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A numerical methodology is presented for simulating 3D multiphase flows through complex geometries
on a non-body conformal Cartesian computational grid. A direct forcing implicit immersed boundary
method (IBM) is used to sharply resolve complex geometries, employing the finite volume method
(FVM) on a staggered grid. The fluid-fluid interface is tracked by a mass conservative sharp interface vol-
ume of fluid (VOF) method. Contact line dynamics at macroscopic length scale is simulated by imposing
the apparent contact angle (static or dynamic) as a boundary condition at the three-phase contact line.
The developed numerical methodology is validated for several test cases including the equilibrium shape
of a droplet on flat and spherical surfaces, the temporal evolution of a droplet spreading on a flat surface.
The obtained results show an excellent correspondence with those derived analytically or taken from lit-
erature. Furthermore, the present model is used to estimate, on a pore-scale, the residual oil remaining in
idealized porous structures after water flooding, similar to the process used in enhanced oil recovery
(EOR).
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multiphase flows in complex geometries are encountered
widely in nature and technology. Examples include enhanced oil
recovery (EOR) (Alvarado and Manrique, 2010), trickle bed reactors
(Herskowitz and Smith, 1983), microfluidics devices (Stone et al.,
2004) and biological systems (Fauci and Gueron, 2001).

Focusing on oil recovery, during the primary recovery process,
oil comes out of the porous rocks automatically due to its own nat-
ural pressure. Gradually, the natural pressure of the oil reduces and
the automatic flow of the oil stops. There is still a large amount of
oil which remains trapped in the porous rocks. To recover this
residual oil EOR processes are used. There is a wide variety of
EOR processes available e.g. gas injection, thermal processes, water
flooding, chemical flooding etc. and the choice is generally based
on economy. In water flooding (Sheng, 2014) high pressure and/
or high temperature water is pushed through porous rocks to
recover residual oil. Focus of the current work is to devise a
methodology for pore-scale simulations of oil-water multiphase
flows through complex rock structures during such a water flood-
ing process. To serve this purpose, three different things need to be
resolved: (i) oil-water multi-fluid interface tracking, (ii) interac-
tions between fluids (oil and water) and complex solid geometries,
and (iii) three-phase contact line dynamics.
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Accurate simulations of sharp interface multi-fluid flows are
particularly difficult for the following reasons: (i) the fluid-fluid
interface needs to be tracked accurately without introducing
excessive computational smearing and (ii) accurate calculation of
surface tension force is necessary in case of highly curved inter-
faces. A wide range of numerical methods has been developed
and successfully applied to a variety of multi-fluid flow problems
(Wörner, 2003). The front tracking (FT) method (Tryggvason et al.,
2001) uses triangular shaped markers (in 3D) on the Lagrangian
interface to track it. However, the Navier-Stokes equations are
solved on a fixed Eulerian grid. Necessary information is
exchanged between the Lagrangian interface markers and neigh-
boring Eulerian grid cells for advection of the interface and com-
putation of the surface tension force. This method is very
accurate, but it requires dynamic remeshing of the interface mark-
ers. Also, interface breakup and coalescence is not automatic and it
requires a proper sub-grid model to resolve them. The level set
(LS) method (Sussman et al., 1994) defines the interface as the
zero level set of a distance function from the interface. A numeri-
cal solution is found for the advection of this distance function.
The LS method is conceptually simple and relatively easy to imple-
ment but it suffers from loss of mass in case of highly deformed
interfaces. The volume of fluid (VOF) method (Hirt and Nichols,
1981; Youngs, 1982) uses a color function Fðx; y; z; tÞ which
denotes the fractional amount of particular fluid present at spatial
location ðx; y; zÞ at time t. Advection of F is governed by the same
equation as for the LS method but it is solved by pseudo-
Lagrangian geometrical advection schemes to minimize numerical
diffusion. This particular feature makes VOF the most mass con-
servative among all multi-fluid interface tracking methods. Inter-
face reconstruction is required for geometrical advection of F
which is done by simple line interface calculation (SLIC) by Noh
and Woodward (1976) or piecewise linear interface calculation
(PLIC) by Youngs (1982). The accuracy of the PLIC algorithm is
higher compared to SLIC and is used in the present work. A draw-
back of LS and VOF methods are that they produce numerical coa-
lescence when two interfaces are less than one grid cell apart. The
surface tension force (Baltussen et al., 2014) can be numerically
calculated by the continuum surface force (CSF) model, height
function model or tensile force model. The density-scaled CSF
model proposed by Brackbill et al. (1992) is used here due to its
simplicity and robustness especially in the presence of complex
solid boundaries.

Fluid-fluid interfaces in contact with solid boundaries produce a
three-phase contact line and thus the contact line dynamics needs
to be resolved in addition to solving interface motion. The contact
line behavior is determined by microscopic physicochemical inter-
actions between molecules of two different immiscible fluids and
the solid substrate, and it can drastically affect the statics and
dynamics of the bulk flow (Snoeijer and Andreotti, 2013). The
result of these microscopic interactions at the contact line can be
seen as an apparent contact angle on macroscopic length scales.
Multiple attempts have been made to describe the effect of the
contact line on macroscopic length scales by giving a single/static
(Renardy et al., 2001) or dynamic (Dussan, 1979) value for appar-
ent contact angle. An interesting review on simulations with mov-
ing contact lines is presented by Sui et al. (2014) where the main
approach is to apply the apparent contact angle as a boundary con-
dition at the grid cells located at the contact line. However, the
majority of the available literature focuses on the numerical simu-
lations of the contact line dynamics for simple solid geometries on
a body conformal grid and still a significant amount of work is
needed for complex solid geometries.

The immersed boundary method (IBM) is a well-established
computational technique which uses non-body conformal struc-
tured (mainly Cartesian) grids for simulating flow through com-
plex geometries. The main advantages of IBM over the traditional
unstructured body conformal grids are simplicity in grid genera-
tion and discretization of the Navier-Stokes equations, ease of code
development, less memory requirement to store the grid informa-
tion and higher computational efficiency. An excellent review is
presented by Mittal and Iaccarino (2005) on the large variety of
IBMs. The methods can be broadly classified in two categories:
(i) continuous forcing approach, first proposed by Peskin (1972),
where the no-slip condition at the immersed boundary (IB) is
applied by introducing a continuous forcing function as a source
term in the momentum equation and (ii) discrete (or direct) forc-
ing approaches where the effect of the IB is imposed at the level
of the discretized momentum equation. The direct forcing
approach produces a sharp solid interface without spatial spread-
ing. So, in the present work the direct forcing implicit IBM is used
which is second order accurate, stable, easy to implement and does
not require calibration of the geometry, which is useful for com-
plex geometries.

