the schedule within M.O.R.S.E. Along with
the showcase of the timer and leaderboard, the game designer can also choose a custom message to be
displayed on this stage. In contrary to the projector, this message is displayed simultaneously with the other
elements. This is possible since this stage is only displayed on the screen of the user, meaning the text is
allowed to be a much smaller size, while still being readable. On the projector, it is projected on the wall of
the location of a certain escape event. Then the text needs to be big enough that everyone in the room can
read it, therefore not allowing enough room to keep displaying the leaderboard and timer.

The game designer can create multiple leaderboard stages, who all have their own custom text. This allows
the game designer to redirect different users to different stages, meaning they get shown different messages
(think of a leaderboard with the text ‘You did it!’ and another one with the text ‘Better luck next time!’).

4.4. Page builder
The goal of the page builder is to be able to design professional-looking web pages that can be used by
M.O.R.S.E. This should be possible without needing any programming experience. The page builder does
not create the web pages, this happens in the schedule. After the web pages are created, they can be opened
in the page builder. Each web page starts out empty without any elements, even though the page schedule
item might contain puzzles. Once a web page is opened in the page builder, new elements can be drag-and-
dropped into the web page and the style of each element can be changed. The puzzles components can
either be drag-and-dropped or linked to existing elements on the web page.

The structure of the page builder is separated into two parts. The first part is the visual representation of
the page builder for the user. This contains the menus and the canvas where the user has to design the web
pages. This visual part is integrated into the current M.O.R.S.E. system with Angular. This part will be further
denoted as the page builder tab. The second part is the logic behind the page builder, from now on denoted
as the builder library. This builder library modifies the canvas based on the interaction of the user with the
page builder. The division between the two is made to clearly separate code regarding logic and page builder
visuals. Because of this, the code is a lot more maintainable and it is easier to modify menu’s of the page
builder without it breaking canvas logic and the other way around. Both parts reside in the client-side of the
M.O.R.S.E. system. The reason for this is that the builder library is directly modifying the HTML document for
visual changes during web page creation and modification by the user. The visual Angular code is client-side
because the rest of the visual Angular code is also in the client-side. Therefore, letting this be generated
server-side makes no sense.

4.4.1. Page builder tab
As mentioned, the page builder tab is made using Angular in the client-side of M.O.R.S.E. Since this is a
feature that should only accessible by the admins of an event, a new tab in the admin page of M.O.R.S.E.
has been created. Because of this, the page builder tab still has all of the M.O.R.S.E. admin functionalities
provided by Angular and Meteor 8, as well as the M.O.R.S.E. admin menu, to quickly switch from the page
builder tab to other tabs for a fast event creation workflow. The styling of the page builder has been done by
using Angular Material 9.

The structure and implementation of the page builder tab have been divided into multiple smaller compo-
nents to keep a good overview and have separation of the code. The structure of this is visible in figure 4.5.

The top component, the page builder tab, has been divided into three components, namely the canvas, the
side menu and the top menu. The canvas contains an iFrame in which the user can create and customise
the web pages from the scheduler. Because all the logic is done in the builder library, this is a rather small
component only containing the necessary code for instantiating an Angular component and some styling.

The top menu contains the buttons that call builder library actions regarding the whole web page inside the
canvas. This means actions such as loading and storing a web page, clearing the page on the canvas and

8https://www.meteor.com/
9https://material.angular.io/

https://www.meteor.com/
https://material.angular.io/

4.4. Page builder 29

exporting the web page.

The side menu contains all the options for modification of parts the web page in the canvas. It allows for
dragging new blocks into the page, connecting selected elements in the web page to puzzles and triggers in
the M.O.R.S.E. system, modifying the styling, text and attributes of selected elements in the web page and
allows for importing and exporting custom HTML, CSS and Javascript. Those features are divided into four
different tabs of the side menu, namely: blocks tab, puzzle tab, properties tab and the customization tab.

The blocks tab has all the draggable web page elements available for the user. Those elements are split up

Figure 4.5: Structure of the page builder tab.

in groups to keep a better overview of the available blocks. The current groups are Layout, Basic, Inputs, Pre
Built and Advanced. However, as mentioned before, the names, order and the available elements itself can
easily be changed when needed. This tab also contains a custom HTML block. This is a block in which it is
possible to write HTML code and drag that custom written HTML into the web page directly as an element.
Because of this, the user is not limited to only the elements made available by the page builder. This does
not even require real programming experience if the user were to just copy a snippet of HTML code from the
internet.

The puzzle tab contains the UI for connecting elements from the web page to the puzzles and triggers in
M.O.R.S.E. It is possible to connect an existing web page element or to drag and drop a new, generated,
element that contains all the required inputs of for the puzzle or trigger. This generated element is then auto-
matically linked correctly to M.O.R.S.E. In 4.4.2 we will explain how this works exactly.

The properties tab contains UI for styling the selected element on the web page. It also allows for text edit-

30 4. Implementation

ing and modification of attributes of the element. The user can modify the style of the element by changing
values in text inputs, sliders and colour pickers. Because of this, no programming knowledge is required to
change the styling of elements. Every modification to those inputs is directly visible on the web page itself.
Therefore, the users directly know what they are editing, making the utilisation of the page builder a lot more
understandable. Every input that changes a certain part of the style of a selected web page element is a
property component containing the type of input and its values. This is required for proper generation of the
UI with the JSON object that contains all the available properties.

The customization tab contains the UI for importing HTML and CSS. This can be done by either importing
a file or pasting the code into a text area. This tab is very useful for loading templates or loading existing web
pages when converting a website to the M.O.R.S.E. system. This feature can also be used to transfer web
pages from one event in M.O.R.S.E. to another event.

4.4.2. Connection to M.O.R.S.E.
The connection of the web pages and the M.O.R.S.E. system consist of linking callbacks to HTML elements
in the web pages. This section will detail on how this is done for puzzles and triggers used on said web pages.

The web pages in M.O.R.S.E. are created in the schedule and stored in the database. Each web page has
the possibility to contain puzzles which should be present on the page. This does not happen automatically,
because there is no way for the program to know exactly where the puzzle elements should be in the page.
The page builder can be used to open the pages and show them in the canvas after which they can be edited.
The puzzles that belong to the page can either be inserted to the page, or linked afterwards to an existing
element on the page. Although the puzzles have to be inserted into the page with the page builder, they are
not immediately connected to the M.O.R.S.E. system yet. The actual connection of the puzzle on the page is
made the moment a player actually visits the page.

Each puzzle consists of multiple components that need to be linked to an element on the page. Concretely,
each answer component needs to be linked to an input field on the page, and each question needs to have
a submit button which can be clicked on to submit the answer. This is accomplished by setting the ‘puzzleId’
attribute of the HTMLElements to the ID of the corresponding puzzle. Setting this ‘puzzleId’ attribute in itself
does not do anything yet. It only stores the attribute value in the HTML page. When the page is fetched from
the database to show to a player, it searches for all the element on the page which have the ‘puzzleId’ attribute.
Then, an event handler is attached to the submit button which will be executed when the button is clicked by
the player. The script submits the answer to M.O.R.S.E. by getting the values of the input-fields which contain
the same ‘puzzleId’ attribute. In section 3.3.3 we describe the pros and cons of the aforementioned methods.

Figure 4.6: How a puzzle is connected to M.O.R.S.E.

Triggers are connected to the page in a very similar way to the puzzle. In the page builder, when an
HTMLElement is linked to a trigger, it only sets the ‘triggerButton’ attribute value to the Id of the trigger. Again,
setting this ‘triggerButton’ attribute in itself does not do anything yet. It only stores the attribute value in the

4.4. Page builder 31

HTML page. A difference compared to puzzles, is that triggers can be linked to multiple HTMLElements on
the page. This means a player can possibly click on multiple elements to execute the same trigger. The main
reason for this design choice is because redirect triggers are used to navigate the pages on a domain, and in
a lot of real-world pages there are multiple buttons to go to another page.

4.4.3. Builder library
The builder library is where all the logic and the state of the page builder is handled. As mentioned, this is also
done in the client-side. Because of this, every user has their own session, which will be reset when switching
to another web page or when closing the browser. The different parts of the builder library are discussed in
this section.

Data folder
The data folder in the builder library is a folder containing all the templates and the blocks and properties for
which UI has to be generated. Because of this folder, adding new templates is a matter of adding a new file
and including it into the list of templates. Adding new blocks and properties is as simple as copying one of the
already defined blocks and modifying it to your liking.

As mentioned before, the blocks are split up in groups of similar blocks. Every block group has a name to
display in the UI and an array that contains all the blocks. Every block itself also has a name to display in the
UI and a variable containing the HTML code that should be put in the web page when dragging and dropping
the block.

The properties are more complex than the blocks. There are multiple property types. Each property in-
stance has different variables based on their type, such as min and max values of sliders and the options
for a dropdown. Each property type has got its own class such that those variables are set correctly when
the class is constructed and to keep code variables separated and exclusive for the according type. These
classes all extend the property class to enforce that every property type has all the basic variables needed.
All the properties that the page builder should show in the UI are exported as an array containing instances of
the aforementioned property classes. These properties classes are then used in the page builder to generate
the Angular code needed to display the styling options in the page builder.

Shared data
The shared data refers to an object in the builder library that contains all the variables that are visible to the
outside, in this case, the angular components. It keeps track of the save state, the selected element, the
selected page and event listeners needed by page builder components. The shared data uses the save state
for popups if the user tries to leave the page while it still has unsaved changes. The selected element is
used for rendering the properties display in the properties tab. The selected page is required for saving and
loading pages, as well as showing the user which page they are currently editing. The event listeners are used
such that the builder library can notify subscribed components of changes. It is currently used for displaying
snackbars 10, which are angular material popups, to notify the user of the effects of their actions in the page
builder. Another usage is to notify the page builder that a new element is selected and that new information
has to be displayed based on that newly selected element.

10https://material.angular.io/components/snack-bar/overview

https://material.angular.io/components/snack-bar/overview

32 4. Implementation

Figure 4.7: Overview of the PageMan-
ager.

Page manager
The page manager is responsible for all the changes that happen
to the page. The reason for this is that it can easily remem-
ber all the changes that happened throughout the session. The
changes to the page are encapsulated in an Action object. The
Action class is an abstract class which contains an ‘execute()’ and
an ‘undo()’ method. Each action inherits this Action class and
must implement the two methods. For all the actions, it is crucial
that the ‘undo()’ method does exactly the opposite of the ‘execute()’
method.

The actions are the only way to edit the page. This allows the page
manager to undo and redo all the previous actions. The memory of the
actions is cleared every time the user switches to another page, and is not
restored when you go back to the old page again. This is because there is
only a single instance of the action memory stored locally.

Drag and drop
The goal of the page builder is to let the user be able to create pages with-
out requiring any programming knowledge. An intuitive way to accomplish
this is by using drag-and-drop for all the element on the page. There are
several important things to consider for making dragging-and-dropping feel
intuitive. The first is to have some indication of where the block will go. This
is done by displaying a marker on the exact location a block would go if it were to be dropped. The position
of the marker is continually updated whilst dragging an element somewhere over the page. The second con-
sideration is to make sure the blocks are inserted at a logical position. This is not trivial at all, since there is
no way to be completely sure where the user wants the block to be inserted. The last thing we keep in mind,
is to allow the possibility of more complex page structures such as nested elements.

The following pseudo-code describes the simplified algorithm which determines the marker position.

i f the t a r ge t does NOT have ch i l d r en
=> then compare the d is tances from the cursor to the borders o f the t a r ge t

i f the cursor i s below a ce r t a i n th resho ld
=> then i n s e r t the block BEFORE the t a r ge t

i f the cursor i s above a ce r t a i n th resho ld
=> then i n s e r t the block AFTER the t a r ge t

otherwise
=> then APPEND the block to the t a r ge t i t s e l f

i f the t a r ge t does have ch i l d r en
=> then f i n d the c loses t c h i l d o f the t a r ge t

i f the cursor i s above the c loses t c h i l d
=> then i n s e r t the block BEFORE the ch i l d

otherwise
=> then i n s e r t the block AFTER the ch i l d

There are some additional notes about the pseudo code above. The threshold is dependent on the target
label. This is the case since it makes it easier to drop blocks in an empty container element for example,
whilst making it more difficult to accidentally drop a block inside a text element. For elements that can not
have children, the threshold is always in the middle to prevent the user from dropping anything inside it. There
is also an additional rule (not present in the simplified algorithm above) which checks if the cursor is really
close to the edge. In this case, the block is inserted before or after the target instead of inside. This handles
the case where the target element and its child element have no space between them and it would not be

4.5. Summary 33

possible to insert anything in between.

It is also important to note, that all the comparisons of the positions only look at the value on the y-axis.
The reason for this is that all the element on the page are stored as HTML elements. The structure of HTML is
hierarchical and doesn’t have a single straightforward solution for encoding their position on the x-axis. There
are several ways to position element left or right from other elements (floats, flexboxes, grids, etc.), and they
are often not compatible with each other which makes it even harder for it to work with imported HTML code.
Although implementing the ability to place elements next to each other would be possible, it would take a
significant amount of time to do this and would come at the cost of working on other parts of the project. Even
then, making it work with imported HTML code would be even more difficult, since the method it uses can be
completely different from our solution and might not be compatible. It is still perfectly possible to position the
elements in the page builder by changing the proper properties of the element, but it is not possible to do this
with the drag-and-drop functionality.

InputHandler
Most of the user input is originated from the side menu, where the user can click on buttons to change the
properties of the selected element on the page or start dragging new blocks into the page. However, some
of the input needs to be handled by the page itself, such as handling the drop of a new block or selecting an
existing element. The InputHandler module is responsible for handling these input events. The InputHandler
also checks for hotkeys that are being pressed.

inputevent action(s)

ondragover update the position of the marker based on the position
of the cursor

ondrop insert the block in the position of the marker
onclick select the element
onkeyup check which key is released and act accordingly
onkeydown check which key is pressed and act accordingly

4.5. Summary
After the design description in chapter 3, we now covered the implementation details of our product. We
discussed the existing frameworks of M.O.R.S.E., such as Meteor and Angular for the front-end display and
MongoDB as the database. Components of the code base were covered and explained next, being the users,
puzzles, rulesets and schedules.

With the current implementation covered, we moved on to the implementation of our designed proposals.
The first sub-question was how the the hosting and interacting with the websites would happen. To this end,
iFrames were used for hosting sites and the domains and pages were added as schedule items using inher-
itance, so interactive features could be easily built. The user profile was adjusted so tracking is possible of
which page each player is on. To better integrate with M.O.R.S.E., we added the page visit trigger, the button
trigger, the redirect action and the page hint action, so the sites can be navigated and actions can be trig-
gered, increasing the immersiveness of the event. Form puzzles and page visit puzzles were also introduced,
to even further increase the possibilities and the immersiveness.

The second sub-question was how we could increase player interaction. We introduced roles into M.O.R.S.E.
and a new leaderboard. The roles required data changes in the Event, the User, the ScheduleDomain and
the TeamPuzzleStatus structure. Then we explained how the game designer could add different roles and
how they can be whitelisted for certain websites. Then the player perspective was given, how players with
different roles can still submit puzzles and how rulesets and schedules are not affected. Next to the roles, a
new leaderboard was explained, which could be personalised for the user with a custom text.

The third and final sub-question presented the problem of producing websites without relying programming
experience. For this we proposed a page builder, which we further detailed. First, the visual additions into
M.O.R.S.E. were explained, where one could find the page builder and what it looks like. Then, we explained
how the page builder interacts with the schedule items and the domain component, along with how a puzzle
on a web page is connected to M.O.R.S.E. Finally, we explain how all the required data by the page builder is

34 4. Implementation

divided in the builder library and how changes are processed by the page manager. All aspects contributing
to how the solution of the stated questions is implemented.

5
Testing

An essential part of project development is testing. Not only making sure the freshly implemented features
do as they are expected to, but also checking if all functionality that is already in place is still operational.
They provide defect detection and reliability estimation [5]. So since a lot of code was already in place of
the existing M.O.R.S.E. system at the start of the project, we acknowledged that the testing phase required
a significant amount of attention and was not to be neglected. The types of testing are separated into two
different aspects, namely verification testing and validation testing.

5.1. Verification
The types of tests within this verification section, are the tests that only check that the written code works as
it is supposed to. All these tests require only our attendance and it is up to us to uphold a high standard of
performed tests to ensure no bugs appear in the project.

5.1.1. Unit tests
Since this project is an extension of a project done by a previous group participating in the Bachelor End
Project, we started our sprints with a large set of unit tests that spanned the entire code-base of M.O.R.S.E.
with high coverage. At the start of the project, we set the bar high for our code development and stated that
every branch that was finished, should not decrease the overall line coverage of the project. We were aware
that line coverage does not mean enough on its own, but it is certainly a good start to make sure everything
works as supposed at the lowest level of the application, to prevent endless debugging at the later stages of
the project when more high-level functionality is in place.

5.1.2. Manual tests
The second level of making sure the product behaves the way it is supposed to do is manual tests. Of course,
the developer performs many manual tests while developing new functionality, but the team members re-
viewing the code need to also perform manual tests on the new functionality, with the intent to let the code
malfunction. These tests are a lot more high-level in comparison with unit tests, meaning that these tests not
only test the written functionality but also shows if it smoothly integrates with the existing code in such a way
that the product still works as it did before. Since more components are included, you can encounter faults in
the code that never would have come to mind with unit testing.

Not only are manual tests useful, but in this context, they are also a necessity, due to a large amount of
front-end code that was present and written additionally. Testing this code automatically is very hard, espe-
cially since no automated front-end testing was in place and all the setup still had to be done. Therefore,
the manual tests were stressed to be performed frequently and extensively to make up for this absence of
front-end testing.

5.1.3. Backward compatibility
While the goal of our project was to expand and upgrade the M.O.R.S.E. system, it could not be at the expense
of existing possibilities. Everything possible before we started our development, should still be possible at the

35

36 5. Testing

end. So at the end of each sprint, when all changes of that week were reviewed and included in the product,
the whole team ran the product and performed a series of various tasks to see if the product did not break
by the addition of new features. This routine of tasks changed a bit each week based on what changes were
made in the last sprint. If a lot of changes were made on our page builder and the domains, then we would
not spend a lot of time to see if the projector with the timer and leaderboard was still operating as intended.
Since the entire team had to perform a check each week, we could confidently close each sprint and start
a new one without having to worry if we accidentally disabled large parts of the functionality that slipped by
unnoticed.

