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Abstract

A growing risk of flooding in coastal areas and the corresponding development of legis-
lation drive continuous development in the field of hydraulic engineering. Failure due to
wave overtopping is not fully understood from a physical point of view. Existing knowl-
edge gaps, processes that are not yet explained by physics or not even discovered, are
explained by empirical relations. The fact that knowledge on the relevant processes for
overtopping load and soil resistance is fragmented and limited, causes limited application
of it in practice.
To improve the understanding of failure caused by overtopping, a model that computes
the soil stresses (soil stress is related to failure) in a dike cover, during overtopping load,
is developed. It is possible that this model approach leads to additional knowledge on
wave overtopping, e.g. new failure mechanisms or shift in normative mechanisms.

It is shown that overtopping has a large variety of appearances and so does failure due to
overtopping. Literature study shows the large number of processes and characteristics,
all with variable magnitude, that is relevant in the wave load and the soil strength during
wave overtopping. Main wave load processes are shear stress (gradients), turbulence and
impact. The considered soil strength process is the ratio between the stress (relative
to the strength), for which the Young’s Modulus, Poisson’s ratio, soil weight, hydraulic
conductivity and the subsoil stiffness are shown to be the main soil characteristics.

The developed model, a numerical 2D model with the model domain oriented parallel to
the flow direction, computes the stress distribution and development in a loaded soil. For
this case it is focused on dike land side slopes loaded by overtopping waves in particular,
that is on dealing with clay, saturated conditions, fast varying load and a sloped surface.
Stress equations in the model are derived, based on equilibrium of forces (horizontal
and vertical) and motionless soil. The model is able to indicate initiation of failure for
failure mechanisms that are associated with soil stresses, e.g. lifting of soil and head cut
erosion. Soil in the model is loaded by normal and shear stress. The latter is, deviant
from conventional methods, modelled as a shear stress gradient.

Test runs for verification and validation show that the model gives good results for
cases with constant loads. Comparison of load cases with non-continuous overtopping
wave loads shows both similarities and differences in the resulting soil stress. The most
outstanding difference is the magnitude of the stress at depth. The differences indicate
starting points for further research.
Model employment demonstrates the future possibilities. A single wave load, computed
by the model itself, is modelled. This run gives, at first view, plausible results.

The current model gives a reasonable representation of soil stress development. Further
development is recommended to make the model useful for dike assessment and design.
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To do so, the model should be improved by probabilistic parameter definition, addition
of soil stress damping and considering the impulsive nature and turbulent oscillations of
wave load. Furthermore, it can be extended by the comparison between soil stress and
strength, addition of spatial variability of the soil, enabling computations of non-planar
parts of the slope and enabling the connection with other hydrodynamical models.
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1
Introduction

First the research topic is introduced. In Section 1.1, background information on the
research topic is given. It contains a motivation of the research, an introduction in
the concept of wave overtopping and an illustration of the complexity of overtopping.
Thereafter a description of the actual problem and the accompanying scoping of the
research with resulting research questions are given in Section 1.2. Section 1.3 shows the
approach per research question. The chapter ends with an outline of the continuation of
the report in Section 1.4.

1.1 Background of the research

1.1.1 Motivation of the research

The worldwide large and rising number of people live in low laying coastal areas (CIESIN
et al. [2011]) is expected to rise over a billion in 2050 (Merkens et al. [2016]). By 2070
30 trillion euros of assets depend on flood protection, considering port cities only (Kok
et al. [2013]). In coastal plains and river flood plains, the risk of flooding is large. Several
hundreds of millions of people worldwide are exposed to the risk of flooding in case of
a once in 100 years storm event (Hinkel et al. [2014]). Along rivers the risk of flooding
rises due to increasing peak discharges (de Wit et al. [2008], van Vliet et al. [2013]).
Consequently, flood protection is an important matter. Coastal areas are protected
against flooding by man-made flood defences. A much applied type of flood defence is
the dike.

The Netherlands has a leading position in the field of flood protection due to decades
of experience with flood protection. The Dutch policy in the field of water safety is still
developing, stimulated by developments of knowledge in the field of hydraulic engineering
(TAW [1996a]). In the past the design of flood defences was based on occurring water
levels and wave heights during storm conditions (TAW [1996b], Kuijken [2015]). The
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probability of occurrence of such a normative storm (e.g. 1/10.000 year storm) was
used to indicate the design class of the dike. Since 2017 new design criteria have been
implemented (Vergouwe [2016], Schultz van Haegen [2016]), which are based on the risk
of flooding of the dike instead of the probability of occurrence of a storm (Slootjes and
van der Most [2016]). The risk of flooding depends on the probability of failure of the
dike section.