Very few attempts have been made to integrate multi-fluid
interface tracking methods with IBMs to simulate multiphase
flows with contact line dynamics through complex solid geome-
tries. Deen et al. (2009) used the FT method with direct forcing
IBM to simulate interactions of bubbles with a solid particle bed.
However, contact line dynamics was not incorporated in their sim-
ulations. Suh and Son (2009) used the LS method to describe both
fluid-fluid and fluids-solid interface (IB) to simulate a piezoelectric
inkjet process. The VOF method with IBM was used by Sun and
Sakai (2016) to simulate flow through a twin screw kneader,
Washino et al. (2011) for a wet granulation process and
Karagadde et al. (2012) for modeling motion and growth of den-
drites in a solidifying melt. However, the effect of the IB is explic-
itly imposed by modifying the velocity using local solid fractions
which produces a diffuse fluids-solid interface.

In this paper, a methodology is presented to couple the VOF
method with direct forcing, implicit and sharp interface IBM with
contact line dynamics. The paper is organized as follows: First,
we describe the governing Navier-Stokes and VOF advection equa-
tions for multiphase flows. Subsequently, numerical and imple-
mentation details are presented for the solution methodology,
IBM, VOF and contact line dynamics. Next, an extensive validation
of the current numerical model is reported for both static and
dynamic contact angles. Last, we present our findings for numeri-
cal simulations of a water flooding process through periodic body
centered cubic (BCC) and face centered cubic (FCC) structures
and estimate the residual oil.
2. Governing equations

For incompressible multiphase flows the Navier-Stokes equa-
tions can be combined into a single equation for the velocity field
u in the entire domain, taking into account the effect of surface
tension by a local volumetric surface tension force Fr accounting
for the presence of a curved deformable fluid-fluid interface. The
governing mass and momentum conservation equations for
unsteady, incompressible, Newtonian, multiphase flows are
expressed as follows:

r � u ¼ 0 ð1Þ

q
@u
@t

þ qr � uuð Þ ¼ �rpþr � sþ qgþ Fr ð2Þ

where s ¼ l½ruþ ðruÞT � is the fluid stress tensor and g is the
acceleration due to gravity. The local averaged density q and
dynamic viscosity l depend on the local fluid phase distribution
and hence are evaluated from the local phase fraction F between
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fluid phases. The volumetric surface tension force appearing in the
momentum equation acts only in the vicinity of the interface.
Advection of F is governed by the following equation:

DF
Dt

¼ @F
@t

þ u � rF ¼ 0 ð3Þ

This equation expresses that the interface is advected with the
local fluid velocity. To evaluate the local averaged density q, linear
averaging of the densities of the fluid 1 ðF ¼ 1Þ and fluid 2 ðF ¼ 0Þ is
used:

q ¼ Fq1 þ ð1� FÞq2 ð4Þ
Similarly, the local average dynamic viscosity l could also be

evaluated by linear averaging of the dynamic viscosities of individ-
ual fluid phase. Alternatively, following a fundamental approach
proposed by Prosperetti (2002), the local average kinematic viscos-
ity is evaluated by harmonic averaging of the kinematic viscosities
of the individual fluid phases:

q
l
¼ F

q1

l1
þ ð1� FÞq2

l2
ð5Þ

In all the computations reported in this paper, Eqs. (4) and (5)
are used to evaluate the local average density and dynamic viscos-
ity, respectively.

3. Numerical details

In this section numerical details for the coupled VOF and IBM
framework are presented. The section is divided into four main
parts: (i) solution methodology focusing on discretization and
numerical solution of the incompressible Navier-Stokes equations,
(ii) IBM dealing with the dynamic interactions between fluids and
non-deformable solids, (iii) VOF dealing with the dynamics of
deformable fluid-fluid interface, and (iv) contact line dynamics
dealing with the coupling of VOF and IBM by appropriate contact
angle boundary condition.

3.1. Solution methodology

In the current implementation, the finite volume method (FVM)
is used to solve the mass and momentum conservation equations
in each control volume (CV) of a staggered computational grid.
The time-discretized form of the momentum equation is obtained
as:

qukþ1 ¼ quk þ Dt
DV

�
Z
A
pkþ1 ŝdA� q

Z
A

Ckþ1
FOU

h�
þ Ck

min -mod � Ck
FOU

� �i
dAþAs

k;kþ1 � ŝdA
o

þ Dt qgk þ Fk
r

n o
ð6Þ

where DV represents the volume of each CV, A and ŝ are surface area
and outward pointing unit cell surface normal respectively, super-
script k indicates the time index and C indicates the net-
convective flux: C ¼ ðu � ŝÞu. A deferred correction method has been
incorporated in the convection term, where both the first order
upwind (FOU) scheme and total variation diminishing (TVD) min-
mod scheme are used to calculate the convection flux; the flux by
the FOU scheme ðCFOUÞ is treated implicitly and, based on the higher
order min-mod scheme, a correction is introduced ðCmin -mod � CFOUÞ
which is treated in an explicit manner. A second order accurate cen-
tral difference scheme is used for discretizing diffusive terms. The
volumetric surface tension force is treated explicitly and its dis-
cretization is explained in the subsequent section. Eq. (6) is solved
by a fractional step method, where at the first-step the tentative
velocity field u� is computed from:
qu� ¼ quk þ Dt
DV

�
Z
A
pk ŝdA� q

Z
A

C�
FOU þ Ck

min -mod � Ck
FOU

� �h i
dA

�
þ
Z
A
sk;� � ŝdA

�
þ Dt qgk þ Fk

r

n o
ð7Þ

Here the stress tensor is split into an implicit part and an expli-
cit part. In the momentum equation for each of the 3 directions
(i.e., x; y or z), only the velocity component in the direction under
consideration is treated implicitly, whereas the other velocity com-
ponents are treated explicitly. For Eq. (7) we need to solve a set of
linear equations. The enforcement of the no-slip boundary condi-
tion at the IB wall is handled at the level of discretization of the
momentum equation which is detailed in the next section. We
use a robust and efficient Block-Incomplete Cholesky Conjugate
Gradient (B-ICCG) solver that is OpenMP-parallelized to solve the
resulting sparse matrix for each velocity component.

The velocity at the new time level kþ 1 can be obtained from:

ukþ1 ¼ u� � Dt
q
r dpð Þ ð8Þ

where dp ¼ pkþ1 � pk represents the pressure correction. Since ukþ1

needs to satisfy the continuity equation, the pressure Poisson equa-
tion is obtained as:

r � Dt
q
r dpð Þ

� �
¼ r � u� ð9Þ

which is again solved by the B-ICCG sparse matrix solver. The peri-
odic boundary conditions for both velocity and pressure are taken
care of during the flux calculation and treated implicitly in the
sparse matrix solving steps. A detailed implementation of periodic
boundary condition for pressure-velocity coupling is presented in
Das et al. (2017). Note that the periodic boundary condition for
the VOF method is applied in an explicit manner.