During these weekly tests, we used the events from the databases we had locally, which did not include any
existing events in the old M.O.R.S.E. At the end of the project, we also performed a backwards compatibility
test using a copy of the database that was used with the old M.O.R.S.E. system. In this test, we verified that
the existing events did not break. Unfortunately, this was not the case the first time we tried this, but after a
quick patch, the old events worked as expected. However, due to the way access to domains is implemented,
adding domains to an existing event without resetting the event does not work as expected. The old users
were unable to access the domains in the system. We will look into fixing this, but with a single press on the
‘reset event‘ button, this issue is resolved for that event, although all progress in the event is lost.

Because we kept the backwards compatibility in mind when designing the new functionality, minimal
changes are needed to integrate it with the existing events. Before handing in the project to the client, we will
resolve these issues to ensure a smooth transition from the old M.O.R.S.E. system to the updated system.

5.1.4. Scalability test
Something that had to be kept in mind, is that online escape experience can have a significant amount of
participants. Therefore, we had to make sure that if that was the case, that M.O.R.S.E. would not be incredibly
slow and that it would take forever to perform simple actions. In communication with the client, we set a
baseline of 200 participants to check if the event still operated smoothly with that many players. We performed
such a test once when only two weeks were remaining. It showed that there was a limit of the number of
participants the server could handle and the stress you could put on it, but this limit was at a level where the
baseline of 200 participants was still executable. Hence, we were not too unhappy with the result. For our
detailed approach and findings, please read appendix E.

5.1.5. Static analysis
During the development of the project, we used static analysis to check and improve upon the code quality.
We will discuss the two different static analyses we used.

ESLint ESLint1 is a tool that statically analyzes code. We mainly used it to keep the formatting of the code
consistent. In addition, it checks for long functions and unused variables or imports. Long functions are a
sign that a function does more than one thing and, therefore, it should be refactored into separate functions.
ESLint was also integrated into the GitHub pipelines to block merge request which generated ESLint errors.
This setup ensured that the ESLint configuration was enforced. However, in a handful of cases, we found
the errors unjustified or there was no better way of doing it, so we disabled the error for that specific case.
At the start of the project, there was already an ESLint configuration present which we used as well. We
quickly discovered that the configuration is not as strict as it could have been. When changing it to the default
configuration, a lot more warnings were generated. Since all of these warnings were caused by the existing
code, we decided to leave the old configuration as it was before. Changing this would mean fixing a lot of the
existing code. This was not the goal of the project and would also cause merge conflicts with the other BEP
group, team Kirby, which was also working in parallel on the same code base. We do think the system would
benefit from a stricter ESLint configuration. For example, a lot of warnings come from missing parameter type
checking for server methods, which could cause a lot of server errors if a malicious user would we able to call
these methods with other than intended types.

SIG results The Software Improvement Group (SIG)2 results show that we scored high on Volume, Unit
complexity, Unit interfacing and Module coupling. However, high scores do not mean that SIG did not flag any
files in which improvements can be made on those topics. For example, SIG flagged the ’BuilderLibrary.ts’
1https://eslint.org/
2https://www.softwareimprovementgroup.com/

https://eslint.org/
https://www.softwareimprovementgroup.com/

5.2. Validation 37

file since it was too high in coupling. Under normal circumstances, this might be a bad thing, but in this case,
it was done on purpose. To separate the logic and the UI of the page builder, we decided to make a separate
library for all the logic, which can be imported by the UI for all the logic calls. Because this library contains a
lot of functions that need to store save states, selected elements, history of actions and more, it is possible
to create bugs if the incorrect functions are called directly and not using the intended methods. Therefore we
decided to create one file that figures as a connection point with the builder library. With this connection point,
we can ensure that all the correct logic is called because one only has access to the correct functions. It is
also easier in usage because one does not have to look through all the files in the builder library to find the
available functions. It is now all accessible in a single file. Therefore we decided that this file was flagged
incorrectly by SIG and we decided not to modify it to reduce the coupling.

The Duplication score was average with a score of 3.0 out of 5.5. When looking at the cases of duplicated
code, it was almost exclusively pieces of code that were written by the previous developers of M.O.R.S.E.
Other cases were files in which we added methods and functions in the same manner as previous developers
were flagged as duplication as well. We decided not to modify those files, because that would mean refac-
toring enormous files written by previous developers and that is not the focus of this project. New features
specifically requested by the client were of higher priority. If one wants to improve the code quality of the
M.O.R.S.E. system itself, we suggest refactoring and removing duplicate code of such files. Only a few files
that flagged on duplicate code do not fall under the previously described cases. The file in which we had a
lot of code duplication was the properties file of the page builder. This file defines the settings for the CSS
properties that can be changed using the page builder. For almost every property the default value and type
had to be duplicated. The optional variables, based on the property type, like the format, min and max values
and drop-down values had to be set in addition to a regex for reformatting the property’s value. To reduce
the duplication in this file, classes with default values have been made for the different types of properties.
This reduced the amount of duplicate code, resulting in a final size of less than a quarter of the original size.
Because of the removal of duplicate code, it is now easier to tweak property-type specific values. On top of
that, the classes make the code more readable.

Unit size and component balance show very low scores. For unit size, this is mainly due to the large files
that were already present in the system. However, we added quite a substantial amount of code to some
of these files without splitting these components up into separate components. For example, the schedule
editor component was already a massive component from the start. We added the new domain and web
page schedules to it, as well as the form puzzles. We think this component should be split into multiple
other components; at least a component for editing the schedules’ properties and a component for editing the
puzzles.

5.2. Validation
The tests in this section were performed, also to see if bugs would occur, but mainly to get feedback regarding
the use of the product. It is important that we build what the client wants, not what we think the client wants.
So in all these tests, we ask the opinion of the client and if there are adjustment that needed to be done even
if certain functionality was already ‘finished’.

5.2.1. Weekly client demonstrations
This is not necessarily a type of test, but since it too is a possibility for bugs to be encountered and to receive
validation feedback from the client, we have included in this section as well. Both us and the client were keen
on weekly demonstrations since it provided very visual progress updates for the client and we had the chance
to receive additional validation feedback.

5.2.2. Playtests
After a few weeks, we got quite familiar with the product and how to operate it, along with the new features we
implemented ourselves. This meant that our judgement was no longer reliable to determine if new features
were user-friendly or intuitive. Fresh eyes were needed to understand the thought process of a user to whom
our product is unknown. Multiple Raccoon Serious Games employees agreed to participate in play-tests with
varying goals and setup. Mainly, in the beginning, participants were left to their own devices and could just
explore the page builder menu, followed by simple instructions to carry out to see if they were able to easily find
what they would need for these tasks. If there was confusion regarding what was supposed to be done then

38 5. Testing

Figure 5.1: SIG results overview

we would provide tips and explanation to clarify certain matters. Later on, as more functionality and previous
feedback were processed in the product, these play-tests were performed with more difficult tasks, while also
reducing the amount of help given by us. All the acquired feedback was added to the sprint planning, with a
high priority on average. After all, the Raccoon Serious Games employees will be the ones to use M.O.R.S.E.
in the future so they have a big say into what should be the final result of our product. To have a detailed look
at how the play-tests were performed and what feedback was given, please have a look at appendix G and
H.

5.3. Summary
After the design proposals in chapter 3 and the implementation explanations in chapter 4, we now focused on
making sure verifying and validating the product.

The verifying was done with unit tests for low level verification and manual tests for higher level verifica-
tion. Then a backwards compatibility test was performed to make sure all existing functionality before the
project started still was operational, and a scalability test was performed to see if events could still be hosted
with a lot of people participating. To verify that our code did not only work but was also properly formatted,
static analysis was performed on the code base by utilising ESLint for style errors and submitted our code
base twice to SIG, where attributes like volume, unit complexity and coupling are measured.

To validate our product, we held weekly demonstrations for our client together with play-tests with other em-
ployees of Raccoon Serious Games that gave their ideas of what could be improved.

6
Process

We would like to reflect on the process of further developing the M.O.R.S.E. system. At the start of the project,
we constructed a project plan that showed our intentions for the workflow and planning for the project. To view
the entirety of this project plan, please have a further look at Appendix A. We will detail the general intentions
and the workflow, but also setbacks we encountered.

6.1. General intentions
All team members were given a set of roles at the start, which represented certain responsibilities. This did
not influence the workload someone was given each week relating the product, but it did on deciding who was
going to do the miscellaneous tasks that appeared along the way. If for example employees of Raccoon Se-
rious Games needed to be contacted, the external communicator was the one responsible for this task. This
saved a lot of time discussing who was going to do these tasks every time they were required. The majority
of the miscellaneous tasks were covered by the role assignment and that saved a lot of time.

To have an overview of our deadlines, a timeline was set in place with all official deadlines, but also check-
points for ourselves regarding the process of our requirements, which can be seen in detail in Appendix B.
The main checkpoint is our deadline for all the must-have requirements, which represent all functionality that
is needed to meet the goal of the project, namely creating online escape experiences similar to DigiHacked
within M.O.R.S.E. without programming experience. We roughly made that deadline, with some must-have
requirements receiving their final touches in the week after the checkpoint, but in compensation to that were
several should-have requirements that had already been finished or were in progress at that time.

We made a planning for the entire project regarding all the meetings that had to be done on a regular ba-
sis. These meetings included those with our client, TU Delft coach and team Kirby who was co-adjusting
M.O.R.S.E. It also provided deadlines for the documents to be made for our SCRUM sprint planning, on
which we will reflect in the next subsection. Almost all of these meetings continued as planned, except for
several meetings that were scheduled on holidays. Those were all moved to one or two days later, depending
on the schedule of all the attendees. There were also meetings with Raccoon Serious Games employees,
which were scheduled based on the availability of the employee in question. A meeting planning had its bene-
fits since the schedule was set for all the weeks of the project, which saved a lot of time that would have been
spent actively planning each week with every party we wanted to have a meeting with. A pitfall was, however,
that the non-regular meetings could more easily be forgotten if the meeting planning was being relied on too
much. This almost happened to us once, resulting in us being a bit later to the meeting than usual. To prevent
us from falling in such a pitfall again, we started each sprint with a moment to reiterate all meetings of that
week, especially the irregular ones.

As stated earlier, we had weekly meeting with the other group who was also doing the Bachelor End Project
at Raccoon Serious Games , team Kirby. Since both teams were operating on the same code base, some
precautions had to be set in place in order to prevent conflicting adjustments. It would be a shame if changes
from one group made the project from the other group malfunction or crash. Along with the weekly meeting,

39

40 6. Process

where we discussed our weekly progress and gave an indication of which code we were adjusting, we also
had a smaller weekly meeting where 1 or 2 members from each team would sit together and actually look at
each others code adjustments and merge them into a co-existing project if there were conflicting changes.
This way we were assured that later in the project we would not run into unexpected issues.

6.2. Workflow
An approach was made for our workflow, so our progress was easy to track for our client. This also enabled
effective and efficient communication. Since this project took place during the peak of the quarantine period
caused by COVID-19, we had to deal with a lot of issues which we never had to deal with before. If we
were not confined by the pandemic measures, we would have been able to meet as 5 at the office, which
allowed for flexible meetings if not all team members are required to be present. Also if help was required by
someone on the team, all other members would be present to help instantly. So we needed to find a means
of communicating that could simulate these possibilities as well. After deciding what platform to use, we’d
encounter other various issues like the unstable internet connection of certain team members, but also the
varying quality in microphone sound, which could both be caused by poor microphone quality but perhaps also
by the increased use of the platform due to everyone around the world being forced to use communication
platforms due to the pandemic constraints.

6.2.1. Engineering methodology
Due to it being already familiar to all of us, we decided to use SCRUM [6] as our software engineering method-
ology. Not only did we not have to figure out the details of this methodology, but it also aligned very well with
the wish of our client, which was being able to see a weekly demonstration of our progress. Along with the
weekly demonstrations we provided our client with our SCRUM documentation, to reflect on how each week
went and what the causes were for possible delays, but also to give us an idea of how we should spend our
time the next week.

To illustrate, a quarter of our tasks planned for the first week of implementation were not finished. This was
because we overestimated howmuch we could get done in this first week of implementation, which wasmostly
due to the fact that we had to figure out a lot regarding the code that was already in place and the frameworks
we were going to use. At the end of each sprint we made a retrospective where we discussed the reasons for
certain tasks not being finished. In most cases these delays were due to the fact that we found other issues
during the sprint which were given higher priority. It also occurred a couple of times that not all branches had
been merged at the end of a sprint, because reviewing them and fixing bugs we found on Friday afternoon
turned out to be much more time consuming than anticipated.

Extra rules were also set in place for our workflow, to make sure that possible mistakes were always re-
versible or easily solvable. All tasks that were finished needed to fulfil certain standards before it could be
approved by the rest of the team. Proper documentation and testing should be in place, along with that no
errors should be given by the style checker ESLint. These rules are very useful and prevent many style errors,
resulting in a maintainable code-base.

6.2.2. Task division
In an ideal world, all team members are just as proficient with all aspects of the product. However, for a
relatively short time, it would be a better to have all members work on parts of code they are familiar with. This
was not always possible but making such a division of tasks prevents teammembers having to ask others what
the idea of their code for further development was and how it is connected to other components. In general,
we had a subset of the team dedicated to the page builder component of M.O.R.S.E. and another working on
incorporating player interaction and website hosting. To not completely make team members unaware of how
the functionality, created by the others, worked, we made sure to have everyone participate in reviewing the
functionality they were not familiar with.

6.3. Setbacks
Every team is bound to encounter setbacks during a project. Ours was no different but luckily the setbacks
that did occur were only minor and happened early in the project. This meant that we could communicate this

6.4. Retrospective 41

with the client and redefine the expectations of the product.

The trend with our setbacks always was always the CI of GitHub1. In the first week of implementing the
requirements, there was a lot of time necessary to get it working the way we wanted it to. Without it, we
couldn’t guarantee proper testing and styling of the code. It took two days for 2 people to finally get it working,
which was almost half the time of one sprint for almost half the team. Needless to say, not all planned tasks
were finished that sprint. Then a few weeks later, we discovered we had a limit of GitHub actions2 that we
could use, before we had to pay for extra. This momentarily stopped the production twice, since an alternative
had to be found since we were heavily reliant on those actions. After finally running out of Github actions, we
switched to CircleCI3 for the remainder of the project. However, this was not done easily. Like the previous CI,
this one required a lot of manual labour to get it working, again taking two days of time from two teammembers.

Another smaller setback was the issues that some laptops had with hot-reloading the server. This is not
an issue for the client, since running the production version worked flawless. However, if some of us made
some changes to the code we wanted to try out, then once in a while the operating laptop would simply shut
down. This did not cause as much of a delay as the CI-related issues, but it did cause for a fair amount of
frustration.

6.4. Retrospective
Overall, we are really content with how we cooperated during the project. We feel like we succeeded in being
transparent to the client and successfully adapting our plans to new wishes the client presents. This resulted
in a significant amount of features being ready at the end of the project. There are always things to improve
though, which also was the case with us. Since we were a group of friends already before the project started,
you start the project a little more relaxed and also more talkative. So if we had a meeting with all 5 of us, it was
often the case that someone had something to tell (not always project-related), that would throw everyone off-
track with the matter at hand. So in the later weeks, we were getting better at dealing with this, with everyone
saying when we would be distracted from the issue at hand. The topic of distraction was then to be dealt with
at a later stage of the day, so not all 5 of us needed to be present. Even though we got better at dealing with
this, we still were overall not as efficient with meetings as we would have liked to be. It’s certainly something
we would have liked to have done differently. The communication was not very straight to the point and unclear
at times, which also lead to various minor misunderstandings. However, all things considered, we were quite
content with that being the biggest struggle between our teamwork, since it isn’t that big of a struggle at all.

1https://github.com/
2https://github.com/features/actions
3https://circleci.com/

https://github.com/
https://github.com/features/actions
https://circleci.com/

7
Discussion

7.1. Does it meet the requirements?
To validate our added functionality to M.O.R.S.E., we must check whether our changes meet the requirements
we have created during the research phase. During the development, we have altered some of the require-
ments to match our updating view of the system as a whole. These changes were done in consultation with
the client. An updated version of the requirements can be found in appendix B. In addition, we have marked
the requirements that have been met with a check-mark in front of them.

7.1.1. Functional
To call the development of the product a success we must check that we at least have implemented all the
must have requirements. As can be seen in the appendix all must haves have been implemented. We will
point out two must haves that we decided to scratch. One requirement we had was that the game designer
could change the styling of internal pages of M.O.R.S.E., however this proved to be very hard because those
pages can only be edited at compile time, not at runtime. Changing it to be able to do it during runtime would
be outside of the scope of this project. In addition, most of the internal pages could be recreated using our
added domains and pages, therefore, we decided that this feature should not have even been a must have
in the first place. The other requirement we scratched was the requirement that a web page could also be
seen in a separate preview window. However, in the page builder you already see the preview of the page,
so therefore this feature would not provide much added value. Furthermore, a lot of should haves have been
implemented, in fact, all should haves for both the page builder and the player have been implemented. In the
development process we have decided to skip the external host completely, this type of host would be able
to see all the player codes and share them with the players. This role was not deemed of very high priority
as it is also possible to view the player codes as an admin of the event. However it is a worthwhile feature
for a future improvement, as it could greatly decrease the work for Raccoon Serious Games employees by
allowing third party users to access these codes and sharing them with their group.

7.1.2. Non-functional
In addition to the functional requirements which specify what the system should be able to do, we have non-
functional requirements that describe other aspects of the system. We have met every non-functional require-
ment except for one. We have not made all functionality that is present in DigiHacked so it can be created
in our system. In addition we have not made a formal test document for the front-end which could be used
to verify that the front-end functions as expected. Scalability tests have been performed to check whether
the added functionality performs well under large loads. In general the system performed very similar to
M.O.R.S.E. as it was used without the domains and pages, so the scalability of the system remained as it
was. For more information about the scalability, see appendix E. Merging with the other group that is also
working on M.O.R.S.E. has already happened multiple times, and the final merge also went smoothly.