A dike that is unable to fulfill its water retaining function is considered to be failed. In
the Netherlands, different types of failure mechanisms are distinguished (van Baars and
van Kempen [2009], TAW [1998]). The possibility of failure must be determined for each
failure mechanism individually. One of the distinct causes of failure is failure due to
wave overtopping. According to Kortenhaus [2003] it is one of the main causes of dike
failure.

1.1.2 Overtopping

An overtopping wave induces load on the land side slope of a dike. An incident wave runs
through several stages before it imposes load on the land side slope. Schüttrumpf and
Oumeraci [2005] distinguishes five different stages, see Figure 1.1. Those are, in sequence
from sea side to land side: incident waves, wave impact, wave run-up and run-down, wave
overtopping at the crest and wave overtopping at the land side slope.

An incident wave gets steeper when it enters shallow water (shoaling) until it becomes
unstable and collapses (wave breaking). Breaking waves impose an impact on the outer
slope of the dike. A broken wave still contains forward momentum and runs up the outer
slope of the dike. This is called wave run-up. Some running up waves loose their forward
momentum before they reach the crest of the dike and they are pulled back by gravity
force. This is called wave run-down. Waves that run up till the crest of the dike are
the overtopping waves. If the water level exceeds the crest level of the dike, continuous
overflow will occur.

Figure 1.1: Distinction of stages an incident wave on a dike runs through Schüttrumpf and Oumeraci
[2005])

Load induced by overtopping can cause initiation of failure of the slope on a small scale.
The way failure develops partly depends on the geometry and structure of the dike. A
frequent applied dike structure is a core of sand with a several decimeters cover layer
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CHAPTER 1. INTRODUCTION

of clay which is overgrown with grass. Clay is more cohesive than sand, making it less
vulnerable to erosion (Jain and Kothyari [2009]).

Development of failure runs through several phases, usually starting with cover failure
(Visser [1998], d’Eliso [2007], van der Meer et al. [2007]). Local grass cover failure
develops into large scale slope failure. The erosion resistance of bare clay is significantly
lower than that of overgrown clay (Sprangers [1999]). The resistance of sand is even
lower, causing, after cover penetrating damage, the damage to grow exponentially (Wan
and Fell [2004]). A dike is assumed to loose its water retaining function, once damage
of the cover ensues. Failure of the cover layer leads to a fast and almost certain dike
failure. Dike failure is exceedence of the ultimate limit state (ULS) of the dike. It can
therefore be considered to be dike failure itself.

1.1.3 Failure mechanism

Failure caused by overtopping is a complex problem for which multiple failure mecha-
nisms are observed (Valk [2009], Trung and Verhagen [2014]). This is observed during
tests, see Appendix A. Multiple observed failure locations are shown in Figure 1.2. This
indicates multiple relevant physical processes. The extend to which different processes
influence overtopping is an ongoing research (TAW [2001], de Visser [2017], Rijkswater-
staat [2017]). In general, soil is expected to fail when the soil stress exceeds the strength.

A distinction is made between hydrodynamic processes and geotechnical processes. Hy-
drodynamic processes impose the load on the slope cover. Geotechnical processes give the
cover its strength. Relevant hydrodynamic processes are shear stress imposed by flow-
ing water, normal stress imposed by turbulence and normal and shear stress imposed by
wave impact. Geotechnical processes depend on multiple parameters like cohesion of soil,
strength of grass, elasticity of soil, elasticity of grass and angle of repose of soil. Further-
more, geometrical aspects like the slope angle, objects on the slope and the roughness of
grass cover are relevant.

Figure 1.2: Locations of failure that are observed frequently during tests.

Due to this complexity a number of theories and methods have been developed to describe
the failure process of overtopping. None of these failure mechanisms (hence accompany-
ing theories) is all-embracing and none of them excludes all others. This indicates that
multiple mechanisms can occur simultaneously. Dike assessments based on testing only
one loading mechanism, like Bles et al. [2015], is therefore physically incorrect.
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Some methods are supported mainly empirically (e.g. Emmerling [1973], d’Eliso [2007]).
Empirical relations contain more uncertainty than physical relations. Furthermore, an
empirical approach is a black box approach requiring fit factors to make the explanatory
equations match the test results. The physical meaning of these factors is often not
or barely known, as is their possible variation for changing conditions. The results of
empirical research are not or very limited applicable on cases deviant from the test case.

Multiple methods have been developed to estimate the hydraulic load on the slope,
relating the damage to a stress. Examples are the Cumulative Overload Method (Dean
et al. [2010], van der Meer et al. [2010a]), the dynamic pressure (Hoffmans [2012]) and the
direct shear stress methods (e.g. d’Eliso [2007]). A variation is the excess load approach
based on work generated by the wave (Dean et al. [2010]). Recent observations show
that an overtopping wave separates from the dike surface at the transition from crest
to dike (van Damme et al. [2016]). This indicates that a dike cover can be loaded by
wave impact. A more extended explanation on the models describing particular loading
mechanisms is given is Section 2.3.