3.2. Immersed boundary method (IBM)

An implicit (direct) second-order accurate IBM proposed by
Deen et al. (2012) and described in details by Das et al. (2017)
has been used to apply no-slip boundary conditions for fluids-
solid interactions at immersed boundaries. Initially, all the cells
are marked/flagged as either ‘solid-cell’ (cell-center inside the solid
body) or ‘fluid-cell’ (cell-center in the fluid zone) in the staggered
computational grid. ‘IB-cells’ are a special type of fluid-cells, as
they have at least one neighboring solid-cell. It is in these IB-
cells where the no-slip boundary condition is imposed as shown
in Fig. 1. Note that because staggered positions are used for the
velocity components, the CV is different for different components.
Fig. 1 shows an example for the case of the x-component of the
velocity. The algebraic form of the discretized momentum equa-
tion, Eq. (7), at the CV center c can be represented as:

ac/c þ
X
nb

anb/nb ¼ bc ð10Þ

where / corresponds to one of the fluid velocity components and nb
indicates the cell-center of surrounding neighboring cells. a repre-
sents the fluids- and geometry-dependent matrix coefficients and
all the explicit terms are collected in bc . From the perspective a
fluid-cell c, if one of the surrounding cells nb is a solid-cell, the
no-slip condition is imposed by changing the central coefficient
(ac) and neighboring coefficient (anb) of Eq. (10).

An example is given in Fig. 1, where a fluid-cell c is neighboring
a solid-cell w. The value of / in the solid-cell is expressed as a lin-
ear combination of relevant fluid-cell values, in such a way that it
satisfies the no-slip boundary condition at the solid surface (s). For
this purpose a quadratic interpolation polynomial is used:



Fig. 1. 2D schematic representation of the fluid-fluid interface in contact with a
solid surface in a Cartesian computational grid to illustrate implementation details.
d = scalar (pressure/phase fraction) CV, j = x-velocity CV on the staggered grid and
� = cell vertices. Interface between two fluids is piecewise linear according to the
PLIC algorithm.
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/ ¼ pn2 þ qnþ r , where n is a non-dimensional distance from
solid-cell w, as shown in Fig. 1. The values of the coefficients p; q
and r are obtained from the known values of / at the solid bound-
ary (/ ¼ 0 at n ¼ ns) and the two nodes in the fluid (/ ¼ /c at n ¼ 1
and / ¼ /e at n ¼ 2). As a result we find the extrapolated value:

/w ¼ � 2ns
1� ns

/c þ
ns

2� ns
/e ð11Þ

where ns corresponds to the non-dimensional distance from the
solid-cell to the point where the grid line intersects the solid bound-
ary. The modified coefficients (â) for Eq. (10) become

âc ¼ ac þ aw � 2ns
1� ns

� �
âe ¼ ae þ aw � ns

2� ns

� �
âw ¼ 0

ð12Þ

Note that Eq. (10) is also solved for solid-cells. To enforce zero
velocity for the solid-cells, central coefficient (ac) is modified to 1
and all other coefficients (i.e. anb, bc) to 0. For a complex geometry
it is also possible that a fluid-cell near the immersed boundary has
more than one neighbor lying inside a solid body. In that case the
implementation details are more involved and readers are referred
to Das et al. (2017).

3.3. Volume of Fluid (VOF)

The VOF part of the simulation consists of three main subparts:
(i) solution of fluid phase fraction F-advection equation, (ii) com-
putation of the volumetric surface tension force, and (iii) smooth-
ing of fluid phase fraction F.

3.3.1. Solution of fluid phase fraction F-advection equation
The integration of the hyperbolic F-advection equation, Eq. (3),

is the most critical part of the VOF model and is based on geomet-
rical advection which can be viewed as a pseudo-Lagrangian
advection step. The advantage of the geometrical advection is
given by the fact that a sharp interface is maintained during the
simulations. First, for each Eulerian cell containing an interface
the unit normal vector n̂ to the interface is estimated from the gra-
dient of the fluid phase fraction F as

n̂ ¼ rF
jrFj ð13Þ

In our model first the components of the normal vector are com-
puted at the vertices of the Eulerian cell and then the cell-
centered components are computed by averaging over the eight
(four in 2D) surrounding vertices. An example is given for a 2D case
in Fig. 1, where n̂ at cell-center q is computed by averaging n̂ over
vertices 3, 4, 5 and 6. Note that the direction of n̂ points from fluid 2
(F ¼ 0) towards fluid 1 (F ¼ 1).

By combining the information of the normal direction in an
Eulerian cell and its phase fraction F the PLIC surface cutting
through the Eulerian cell is constructed. Here transformations of
the coordinate system are applied to reduce the number of possible
configurations of a PLIC surface from 64 to 5 generic configura-
tions. These steps are described with all necessary geometrical
and mathematical details by Van Sint Annaland et al. (2005).

Note that F-advection is carried out for all fluid-cells. In pres-
ence of immersed boundaries the VOF method is no longer conser-
vative as a small local mass error may occur due to the presence of
partially filled cells at boundaries, which may further accumulate
over time. If strict mass conservation is needed, we find the mass
error after each time step and compensate for it by subtracting
the mean mass error from each cell at the interface (i.e. cells where
0 < F < 1). We observed that this mass compensation does not
have a significant influence on the overall flow dynamics. The pro-
cedure is similar to that used by Bunner and Tryggvason (2002) for
the front-tracking method, Fujita et al. (2015) for the level set
method and Sun and Sakai (2016) for the IBM-VOF method. It is
important to emphasize that all the validation/verification test
cases presented in Section 4.1 have been simulated without such
mass compensation and the maximum mass error is merely in
the order of 10�3% relative to initial mass.

3.3.2. Computation of the volumetric surface tension force
In the density-scaled continuum surface force (CSF) model

(Brackbill et al., 1992) the surface tension force acts via a source
term Fr in the momentum equation which only acts in the vicinity
of the interface. The expression for Fr is given by:

Fr ¼ q
qh irjn ð14Þ

where r is the coefficient of surface tension, n ¼ rF is the interface
normal vector and qh iis the average density of the two fluid phases.
The expression for the curvature j is obtained from the divergence
of the unit normal vector to the interface:

j ¼ �ðr � n̂Þ ¼ � r � n
jnj

� �
¼ 1

jnj
n
jnj � rjnj � ðr � nÞ

� 	
ð15Þ

The normal to the interface is actually computed from the gra-

dient of the smoothed phase fraction eF . So, the formulas above

hold with n ¼ reF . The smoothing technique used in this paper will
be discussed in the next section. The density scaling used in the
CSF model distributes the acceleration due to surface tension
(i.e., Fr=q) symmetrically across the interface while conserving
the total surface tension force. This improves the stability of the
numerical model by reducing the parasitic currents (Yokoi, 2014)
especially for the case when there is a high density ratio between
the two fluid phases.
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3.3.3. Smoothing of fluid phase fraction F
As indicated before, the interface orientation (i.e. the normal to

the interface) is computed from the gradient of the fluid phase
fraction F according to Eq. (13). Basically this involves numerical
differentiation of a discontinuous function, leading to inaccuracies.
This problem can be overcome by making use of a smoothed phase

fraction eF for the computation of the unit interface normal, i.e.