43

44 7. Discussion

7.2. Does it solve the problem?
Lets first restate the problem that we were trying to solve: It is very hard if not impossible to design and create
online escape experiences with a wide variety of different visuals without any programming experience. We
set out to solve this by extending the M.O.R.S.E. system with domains, pages and a custom page builder.
Using this it is theoretically possible to create such events without any programming experience.

7.2.1. According to us
We first needed to see if we were convinced whether we provided a proper solution. However, since our
team does have programming experience we should not be the ones to be the participants for playtests to
judge whether this problem was solved. Therefore, we have done some larger playtest with Raccoon Serious
Games employees who should be able to use the system effectively. In these tests, we noticed that they
were struggling quite a bit with the existing M.O.R.S.E. functionalities such as the rulesets, this also made
our added functionality harder than anticipated. During development, we assumed that the end-user would
already be familiar with these rulesets, but that was not the case during these playtests. So we did not have
all the conditions perfectly right for an accurate playtest, but we still received solid feedback either way. For
more specific information about the playtest we have conducted, please take a look at the playtest set-up and
received feedback in appendix G and H. In the end, we let someone else, someone without programming
experience, but with a bit of experience of M.O.R.S.E. , recreate the existing DigiHacked. This test went a
lot smoother since the little extra knowledge of M.O.R.S.E. saved a lot of extra explanation. The volunteer
managed to recreate a substantial part of DigiHacked all within roughly three hours, with the main feedback
being unclear functionalities that could be clarified either by adjustments in the code or in the admin manual,
which we also included in appendix D.

When looking at the sub-questions stated earlier in section 2.3, there was one subjective question and two
objective questions. The objective questions about the hosting of websites and tracking the progress of play-
ers, and about creating more player interaction in the product were both questions that can both be verified
when using the product. We made sure to validate it with the client when creating the requirements list in
appendix B, so as long as we completed the must-haves that were listed as the solution towards the objective
sub-questions, then those problems behind those questions could be considered as solved. The subjective
question, however, is not as easy. What might be easy to do for one, might be difficult or confusing for an-
other, even though they both might not have programming experience. Therefore, the plan we created as a
solution with the client could naturally be verified, but to label it as a proper solution, we needed it to be vali-
dated by arranging the mentioned playtests. We concluded from these playtests, that although programming
is not required, having some basic knowledge of CSS and HTML is nice to have. Therefore, we think we have
solved the subjective problem at hand, namely the production of web-pages without requiring programming
experience, but we do allow a higher potential for people who do possess and want to utilise their knowledge
of programming.

So when only looking at the questions, we provided a solid solution to all the stated problems, and in that
aspect we are quite content. However, we also had requirements to look at, one of which being that the
product should be able to exactly reproduce DigiHacked. This, sadly, is not possible. Our product can make
a very good attempt that will very closely resemble DigiHacked, but there are a few functionalities that can not
be added yet but are vital for completing the event.

The missing functionalities are the external host, storing team-specific variables on the server, being able
to show those variables in the web pages in M.O.R.S.E. In addition to that, we need more options for roles,
such as role-specific triggers, conditions and actions as well as the ability to hide or show elements on web
pages based on the role of the player.

So when looking at the requirements, we did not deliver the product that was expected. However, Digi-
Hacked might be slightly out of reach, but there are many possibilities for future online escape experiences
that can very well be developed within our product.

7.2.2. According to the client
Near the end of the project, we asked our client to answer a few of our questions regarding our product. This
was for us to not only reflect on our product, but also on us as a team and our communication and cooperation
with the client.

7.3. Ethical implications 45

What do you think about the final result?
The client was of the opinion that the product works good and easy. It looks good with the usability being on
a good level. There was proper research towards user friendliness, which resulted in a lot of quality-of-life
features present in the product, which is pleasant. The solution for the external domains and the linking of the
puzzles with M.O.R.S.E. was smart.

What are you currently missing?
As we too mentioned, the client pointed out that sadly DigiHacked could not be reconstructed entirely. This
means that this system can not yet be used for DigiHacked and will only be usable when a new online escape
experience gets developed. The client would have liked more and better comparison testing, meaning trying
to recreate DigiHacked, not only as a playtest, but for ourselves as well. Creating a list of available features of
DigiHacked and a list of features that still are lacking. If there were slight differences, those had to be marked.
Afterwards we argued about the importance of those differences.

How well have we processed your ideas about the product?
The client found that we listened pretty well to his ideas and wishes. The amount of testing, inquiring and
experimenting was nice to see and raised trust.

7.3. Ethical implications
When developing software that is to be used by a large number of users that do not necessarily have experi-
ence with the program, it is also important to consider the ethical side of it. This is less of a concern if in the
end the program is only used by a small set of specialised people, but in the case of M.O.R.S.E. hundreds, and
probably thousands of users will participate in escape events created and hosted using M.O.R.S.E. Handling
their credentials and possibly private information in an ethically profound manner is, therefore, a responsi-
bility that should not be taken lightly. In this section, we discuss several design choices and their ethical
implications.

7.3.1. Private user data
To provide a personal experience for every single player that participates in the event, data about the user has
to be collected to at least some extent. This is because we have to track their progress in the game and want
to identify them if they log into a web page that is part of M.O.R.S.E. In doing so, the player implicitly trusts
us to handle this information carefully. Because of this, all features we added (and all features in the original
version of M.O.R.S.E. as well) ensure that all information is distributed on a need-to-know basis only. That is,
only admins can see login codes and progress of players that participate in the event, whereas players do not
receive any information about fellow players, except for their scores on the leaderboard and the teamnames
they chose for themselves.

7.3.2. URL masking
The functionality of the domains and web pages we added rely partially on the fact that the user visits a domain
name and is secretly redirected to a page within M.O.R.S.E. without them knowing. In many situations, this
type of construction could be perceived as deceitful, because the user is unknowingly and unwillingly shown a
site from a different origin than they think, which is a trick used often in phishing and similar scams performed by
individuals with malicious intents. We argue though, that in this case doing so is morally permissible because
it is part of the experience that the user agreed to take part in and it is not meant for harmful practices.

8
Conclusion

We stated the problem at hand, which was formulated as the main question; How can we facilitate the
creation of interactive puzzles on immersive web pages in M.O.R.S.E. that have a good emphasis on
cooperation where programming experience is not required?

To get a better view of what we were dealing with, we performed an in-depth analysis in chapter 2. This
analysis was about the existing M.O.R.S.E. system and an example of an online escape experience called
DigiHacked. After this analysis, we were able to define a prioritised list of requirements and split the problem
up in several sub-questions, namely:

• How do we link the external websites to M.O.R.S.E. and track the players’ progress across these
multiple websites?

• How do we enforce teamwork and incorporate competitive elements in online escape experi-
ences?

• How do Raccoon employees develop a customised external website, without having to rely on
programming experience?

We gave the design of how we should solve these problems in chapter 3, with the implementation of these
solutions being explained in chapter 4. Then in chapter 5, we detail how we not only verified what we de-
veloped but also validated that we developed the correct additions. For chapter 6, we gave insight into our
workflow and how our weekly process took shape. We also revealed the setbacks we encountered, along
with the things we would have liked to have done different. After this we gave our thoughts about how the
product ended up, the process we made, to what extent we succeeded in solving the problems at hand and
possible ethical implications that needed to be considered. This was all done in chapter 7.

The external websites that are hosted with the use of iFrames that are linked to M.O.R.S.E. using new sched-
ule items representing a domain and a page within such a domain. With adding new triggers, actions and
puzzles it is possible to interact with these websites. The tracking of progress across websites is done with
an external field in the database for the user, along with a page visit puzzle that shows the event staff when a
group has visited a certain site. Those are all the problems incorporated in the first sub-question, so that can
be marked as ’solved’.

The second sub-question raises the problem of how one can increase the amount of teamwork required
and how a competitive setting can be created. For this we proposed the added functionality of roles, along
with more interactive leaderboards. The roles cause that all members of a team are reliant on teamwork to
find an answer. The leaderboards give a more personal way of motivating all participants to do their best.
So both teamwork can be enforced and competitiveness is increased, meaning also the second sub-question
has a proper solution.

The solution to the third and final sub-question was the page builder. Here a game designer could design

47

48 8. Conclusion

their websites and customise existing ones, without having to rely on programming experience. In compar-
ison to the other sub-questions, this question could not be objectively checked whether we solved it or not.
Therefore, we arranged play-tests for employees with no programming knowledge of Raccoon Serious Games
to give their opinion regarding the ease of the page builder. With mostly positive feedback and the approval
of the client, along with the page builder having enough features, the third sub-question too has its solution.

With all this in mind, we look at the main question again. The creation of puzzles is certainly possible. The
page builder allows for the production of those websites and also making them immersive. The roles and
leaderboards arrange the emphasis on cooperation. Since all this is either available in M.O.R.S.E. or with the
use of the page builder, programming experience is not required. However, if you do possess knowledge of
HTML and CSS then you are also capable to apply this in the page builder, allowing more possibilities for the
creation of the websites. Knowing all this, the main question behind the problem has a solid solution, allowing
us to transfer our system to Raccoon Serious Games in good conscience.

9
Recommendations

To close out the report, we discuss our recommendations for Raccoon SeriousGames regarding theM.O.R.S.E.
system. First, we give our thoughts about the Graphical User Interface of M.O.R.S.E. Next, recommendations
about scalability, which is an important part of M.O.R.S.E., are introduced. Afterwards, new features for future
improvements are proposed.

9.1. Graphical User Interface (GUI)
As experienced by us and the participants of the play-tests who have never used M.O.R.S.E. before, the GUI
of M.O.R.S.E. has a very steep learning curve. Participants described it as an ’intimidating product’, with which
we could relate. In the beginning, we were struggling with smoothly operating the system as well. However,
we do think it is a system that allows a lot as the user learns more about it. During the same period as our
project, team Kirby has been working with the M.O.R.S.E. system as well, trying to flatten the learning curve
of M.O.R.S.E. by adjusting the GUI.

9.2. Scalability
The scalability of a system like M.O.R.S.E. is very important. M.O.R.S.E. is designed to and should be able to
host events with hundreds of participants. Because of this, our product is developed with this in mind as much
as possible. However, there are still some cases in which the scalability of the product could be improved.

9.2.1. Roles
In the current M.O.R.S.E. system, adding users is very slow. With the roles feature, some extra users are
needed. For example, if there are 5 roles, it means that 5 users will be represented with 1 team and 5 role
users. This will effectively increase the number of user accounts in M.O.R.S.E. by 1. What happens is that a
percentage of users, based on how many roles are used, is added to the users needed before. If one wants
to improve the speed of adding new roles, we recommend improving the creation of new users in the system.
Since the rest of the M.O.R.S.E. system’s speed is not significantly affected by the number of users, roles do
not change the scalability in any further sense.

9.2.2. Domains
The domains are planned to be used by a large amount of players. Because of this, the feature should also be
able to handle that amount of players well. Scalability test executed, Appendix E, show that the M.O.R.S.E.
server can handle 200 players without too much delay on a Quad Container 1 on Galaxy, the hosting service
of Meteor hosting 2. This means the domains are decently scalable, however for a larger group of players (or
a smaller Container), the current speed will not be sufficient. Pages will not load or react because the server
does not have any computing power left.

There are two options for optimising the domains. First, creating a new lightweight Angular structure around
1https://galaxy-guide.meteor.com/containers
2https://www.meteor.com/hosting

49

50 9. Recommendations

the web pages. The existing structure, which is the same as the rest of the M.O.R.S.E. app, slows down the
client web page loading as well as the server. With a lightweight structure around the web page, the server
should need less computing power for simply serving the page, freeing up computing power for more players.

Additionally, optimising how the server and client communicate with each other is also a solution. Currently, a
lot of database calls are made frequently. Reducing bottlenecks like that will result in a much better working
app, making domains more scalable.

9.2.3. Page builder
For the page builder, two main things can be done regarding scalability. The first one has to do with the
number of web pages in the event. Currently, domains are stored in the database. If one were to make lots of
large web pages, it would fill the database. Combining this with a lot of users participating in an event would
result in a lot of big payload database requests. This would result in long loading times for users. Storing the
web page as a file on the server and serving it from there reduces the latency introduced by the database
calls required to load the web pages.

9.3. Future improvements
For future improvements, we recommend a few new features. Some of those features are not implemented
features from the Moscow requirement list, whilst others are completely new.

The features from the Moscow requirements list are chatbot, external host, animations, a full-screen pre-
view of web pages and CSS class support in the page builder. The chatbot is a feature where the user can
receive hints on external pages from a chatbot. This chatbot should then, of course, be configurable and
manageable by the admins and hosts of the event. The external host, the same as in Digihacked, is a user
who has access to all the user codes and can distribute them among all the other players. This way no admins
are required to distribute the player codes or start the event. Animations, a full-screen preview of web pages
and CSS class support are all features for the page builder.

Apart from the already known possible features, we came up with a few features of our own as well and
discussed in the list below.

• Assigning roles when logging in with an event code. Currently, the admins of an event have to send
all the team codes to the players of the event. It would be much less work for the admins if every player
could log in with an event code and that team and role codes would be assigned automatically.

• Role specific actions and triggers. This would be a feature in which the game designer has more
control of role-specific gameplay in the events. Think about only moving a certain role to a page, allowing
only a certain role to solve a puzzle.

• Custom hint styling. This means that the hints currently displayed on web pages can be styled for
each web page or domain. This way the event becomes more immersive and the admins have more
control over how they want their web pages to look and feel.

• New version of the leader boards for players. Currently, there is a ranking with the 5 best performing
teams regarding points gathered during the event. However, this creates an obvious winner and loser
situation. This is not what the final screens of the events for which this product is created are supposed
to do. It would be much nicer if the players would be shown in groups with similar results. This was
suggested by the client as well.

• Improved domains. Currently, the player cannot use the back button when navigating through a
M.O.R.S.E. created web page and cannot visit a specific page on a domain by link. If every page
was also given a unique link, navigation to that would be possible outside of the iFrames encapsulating
the web pages and make the back button work. Also, normal visiting by link would be possible. Another
advantage of that is that instead of working with rulesets, which can be quite cumbersome for users with-
out programming experience, you can just put a link on a button in the page builder directly. However,
currently loading a web page takes a long time and shows a loading screen. This would trigger every
time a player navigates on the web page. A solution for this would be either lowering the loading time
significantly or smart caching such that the page would not need as many things to load when navigating.

9.3. Future improvements 51

• Lazily loading of Angular components. Currently, a big issue with the domains is that the loading
time of a web page is quite long. This could be solved by lazily loading Angular components. This would
reduce the number of components that need to be loaded before the page can be visited, subsequently
lowering the loading time of the web page.

• Loading screen customisation. For every external web page, the loading screen is the same. This
does lower the immersive and professional feeling these web pages are supposed to achieve. Being able
to customise that loading screen for each web page strongly increases the immersive and professional
feeling compared to the current loading screen.

• Improve the pagebuilder. Although the current pagebuilder contains most of the planned features,
there are still a lot of possible improvements that could still be implemented. The most important feature
that is currently missing is good support for the horizontal placement of elements. Based on the feedback
gathered during the playtests, more time was spent on the importing of custom HTML. Although it is now
very easy to do this now, it is not as easy to use the features of the page builder on the imported page.
This has to do with the fact that the page builder uses bootstrap for most elements, while the imported
pages don’t use this and have their own styling. An improvement to this can be to make the use of
bootstrap an optional feature. Another improvement could be the ability to copy the style of an existing
element to another element.

• Improve the generated pages. At the moment, the page that is generated from the page builder is
simply a single HTML file. The custom CSS is inserted as an inline style tag in the header, and all the
custom style changes to elements on the page are stored inline. An improvement would be to store the
style in a separate CSS file.

• Role specific information When a user logs in with a role, they are taken to the same schedule item
as all other roles in that team. Therefore it is rather unintuitive to provide information to only one role. A
feature could be added that shows different schedule items for each role. Another option to solve this is
to redirect a role upon login to a specific domain. This way, each role could be redirected to a different
domain. On each of these domains, the information specific to that role can then be added.

• Improved web page control Game designers in M.O.R.S.E. can create web pages and link puzzles
and ruleset triggers to it. This is technically enough to make online escape experiences , but it does
not allow for finer control required by very advanced online escape experiences such as DigiHacked.
With the following features, those online escape experiences can also be made with our product. Game
designers should be to able create variables in which data can be stored with player interaction on web
pages and that can afterwards be displayed on, possibly other, web pages. Game designers should
also be able to hide or show specific elements on a web page depending on the role of the player that
is currently viewing the web page. With those two features and previously described features, such as
the external host, the creation of DigiHacked with this product should be possible.

In addition to features, we also have recommendations for future improvements for additional security and
error handling. Currently, the server methods that are called by the clients do not have any type of checking
for the given parameters. If these methods were to be called by possibly malicious users, the server throws
an error for every such call. We suggest adding type checking for these server methods to improve resilience
against possibly malicious users.

A
Project plan

A.1. Introduction
The project plan forms the basis of our bachelor project. In this project, we will be working on a problem
proposed by the client. This plan defines the project that will be worked on as well as how the team is
organised. An overview of the timeline of the project as a whole serves as a guideline to be able to verify if
we are on track to finish the project within the specified time period.

A.2. Project description
Raccoon Serious Games is a company that develops and organises escape room inspired events for large
as well as smaller groups. These are not only designed to entertain but also to educate or create awareness
for a certain topic. The goal of these events is for players to learn something from these experiences and to
stimulate team building. Raccoon Serious Games hosts two groups participating in the Bachelor End Project;
No ReMorse and Team Kirby. These two groups will be making adjustments to the same initial codebase in
separate repositories, where it is possible for the projects of both groups to have some overlap. Therefore
both groups need to be careful and inform each other of their plans and adjustments made, which will be done
using weekly meetings.

Our project focuses on the existing M.O.R.S.E. (Massive Online Reactive Serious Escape) 2.0 system where
escape game events can be created, updated and hosted. It is designed for admins that develop the events,
the game hosts and also the players of the events. In the system, puzzles, rulesets and a few other essential
components for escape events can be defined. Although the system works efficiently for hosting on-location
events, the functionality for providing mostly digital experiences is limited. In these digital experiences, of
which DigiHacked is one, users have to interact with several (external) websites to complete the events and
solve puzzles. Once the users advance during a puzzle on an external website, their progress will be commu-
nicated with the server to update and unlock other puzzles or to complete the event. M.O.R.S.E. 2.0 currently
has very limited to no support for building these rich digital experiences without the need for programming.
The aim of the project is to expand the system to facilitate creating these digital experiences almost exclu-
sively in the M.O.R.S.E. 2.0 system without needing any programming experience. A few challenges have to
be overcome such as the creation of user interfaces in the system, making them reactive and where possible
allow cross-domain tracking. Cross-domain tracking is required to allow M.O.R.S.E. 2.0 to link external sites
together and to distinguish between the different teams interacting with them. This way they don’t have to
enter their team code on every site, while their progress can still be tracked.

A.3. Project management
Client Racoon Serious Games, Jan-Willem Manenschijn

TU Coach Thomas Overklift

Project team

53

54 A. Project plan

Role Role description Member

Team leader

The role of the team leader is to create
transparency in the team, uphold deadlines,
arrange clear communication and
to keep a clear overview of the project.

Wessel

Lead process
documentation

Responsibility for documents describing
the process of how the project is developed.

Lead programmer
Responsible for the rulings regarding
the functionality of the program and
the structure of the codebase Gijs

Lead tooling Making sure of proper use of version control
and operational tooling

Lead testing Responsible for the quantity and quality
of written tests. Elwin

Lead code
documentation

Responsible for documents describing
how the code works.

Lead code quality Responsible for enforcing
a proper coding style. Bram

External
communicator

Responsible for general communication
with external parties and setting up
meetings.

Scrum master Has to make sure Scrum principles are
correctly applied during the project. Timo

Secretary Has to make sure notes are taken
at all meetings.

A.3.1. Software Engineering Methodology
We have decided to use Scrum while working on this project. This decision was based on a few reasons.
The most obvious one is that all team members are familiar with the workflow of Scrum, since it is a required
process in other project-based courses during the Computer Science bachelor. Since it is a familiar process,
we can smoothly adopt it in this project. Another reason is that our client has indicated he would like to
frequently see a demonstration of updates, which can be perfectly done with Scrum due to the weekly sprints,
where we have an improved version ready at the end of every sprint. The final aspect that spoke in favour
of using Scrum, was the fact that we are working on the same software as another group at the same time.
Therefore, flexibility is required to quickly adjust your own plans, if the new developments of the other group
collide with your own.

A.3.2. Meetings

What Who When
Possible progress update No ReMorse Every Monday09:00 - 09:30
Sprint planning No ReMorse Every Monday09:30 - 10:30
Prepare client meeting No ReMorse Every Monday10:30 - 11:00
Prepare Kirby meeting No ReMorse Every Monday11:00 - 11:30
Update exchange Team Kirby Every Monday12:00 - 13:00
Client meeting Client Every Monday14:00 - 15:00
Standup meeting
(only 1 member of No ReMorse required) Raccoon Serious Games Every Tuesday - Friday09:00 - 09:15

Standup meeting No ReMorse Every Tuesday - Friday09:30 - 09:45

Weekly master update No ReMorse Every Friday
15:00 - 16:00

Retrospective meeting No ReMorse Every Friday
16:00 - 17:00

Update exchange TU Coach On initiative by No ReMorse

A.4. Project timeline 55

A.3.3. General Rules
• In general, the work times are from 09:00 to 17:00, with a 1-hour lunch break.

• One should be on time for meetings.

• Work time exceptions should be communicated at least one day in advance.

A.3.4. Workflow
• The master branch should always be operational.

• A dev-branch will be used as a fail safe master branch.

– Weekly merge to master on Friday (requiring approval of all 5 developers).

• Regular merge requests require approval from at least 2 other developers.

• All code must follow the style guide (ESLint).

• All code should be properly tested.

– The test coverage is aimed to be above 90%.
– UI code is excluded.
– Other files can be excluded as well in consultation with the team, the client and the TU coach.
– Scalability tests.

• All code must be properly documented.

– All methods must be explained in JSDoc.
– All code should be written in an understandable way without having to rely on in-line comments.

A.4. Project timeline

Week Plan Deliverables

1
Meetings with client and TU coach
Create project documents
Start research

2 Make product backlog
Finalize research report Research report

3 Architecture design
4
5
6 All must-haves implemented First SIG submission
7
8 Deadline for implementing major features Second SIG submission
9 Final report

10 Finalize final deliverables Infosheet
Final presentation

B
Requirements

B.1. Functional requirements
For all stakeholders the same requirement will stand, which is that they all should keep the functionality they
currently have access to in the current M.O.R.S.E. system.

B.2. Player
Must

As a player I must be able to ...
□× visit an external web page that is part of the event.
□× see a puzzle on an external website.
□× have their progress saved in the existing M.O.R.S.E database when a player interacts with a puzzle

on an external website.
□× not do the same puzzle a teammate has already completed, since team progress is saved.
□× see the leaderboard in M.O.R.S.E. after they are redirected to the projector page, once they have

finished the event.
□× see the websites properly formatted on a computer, so that unintended horizontal-scrolling is not

required.
□× receive a popup where they should enter their player code when the player visits an external website

that does not know their player code.
□× identify what their role is.
□× access resources that are available to all players.
□× only access the role-specific resources for their role.

Should
As a player I should be able to ...

□× access external websites that are part of the game without needing to enter their player code.
□× see the websites properly formatted on all modern web browsers, including browsers on tablets

and smartphones.
□× No unintended horizontal-scrolling.
□× Zooming in or out is not required in order to be able to view and read all content on the page.
□× No overlap between web elements.
□× UI elements are still operable.
□× see the detailed leaderboard, after they finished the event, with specific details for themselves.
□× see their team highlighted on the leaderboard.
□× see a message for “win”, “lose”, “in progress” on the leaderboard.
□× visit an external website that does not know their player code, after having to wait for a redirect to

the M.O.R.S.E. system that retrieves their player code.
Could

As a player I could be able to ...

57

58 B. Requirements

□× visit an external website without entering their player code without the redirect.
□ see what input their teammates give on input places viewable to the player and their teammates.
□ see a chatbot where hints can be received.
□ ask questions in the chatbot.

Would
As a player I would be able to ...

□ use external websites on a different device without entering their team code at least once on that
device.

Admin/Game designer
Must

As a game designer I must be able to ...
□ change the style of internal pages in M.O.R.S.E. visible to the player.
□× specify that a puzzle must be placed on an external website.
□× use actions in rulesets which can be executed on external websites.
□× use triggers from external pages in rulesets.
□× create a trigger that activates on a button click on an external web page.
□× create a trigger that activates when a player visits an external website.
□× create a trigger that activates when a player submits a form on an external website.
□× specify what web pages should be served by M.O.R.S.E. based on the domain through which the

player accesses the system.
□× add a stage for a leaderboard display at the end of an event.
□× specify where a page created in the UI builder can be visited at a URL located within a dedicated

section of M.O.R.S.E.
□× add an external page visit puzzle.
□× specify the page that needs to be visited in order to automatically solve the page visit puzzle.
□× define roles within teams.
□× define the available pages which can be viewed by each player based on the role.

Should
As a game designer I should be able to ...

□× add custom messages by the leaderboard for winning players.
□× add custom messages by the leaderboard for losing players.
□ add custom messages by the leaderboard for when the game has not finished.
□× add custom messages by the leaderboard for when the game has finished.
□× add a form puzzle.
□ add a condition on the answer to a form puzzle.
□× add multiple inputs to the form puzzle.
□× specify the input types for each form input.
□× specify the correct answers for each of the form inputs.
□ pause the game, such that functionality of the external websites is also paused.

Could
As a game designer I could be able to ...

□ specify the style of a page in M.O.R.S.E. that is visible to the player based on triggers that happened
during the event.

□ create a chat bot on an external website to give predefined hints.
□ change the style of the leaderboard.
□ add a trigger for when an audio element has finished playing.
□ add a trigger for when a video element has finished playing.
□ use an action to change a page on an external website.

Would
As a game designer I would be able to ...

Foreman

B.2. Player 59

Must
As a foreman I must be able to ...

□× see given and correct answers for each puzzle on external websites.
□ access the external websites a team can see.

Should
As a foreman I should be able to ...

□ view instructions for stages on external websites.
□ send predefined hints for puzzles on external websites.

Could
As a foreman I could be able to ...

□ answer questions asked by players via the chatbot.

External Host
This role does not exist in M.O.R.S.E. so this has to be added. The role itself is not a necessity and has
therefore no must haves. The game could also be played without an external host, if the game designer or
(internal) game host in M.O.R.S.E. gives out player codes.

Should
As an external host I should be able to ...

□ see player codes
□ start the event
□ stop the event
□ specify a custom message

Could
As an external host I could be able to ...

□ share playing codes in an automated way.

Page builder
Although this will most likely be the same person as the game designer, we have defined the functionality of
the page builder separately to keep a more clear overview. The responsibility of the page builder is to create
the pages for the external web pages.

Must
As an external host I must be able to ...

□× select a template from a finite collection to create a web page
□× edit text on a web page
□× select a puzzle in web page from the existing puzzles
□ click on an eye button that shows you a preview of the web page while building that shows you the

web page in another screen as a player would see it.
□× publish the web page to M.O.R.S.E.
□× add custom HTML to a web page
□× add custom CSS to a web page.
□× change the styling of elements on a web page including:

□× background color, gradient or image
□× foreground color
□× font and font size
□× border size, color and rounded corners
□× padding
□× margin

Should
As an external host I should be able to ...

□× drag and drop elements on a web page.
□× remove elements from a web page.
□× copy a web page from one event to a web page from another event.
□× add elements to a web page including:

60 B. Requirements

□× headers
□× paragraphs
□× links
□× empty spaces
□× images
□× videos
□× audios
□× forms
□× input fields
□× input areas
□× buttons
□× checkboxes
□× radio buttons
□× lists
□× tables
□× dividers
□× footers

□× undo the last edit.
□× redo the last undo.

Could
As an external host I could be able to ...

□ save a web page as a custom-made template.
□ load custom-made templates.
□× add elements though drag-and-drop.
□ create a new puzzle in a specified stage in a template.
□ create custom classes with styles.
□ add the custom classes to elements.
□ add bootstrap items including:

□ alerts
□ badges
□ breadcrumbs
□× cards
□ carousels
□ collapses
□ dropdown menus
□× jumbotrons
□ modals
□ navs
□× navbars
□ pagination
□ popovers
□ progress bars
□ scrollspies
□ tooltips

□ add google maps.
□ add countdown.
□ add typed text.
□ add colour picker.
□ rotate elements.

□ have a preview for other devices:
□ desktop
□ tablet
□ mobile

□× use the following hotkeys:
□× Ctrl + Z → undo

B.3. Non-functional requirements 61

□× Ctrl + Y → redo
□× Ctrl + S → save
□× Ctrl + C → copy
□× Ctrl + V → paste
□× Ctrl + X → cut
□× Del → delete the selected element

Would
As an external host I would be able to ...

□ add background audio.
□ animate elements.

B.3. Non-functional requirements
□ One of the important non-functional requirements, is one where some of the functional requirements are

based on, is that all functionality in DigiHacked can be created in the final product. These functionalities
are described in section C.3. This should be doable without having programming experience.

□× As explained in the section on framework C.7, the new functionality should be added using the Meteor
framework.

□× Front-end tests are performed manually.
□× Back-end tests are written using the Mocha 1 framework, in combination with Meteor testing functionality.
□× An escape event can be organised for a few people, but also for enormous groups with more than 100

persons participating. The product must be scalable to allow for these large groups to participate in the
escape event without additional issues.

□× None of the newly added features should compromise security.
□× To protect their privacy, no data of the players is stored persistently, except the given teamcode, a

username they enter at the start and their progress in the game.
□× During an event, occurring errors must be dealt with properly, displaying a strong robustness in the

system.
□× The added source code must have a consistent style and must be readable. To prevent bugs, inefficien-

cies and possible duplicate code.
□× Any conflicts in code with team Kirby should be resolved in the final product.
□× MongoDB should be used for server side storage.
□× The programming languages used are JavaScript, TypeScript.
□× The above requirements are to be implemented as much as possible in eight weeks, starting May 4th.

1https://mochajs.org/

https://mochajs.org/

C
Research

Raccoon Serious Games is a company that develops and organises escape room inspired events for large
groups, as well as smaller groups [1]. These escape events are called ’Serious Games’ in general. Serious
Games are not only designed to entertain but also to educate or create awareness of a certain topic [2]. The
goal of these events is for players to learn something from these experiences and to stimulate team building.
If such events can incorporate online activities, such as gathering information from websites or entering login
credentials, this could be a valuable expansion of the possibilities of escape events.

Our project focuses on the existing M.O.R.S.E. (Massive Online Reactive Serious Escape) 2.0 [4] system
where escape game events can be created, updated and hosted. It is designed for the admins that develop the
events, the game hosts and also the players of the events. Puzzles, rulesets and other essential components
for escape events can be defined in the system. Communication with external webpages, however, can be
very troublesome in this system and it is not possible to track the progress of the players in puzzles on external
pages. In this research report we further analyse this problem and consider several solutions.

C.1. Overview
In this research report we will summarise the findings of our research. First, the problem definition and anal-
ysis is explained in section C.2. After that we describe the online escape experiences that should be made
possible by our solution in section C.3. Here we also study the specific example DigiHacked, one of the
game events Raccoon Serious Games want to be able to host in M.O.R.S.E. 2.0. In the section after this,
section C.4, the M.O.R.S.E. system is summarised by giving an overview of the current functionality of the
system and the features that are missing. One of the main missing features is the fact that the design of new
webpages requires programming experience. To this end, we look at web page builders and summarise their
functionalities in section C.5. In order to keep track of the player’s progress on the external websites, we
study and compare different techniques for cross-domain tracking in C.6. Based on the research done in the
aforementioned sections, we draw up a set of requirements using the MoSCoW method in section C.10.

C.2. Problem definition and analysis
M.O.R.S.E. is a tool for creating and hosting escape events. In these events, the participants are divided into
teams where they receive a set of questions and puzzles that need to be solved to complete the event. The
puzzles can be solved by the given physical items. Raccoon Serious Games developed one of these escape
events outside of the M.O.R.S.E. system called DigiHacked1. DigiHacked is an online escape experience
that provides an immersive experience that shows us the dangers of the online world and how people can be
vulnerable to hackers.

DigiHacked is a great example of an online escape experience that reveals what is lacking in the current
M.O.R.S.E. system. We will discuss online escape experiences more in detail in section C.3. While playing
DigiHacked, you are guided through several external websites that serve as different front-ends, each of
which provides their puzzles. In contrast to events made in M.O.R.S.E. , where all puzzles and questions are
1https://digihacked.raccoon.games/

63

https://digihacked.raccoon.games/

64 C. Research

shown only on the M.O.R.S.E. front-end, DigiHacked provides an additional layer of reality, due to the realistic
appearing websites. The main problem that we need to solve is therefore creating experiences in M.O.R.S.E.
that are immersive and can be done entirely online. To solve this problem, we consider two important aspects.

The first aspect is the production of the external websites that are used as front-ends for the participants.
Developing these websites for online escape experiences like DigiHacked requires programming experience.
DigiHacked has shown that Raccoon Serious Games is perfectly capable of creating such an event, yet a more
efficient workflow would be preferable, due to the small number of employees with programming experience.
Therefore we have to find a solution that allows Raccoon employees to develop an external website, keeping
various aspects in mind that need to be dealt with, such as the difficulty of usage and the easy development
of prototypes to allow for a flexible workflow. In section C.5, we dive deeper into this problem.

The second aspect we need to consider is ensuring players can access the produced websites and that
they can interact with them. The current M.O.R.S.E. system can track progress and process player input. With
the use of multiple front-ends on external websites, tracking and processing are not as straight-forward as it
is now. These front-ends should all have access to the same data so they too can remember which groups
completed what puzzles and which stage of the event they should show to a certain group. They should also
be able to accept input from the players and have the M.O.R.S.E. system check that input. To successfully
deploy online escape experiences like DigiHacked in M.O.R.S.E. after this project, we first need to construct a
solution for linking the external websites to M.O.R.S.E. and track the players’ progress across these multiple
websites. This second sub-problem will be further discussed in section C.6 and C.8.

C.3. Online Escape Experiences
The final goal of the project is to be able to implement online escape experiences such as DigiHacked in
the M.O.R.S.E. system without the need of any programming experience. In order to be able to create such
experiences, the functionality of DigiHacked has to be investigated.

C.3.1. Overview
DigiHacked is an experience that aims to teach about phishing and similar malicious actions by tricking players
into them in a controlled environment. Afterwards, these malicious actions are explained and ways of iden-
tifying them are discussed. For this experience, players form teams and receive only part of the information
that is needed to solve the task at hand. Although DigiHacked is just one specific example of an experience, it
contains many key features that are also important for other online escape experiences . Instead of focusing
on the specifics, we will explain the main features for each of the different roles, admins, hosts and players
that participate in the events. This focus on the main features is done to get a clear view of the functionality
that is required to be able to create new and different events in the final system.

C.3.2. Admin
The admin is an employee from Raccoon Serious Games. He or she can initiate an event whenever an
external party has booked such a game. During the creation of this event, the admin can define the number
of teams and players. On top of that the admin can specify the time slot for which the event is available to be
played. The admin can then share this event with the host of the external party. Currently the event is shared
through a link which the host can view. From this point onward, the host is able to host the event without the
need for the admin.

C.3.3. Host
Once the host has received the link he or she can view the event. The host is presented with a list of teams
and for each of these teams the player codes. These player codes can be shared to the players through their
own communication channels and each player should receive their own player code. The host is also able to
enter a custom message that the players will see at the end of the game. When players join the game using
the provided codes, the host sees this mentioned after the specific player code. After all players have joined,
the host can start the game. The host receives no additional information that would give them an advantage
in playing, so the host can also participate using one of the player codes. The host is also able to stop the
game. Stopping the game is possible before all teams have finished. The host can finally start a playback for
all players of the video explaining some more of the background of the game that was played.