using Eq. (13) with F replaced by eF obtained from:

eF ðx; y; zÞ ¼ X
m

Dðx� xmÞDðy� ymÞDðz� zmÞFðxm; ym; zmÞ ð16Þ

Here the smoothing function D is given by the polynomial expres-
sion proposed by Deen et al. (2004) as follows:

DðxÞ ¼
15
16

1
h

x
h


 �4 � 2 x
h


 �2 þ 1
h i

; jxj 6 h

0; jxj > h

(
ð17Þ

where h represents the width of the computational stencil used for
the smoothing. We typically use h ¼ 2Dwhere D is the Eulerian grid
size, unless otherwise stated. The width of the computational sten-
cil for the smoothing should be selected carefully. When the width
is too small numerical instabilities may still arise, especially in the
case where coefficient of surface tension is high. On the other hand
when the width of the computational stencil is chosen too large,
excessive smoothing (thickening) of the interface is obtained, which
is undesirable.

In presence of immersed boundaries, the smoothing stencil
used for the fluid-cells near a boundary may contain some solid-
cells. However, solid-cells do not have any physical value of the
fluid phase fraction F. To overcome this problem, F is extended in
the solid region at any general contact angle using a method pro-
posed by Sussman (2001). An ‘extension’ Eq. (18) in the form of
advection Eq. (3) is solved for the solid region using an artificial
extension velocity uextend and artificial timestep Ds. Note that this
extension is carried out using the same pseudo-Lagrangian geo-
metrical advection scheme used to advect F in the fluid region as
described in Section 3.3.1.

@F
@s

þ uextend � rF ¼ 0 ð18Þ

For all computations reported in this paper, extension is carried
out up to 4 grid cells in the solid region using Ds ¼ 0:5D. Applying
this method eliminates the need to modify the smoothing stencil
for the fluid-cells near the immersed boundary while maintaining
2Fluid

a

1Fluid

Solid

Fig. 2. Stepwise evolution of fluid phase fraction field: (a) Original fluid phase fracti
the continuity of eF across it. For more clarification, Fig. 2(a)–(c)
represents original fluid phase fraction F, extended fluid phase

fraction and smoothed fluid phase fraction eF , respectively.
For the diffuse interface treatment of the immersed boundary

(Sussman, 2001), this procedure would also apply the contact
angle boundary condition as the fluid forcing is continuous and
spread over few grid cells across the immersed boundary. So,
fluid-cells near the boundary can experience the surface tension
force due to the interface curvature (governed by extended and

smoothed phase fraction eF ) from solid region. However, in the pre-
sent sharp IBM we have discontinuity at the immersed boundary
between fluid and solid regions and hence contact angle boundary
condition needs to be explicitly enforced as described in the subse-
quent section.

3.4. Contact line dynamics

In presence of a fluid-fluid interface with immersed solids, con-
tact line dynamics plays a major role in wetting-dewetting phe-
nomena. It can be easily incorporated in the current framework
of CSF model by applying the appropriate contact angle boundary
condition at contact lines. The contact angle may have a single
value (static) or different values (dynamic) depending upon the
local contact parameters and fluid properties. The effect of the con-
tact angle is taken into account by modifying the interface normals
at the solid boundaries as follows:

n̂ ¼ n̂s cos hþ t̂s sin h ð19Þ
where h is the contact angle, n̂s is the unit solid surface normal point-
ing inside the solid as seen from the fluid and t̂s is the unit tangent
which lies on the solid surface and is normal to both n̂s and the con-
tact line as shown in Fig. 3. n̂s can be easily found analytically for
simple shapes such as spherical or cylindrical surface. Formore com-
plicated geometries it follows from the surface mesh that describes
it or can be computed using the solid fraction as proposed by
Washino et al. (2011). The tangential unit vector, t̂s, can be found as

t̂s ¼ rF � ðn̂s � rFÞn̂s

jrF � ðn̂s � rFÞn̂sj ð20Þ

If one would have a body conformal grids, contact angle boundary
condition could applied at all the cell vertices which are conformal
with solid boundaries. For our case this holds for the outer
boundaries of the computational domain. For a general immersed
object its boundaries do not align with the Cartesian grid as shown
b c

on F, (b) extended fluid phase fraction and (c) smoothed fluid phase fraction eF .



Fig. 3. Contact angle boundary condition implementation at solid boundaries. The
fluid-fluid-solid contact line runs perpendicular to this figure.
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in Fig. 1, In this case, the contact angle boundary condition is
applied on all the vertices of the solid-cells which have at least
one immediate neighbor in the fluid. In this way, the contact angle
boundary condition is applied very close to the solid boundaries (if
not exactly on it). Fig. 1 shows the solid-cell p has one of its neigh-
bors q as a fluid-cell. So, the contact angle boundary condition is
applied on all the vertices 1, 2, 3 and 4 of the solid-cell p.

Contact line dynamics is a molecular phenomenon, which sug-
gests that the macroscopic flow can be strongly affected by inter-
actions at molecular scales between fluids and solid substrate
(Snoeijer and Andreotti, 2013). It is essential to take into account
the effect of this sub-grid phenomenon for macroscopic-grid mod-
eling. Different theoretical and experimentally inspired models are
available in the literature (consolidated by Saha and Mitra (2009))
and they differ in the approach taken to connect the molecular and
macroscopic length scales.

Apart from molecular scale phenomena, the flow field varies
significantly on small (but macroscopic) distances from the contact
line. When using a large grid size the flow field near the contact
line is under resolved and also hydrodynamic phenomena should
be accounted for in the model for the contact line dynamics. As
we are interested in flows in complex porous geometries with
low Reynolds Re and capillary Ca numbers, a model developed by
Voinov (1976) and Cox (1986) has been adopted which links the
dynamic contact angle hd with equilibrium contact angle he using
a slip length k and slip capillary number Cacl as follows:

h3d ¼ h3e þ 9sgndir Cacl ln
L
k

� �
with

Cacl ¼ l jUclj
r

;

Ucl ¼ ðucl � t̂sÞ t̂s
ĵtsj

and

sgndir ¼ �signðUcl � n̂Þ

ð21Þ

where jUclj is contact line velocity, i.e., the magnitude of the slip
velocity parallel to the tangent direction t̂s which is found out using
a density weighted average velocity ucl of the fluid nodes in the
vicinity of the contact line. sgndir signifies the direction of the con-
tact line motion, with: sgndir ¼ þ1 or �1 for advancing and receding
contact lines, respectively. L is the macroscopic or grid length scale.
For the slip length k, as observed by Lauga et al. (2007), we have
taken a fixed value of k ¼ 10�9m in Eq. (21) for all the simulations
reported in this paper.
4. Results

4.1. Verification and validation

The IBM implementation has been thoroughly tested by Das
et al. (2017) for various cases. They validated their simulations
with existing numerical and/or experimental results from litera-
ture. In 2D, they have considered a case of flow past a cylinder
and validation has been performed for the non-dimensional drag
and lift forces, unsteady vortex shedding frequency and length of
the recirculation zone. In 3D, the case of flow past a sphere has
been validated by comparing the non-dimensional drag force for
Reynolds numbers as high as 500. Implicit implementation of the
periodic boundary conditions for IBM has been validated for the
case of flow past a simple cubic (SC) array of spheres by comparing
the non-dimensional drag force for the Stokes flow regime with
two different porosities. The IBM was found to be 2nd order accu-
rate with an error less than 2% for 15 cells across the sphere diam-
eter. They have also simulated the flow through periodic complex
porous structures, i.e. an open cell foam for a wide range of porosi-
ties, and compared the obtained results with the well-known
Carman-Kozeny and Ergun correlations.

Van Sint Annaland et al. (2005) did an extensive validation of
their 3D VOF model, starting from basic problems such as advec-
tion tests and the Laplace pressure difference across a curved
fluid-fluid interface. They also investigated gas bubbles rising in
quiescent viscous liquids and computed the terminal rise velocity
and the shape of the rising bubble for high density and viscosity
ratios. The obtained results agreed very well with the Grace dia-
gram for a very wide range of Eötvös and Morton numbers. They
also tested their model successfully for cases where the interface
experiences substantial deformation, i.e. co-axial and oblique coa-
lescence of two gas bubbles rising in a viscous liquid, and obtained
good agreement with experimental results published in literature.
Baltussen et al. (2014) performed bubble advection test with 30
grid cells across the bubble diameter and found the global mass
error to be negligible ð10�7%Þ.

In this section we present verification/validation test cases for
the 3D VOF with contact line dynamics, both with and without
IBM. To test the static contact angle boundary condition two prob-
lems are investigated: (i) the equilibrium shape of a droplet on a
flat surface and (ii) the equilibrium shape of a droplet on a spher-
ical surface. The simulations are compared with known analytical
expressions. To check the dynamic contact angle boundary condi-
tion we investigate the problem of droplet spreading on a flat sur-
face and compare the temporal evolution of dimensionless droplet
contact radius with experimental and other numerical results
available in literature. A grid dependence study for the same test
case is shown in Appendix A. As our interest lies in oil-water flows
through complex structures, oil-water systems are used for these
simulations by default, unless otherwise specified. For all simula-
tions reported in this paper, the time step Dt has been chosen such
that it satisfies both Courant-Friedrichs-Lewy (CFL) and capillary
criteria as follows:

Dt < DtCFL ¼ D
Umax

Dt < Dtr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 þ q2ÞD3

4pr

s ð22Þ

Here, DtCFL and Dtr are the minimum required time steps according
to the CFL and capillary criteria, respectively. D is the computational
grid size and Umax is the maximum fluid velocity in the computa-
tional domain.
4.1.1. Equilibrium shape of a droplet on a flat surface
In this section, we investigate the equilibrium shape of an oil

droplet in water on a flat surface with static contact angle hs. Phys-
ical properties of an oil-water system used for the simulations are
as follows: water density qw ¼ 1000 kg=m3, water dynamic viscos-
ity lw ¼ 0:001 Pa s, oil density qo ¼ 950kg=m3, oil dynamic viscos-



Table 1
Geometrical and computational parameters used for the simulations of equilibrium
shape of a droplet on a flat surface without gravity ðEo ¼ 0Þ.

Parameter Value Unit

Computational grid ðnx; ny; nzÞ (120,60,120) Cell
Grid size ðDÞ 5� 10�5 m

Timestep ðDtÞ 10�5 s

Droplet initial radius ðR0Þ 0.001 m
Droplet initial position ðx0; y0; z0Þ (0.003,0.001,0.003) m

Static contact angle ðhsÞ 30, 60, 90, 120, 150 �

Fig. 5. Dimensionless droplet parameters for the equilibrium shape of a droplet on
a flat surface without gravity ðEo ¼ 0Þ: analytical height (–), numerical height ð�Þ,
analytical contact radius (––), numerical contact radius (◯).

Fig. 6. Analytical (–) and numerical (––) equilibrium droplet shapes on a flat
surface without gravity ðEo ¼ 0Þ for static contact angles hs = 30�, 60�, 90�, 120� and
150�.
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ity lo ¼ 0:02 Pa s and coefficient of surface tension r ¼ 0:03 N=m.
The Eötvös number Eo, defined with respect to initial droplet
radius R0, has been used to quantify the relative effect of gravita-
tional force compared to surface tension force:

Eo ¼ ðqw � qoÞgR2
0

r
ð23Þ

First, simulations are performed for the case where gravity is
absent ðEo ¼ 0Þ. Initially, the droplet is placed in the computational
domain such that its center is at the distance equal to the initial
droplet radius R0 from the flat surface. In this condition, the droplet
will just touch the flat surface. As the initial contact angle is differ-
ent from the static contact angle, the droplet will spread until it
reaches equilibrium. Schematic diagrams of the initial and equilib-
rium droplet shapes are presented in Fig. 4. All the geometrical and
computational parameters used for the simulations are listed in
Table 1. No-slip boundary conditions are applied at all computa-
tional domain boundaries. Note that the contact angle boundary
condition is applied without the use of IBM, because the contact
line is located on the lower (flat) boundary of the computational
domain. As the total drop volume V ¼ 4

3pR
3
0 is constant, all equilib-

rium shape parameters such as droplet contact radius rf , radius of
curvature Rf and height hf can be derived analytically according to
the following relations:

V ¼ 4
3
pR3

0 ¼ pR3
f

2
3
� cos hs þ 1

3
cos3 hs

� �
ð24Þ

hf ¼ Rf ð1� cos hsÞ ð25Þ
rf ¼ Rf sin hs ð26Þ

The droplet height hf and contact radius rf for the equilibrium
shape have been found numerically and compared with the analyt-
ical results of Eqs. (25) and (26), respectively. The obtained numer-
ical results show an excellent match with the analytical results, as
shown in Fig. 5. The numerical and analytical equilibrium droplet
shapes are compared in Fig. 6 which shows very satisfactory qual-
itative matching. Note that the numerical profiles are generated by
computing the iso-contours of the smoothed phase fractioneF ¼ 0:5. The quantitative error in equilibrium droplet shape is
defined by the mean difference as follows:

E ¼ 1
N

XN
i¼1

jyeF¼0:5
i � yanalyticali j

Rf
ð27Þ

where N is the number of points discretizing the interface. yeF¼0:5
i

and yanalyticali the are numerical and analytical y-coordinate of the
Fig. 4. Schematic representation of the initial (–) and equilibrium (––) shapes of
the a droplet on a flat surface with static contact angle without gravity ðEo ¼ 0Þ.
interface point whose x-coordinate is xeF¼0:5
i . For the shapes shown

in Fig. 6, the mean differences are 0.69%, 0.36%, 0.33%, 0.49% and
2.76% for hs ¼ 30�;60�;90�;120� and 150� respectively.