C.4. M.O.R.S.E. 65

C.3.4. Player
Once a player has received their player code from the host, they can use this to log into the system. The
logged in player can then define their name. Each of the players is assigned to a team and the players in this
team can specify their team name. The teams each will go through the same experience. Before the game
has started the players can read a quick introduction to the game. After the host starts the game, the player
sees the main area of the game.

Player roles
Each player gets assigned a role within the game. These roles define what systems that player can access.
For example, a security guard has access to the security cameras in a room. This separation of the roles
makes communication between the different players crucial.

Front-ends
The main area of the game is a visual screen where each player can access a few different front ends. These
front-ends range from simple text views to front-ends where there is some user interaction built in. An example
would again be the security camera feed, where the player can rotate the camera or zoom in to focus on a
certain clue. In addition to front-ends inside the main interface of the game, players must also interact with
external sites. The actions of the players on these external sites are linked back to the team they belong to. In
addition, previous actions of someone in a team influences the game behaviour for all of them. For example,
when one player in the team transfers a sum of money, all the players have to accept this transfer. In one
of the front-ends the player could get sent a link to their mobile phone by entering their phone number. The
link was then sent as an SMS, to allow the player to use their phone’s camera for two factor authentication
for a certain web app. Once a team completes the game they can see the leader board with the scores of all
teams. In the case of DigiHacked, it is shown whether each team has transferred the money to the correct
company or to a group of hackers. Lastly, when the host has started the playback of a video to provide more
background information, all players are redirected to the screen where that video is playing.

Conclusion
The mentioned features are indirectly part of the requirements of the functionality to be added to M.O.R.S.E.
Some of the features might already be part of M.O.R.S.E. However, it is not possible to recreate all of the
required functionality in M.O.R.S.E. The design and creation of online escape experiences in M.O.R.S.E.
without the need for any programming experience is the main focus of the project.

C.4. M.O.R.S.E.
M.O.R.S.E. is the system currently used to create and manage escape room events for large groups of people.
M.O.R.S.E. excels at escape events at physical gatherings. There are multiple roles for such an event. There
are the teams, which are solving the puzzles. All the teams are divided into clusters. For each cluster, there is
an available foreman that tracks the progress and gives hints. Then there is the project desk staff. They help
the foreman and hand out physical puzzle pieces to each team. Finally, there is also the host and the admin,
who have control over the event while it is running. They can change the puzzle order and can decide what
should happen with wrong and correct answers. They are in full control of M.O.R.S.E. while it is running. The
difference between a host and an admin, is that the admin is the only person who can create and delete an
event. All the staff allows for the experience of people solving puzzles in teams and entering their answers on
the M.O.R.S.E. event website to progress through the event and complete more puzzles.

The goal of the project is that experiences like DigiHacked will be possible by using M.O.R.S.E. . First
we discuss the currently already available features that M.O.R.S.E. offers and that are useful when creating
online escape experiences . Afterwards, the main missing features are discussed.

C.4.1. Already available and usable features
M.O.R.S.E. is a system that is currently being used to host on location events. The main idea is that the similar
events can be hosted, but using an online environment. This means that some if not most of the currently
available features from M.O.R.S.E. can still be used for those online experiences.

Roles
For online experiences, the admin role can be reused, because it has similar behaviour as an admin in normal
physical events usually created and hosted using M.O.R.S.E. . For the players and teams in DigiHacked,

66 C. Research

the teams and clusters in the current version of M.O.R.S.E. could possibly be used. A team in M.O.R.S.E.
would then translate to a player in DigiHacked and a cluster in M.O.R.S.E. would then translate to a team in
DigiHacked.

Ruleset
The current ruleset in M.O.R.S.E. handles all the logic about the transitions and availability of puzzles during
an event. The ruleset is a list of rules about the event, automatically executed by M.O.R.S.E. during the event.
Every rule is divided into three parts: the triggers, the conditions and the actions.

Triggers define when the rule should be checked. An example of that would be: when the host pauses the
event, a certain rule should be checked and possibly executed. In the new online environment in M.O.R.S.E.
it should still be possible to do everything one could do on the website in the physical events. Therefore the
currently available triggers can still be used in the online environment.

When a rule is triggered, it will check if it meets all the conditions for the rule to actually apply to the event.
These conditions are needed in the online environment as well for all the logic.

Actions in M.O.R.S.E. make modifications to the state of the event. For example, teams can be moved to
different screens and hints can be given to teams. The possible set of actions is predefined and can be set to
apply to different targets in the event. In an online event, all the the logic, puzzle transitions e.t.c. has to be
done using those actions.

Schedule
The schedule available in M.O.R.S.E. gives an overview of the, often very large, events as well as handle
the event flow. It shows the order of screens and groups of puzzles which can be made available for teams,
clusters or even everyone in the event. In an online environment, where you cannot physically check the state
and order of the event, such an overview is very important.

C.4.2. Missing features
The current version of M.O.R.S.E. does not have enough functionality to make rich online experiences such as
DigiHacked. The missing features that could add that functionality are divided into the roles, ruleset features,
schedule features and a web page builder tool.

Host role
In online experiences, the other role that is required for online experiences is a host. One might think, because
there is already a host role in M.O.R.S.E. , it can be reused and is exactly the same. This is however not the
case. A host for online experiences can be a person participating in the event as well, and thus a special
kind of player. The online host has the power to start the event and to leave a final message when the event
has been finished. This means that a host in the online experience is a role that should still be added into
M.O.R.S.E. .

Player roles
Another feature of DigiHacked that is currently not supported in M.O.R.S.E. is the different roles a player can
have within a team. M.O.R.S.E. should add the possibility of distributing the available information and tools
over the team members.

Ruleset
The triggers that already exist in M.O.R.S.E. are currently designed for the physical events and do not have
much support for the triggers of extra websites and puzzles. Therefore extra triggers, conditions and actions
should be added to support those extra websites and puzzles.

Schedule
The schedule in M.O.R.S.E. , as noted before, allows for a great overview of bigger physical events. Moving
this event online and extra websites containing extra puzzles will reduce that overview. Therefore, the extra
websites and puzzles should be added to the schedule to keep the overview currently offered by M.O.R.S.E.

C.5. User interface building 67

Web page creation tool
A part of the problem is moving the M.O.R.S.E. experience online with external connected web pages. How-
ever the other part of the problem is the fact that those external web pages are currently hard to make without
programming experience. Therefore M.O.R.S.E. could include a web page creation tool that is compatible
with M.O.R.S.E. . More information regarding web page and user interface design building in section C.5.
Another solution would be creating an import tool that can import and modify web pages created using other
web page builder tools.

C.5. User interface building
The puzzles for the escape events can be created with the M.O.R.S.E. system. Based on the type of questions
used in the puzzle, a web page is generated. At the moment, there are only a two kinds of puzzles that can
be made with M.O.R.S.E. , open and multiple choice questions. The main problem with this system is that
the generated web pages are not really customisable. Although a few basic attributes can be changed, for
example the background colour, the rest can not be changed. The goal of the project is to make it possible to
have fully customisable web pages where the logic can be used with the M.O.R.S.E. system. This should be
possible in a way that doesn’t require any programming knowledge.

C.5.1. Web page
A web page consist of three parts: the content, the style and the behaviour. These parts are stored in three
corresponding files: a HTML, a CSS and a javascript file. HTML stands for Hyper Text Markup Language
and contains all the data and the structure of the web page. CSS stands for Cascading Style Sheet and it
describes how the elements are displayed on the screen2. The javascript file contains code which is executed
when the page is first loaded or when certain events happen, such as a button press.

User Interface elements
A web page consists of a collection of User Interface (UI) elements. The elements can be things like text,
images, tables, lists, buttons and other input forms. Each element has some assigned attributes which defines
how the element is displayed in an internet browser. Some examples of attributes are the background colour
and size. All the elements are defined in the HTML file. The attributes are defined in the style of each elements
and is generally stored in a CSS file.

Layout
The layout of a web page decides where each element is displayed on the page. Elements can be grouped
inside a division. The division can then be treated as a single element. The web pages might be viewed on
different devices. This means that it is important for the web page to be responsive. A responsive web page
automatically resizes and moves the content to make it fit on the target screen. This can be accomplished by
using media queries. Media queries can tailor the presentations to a specific range of output devices without
changing the content itself [7]. Another way to make the web page responsive is by using flexboxes. If an
element in the flexbox doesn’t fit horizontally anymore, it moves down vertically to the row below. There also
exists several web design frameworks such as Bootstrap [8] which handle the responsive part of the web
design. This is described in more detail in the next subsection.

Design
The files that form the web page can be written by hand or can be generated by another program. When
the page is written by hand, the developer needs to have knowledge of all the syntax that is needed to write
the files. This is not an option for this project, because the websites should be created without requiring any
programming knowledge. The other option is to generate all the files of the web page by another program.

C.5.2. Existing tools
In this section we will analyse existing tools that can be used for building a web page. Because each page
must have a connection with the M.O.R.S.E. system, there are two kinds of approaches we considered. The
first is to use an existing off-the-shelf page builder which we would somehow need to link to the M.O.R.S.E.
system. The second approach is to create a page builder from scratch, possibly with the help of existing
libraries or frameworks when appropriate. We will first discuss all these tools before we give our conclusion
about what we think the best solution is for this project.
2https://www.w3schools.com/

https://www.w3schools.com/

68 C. Research

Existing page builders
There are already a lot of existing off-the-shelf page builders which can be used to create a web page without
requiring programming knowledge. Some examples of this are Elementor3, Leadpages4 and Wix5. A web
page that is generated from an outside program is in no way connected to M.O.R.S.E. This means that there
has to be some way to link the generated web page to the functionality of M.O.R.S.E. This would be in the
form of a new feature in M.O.R.S.E. which loads in a specified web page after which it can be used in the
system. One important consideration for this to work is that the files of the web page must be fully accessible.

Key features Although there are many different page builders, they all tend to share some key features and
generally have the same workflow. The UI elements can be dragged and dropped from a sidebar into the
page. The page is a real time preview of what the generated page will look like. The elements on the page
can be selected after which the style can be changed. This is done by changing the attributes. Most page
builders already have some pre-build templates which can be chosen at the start. Some page builders can
change the style of several elements at the same time, instead of having to manually change each element.

GrapesJS GrapesJS [9] is an open-source web builder framework. It can be used to build websites without
requiring coding knowledge. With plugins, which GrapesJS fully supports, almost the whole framework can
be modified. It is available for commercial use and can easily be ran locally as well as on a server. Using
GrapesJS and self written plugins, one can make a web builder that can be integrated in M.O.R.S.E. Although
GrapesJS does have a lot of features, they are not all that easy to use. Changing the layout of the page is not
straightforward and might sometimes break the responsiveness when done incorrectly. Because it is such a
big program already, if there are any bugs, which we already came across, they are difficult to find and fix.

Building from scratch
Instead of using an external program to create the web pages, we can also make a new page builder from
scratch. The main benefit of doing this is that there is a lot of freedom in our design choices. It is comparatively
easy to have a connection to M.O.R.S.E. , because it can be build specifically around the system. The client
also indicated their preference for being able to create fast prototypes. Direct manipulation of the website in the
builder allows for fast prototyping [10]. This direct manipulation is already included with the no programming
experience offered by our page builer. There are some tools that can be used for making the page builder.

Bootstrap Bootstrap is an open source toolkit for developing web pages [8]. It has an extensive list of
pre-built components which can be used to easily create a good looking page. It automatically handles the
responsive part of the web page. This means that the page looks good on all kinds of screens, such as tablets
and mobile phones. It is also compatible with all modern browsers.

There are many other frameworks which provide similar functionality, such as Foundation6, Semantic UI7
and Bulma8. The Bootstrap framework is built around fast prototyping and focuses on the functionality. This
means that the pages made with Bootstrap might look somewhat similar at first, but the advantage is that it
doesn’t require heavy customisation for it to work. Bootstrap is also the most popular framework and is very
well documented with a lot of extra resources available online.

GridStack Gridstack [11] is an open source Javascript/Typescript library which can be used to create a
responsive layout. It can create items which are resizeable and can be dragged and dropped anywhere on a
grid. This makes it extremely easy to make a layout for a web page and place all the elements on the desired
location. Each layout component would be an item inside the main grid and also be a grid itself, whilst the
elements inside the layout would be an item in the layout grid. For this to work, it is essential that there is
good support for nested grids. Although Gridstack does allow nested grids, it is not intended to be used in
the way we would like to. The elements in a grid can only be transferred to another grid which has the same
depth. Therefore, it would require some modification before we can use it. On top of this, gridstack doesn’t

3https://elementor.com/
4https://www.leadpages.net/
5https://www.wix.com/
6https://get.foundation/
7https://semantic-ui.com/
8https://bulma.io/

https://elementor.com/
https://www.leadpages.net/
https://www.wix.com/
https://get.foundation/
https://semantic-ui.com/
https://bulma.io/

C.6. Cross domain tracking 69

Criteria Import from an external builder Integrate an existing Building from scratch
Integration in M.O.R.S.E. − +/− +
Extendability − +/− +
Easy prototyping − − +
Development cost + + −
Usability + +/− +/−

Table C.1: Comparison of three ways of creating functionality for building web pages.
A ዄ indicates that a certain criteria is met or is easy to meet, whereas a ዅ indicates that a criteria cannot be met or is very hard to meet.
A ዄ/ዅ falls in between them when it is neither hard nor easy to meet

generate pure HTML/CSS but needs to have the gridstack library on the client as well. This would make the
page builder completely dependent on gridstack.

jQueryUI jQueryUI [12] is a Javascript library built on top of jQuery which contains interactions, widgets,
effect and other utilities. JQueryUI can make any DOM (Document Object Model9) element draggable, drop-
pable, resizeable, selectable and sortable. The widgets are pre-built components similar to some of the boot-
strap components. Although jQueryUI provides some seemingly useful interactions for any DOM element, it
doesn’t work in a responsive way.

C.5.3. Comparison
In table 2.1 is an overview of the advantages and disadvantages of the different approaches. Based on
the advantages and disadvantages we came to the conclusion that building the page builder from scratch
using Bootstrap is the best approach to take. This approach allows for a good integration with the rest of the
M.O.R.S.E. system and is the most flexible solution if there is something that needs to change.

The page builder should have the same basic features as other existing page builders, such as being able
to drag and drop UI elements from a sidebar into the page. There should also be the option to choose a
pre-built template to allow for fast prototyping.

C.6. Cross domain tracking
As described in section C.4 M.O.R.S.E. only includes a single website where users fill in answers to puzzles in
order to receive the next puzzle. In order to integrate external websites into M.O.R.S.E. properly, the means
of communication between the site and M.O.R.S.E. is a very important aspect to consider. If puzzles are
available on external websites, solving them should still allow the user to advance to the next puzzle and
some actions on web pages should only be possible after having completed some other puzzle before. To
this end, we want to be able to track the necessary interactions of a user on the external sites. However, this
can be very cumbersome, because browsers will prohibit websites from interacting with the data of websites
opened in another tab. It is important to note though, that we will only track users’ team codes and no private
information will be tracked or stored.

In this section, we compare several possible solutions. Since tracking is a very broad term, we will look
at two aspects specifically for each proposed solution. The first thing we want to track is the user’s identity.
This is not necessarily in the form of actual personal credentials, but should at least include knowing a players
team-code within M.O.R.S.E.
The second aspect we consider is the ability to track a user’s progress. Examples of such progress would
be having visited a site, solved a puzzle, or entering a wrong answer. Being able to track this progress is
necessary if we want external puzzles to interact with M.O.R.S.E. during the event.

Cross domain tracking is used a lot in online advertisement [13] and many companies such as Google10
offer sophisticated tools to track the behaviour of users between websites [14]. After having taken a more
thorough look at these tools however, we do not think they fit our needs, because they focus more on large-
scale analysis of traffic, rather than quickly responding to individual users’ actions. Luckily there are many
other options available that fit the requirements of our project better, the most important of which are discussed
below, followed by a comparison where we determine which is most suitable for our purposes.
9https://www.w3.org/TR/WD-DOM/introduction.html
10https://about.google/

https://www.w3.org/TR/WD-DOM/introduction.html
https://about.google/

70 C. Research

C.6.1. No tracking
Although this may sound counter-intuitive at first, the desired result can actually be achieved without tracking
external activity of the user at all. Regardless of whether a puzzle is hosted on an internal or external website,
the user can still be asked to enter their answer to the puzzles in M.O.R.S.E. to continue with the event. This
way M.O.R.S.E. is still able to keep track of correct and incorrect answers given, while no extra tracking of the
user is required. Although this is by far the simplest solution regarding both complexity and implementation,
we do not think this is a viable option, because the user will likely experience this going back-and-forth between
M.O.R.S.E. and external websites to be less immersive, or even cumbersome. Alternatively, a submission
form can be shown on the external page, but then the user would be required to enter their team code at least
once on every external website. Although this might be a slight improvement, this can still be experienced as
cumbersome by the user.

C.6.2. URL tracking
Instead of having a user manually enter their code on every website, it is possible to embed this in the URL
(Uniform Resource Locator) or send it along with all communication underneath the surface. This way the user
is no longer bothered with entering their team code after clicking a link. A downside of this method, however,
is that a user still needs to enter their code when manually browsing to a website by entering the URL in their
browser. Between the available options of embedding the code in the URL, or in the request data, the latter
is probably preferable, because this way of tracking is not visible to the user and therefore contributes to the
immersive experience of the escape event.

C.6.3. Session cookies
Rather than sending the team code along with each HTTP (Hypertext Transfer Protocol) request, it is also
possible to store the code in a session cookie [15] in the browser. When using cookies, stateless session
cookies are preferred, because they do not keep a server-side state for each session [16]. This reduces the
server load, which is needed because M.O.R.S.E. needs to be able to handle a lot of users concurrently. The
advantage of using cookies over sending the code along with every request is that after having visited the page
once, the user can also browse to the website manually and it will still work until they restart their browser. A
downside of using cookies to store this information is that cookies are domain-specific. As a consequence,
external domains still do not have access to the player code, so this technique does only work in combination
with one of the techniques mentioned before.

C.6.4. Redirection
An improvement to the aforementioned URL tracking can be made in a way very similar to how most Single
Sign-on [17] implementations resolve the identity of a user. If the identity of the user (or in this case their team
code) cannot be derived, we redirect the user to a page within M.O.R.S.E. as the first step of retrieving this
code. On this login page, the user is either logged in already, in which case the team code is known and we
can immediately redirect back to the external site, with the team code hidden in the response, or the user has
not logged in before, in which case he still has to. The advantage of this method is that the user only has to log
on once per browser session, whereas the methods mentioned before could not guarantee this. In addition,
this method will also work together with both cookies and URL tracking.

URL masking A downside of redirecting like this is that users will briefly see a changed URL, which might
confuse them or affect the immersive feeling in a negative way. Using URLmasking we can solve this problem.
URL masking allows sites to show the content of a site hosted on another domain, while still showing the same
URL. This way user will still see the same URL, but behind the screens they are still being redirected. Another
advantage of URL masking is that it provides a layer of abstraction over the layout of the actual site, such that
the user is no longer bother with details about the actual implementation of the infrastructure the site runs on.

Internal redirection Instead of redirecting the entire page to a specific login page in M.O.R.S.E. and then
back, this can also be done internally. One way in which this could be achieved is using an iframe that redirects
to the login page in M.O.R.S.E. and then returns with the player code, to store it in the browser. A downside
of this approach is that communication between inside and outside an iframe can be very complicated. There
does exist an open source library for cross domain cookie sharing [18]. However this is a fairly unpopular

C.7. Frameworks 71

library and the last code modifications were 3 years ago and therefore not a valid option, because the code
for this project should be maintainable as well as robust, which this library cannot offer. The general method
used by this library, creating an invisible iframe which shares cookies from the main domain, however, is very
interesting and could be implemented by ourselves.

C.6.5. Comparison
Having discussed several techniques for keeping track of the user’s identity, we now compare them and de-
cide which is most appropriate for our purposes. No tracking at all, or tracking solely via URL parameters
does not provide enough immersion for the purpose of this project, therefore they are not viable solutions on
themselves. They can, however, still be used as fallback methods for the one we end up using. This way,
when the more sophisticated means of identification fails, the user can still be prompted to enter their code
once. In addition, there is also no way around the fact that the code has to be enter by the user manually at
least once, when starting the application. This will still be done using manual authentication.

Out of the remaining solutions, session cookies and URL masking seem especially promising, because
they ensure the user is not bothered with any kind of need for interference after they have logged in once,
and they will not notice what is happening behind the screens. We think an optimal solution would consist out
of a combination of the these techniques, in a way that harnesses the strengths of both. URL masking allows
for all sites to be located on the same domain, while appearing to be on different domains. This way the user
will not experience any difference, but communication between different sites will become much more natural,
since they are, in fact, on the same domain.

C.7. Frameworks
In the project we need to extend the M.O.R.S.E. system. The current system is built with Meteor and Angular.
Extending the system with other libraries and frameworks will introduce an extra level of communication be-
tween M.O.R.S.E. and the external libraries and frameworks. Since Meteor and Angular do fit our needs, we
will keep using that. It will save us the extra layer of communication and since the company is already used
to the old frameworks and libraries, they will have an easier time making changes to the code in the future,
making it more maintainable. As we covered in C.5, we chose for building a page builder from the ground up.
To support this process, Bootstrap is used to build our own UI.

C.8. Server-side solution
In this section, we discuss five different techniques that can be used to serve external web pages to the user’s
browser. Important aspects that are considered are their support for communicating with the existing server
and frameworks, the extent to which they provide access to the data stored in the M.O.R.S.E. database, and
whether the user will feel as if he/she is visiting a real website. After discussing all five techniques, we compare
them and pick the one best suitable for this application.

C.8.1. Standalone server with custom communication
There is the conceptually simple solution, which is creating a standalone server where we can implement our
own communication customised to our specific needs for this project. If carried out successfully, it would be a
solid option to consider, since it can do exactly what we want it to. To complete such a feature would require
significantly more time than the other options we are about to discuss. And for every external website that
would be created for the use of an online escape experience there would also need to be a new server, again
requiring customised communication to properly function. This is an addition to the already huge workload
for this option. Another downside would be that a domain for the website needs to be acquired at the start of
the project. This means that prototyping and changes to the external web pages are not possible, which is in
direct conflict with the wishes of the client.

C.8.2. In M.O.R.S.E.
Another option for hosting the external pages would be to let M.O.R.S.E. serve them. External pages would
then appear for the users as coming from the existing M.O.R.S.E. websites domain name as a sub-page. This
makes it easy to prototype because serving the websites is relatively easy inside the same domain. Another
benefit for this is that when adding interactive elements such as puzzles, the existing connection to the back-

72 C. Research

end can be used. However, a major disadvantage is the fact that pages appear to be from the M.O.R.S.E.
domain. This is unrealistic and therefore reduces the immersive experience for the players.

C.8.3. CNAME URL masking
In order to improve the desired immersive experience we propose to mask the URL of the pages in M.O.R.S.E.
A solution could be to do this on the DNS level through CNAME forwarding [19]. However the DNS forwarding
has the limitation to only redirect to the top-level domains instead of also subdomains, therefore this option
would not be viable.

C.8.4. .htaccess URL masking
Another option to improve the immersive experience while serving pages from M.O.R.S.E. is to mask the
URLs by editing .htaccess files on servers that run Apache11. This way, it appears to the user, as if they are
viewing an external page, while actually viewing a page served by M.O.R.S.E. The main advantage of this
strategy is that deploying websites is rather easy and allows for easy prototyping which is something our client
really wanted to include. However, the HTTP requests get forwarded through an additional server that has
no purpose other than forwarding. As a result, the cookies and other session data specific to the M.O.R.S.E.
domain are not sent along. This means that we need to implement additional tracking into the system. In
addition, data from M.O.R.S.E. can not be shared among external websites. This causes unnecessary extra
load on the browser’s resources.

C.8.5. M.O.R.S.E. within external iframe
Iframes can be used to embed another document inside other web pages [20]. We could use this to display a
specific page or set of pages of the M.O.R.S.E. system on an external domain. Using iframes, the requests for
the M.O.R.S.E. system are sent directly to the M.O.R.S.E. domain, rather than being routed through another
served first. This means that cookies and session data from the M.O.R.S.E. domain are also available within
this iframe. This is a major advantage over the other methods mentioned because it does not require explicitly
communicating such data outside of M.O.R.S.E. A downside of loading the websites within an iframe, though,
is that the browser navigation and history will likely work poorly and the URL of pages within an external site
will likely not include the full path. Although the latter can be remedied to some extent, some drawbacks will
remain.

C.8.6. Comparison
Having studied several methods for extending the server to be able to serve pages as if they are being viewed
from an external domain, we now have a clear overview of the available techniques. Although none of the
methods studied are a perfect fit for our purposes, the last method discussed, showing M.O.R.S.E. pages
within an iframe on an eternal domain, has the least drastic drawbacks. For this reason, iframes will be our
primary solution for this part of the project. Throughout the project, however, we will try other solutions in
practice as well, and try to find workarounds for their drawbacks, such that a truly optimal solution can be
delivered to the client.

C.9. Conclusion
To properly formulate a conclusion, we shall reconsider the initial main problem. The M.O.R.S.E. system
is currently unfit to produce online escape experiences like DigiHacked, that create a more immersive and
realistic experience. Therefore, the M.O.R.S.E. system needed to be adjusted not only to recreate DigiHacked
but also to create other new online escape experiences .

We mentioned two important aspects for solving this problem, of which the first was the production of
external web pages. This currently was only doable if you had programming experience, which slowed the
workflow of the Raccoon employees.

To allow puzzles that contribute to an immersive experience on external websites without programming
experience either an off-the-shelf external website builder or a self-implemented website builder should be
used. External website builders likeWix and Leadpages offer a professional look with a lot of features to create
your web page. Developing our own website builder, however, can offer more flexibility for the integration in
M.O.R.S.E. and can be adjusted to the preferences of the customer. Therefore, we decided to choose the

11https://www.apache.org/

https://www.apache.org/

C.10. Requirements 73

latter and implement our own website builder.
Another problem is the interaction between M.O.R.S.E. and external websites containing puzzles. The

most significant parts of that are the tracking of players across different domains and communication of puzzle
states to M.O.R.S.E. and back.

In order to actually serve these created websites to the user’s browser, we embed them in an iFrame that
is located on the external domain. This way the user will see the domain name of the external site in their
browser’s navigation bar, while the site itself will still be able to connect to M.O.R.S.E. , because it is, in fact,
run within M.O.R.S.E. Because we are integrating the features in the already existing M.O.R.S.E. system,
we will also use most of the frameworks M.O.R.S.E. is using. This means that Meteor, Angular, typescript,
MongoDB and miniMongo will be used to implement to serve the external pages as well as the website builder
that will be integrated into M.O.R.S.E. For testing purposes, the already existing test suite in Mocha will be
extended.

With these decisions that resulted in the requirements in section C.10, we are confident the updated
M.O.R.S.E. system will be able to host online escape experiences like DigiHacked.

Term Definition
Event The configuration of an escape game which contains a predefined set of puzzles and a

ruleset which specifies the order in which the puzzles are to be solved
Trigger Triggers define when a rule in the ruleset should be checked.
Action Consequences applied to the current state of the event once a rule has been met.
Condition A condition is a state that should be met before applying the action of a rule.
Progress Describes the state of the puzzles, i.e. which puzzles are completed and the puzzles

that are not yet solved
External web
page

A web page that a player can access through a different domain from M.O.R.S.E.

Form puzzle A puzzle that requires the player to enter information in a form which will be checked by
pressing the send / submit button.

Page visit puz-
zle

A puzzle that requires the player to visit a certain page. Upon page visit, the puzzle is
completed.

Button puzzle A puzzle that requires the player to click a specified button to solve the puzzle.

Table C.2: Definitions for the requirements.

C.10. Requirements
C.10.1. Functional requirements
For all stakeholders the same requirement will stand, which is that they all should keep the functionality they
currently have access to in the current M.O.R.S.E. system.

Player
Must

As a player I must be able to ...
□ visit an external web page that is part of the event.
□ see a puzzle on an external website.
□ have their progress saved in the existing M.O.R.S.E database when a player interacts with a puzzle

on an external website.
□ not do the same puzzle a teammate has already completed, since team progress is saved.
□ see the leaderboard in M.O.R.S.E. after they are redirected to the projector page, once they have

finished the event.
□ see the websites properly formatted on a computer, so that unintended horizontal-scrolling is not

required.
□ receive a popup where they should enter their player code when the player visits an external website

that does not know their player code.
□ identify what their role is.

74 C. Research

□ access resources that are available to all players.
□ only access the role-specific resources for their role.

Should
As a player I should be able to ...

□ access external websites that are part of the game without needing to enter their player code.
□ see the websites properly formatted on all modern web browsers, including browsers on tablets

and smartphones.
□ No unintended horizontal-scrolling.
□ Zooming in or out is not required in order to be able to view and read all content on the page.
□ No overlap between web elements.
□ UI elements are still operable.
□ see the detailed leaderboard, after they finished the event, with specific details for themselves.
□ see their team highlighted on the leaderboard.
□ see a message for “win”, “lose”, “in progress” on the leaderboard.
□ visit an external website that does not know their player code, after having to wait for a redirect to

the M.O.R.S.E. system that retrieves their player code.
Could

As a player I could be able to ...
□ visit an external website without entering their player code without the redirect.
□ see what input their teammates give on input places viewable to the player and their teammates.
□ see a chatbot where hints can be received.
□ ask questions in the chatbot.

Would
As a player I would be able to ...

□ use external websites on a different device without entering their team code at least once on that
device.

Admin/Game designer
Must

As a game designer I must be able to ...
□ change the style of internal pages in M.O.R.S.E. visible to the player.
□ specify that a puzzle must be placed on an external website.
□ use actions in rulesets which can be executed on external websites.
□ use triggers from external pages in rulesets.
□ create a trigger that activates on a button click on an external web page.
□ create a trigger that activates when a player visits an external website.
□ create a trigger that activates when a player submits a form on an external website.
□ specify what web pages should be served by M.O.R.S.E. based on the domain through which the

player accesses the system.
□ add a stage for a leaderboard display at the end of an event.
□ specify where a page created in the UI builder can be visited at a URL located within a dedicated

section of M.O.R.S.E.
□ add an external page visit puzzle.
□ specify the page that needs to be visited in order to automatically solve the page visit puzzle.
□ define roles within teams.
□ define the available pages which can be viewed by each player based on the role.

Should
As a game designer I should be able to ...

□ add custom messages by the leaderboard for winning players.
□ add custom messages by the leaderboard for losing players.
□ add custom messages by the leaderboard for when the game has not finished.
□ add custom messages by the leaderboard for when the game has finished.
□ add a form puzzle.
□ add a condition on the answer to a form puzzle.
□ add multiple inputs to the form puzzle.

C.10. Requirements 75

□ specify the input types for each form input.
□ specify the correct answers for each of the form inputs.
□ pause the game, such that functionality of the external websites is also paused.

Could
As a game designer I could be able to ...

□ specify the style of a page in M.O.R.S.E. that is visible to the player based on triggers that happened
during the event.

□ create a chat bot on an external website to give predefined hints.
□ change the style of the leaderboard.
□ add a trigger for when an audio element has finished playing.
□ add a trigger for when a video element has finished playing.
□ use an action to change a page on an external website.

Would
As a game designer I would be able to ...

Foreman
Must

As a foreman I must be able to ...
□ see given and correct answers for each puzzle on external websites.
□ access the external websites a team can see.

Should
As a foreman I should be able to ...

□ view instructions for stages on external websites.
□ send predefined hints for puzzles on external websites.

Could
As a foreman I could be able to ...

□ answer questions asked by players via the chatbot.

External Host
This role does not exist in M.O.R.S.E. so this has to be added. The role itself is not a necessity and has
therefore no must haves. The game could also be played without an external host, if the game designer or
(internal) game host in M.O.R.S.E. gives out player codes.

Should
As an external host I should be able to ...

□ see player codes
□ start the event
□ stop the event
□ specify a custom message

Could
As an external host I could be able to ...

□ share playing codes in an automated way.

Page builder
Although this will most likely be the same person as the game designer, we have defined the functionality of
the page builder separately to keep a more clear overview. The responsibility of the page builder is to create
the pages for the external web pages.

Must
As an external host I must be able to ...

□ select a template from a finite collection to create a web page
□ edit text on a web page
□ select a puzzle in web page from the existing puzzles
□ click on an eye button that shows you a preview of the web page while building that shows you the

web page in another screen as a player would see it.

76 C. Research

□ publish the web page to M.O.R.S.E.
□ add custom HTML to a web page
□ add custom CSS to a web page.
□ change the styling of elements on a web page including:

□ background color, gradient or image
□ foreground color
□ font and font size
□ border size, color and rounded corners
□ padding
□ margin

Should
As an external host I should be able to ...

□ drag and drop elements on a web page.
□ remove elements from a web page.
□ copy a web page from one event to a web page from another event.
□ add elements to a web page including:

□ headers
□ paragraphs
□ links
□ empty spaces
□ images
□ videos
□ audios
□ forms
□ input fields
□ input areas
□ buttons
□ checkboxes
□ radio buttons
□ lists
□ tables
□ dividers
□ footers

□ undo the last edit.
□ redo the last undo.

Could
As an external host I could be able to ...

□ save a web page as a custom-made template.
□ load custom-made templates.
□ add elements though drag-and-drop.
□ create a new puzzle in a specified stage in a template.
□ create custom classes with styles.
□ add the custom classes to elements.
□ add bootstrap items including:

□ alerts
□ badges
□ breadcrumbs
□ cards
□ carousels
□ collapses
□ dropdown menus
□ jumbotrons
□ modals
□ navs
□ navbars

C.10. Requirements 77

□ pagination
□ popovers
□ progress bars
□ scrollspies
□ tooltips

□ add google maps.
□ add countdown.
□ add typed text.
□ add colour picker.
□ rotate elements.

□ have a preview for other devices:
□ desktop
□ tablet
□ mobile

□ use the following hotkeys:
□ Ctrl + Z → undo
□ Ctrl + Y → redo
□ Ctrl + S → save
□ Ctrl + C → copy
□ Ctrl + V → paste
□ Ctrl + X → cut
□ Del → delete the selected element

Would
As an external host I would be able to ...

□ add background audio.
□ animate elements.

C.10.2. Non-functional requirements
□ One of the important non-functional requirements, is one where some of the functional requirements are

based on, is that all functionality in DigiHacked can be created in the final product. These functionalities
are described in section C.3. This should be doable without having programming experience.

□ As explained in the section on framework C.7, the new functionality should be added using the Meteor
framework.

□ Front-end tests are performed manually.
□ Back-end tests are written using the Mocha 12 framework, in combination with Meteor testing function-

ality.
□ An escape event can be organised for a few people, but also for enormous groups with more than 100

persons participating. The product must be scalable to allow for these large groups to participate in the
escape event without additional issues.

□ None of the newly added features should compromise security.
□ To protect their privacy, no data of the players is stored persistently, except the given teamcode, a

username they enter at the start and their progress in the game.
□ During an event, occurring errors must be dealt with properly, displaying a strong robustness in the

system.
□ The added source code must have a consistent style and must be readable. To prevent bugs, inefficien-

cies and possible duplicate code.
□ Any conflicts in code with team Kirby should be resolved in the final product.
□ MongoDB should be used for server side storage.
□ The programming languages used are JavaScript, TypeScript.
□ The above requirements are to be implemented as much as possible in eight weeks, starting May 4th.