As the CSF model distributes the volumetric surface tension
force smoothly across the interface as per Eq. (14), one would
expect the pressure distribution also to be smooth. However, in
reality, a droplet would experience the Laplace pressure difference
DPanalytical ¼ 2r

Rf
(in 3D) as a step function across the interface (at

least at macroscopic scales). The expected value of DPanalytical is
compared with the numerical pressure difference (Fig. 7), evalu-
ated in three different ways:

1. DP0: Pressure difference between the center of the droplet and
boundaries of the simulation domain. This totally eliminates
the effect of the interface distribution, because interface cells
are excluded from the calculation.



Fig. 8. Equilibrium droplet shapes and dimensionless droplet height ðh�Þ on a flat
surface with Eötvös number: numerical results ð�Þ, asymptotic solutions of Eq. (25)
(–) and Eq. (28) (––).

Fig. 7. Dimensionless pressure difference for a droplet on a flat surface in
equilibrium without gravity ðEo ¼ 0Þ : DPanalytical (–), DP0 (�), DPpartial ð�Þ and
DPtotal ðDÞ.
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2. DPpartial: Average pressure difference between the computa-
tional cells in regions for which 0:95 6 F 6 1:0 and regions for
which 0:0 6 F 6 0:05. This will only have a partial effect of
the interface distribution, because most of the interface cells
ð0:05 < F < 0:95Þ are excluded from the calculation.

3. DPtotal: Average pressure difference between the computational
cells in regions for which 0:5 6 F 6 1:0 and regions for which
0:0 6 F 6 0:5. This will have the full effect of the interface dis-
tribution, because all interface cells are included in the
calculation.

There are two main sources of error in the numerical calculation
of the pressure difference across the interface: (i) Error due to the
inaccuracy in numerical value of Rf . Fig. 6 qualitatively shows that
this error is highest in the case of hs ¼ 30� and (ii) as pressure var-
ies smoothly across the interface, inclusion of computational cells
from and near the interface in the calculation would reduce the
numerical pressure difference across the interface. Fig. 7 reports
on this behavior with DP0 > DPpartial > DPtotal.

Last, we present the simulations to compute the equilibrium
droplet shapes under the influence of gravity ðEo > 0Þ. Simulations
have been performed for static contact angle hs ¼ 120� for a wide
range of Eötvös numbers. The analytical equilibrium droplet shape
for hs ¼ 120� without gravity (shown in Fig. 6) is taken as initial
condition to reduce the computation time. The computational
domain is divided in ðnx;ny;nzÞ ¼ ð300;80;300Þ grid cells in x; y

and z direction, respectively, with a grid size D ¼ 2:5� 10�5 m.
Simulations have been performed with a time step
Dt ¼ 5� 10�6 s. No-slip boundary conditions are applied at all
computational domain boundaries. At lower Eötvös numbers
ðEo 	 1Þ the droplet maintains its original spherical cap shape as
the surface tension forces are dominant and the droplet height in
this case is controlled by Eq. (25). At higher Eötvös numbers
ðEo 
 1Þ the droplet forms a puddle under the influence of gravity
whose height is proportional to the capillary length scale and given
by the following expression:

h1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
ðqw � qoÞg

r
sin

hs
2

� �
ð28Þ

Fig. 8 shows the equilibrium droplet shapes and dimensionless
droplet height ðh�Þ for a wide range of Eötvös numbers. h� is defined
as the ratio of the droplet height for a given Eötvös number to the
droplet height without gravity ðEo ¼ 0Þ given by Eq. (25). The
obtained results show an excellent agreement with two asymptotic
solutions given by Eqs. (25) and (28). As expected, the transition
between spherical cap and puddle is observed at Eo � 1.
4.1.2. Equilibrium shape of a droplet on a spherical surface
In this section, we simulate the equilibrium shapes of an oil dro-

plet in water on a spherical surface with different static contact
angles hs. The influence of gravity is not taken into account. The
physical properties of the oil-water system are the same as used
in Section 4.1.1. The radius of the solid sphere is the same as the
initial radius of the droplet R0.

Initially, the droplet is placed in the computational domain such
that its center is at a distance equal to R0 from the spherical sur-
face. In this condition, the droplet will just touch the spherical sur-
face. As the initial contact angle is different from the static contact
angle, the droplet will spread until it reaches equilibrium. Sche-
matic diagrams of the initial and equilibrium droplet shapes are
presented in Fig. 9. As the total drop volume V ¼ 4

3pR
3
0 is constant,

the final equilibrium shape can be derived analytically by solving
the following nonlinear equations:
aþ b ¼ hs ð29Þ
rf ¼ Rf sinb ¼ R0 sina ð30Þ
pR3

f

3
ð1þ cosbÞ2ð2� cosbÞ þ pR3

0

3
ð1þ cosaÞ2ð2� cosaÞ

� 4pR3
0

3
¼ 4pR3

0

3
ð31Þ

All the geometrical and computational parameters used for the
simulations are listed in Table 2. Note that the contact line moves
on the spherical surface which is modeled as an immersed bound-
ary. Therefore the IBM implementation of the contact angle bound-
ary condition is applied here. No-slip boundary conditions are
applied at all computational domain boundaries as well as at the
solid sphere boundary. Numerical and analytical equilibrium dro-
plet shapes are presented in Fig. 10, which shows an excellent



Fig. 9. Schematic representation of the initial (left) and equilibrium (right) shapes of the a droplet on a spherical surface with static contact angle.

Table 2
Geometrical and computational parameters used for the simulations of equilibrium
shape of a droplet on a spherical surface.

Parameter Value Unit

Computational grid ðnx ; ny; nzÞ (80,80,80) cell
Grid size ðDÞ 5� 10�5 m

Time step ðDtÞ 10�5 s

Droplet initial radius ðR0Þ 0.001 m
Droplet initial position ðx0; y0; z0Þ (0.002,0.0025,0.002) m
Solid sphere position ðxs; ys; zsÞ (0.002,0.0005,0.002) m

Static contact angle ðhsÞ 30, 60, 90, 120, 150 �

Fig. 10. Analytical (–) and numerical (––) equilibrium droplet shapes on a spherical
surface for static contact angles hs = 30�, 60�, 90�, 120� and 150�.
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qualitative match. Mean differences in equilibrium droplet shape,
defined by Eq. (27), are 1.35%, 1.03%, 0.78%, 0.57% and 1.57% for
hs ¼ 30�;60�;90�;120� and 150�, respectively.