12https://mochajs.org/

https://mochajs.org/

D
Admin manual

79

1

Admin Manual
1. Overview 2

2. Admin 3
2.1 Logging in as an admin 3

3. Create a website 4
3.1 Create domains and pages 4
3.2 Create ‘triggers’ to navigate the pages 5
3.3 Link the triggers to the buttons 6

4. Puzzles 7
4.1 Add new puzzles 7
4.2 Link the puzzles 8

5. Roles 9
5.1 Add new roles 9

6. Create leaderboards 10
6.1 Create one (or more) leaderboards 10

7. Test the event 11
7.1 Go to the MORSE event 11
7.2 Go to the external page 11
7.3 Go to the internal page 12

8. Import and export pages 13
8.1 Get the HTML+CSS of pages outside morse 13
8.2 Import a page 13
8.3 Import a custom HTML block 14
8.4 Export the page 15

9. Design a webpage 16
9.1 Add new blocks 16
9.2 Change the image/video 16
9.3 Change the style 16
9.4 Load a template 16
9.5 Pagebuilder hotkeys 17

2

1. Overview
This manual describes the steps that are needed to use the additional functionality to
MORSE added by team NoRemorse. Specifically, how to create and simulate a fake website
which can contain the existing or new puzzles from MORSE; how to create roles and how to
add leaderboards.

A domain is the address of a website that can consist of multiple web pages.
To give a comparison: if the domain is a house, then the web pages are the rooms inside
that house.
Or a real example: raccoon.games is a domain; and
raccoon.games/wat-is-een-serious-game/ is a web page on that domain.

All the domains and pages have to be created in the schedule, and start out as empty
pages without any functionality or visual elements on them. See (3.1) for how to create the
domains and pages.

The design of the web pages is done in the page builder where you can load templates
(see chapter 8); drag-and-drop elements into the page; or change the styling of the elements
(see chapter 9).

Since you can only see 1 page at the time on each domain, it can be useful to add triggers
which can be used to navigate the pages on the domain. See (3.2) and (3.3) for how to
create and link the triggers

Each web page can contain puzzles, but they are not present on the page automatically.
The puzzles have to be created in the schedule, and have to be linked manually in the
page builder afterwards. See (4.1) for how to create and link puzzles.

3

2. Admin

2.1 Logging in as an admin
1. Go to the URL: <MORSE Domain>/e/<EventName>/admin

a. For the playtests, if not noted otherwise, the URL is
https://noremorse.escape-room.app/e/playtest/admin

2. Log in with an admin code
a. For the playtests, the code is: “admin”

3. You should be in the event now, logged in as an admin

4

3. Create a website
This chapter describes how to create a website in MORSE.

All the pages start out as empty pages without any functionality or visual elements on them.
The design of the web pages is done in the page builder where you can load templates
(see chapter 8); drag-and-drop elements into the page; or change the styling of the elements
(see chapter 9).

3.1 Create domains and pages
A domain is the address of a website that can consist of multiple web pages.
To give a comparison: if the domain is a house, then the web pages are the rooms inside
that house.
Or a real example: raccoon.games is a domain; and
raccoon.games/wat-is-een-serious-game/ is a web page on that domain.

1. Go to the Schedule
2. Add a new domain schedule item

a. The “Domain Name” is the url of the domain
3. Add new page(s) to the domain

a. Click on the domain you want to add the new page to
b. Now, if you click on “new page”, it will add this page to the selected domain

4. (Optional) Add puzzles to the pages
a. See chapter “Puzzles” for more info

5. (Optional) Add roles to the domain
a. See chapter “Roles” for more info

5

3.2 Create ‘triggers’ to navigate the pages
Since you can only see 1 page at the time on each domain, it can be useful to add triggers
which can be used to navigate the pages on the domain.

A trigger is linked to a button on the page (see next subsection), and when it is clicked by a
player, they can be redirected to another page.

1. Go to the Rulesets
2. Add new rule

a. Make sure to set the name of the rule before saving
3. Add a new trigger:

a. the button (choose a name) … on the domain … was pressed
b. Choose a logical name for the trigger, this name will be visible in the page

builder
4. Add a new action:

a. move … on domain … to the page …
5. (Note) The condition is not needed in this case
6. The next section explains how to link these triggers to the buttons on the webpage

a. The triggers you create in the ruleset don’t do anything yet. They only
describe the ‘logic’ of what should happen. They have to be linked to an
actual button on the page itself

6

3.3 Link the triggers to the buttons
The triggers you create in the ruleset don’t do anything yet. They only describe the ‘logic’ of
what should happen. They have to be linked to an actual button on the page itself.

1. Go to the Page Builder
2. Open the page you want to edit

a. In the top left of the page builder → “Page” → “Load Page”
3. Go the puzzle tab

a. In the sidebar on the right → the second tab
4. Drag the trigger(s) of the domain into the canvas

a. An existing element on the page can be linked to a trigger by first selecting
the element on the page, then clicking the “Link to selected” button

b. The functionality of the triggers can only be changed in the “Rulesets”
c. It is not possible to create new triggers in the “Page Builder”

5. (Note) You can read more about designing the page in chapter “Design a webpage”

7

4. Puzzles
The puzzles are exactly the same as they were before in the existing MORSE system. They
can now also be added to the new webpages.

4.1 Add new puzzles
1. Go to the Schedule
2. Go to a page on a domain and add a puzzle
3. Only the Details and Answers tab are needed for the external puzzles.

a. In the Details tab, you select the puzzle type
b. In the Answers tab you can set the answer(s) of the puzzle

4. The next section explains how to link these puzzles to the elements on the page
a. The triggers you create in the schedule don’t do anything yet. They only

describe the ‘logic’ of the puzzle. They have to be linked to actual element on
the page itself

8

4.2 Link the puzzles
The triggers you create in the schedule don’t do anything yet. They only describe the ‘logic’
of the puzzle. They have to be linked to actual element on the page itself.

1. Go to the Page Builder
2. Open the page where the puzzle should be

a. In the top left of the page builder → “Page” → “Load Page”
3. Go the puzzle tab

a. In the sidebar on the right → the second tab
4. Drag the puzzle of the page into the canvas

a. An existing element on the page can be linked to a puzzle component by first
selecting the element on the page, then clicking the “Link to selected” button

b. You can drag the individual components of the puzzle into the canvas
c. The functionality of the puzzles can only be changed in the “Schedule”
d. It is not possible to create new puzzles in the “Page Builder”

5. (Note) You can read more about designing the page in chapter “Design a webpage”

9

5. Roles
Each player in a team can be assigned to a role. For each domain, you can set the roles
which are allowed to visit the pages on that domain. Every player which doesn’t have an
allowed role cannot visit this page.

5.1 Add new roles
1. Go to the Teams & Clusters
2. Type a role and press enter or comma to add it to the roles

a. The roles can be found on the right side all the way at the bottom
3. Go to the Schedule

4. Select a domain
5. Add the roles allowed to enter the domain to the Role whitelist

a. (Important) If everybody is allowed to visit the page, you can simply leave
this empty

10

6. Create leaderboards

6.1 Create one (or more) leaderboards
1. Go to the Schedule
2. Add a new leaderboard schedule item

a. You can enter a custom text for this leaderboard
3. (Optional) Repeat step 2 if you want multiple leaderboards with different text

a. So teams can be shown different leaderboards based on their result
4. Go to the Rulesets
5. Add a rule that moves players to a leaderboard with an action

a. The trigger and (optional) conditions can be decided by the admin.
6. Example to display a leaderboard based on the answer of the puzzle

a. (trigger) if the status of the puzzle … changes to solved for a team
b. (condition) and ... gave an answer which … … to the puzzle …
c. (action) then move … to the stage …

7. (Important) To compare the answer given by a form puzzle, you need to seperate
each answer by a comma and a space like this `, `

a. For example: “and … gave an answer which equals ‘username, password’ to
the puzzle …”

11

7. Test the event

7.1 Go to the MORSE event
1. If you’re logged in in the same browser, either logout or open a browser in a new

incognito window
2. Go to the URL: <MORSE Domain>/e/<EventName>/login

a. <MORSE Domain> is the website where MORSE is hosted
b. For the playtests, the <MORSE domain> is

https://noremorse.escape-room.app
c. <EventName> is the event you are currently editing

3. Login with a team or role code
a. If this is the first time logging in with a code, you have to enter a team name
b. You can find the codes in the “Teams and Clusters” tab

4. You should be in the event now, logged in as a user

7.2 Go to the external page
1. If you’re logged in in the same browser, either logout or open a browser in a new

incognito window
2. Go to the URL: <MORSE domain>/domain/<domainName>

a. <MORSE Domain> is the website where MORSE is hosted
b. For the playtests, the <MORSE domain> is

https://noremorse.escape-room.app
c. <domainName> is the domain of your domain schedule item

3. If you are not logged in then
a. Login with a team or role code and the event code
b. If this is the first time logging in with a code, you have to enter a team name
c. You might need to repeat step 1 after logging in

12

7.3 Go to the internal page
1. If you’re logged in in the same browser, either logout or open a browser in a new

incognito window
2. Go to the URL: <MORSE domain>/game/domain/<domainName>

d. <MORSE Domain> is the website where MORSE is hosted
e. For the playtests, the <MORSE domain> is

https://noremorse.escape-room.app
f. <domainName> is the domain of your domain schedule item

4. If you are not logged in then
a. Login with a team or role code and the event code
b. If this is the first time logging in with a code, you have to enter a team name
c. You might need to repeat step 1 after logging in

13

8. Import and export pages

8.1 Get the HTML+CSS of pages outside morse
The best way to get the HTML+CSS of pages made outside MORSE, is to have the original
source files available. If the content is spread out over multiple files, you’ll need to manually
combine all the code to a single file.

Option 1: copy to clipboard
1. Go to the web page you want to get the HTML of
2. Open the devtools of you browser by pressing ctrl+shift+i

a. Except Edge: Use f12 instead

b. For macOS:
c. Alternatively: right-click anywhere on the page → Inspect Element

3. Go the the Inspector tab
a. (Note) each browser is different and things might look the same.

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_ar
e_browser_developer_tools

4. Right click on the <html> tag

a. Scroll all the way to the top to find this
5. Press Copy → Outer HTML
6. The next section describes where to paste this HTML in the page builder
7. Find CSS files in “Style Editor” (only tested for Firefox)

Option 2: download the page
1. Go to the web page you want to get the HTML of
2. Save the page with ctrl+s (or cmd+s)
3. Save as “Web Page, complete”
4. The next section describes where to upload this HTML file in the page builder

14

8.2 Import a page

1. In the right menu, go the “Customization” menu, marked by the icon
2. Under “Import HTML”, either choose to import an HTML file or paste the HTML

code into the text field
3. Press “Apply”

a. All the old element will get overwritten by the new page
4. (Optional) Under “Import CSS”, you can import a CSS file or paste the CSS code

into the text field
a. Sometimes the CSS is included in the HTML, sometimes it is in a separate

file

15

8.3 Import a custom HTML block

1. In the right menu, go the “Blocks” menu, marked by the icon

2. Open the “Custom Block”
a. This is the last of the block groups on the bottom

3. Paste the custom HTML in the textarea
4. Drag-and-drop the custom block into the page the same way all the other blocks are

dragged into the page.
5. (Note) If you import a script as a custom block, you might need to save and reload

the page before it is loaded correctly.

16

8.4 Export the page
1. To export the current page, go to the top menu → “Page” → “Export page”
2. On the popup, either press the “Download” button or the “Copy to clipboard” button

a. “Download” will create a .html file on you machine
b. “Copy to clipboard” will copy the code of the page to your clipboard

3. You can now import the page again as an HTML file as described in the previous
section

a. This is useful for transferring an existing page to another event

17

9. Design a webpage

9.1 Add new blocks
1. You can drag-and-drop new block from the “Blocks” tab
2. The blocks are grouped per category
3. It is recommended to add layout components first before the other blocks
4. On the bottom, there is a “Custom Block” which can be used to:

a. Import/paste certain element from outside the Page Builder.
b. Copy the current selected element
c. Modify the copied element

9.2 Change the image/video
1. Make sure to select the element you want to change first

a. For some elements, this icon can be used to select the element
2. You can change the image or video in the “Properties” tab
3. Under “Attributes”, you can set the “src” of the image

a. For example: “https://arealbaank.nl/assets/img_logo_baank.png”

9.3 Change the style
1. Make sure to select the element you want to change first

a. For some element, this icon can be used to select the element
2. You can change the style of the selected element in the “Properties” tab
3. Under “Style”, you can change the style attributes of the selected element

9.4 Load a template
1. You can search for templates online, for example on this website:

https://www.w3schools.com/css/css_rwd_templates.asp
a. The pagebuilder only supports HTML + CSS + JS

2. Copy/download all the code of the template
a. For the example site above, press “Try it Yourself” to see the code
b. If the code is spread out over multiple files, you need to manually modify the

files to merge it into a single file (this is not the case for the examples above)
3. Import the code as a page (see chapter “Import and export pages”)

a. Images will most likely not be present in the imported template

18

9.5 Pagebuilder hotkeys
Below is a list of all the hotkeys in the pagebuilder:

Hotkey Description

ctrl+z (or cmd+z) Undo the previous action

ctrl+y (or cmd+y) Redo the last undo

ctrl+c (or cmd+c) Copy the selected element

ctrl+x (or cmd+x) Copy and delete the selected element

ctrl+v (or cmd+v) Paste the copied element below the
selected element

ctrl+d (or cmd+d) Copy and paste the selected element below

delete (or fn+backspace) Delete the selected element

t Select the ‘parent’ of the selected element
(if it exists)

g Select the first ‘child’ of the selected
element (if it exists)

h Select the next element (if it exists)

f Select the previous element (if it exists)

E
Scalability Test

In this document, we provide details regarding our plan for the scalability test. We will start with what we
roughly wanted to test. Then provide context to how we have tested these objectives. We conclude with
everything we noticed and learned about the scalability test.

E.1. Testing objectives
With this scalability test, we wanted to test the following:

• Adding web pages containing a lot of data

• Creating many teams with many roles

• Sending a page hint to everyone

• Many players submitting an answer to the same puzzle simultaneously

• Many players loading the same web page

• Many players firing the same trigger simultaneously

E.2. Testing set-up
We hosted our event using a server provided to us by Raccoon Serious Games that we could manually control.
For this server, we could choose what container to use while it was running, which decided the amount of
workload it could handle from the product. We could opt out of 3 different containers, with each having a
different amount ECU [21]:

• Standard container - 1 ECU

• Double container - 2 ECU

• Quad container - 4 ECU

The Quad container gets employed at real events, so checking the results on the Quad container will give
us the final verdict regarding if something is too slow or not, whereas the other two containers will give us a
better estimation of which parts of the system cause delay and if so to what extent.

We used the following to simulate a large amount of players:

• 5 real people

• 11 laptops (Windows / Ubuntu)

• 2 Android phones

• 1 iPad

99

100 E. Scalability Test

On each device, we opened all the different browsers installed on them. These could all be used as a
unique user. Then we also opened an incognito tab for each browser, which again were all potential unique
users. So for every used browser on a device, two unique users could be participating. However, we used
less unique player codes than the amount of unique players we could simulate, since communicating so many
codes across so many accounts was too cumbersome to do via an online meeting. This meant that some
of the browsers we used, shared the same player code, therefore, being treated by M.O.R.S.E. as the same
user. Chrome, Firefox, Edge and Safari were used for testing. To simulate more user workload, we also made
sure to open a lot of new tabs that also were participating with the event. Similar to some the unique browser
and incognito tabs, his did not lead to more unique users, but simulated more users putting workload onto the
product.

E.3. Results
We discuss each of the items on our list of tests we wanted to perform, to tell how it went and what we
concluded from each of them.

E.3.1. Data-heavy web pages
We inserted a page containing roughly 5 to 10 MB of data to test. These pages need a little bit longer to
load, and after looking into it, the data is already present when entering the page, but the rendering of all the
data takes more time. If we look at the escape event DigiHacked as a baseline, the sites will not get that
complicated, since an increase of complexity within a website is also an increase on the workload for the
Raccoon employees. It is, therefore, also in the interest of the Raccoon employees to keep the web pages
simple and separate them in smaller web pages.

E.3.2. Creating many players with many teams
This was a test where the performance was quite worse than expected. When adding 10 teams with 20 roles,
you did get the result you wanted, but you had 100% CPU usage during roughly 4 minutes. However, the
creation of teams and the generation of codes does not need to happen live during the event but can be done
before-hand with no time limit. Therefore, this is a problem with relatively low impact.

E.3.3. Sending a page hint to everyone
This test went a lot better than expected. All players on all tabs received a page hint all roughly the same time
(there was a little difference between browsers, but that was roughly half a second as a maximum delay).

E.3.4. Stress-test
There are two more objectives to test. Firing a lot of triggers at the same time and loading the same web page
simultaneously for a lot of players. For this, we created a stress-test that created a loop of redirects. Once
you entered the first site, you fired the trigger that you visited that site and then you get redirected to another
site that needs to be loaded. Then on that other site, we did the same with a redirect back to the first site. If
you have more than 200 players stuck in this loop, the standard container would not be recommended at all.
We barely saw screens loading at all, with the majority of the tabs remaining a white screen. If you used the
double container then it barely passed as a playing experience, where most of the tabs did perform a redirect
from one page to another, but there was a pause of 5 to 10 seconds very often before the next redirect came
through. Only when using the quad container, you get a decent performance in the eyes of the player. It
still was not as fast as when only playing when 10 players and performing simple actions, where everything
happened instantly. However, because the max delay that we have seen is roughly a second, we are quite
content seeing as 200 players putting the maximum workload on the server.

E.3.5. Browser difference
Using Edge as your browser seemed to have slightly better results overall. When we looked at our computer’s
task manager, we saw that this was caused by Edge claiming a lot more of idle resources to achieve this, while
other browsers were way more efficient achieving just a slightly worse result. With 8 idle Edge tabs running,
roughly 2.6 GB of memory was used and 12% of CPU usage, while with Firefox or Chrome only around 0.9
GB of memory was used and an average of 2% of CPU usage.