The contact radius rf and the droplet height hf for the equilib-
rium shape have been found numerically and compared with ana-
lytical results of Eq. (30) and

hf ¼ Rf ð1þ cosbÞ � R0ð1� cosaÞ ð32Þ

respectively. The obtained numerical results have an excellent
match with the analytical results, as shown in Fig. 11. This vali-
dates the coupled IBM-VOF implementation for static contact
angles.

4.1.3. Droplet spreading on a flat surface
In this section, we simulate the transient behavior of a squalene

oil droplet in air spreading on a flat surface with a dynamic contact
angle. Physical properties used for the simulations are: squalene oil
density qsq ¼ 809 kg=m3, squalene oil dynamic viscosity

lsq ¼ 0:034 Pa s, air density qa ¼ 1:2 kg=m3, air dynamic viscosity

la ¼ 2� 10�5 Pa s and air-oil surface tension r ¼ 0:032 N=m. Ini-
tially, a droplet with radius R0 ¼ 0:001 m is placed on a flat surface
such that its center is at the height h ¼ 0:95R0 from the flat surface.
In this condition it has an initial contact radius of r0 with the flat
surface. The droplet will spread with dynamic contact angle hd until
it reaches the equilibrium contact angle he with the flat surface and
in this condition the final contact radius is rf . Schematic diagrams of
the initial and equilibrium droplet states are presented in Fig. 12.
Simulations have been performed in absence of gravity with a grid
sizeD ¼ 5� 10�5 m and time stepDt ¼ 5� 10�7 s. The Cox and Voi-
nov model, given by Eq. (21), has been used to calculate the local hd
using the value of he ¼ 41:5�.

Lavi and Marmur (2004) performed experiments for different
liquids (including squalene oil) droplets spreading on a coated sil-
icon wafer and gave the following relation for the temporal evolu-
tion of the contact area:

AðsÞ
Af

¼ 1� exp � K
Af
sm

� 	
ð33Þ



Fig. 11. Dimensionless droplet parameters for the equilibrium shape of a droplet on
a spherical surface: analytical height (–), numerical height ð�Þ, analytical contact
radius (––), numerical contact radius ð�Þ.

Fig. 12. Schematic representation of the initial (–) and equilibrium (––) states of
the a droplet spreading on a flat surface with dynamic contact angle.

Fig. 13. Dimensionless contact radius r� with dimensionless time s for Dynamic
contact angle: present without IBM (–), present with IBM ð�Þ, experiments by Lavi
and Marmur (2004) ð�Þ, simulations by Legendre and Maglio (2015) ð� � �Þ and Static
contact angle: present without IBM (––), present with IBM ð�Þ.
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where Af is the final value of the contact area, AðsÞ is the contact

area at dimensionless time s ¼ rt=ðlsq V
1
3Þ, and K and m are fitting

parameters which depend on the spreading liquid. Legendre and
Maglio (2015) performed 2D axisymmetric VOF simulations for
the same test case with different h values (0:99R0;0:98R0 and
0:95R0) and showed that the droplet spreading is independent of
its initial position for dimensionless contact radius r� defined as:
r� ¼ rðsÞ � r0
rf � r0

ð34Þ

In the present simulations, a flat surface is defined in two differ-
ent ways: (i) as a body conformal computational domain boundary
where the IBM implementation is not used, and (ii) as a non-body
conformal IB plane passing though the computational domain
where the IBM implementation is used to apply contact angle
boundary condition.

Fig. 13 shows the temporal evolution of r� with s for both cases
with static and dynamic contact angles. The obtained results are
compared with the experimental results of Lavi and Marmur
(2004) and numerical results of Legendre and Maglio (2015). A sig-
nificant difference has been observed between the spreading with
dynamic and static contact angles. The total dimensionless spread-
ing time for a dynamic contact angle is almost four times that for a
static contact angle. The obtained results with a dynamic contact
angle show a very satisfactory match with the results reported in
literature. Note that there is a very small difference between the
obtained results with and without IBM implementation for a static
contact angle, while this difference is somewhat higher in the case
of a dynamic contact angle. The reason is that spreading with a
dynamic contact angle is greatly influenced by the magnitude of
the contact line velocity jUclj according to Eq. (21), and the numer-
ical calculation of jUclj is more accurate on body conformal grids
compared to non-body conformal grids.

For the present simulations with IBM, capillary number based
on the maximum magnitude of the spurious velocity in steady
state is less than 2� 10�3. It is in the same order as reported by
Baltussen et al. (2014) for the stationary bubble test case (without
IBM). So, the presence of immersed solid boundaries doesn’t
change the order of spurious velocities in the current coupled
IBM-VOF implementation.

4.2. Water flooding simulations

In this section, we present pore-scale simulations of a water
flooding process such as encountered in enhanced oil recovery.
Flooding simulations of periodic body centered cubic (BCC) and
face centered cubic (FCC) structures showcase the capabilities of
the present method.

The physical properties of an oil-water system are same as in
Section 4.1.1. Initially the BCC and FCC structures are fully satu-
rated with oil, as shown in Fig. 14. Flow parameters are chosen
such that the Reynolds number Re ¼ qoUinD=lo and capillary num-
ber Ca ¼ loUin=r defined with respect to the sphere diameter D
and water inlet velocity Uin are 1 and 0.01, respectively. A neutral
(90�) static contact angle is used at the three phase contact line.
Inlet and outlet boundary conditions are applied in the flow ðxÞ
direction and periodic boundary conditions are applied in the
cross-flow (y and z) directions. The domain size for BCC and FCC
structures are ðnx;ny;nzÞ ¼ ð240;60;60Þ and ð288;72;72Þ, respec-
tively, and chosen such that the number of grid cells across a
sphere radius R is at least 25.



Fig. 14. Initial (top) and steady state (bottom) conditions for the pore-scale water flooding process through periodic BCC (left) and FCC (right) structures. Oil, water and solid
spheres are represented by gray, transparent blue and brown color respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Oil from the pores will be displaced as the inlet water front pro-
gresses and penetrates into the pores. The Simulations have been
performed until a steady state is achieved. Fig. 14 shows the resid-
ual oil in the pores after the water flooding process through both
BCC and FCC structures.