F
Project description

F.1. Het project
Raccoon Serious Games heeft verschillende software systemen wat ze gebruiken voor het hosten van
grootschalige en fysieke escape rooms. Op dit moment heeft dit systeem slechts één front-end, met altijd
dezelfde structuur, met minimale aanpassingsvariabelen. Omdat wij steeds op zoek zijn naar het maken van
immersievere ervaringen, lopen wij tegen de limieten aan van dit systeem, M.O.R.S.E. We hebben verschil-
lend front-ends nodig, gekoppeld aan verschillende domeinen om de gebruiker een bijzondere ervaring te
bieden. We hebben ook al een spel die dit gebruikt, maar nog op legacy code draait. De uitdaging en op-
dracht in dit project is het flexibel en modulair maken van MORSE, zodat we met verschillende front-ends en
cross-domain kunnen werken. Daarnaast kan het zijn dat er extra uitdagingen te voorschijn komen onderweg
waardoor het nodig is om aanpassingen te maken in het MORSE systeem. Hiervoor wordt een kritische en
adviserende blik verwacht.

F.2. About Popup-escape
Popup-escape is a young company/startup started by a Delft Computer Science student two years ago. It
started out as a hobby and it is now grown to a full-time job with multiple part-time employees. (Also some
Computer Science students). We have designed and made about 30+ escape rooms over the past two years
and at least 3000 people have played the different escape rooms.

101

G
Playtest Webshop

You will be following a scenario of creating an online escape event. Because of limited time, we will make
all the web pages already available on M.O.R.S.E. for you. It is your job to edit some texts, add some minor
styling, and link the web pages to M.O.R.S.E. with the puzzles. For the specifics on linking everything to
M.O.R.S.E., you will need the admin manual which is also sent to you.

G.1. Escape event scenario
Guiseppe Mcdougall of your company has been fired because he leaked company secrets. The CEO is
starting to panic because he was working on project X, which launches in a few days and the preparations
have not yet been finished. We still need some cameras for the event. Those still have to be ordered! We
don’t know what camera it should be and only Guiseppe has this information in his mailbox. We’ve asked him
politely to forward the mail, but he refuses to cooperate. Luckily we have the company hacker with us today…
Good luck!

G.2. What to make:
G.2.1. Roles:

• Hacker

• Shopper

G.2.2. Mailbox domain: (Access: Hacker role)
This is the mailbox where the player will find information on what an how many cameras to buy.

TODO:

• You have to put the emails at the bottom of this document in the mailbox web page.

• Give only the hacker role access to this page.

G.2.3. Webshop domain: (Access: Everyone)
The webshop domain has a home page. On this page, the player has to select a camera to buy. Depending
on the selected camera, they are redirected to the checkout page for that specific camera. When they ordered
the camera, they will go to the order placed page.

TODO:

• Home page with several cameras that can be ‘ordered’. This page has been made for you.

• We have created one checkout page for a camera for you.

– You have to create two more checkout pages for the other two cameras.

103

104 G. Playtest Webshop

⋄ Those two pages should have the same puzzles as the already existing checkout page.
⋄ You can export the already existing page and import it for the new pages. You will be able to
find how in the admin manual.

⋄ You have to link the created puzzles in the Page Builder to the correct elements (input and
button).

⋄ You have to create a new rule in the Ruleset that redirects the players from the camera 2 and
3 pages to the order placed page.

⋄ (optional): If you have time left: Link the logo to the home trigger, that is already made for you.

• We have created one trigger for you in the Rulesets that redirects you to the first camera checkout page
when you click the first camera.

– You have to create two similar triggers that have a different name and that go to the other two
pages.

– You have to link those two triggers to the other two images in the home page. This can be done in
the Page Builder.

• Give every role access to this page.

G.2.4. Leaderboard stage
When the player has ordered any camera, their MORSE screen will redirect to the leaderboard. Depending
on what ((optional): and how many) cameras they bought they will go a different leaderboard with different
texts.

TODO:
• Create two ‘leaderboard stages’, one for players who ordered the correct cameras, and one for the
players that didn’t.

– Add a custom text for the winners and losers.

• Based on the puzzle that was solved, redirect the player to the ‘Win’ or ‘Lose’ leaderboard stage. This
can be done in the Rulesets. More information on this in the admin manual. [Note: for the basic version
of the leaderboards (correct or incorrect camera) you do not need the condition in the admin manual
example.]

– Hint: you can add an action the already existing rules for redirecting the players to the order placed
screen. Decide which rulesets need to go to which leaderboard.

• (optional): Add a third leaderboard stage for players who ordered the wrong amount of cameras but did
select the correct camera type.

– Add a custom text for that leaderboard.
– Add a new condition in theRulesets of the already existing rule for when Camera 1 puzzle is solved.
(the answer of puzzle: ‘Camera 1 puzzle‘ ‘equals‘ 4)

– Add a new condition in the Rulesets that is a copy of the previous one but now with condition: (the
answer of puzzle: ‘Camera 1 puzzle‘ ‘does not equal‘ 4)

G.3. Email texts
G.3.1. Email 1:
Subject: Project X
From Borge Refsnes, Jun 10, 2020

Hello Guiseppe,

I just wanted to let you know that we will be needing 4 cameras of type Canon ZX350. We have a budget of
$3000 dollars somake sure you use this website because it is the cheapest: www.camerawebshop.com.
For the rest of the project launch, we have covered all the remaining tasks. Thanks a lot for the help!

Best Regards,
 Borge Refsnes

G.4. Playtest results 105

G.3.2. Email 2:
Subject: You forgot your lunch!
From Jane Mcdougall, Jun 2, 2020.

Hi Seppy,

You seem to have forgotten your lunch box this morning! I can bring it to your office if you want?

Love,
 Mom

G.3.3. Email 3:
Subject: Super Special Sexy Sunglasses discount! Don’t miss your chance!
From Anthony Alves, May 25, 2020.

Hi Guiseppe Mcdougall,

Thank you so much for being a customer of Sexy Sunglasses.

It’s because of people like you we have been able to be in business for such a long time. To thank you,
we have created a discount coupon especially for you.

Use the codeDISCOUNT2020 to get a discount of 50%on any product in our store http://www.sexysunglasses.com/.

But hurry! The offer is only available for the first 100 people who make the purchase.

Thank you,

Anthony Alves of the Sexy Sunglasses support team

G.4. Playtest results
During the webshop playtest, we had participants who were using M.O.R.S.E. for the very first time. Perform-
ing the tasks given to them, required a lot of effort and help from us. We could relate and easily understand
since not too long ago we were just as unfamiliar with the product and trying to separate our left from rights.

They didn’t have the way of thinking required to use M.O.R.S.E. yet. First time use is very difficult if you’re
not used to the workflow. They did find it use full that there is an admin manual. The imported templates were
very easy to use, but they would still want some templates already in M.O.R.S.E. that are simple to use and
would expect to be less error prone. Linking all the things is a lot and difficult, since there are: schedule items,
pages, triggers, rulesets, puzzles, roles. They also missed the ability to copy schedule items and rulesets,
but that was already in the old system. It also wasn’t very clear how the roles worked with the existing users.

Below is a list of new requirements filtered from all the feedback given from the participants combined with
our observations. We checked those which we did finish, while those unchecked are not done due to time
constraints or the problem being solved another way.

□× Add a ’Save as’ confirm dialog.
□× Confirm ’Unsaved changes’.
□× Dragging of schedule items did not work consequently.
□ If you have a trigger on a puzzle submit button then the puzzle still has to be solved on click.
□ Another way for setting a domain name than having ’domain’ as default.
□ Add an intuitive way of recognising what player role codes are meant for (and where they come from).
□ A duplicate button for schedule items.
□ A method to open pages in the page builder directly from the schedule editor.
□ Unlink puzzles in the page builder.
□× Do not use double-click in the page builder to edit text.

106 G. Playtest Webshop

□× Insert ’Delete Element’ button.
□ View and edit multiple rulesets at once.

H
DigiHacked Playtest

You will be following a scenario of creating an online escape event called DigiHacked. We will be providing
you with the link to the admin manual, the link to M.O.R.S.E. as well as a login code.

H.1. Creating Creedo Industries
Link: https://creedoindustries.com/

• A domain for Creedo Industries, containing:

– A home page.

• A page visit puzzle on the home page of Creedo Industries.

H.2. Creating ARealBaank
Link: https://arealbaank.nl/login.php

• A domain for arealbaank, containing:

– A home page.
– A login page.
– A verification page.
– A transaction page.

• Puzzles

– A login puzzle on the login page of arealbaank using a form puzzle.
– A page visit puzzle on the home page of arealbaank.

• Navigation triggers

– A redirect from the home page of arealbaank to the login page.
– A redirect from the login page of arealbaank to the home page.
– A redirect from the login page of arealbaank to the logged in page once the previously created form
puzzle is solved.

H.3. Creating Sixtrix
Pdf: https://localcdn.popup-escape.nl/Company_details_form.pdf

• A domain for Sixtrix, containing:

– A home page.

107

https://creedoindustries.com/
https://arealbaank.nl/login.php
https://localcdn.popup-escape.nl/Company_details_form.pdf

108 H. DigiHacked Playtest

⋄ 4 buttons: email, chat, explorer, settings.
– An email page.

⋄ Template url: https://www.w3schools.com/w3css/tryit.asp?filename=tryw3css_
templates_mail&stacked=h

• Puzzles

– A login puzzle on the login page of arealbaank using a form puzzle.
– A page visit puzzle on the home page of arealbaank.

• Navigation triggers

– A redirect from the home page explorer button of Sixtrix to the pdf file.
– A redirect from the home page of Sitrix to the email page.

H.4. Creating leaderboards
Since recreating theDigiHacked endscreenwhere the result of all teams is viewable is not possible inM.O.R.S.E.,
we want you to create an alternative that at least give team-specific customization.
Please make the following in in M.O.R.S.E.:

• A leaderboard stage for all teams who won.

– Add a custom text to congratulate the winning teams.

• A leaderboard stage for all teams who lost.

– Add a custom text to console the losing teams.

• A redirect to the winner leaderboard if a team solved all puzzles.

• A redirect to the loser leaderboard if a team did [insert condition to your liking].

H.5. Playtest results
In general, the volunteer was very happy with the product. Not everything was clear at first, but easy to use
once explained. Importing was very nice, leaving room for personal creations as well as having the option to
import from other page-builders.

Below is a list of new requirements filtered from all the feedback given from the participants combined with
our observations. We checked those which we did finish, while those unchecked are not done due to time
constraints or the problem being solved another way.

□ The use of the domain names that the user has to enter in the domain schedule item is unclear.
□× The admin manual lacks a description of custom blocks that can be inserted in the page builder.
□× The admin manual lacks a description of hotkeys.
□ The confirmation of actions is a bit camouflaged.
□× Many actions are not clear at first, but clear after having them explained once.
□ Bootstrap containers have a max-width, making it difficult to make the width bigger.
□ Creating conditions in a ruleset with form puzzles was unclear since multiple answers are given and all

existing rules are created for a single answer puzzle.
□ Finding and extracting entire HTML and CSS blocks from existing sites that need to be imported is quite

difficult and the approach is different for every browser.
□ Imported pictures have a relative position and not absolute, therefore, correctly displaying on the site

but not on the preview in the page builder.
□× Testing your existing event on one device using an incognito window is unclear in the admin manual.
□ Creating rulesets for separate leaderboards was confusing. This could be improved by adding a new

puzzle status for when a team answers a puzzle with a wrong answer, an ‘incorrect’ puzzle status.

https://www.w3schools.com/w3css/tryit.asp?filename=tryw3css_templates_mail&stacked=h
https://www.w3schools.com/w3css/tryit.asp?filename=tryw3css_templates_mail&stacked=h

I
Infosheet

109

Team members
Elwin Duinkerken
Lead testing, lead code documentation, page builder developer
Likes programming, as well as computer and board games.

Gijs Groenewegen
Lead programmer, lead tooling, page builder developer, styling
Likes sushi and pizza. Enjoys programming and playing games.

Wessel Thomas
Team leader, lead process documentation, leaderboard developer
Likes football and plays the bass guitar.

Bram Verboom
External communicator, lead code quality, domains developer
Plays guitar and likes programming.

Timo Verlaan
Scrum master and secretary, role developer, hosting
Enjoys listening and making music, programming and gaming.

All team members enjoy escape rooms and contributed to
preparing the reports and the final project presentation

Enabling the creation and hosting of
cooperative online escape events in

M.O.R.S.E. without programming experience

Client
J.W. Manenschijn, BSc
CTO of Raccoon Serious Games

Coach
T.A.R. Overklift Vaupel Klein, ir.
Supervisor, TU Delft

Contact
Bram Verboom
bramv44@gmail.com

Final presentation date: July 1st, 2020
The final report for this project can be found at repository.tudelft.nl

Description

To create and manage large escape events, Raccoon
Serious Games created a system called M.O.R.S.E. This
system was developed to locally run escape events and
therefore has very limited support for creating online
escape events. Creating online escape events could be
done outside of the M.O.R.S.E. system, but that would
require a lot of programming. Raccoon Serious Games
does not have the required technical capacity for this,
making it a very hard and time-consuming process.

To solve this problem, we added new features to the
existing M.O.R.S.E. system, such that professional-looking
online escape events could be made with no to minimal
programming experience. During the research period, we
tried to come up with a good solution for all the problems
that are included with adding online escape events. We
learned a lot about the privacy constraints around user
tracking in this research phase and were, therefore, able to
come up with a plan for hosting web pages as well as the
user tracking.

The setup of the project was not as easy as expected.
Making the old system run took a few days because of
limited documentation. Afterwards, the CI and the
ESLint static analysis still had to be set up as well.
These issues took a big part of the time in the
first development week.

The product that we created contains a page builder in
which a web page can be built, styled and linked to puzzles
and the rulesets in M.O.R.S.E. using a GUI and drag-and-
drop. Web pages can also be imported and exported in the
page builder. We also created domains on which those
web pages can be placed. Those domains are run on the
M.O.R.S.E. server and have to serve on external domains
with the delivered iFrame. In addition to that, we also
added leaderboards and roles, to enforce teamwork in the
online experiences.

Recommendations for future development of this product
are refactoring of the code of the old M.O.R.S.E. system,
improved user code distribution and more role options.
Raccoon Serious Games will likely use the product to create
online escape rooms.

Bibliography
[1] Raccoon Serious Games, “Over ons.” Available at https://raccoon.games/over-ons/.

[2] U. Ritterfeld, M. Cody, and P. Vorderer, Serious games: Mechanisms and effects. Routledge, 2009.

[3] E. Boeve, L. Barfield, and S. Pemberton, “Wysiwyg editors: And what now?,” in Human-Computer Inter-
action (L. J. Bass, J. Gornostaev, and C. Unger, eds.), (Berlin, Heidelberg), pp. 68–82, Springer Berlin
Heidelberg, 1993.

[4] M. Bakker, A. Braam, W. Morssink, T. Nederveen, and A. Sterk, “Supporting large-scale escape rooms
with a modular system,” 2019.

[5] S. S. R. Ahamed, “Studying the feasibility and importance of software testing: An analysis,” CoRR,
vol. abs/1001.4193, 2010.

[6] Scrum, “What is scrum?.” Available at https://www.scrum.org/resources/what-is-scrum.

[7] World Wide Web Consortium, “Media queries.” Available at https://www.w3.org/TR/
css3-mediaqueries/.

[8] Bootstrap. Available at https://getbootstrap.com/.

[9] Grapesjs. Available at https://grapesjs.com/.

[10] S. Douglas, E. Doerry, and D. Novick, “Quick: a tool for graphical user-interface construction by non-
programmers,” The Visual Computer, vol. 8, pp. 117–133, 03 1992.

[11] GridstackJS. Available at https://gridstackjs.com/.

[12] jQueryUI. Available at https://jqueryui.com/.

[13] P. Leon, B. Ur, R. Shay, Y. Wang, R. Balebako, and L. Cranor, “Why johnny can’t opt out: A usability
evaluation of tools to limit online behavioral advertising,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’12, (New York, NY, USA), p. 589–598, Association for
Computing Machinery, 2012.

[14] Google. https://support.google.com/analytics/answer/1034342?hl=nl.

[15] Mozilla, “Http cookies.” https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies.

[16] S. J. Murdoch, “Hardened stateless session cookies,” in Security Protocols XVI (B. Christianson, J. A.
Malcolm, V. Matyas, and M. Roe, eds.), (Berlin, Heidelberg), pp. 93–101, Springer Berlin Heidelberg,
2011.

[17] M. E. Chalandar, P. Darvish, and A. M. Rahmani, “A centralized cookie-based single sign-on in distributed
systems,” in 2007 ITI 5th International Conference on Information and Communications Technology,
pp. 163–165, 2007.

[18] Contently, “xdomain-cookies.” https://github.com/contently/xdomain-cookies.

[19] NameCheap, “Types of domain redirects - 301, 302 url redirects, url frame (and cname).” Available
at https://www.namecheap.com/support/knowledgebase/article.aspx/9604/2237/
types-of-domain-redirects--301-302-url-redirects-url-frame-and-cname, 2019.

[20] W3schools, “Html <iframe> tag.” https://www.w3schools.com/tags/tag_iframe.asp.

[21] J. Read, “What is an ecu? cpu benchmarking in the cloud.” Available at http://blog.
cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html, 2010.

111

https://raccoon.games/over-ons/
https://www.scrum.org/resources/what-is-scrum
https://www.w3.org/TR/css3-mediaqueries/
https://www.w3.org/TR/css3-mediaqueries/
https://getbootstrap.com/
https://grapesjs.com/
https://gridstackjs.com/
https://jqueryui.com/
https://support.google.com/analytics/answer/1034342?hl=nl
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://github.com/contently/xdomain-cookies
https://www.namecheap.com/support/knowledgebase/article.aspx/9604/2237/types-of-domain-redirects--301-302-url-redirects-url-frame-and-cname
https://www.namecheap.com/support/knowledgebase/article.aspx/9604/2237/types-of-domain-redirects--301-302-url-redirects-url-frame-and-cname
https://www.w3schools.com/tags/tag_iframe.asp
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html

	Introduction
	Problem Research
	Design
	Implementation
	Testing
	Process
	Discussion
	Conclusion
	Recommendations
	Project plan
	Requirements
	Research
	Admin manual
	Scalability Test
	Project description
	Playtest Webshop
	DigiHacked Playtest
	Infosheet
	Bibliography