To characterize the pore-scale water flooding process in detail,
the amount of residual oil present in the porous bed is plotted as
a function of dimensionless time s in Fig. 15. For this graph we
Fig. 15. Residual oil in the pore as a percentage of Vpore with s for periodic BCC (–)
and FCC (––) structures. Dotted line ð� � �Þ represents the ideal (piston-like) recovery.
use a representative fluid volume in the center of each bed that
we will refer to as the ‘pore’ below (indicated in Fig. 16). The
dimensionless time is defined as: s ¼ ðt � t0Þ=T , where t0 is the
time when water front enters the pore and T ¼ Vpore=Q is the res-
idence time scale with Vpore and Q are the pore volume and volu-
metric flow rate, respectively. Note that Vpore for the BCC and FCC

structure is 8
3
ffiffi
3

p � p
3

� �
D3 � 0:4924D3 and

ffiffiffi
8

p
� 2p

3

� �
D3 � 0:7340D3,

respectively.
As shown in Fig. 15, the line AG represents the case where all

the pore oil is displaced by the incoming water. This type of oil
recovery is called ideal or piston-like recovery. In case of the FCC
structure, the oil recovery plot AF almost coincides with the line
AG and hence we observe almost piston-like oil recovery for the
FCC structure with residual oil amounting to only 1.33% of Vpore.
However, in the case of the BCC structure, the oil recovery plot
ABCDE is a blend of a few different processes. Segments AB and
CD are not parallel to the ideal recovery line AG, which suggests
that some amount of oil remains in the pore during AB and CD.
For a brief period during BC, the slope is almost parallel to line
AG which shows that the oil recovery process during BC is almost
piston-like. The amount of oil in the BCC pore increases slightly
through DE which corresponds to the retracement of oil from sur-
roundings into the pore. The residual oil in the BCC pore is 38.01%
of Vpore at the end of the recovery process. For extra clarification,
Fig. 16 shows subsequent images of the pore-scale water flooding
process for the BCC and FCC structures at s ¼ 0;0:25;0:5;0:75 and
1. Note that the oil-water interface makes 90� contact angle with
the solid surface in all images.

The packing factors of BCC and FCC structures are p
ffiffi
3

p
8 � 0:6802

and p
3
ffiffi
2

p � 0:7404, respectively. Moreover, the number of solid

spheres per pore are 2 and 4 for BCC and FCC structures respec-



Fig. 16. Pore-scale water flooding process for BCC (left) and FCC (right) structures at s = 0, 0.25, 0.5, 0.75 and 1 (from top to bottom). 1 and 2 are BCC and FCC pores used for
calculation of residual oil. SBCC and SFCC are the minimum pore gap in flow direction for BCC and FCC structures respectively.

Fig. 17. Grid dependence study for the test case of a droplet spreading on a flat surface (generated by IB plane) with dynamic contact angle: (a) Dimensionless contact radius
r� with dimensionless time s and (b) Contact radius r with time t for different grid resolutions G1 ð� � �Þ, G2 (––) and G3 (–).
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tively. So, FCC has a higher solid volume and twice the surface area
per pore compared to the BCC structure. Thus, one might reason
that the residual oil in case of FCC would be higher than BCC. How-
ever, the opposite behavior is observed, with the FCC structure
showing almost a piston-like recovery whereas the residual oil
for BCC is 38.01% of Vpore. The main reason for this behavior is
the difference in the minimum gap between spheres in the flow
direction for the BCC ðSBCCÞ and FCC ðSFCCÞ structures, as shown in
Fig. 16. This gap will govern the strength of the local velocity field
in the pore and its higher value suggests a stronger local velocity in
the pore. In case of higher local velocity, oil is less likely to be held
within the pore. From a geometric calculation it can be shown that

SBCC ¼ 2ffiffi
3

p � 1
� �

D � 0:1547D and SFCC ¼
ffiffiffi
2

p
� 1

� �
D � 0:4142D. As

SFCC is quite high compared to SBCC , the water from the surrounding
penetrates easily into the FCC pore compared to BCC and hence oil
recovery is higher for FCC than BCC structure.

It is also important to understand that SFCC and SBCC are depen-
dent on the flow direction and for a different flow direction than
the present case residual oil would be different. Thus, the pore-
scale oil recovery is dependent on the flow direction. However,
for large heterogeneous porous media (which oil reservoirs gener-
ally are) this directional effect would be statistically neutralized.
5. Conclusions

In this paper, a novel methodology is presented to numerically
simulate multiphase flows through complex geometries, employ-
ing a finite volume methodology on a staggered grid. A second
order, implicit, direct forcing and sharp interface immersed bound-
ary method (IBM) is used to resolve the complex solid structure on
a non-body conformal Cartesian computational grid. The fluid-fluid
interface is tracked by a sharp interface and mass conservative vol-
ume of fluid (VOF) method. The volumetric surface tension force is
numerically calculated using the continuum surface force (CSF)
model, which is picked because of its simplicity and robustness
especially with complex solid boundaries. Density scaling is used
with the CSF model to reduce the parasitic currents. An apparent
contact angle (static or dynamic) is applied as a boundary condi-
tion at the three-phase contact line in this coupled VOF-IBM frame-
work to effectively reproduce contact line dynamics at
macroscopic length scale.

Different test cases involving static and dynamic contact angles
are simulated to validate the developed methodology. Simulation
results match quite well with those obtained analytically or from
literature. Pore-scale simulations of the water flooding process
used for enhanced oil recovery (EOR) have been performed. The
dynamics of oil-water flow through periodic body centered cubic
(BCC) and face centered cubic (FCC) structures are simulated and
the amount of residual oil is estimated. The present work provides
a framework to further investigate the effect of Reynolds number,
capillary number, contact angle/wettability, viscosity ratio, poros-
ity etc. on the water flooding process. The developed methodology
can also be extended for other EOR processes e.g. polymer or chem-
ical flooding through complex porous structures.
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Appendix A. Grid dependence study

A grid dependence study has been performed for the most com-
plex test case: temporal evolution of a droplet spreading on a flat
surface with dynamic contact angle presented in Section 4.1.3.
Here, a flat surface generated by a non-body conformal IB plane
is considered to test the coupled VOF-IBM implementation. Three
different grid resolutions, G1 ð50� 50� 50Þ, G2 ð75� 75� 75Þ
and G3 ð100� 100� 100Þ are investigated, each corresponding to
a number of grid cells across R0 equal to 10, 15 and 20, respectively.
All other physical and computational parameters are kept constant
for all cases. Fig. 17(a) shows the temporal evolution of dimension-
less contact radius r� with dimensionless time s, whereas Fig. 17(b)
represents the same in dimensional form as contact radius r with
time t. All grid resolutions produce almost overlapping results in
the dimensionless form where r� is normalized using r0 and rf as
specified in Eq. (34). However, the difference due to grid resolution
is appreciable when the same quantities are plotted in dimensional
form. The L2 relative error norm (defined with respect to the finest
grid G3) is used to quantify this difference as follows:

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðrG3;i � rG;iÞ2PN
i¼1r

2
G3;i

vuut ð35Þ

where G stands for the grids G1 or G2; i is the index to represent ith
sampling point and N is total number of sampling points. Note that
the sampling points are chosen on logarithmic scale as droplet
spreading is governed by the exponential Eq. (33). Calculated L2 rel-
ative error norms for grids G1 and G2 are 2.56% and 0.86%, respec-
tively which shows that the grid G2 is good enough to produce
accurate results. So, all the simulations reported in this paper use
a number of grid cells across R0 greater than or equal to 15.
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