Multiple methods have been developed that aim to predict the strength of soil and the
additional strength of grass. Examples are the apparent root cohesion (Wu et al. [1979]),
the extended model for the strength of cracks (Führböter [1966], Richwien [2003]) and the
Turf Element Model (Hoffmans [2012]). Variation of the cover strength in time is caused
by fatigue and infiltration (Bijlard [2015], O´Kelly [2013]). Due to the complexity of a
turf layer consisting of soil and grass, uncertainty exists on the strength of it. Grass is an
anisotropic material, which further complicates the development of physical knowledge
on its behaviour. A more extended explanation on the strength of the soil is given in
Section 2.5 and on models describing particular failure mechanisms in Appendix B.

Spatial variation plays an important role. Wave load depends on the on the flow depth
and velocity, which varies along the slope. The stresses due to wave impact act wider
than the impact area (Tu and Wood [1996]). Soil, especially if grass covered, is very in-
homogeneous, causing a spatial variable strength. Some geometrical aspects (mentioned
previous) have a local influence on the strength.

1.2 Problem description and research aim

Current knowledge on the failure of a dike cover due to overtopping load is limited and
fragmented. Methods that have been developed to describe and predict failure assume
that one failure mechanism is normative for all cases. For instance the Cumulative
Overload Method (Dean et al. [2010], van der Meer et al. [2010a]), currently used for
evaluating dikes, is based on the assumption that failure is related to shear stress. How-
ever, it is observed that wave impact can occur (van Damme et al. [2016]). Furthermore
it is noticed that for equal mean excess load the grass cover fails for certain overtopping
velocities but is able to resist higher overflow velocities (van Damme et al. [2017]). This
suggests that the pulsating nature of the overtopping load accelerates failure.

Knowledge on the effect of a wave load on the soil is lacking. Also a simple method
to determine the soil reaction under a highly variable wave load is missing. Models to
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CHAPTER 1. INTRODUCTION

compute soil stress exist but these are not able to deal with a variable combination of
normal and shear stress load well, or are complex requiring a lot of input knowledge and
computation time. No model exists that is able to compute both hydrodynamical load
and geotechnical response.

The purpose of this study is to improve the knowledge on the processes leading to failure
of a dike cover. It is focused on failure mechanisms caused by changes in soil stress. With
improved knowledge on relevant processes in dike failure, better criteria for assessment
and design can be drafted. Improvement of criteria can be in different ways, e.g. reducing
uncertainties or shifting normative mechanism. This increases the certainty of the safety
of existing dikes. Improved knowledge contributes to the improvement of the design and
assessment of dikes.

The purpose of this research is summarized in the following main aim:

Improve the understanding of initiation geotechnical failure of a dike cover during
overtopping wave load.

Geotechnical failure is related to strain which is related to stresses and the gradients of
stresses in the soil (Atkinson [2000]). Insight in the distribution and development of soil
stresses during wave load, improves the understanding of geotechnical failure. Accurate
modelling of the soil stresses can provide this insight. To achieve this, the following
objectives have been set:

1. Develop a model to compute the development of soil stresses for an imposed hydro-
dynamical overtopping load.

2. Validate the soil stress representation of the model.

3. Employ the model to predict geotechnical failure.

1.3 Research approach

This section gives the approach to the research objectives and how they relate to the
main aim of this study. The approach to the objectives is the following:

1. Develop a model to compute the development of soil stresses for an imposed hydro-
dynamical overtopping load.
A literature study is preformed to evaluate possible types of load on the slope.
It is investigated what processes are present in an overtopping wave. With this
knowledge a case of an overtopping wave load distribution, developing in time, is
determined. By literature study it is further investigated what soil characteristics
influence the soil stress development, in what way.
A 2D numerical model is developed to computed the stress development in the
dike cover. A setup for this model is shown in Figure 1.3. Using the results of
the literature study, this model computes the distribution and development of soil
stresses, considering a given hydrodynamic load.
This approach aims to give an accurate physical representation of the soil stress
distribution and development in a loaded soil.
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2. Validate the soil stress representation of the model.
Several model runs are executed for comparison of their results. The results of runs
with simple load cases are compared to the expected results based on physics, for
qualitative verification of the model. Further, some overtopping waves, observed
during measurements, are simulated in a model run. The soil stress results from
the model are compared to those resulting from the measurements, for validation
of the model.
This approach aims to indicate the accuracy of the soil stress computation of the
current model. Furthermore it indicates defects in the model outcome which form
opportunities for improvement during further development.

3. Employ the model to predict geotechnical failure.
Using the results of the literature study, the model computes overtopping wave
loads. Considering an overtopping wave load, the soil stress distribution and de-
velopment is computed.
This approach aims to indicate the spots in the soil with soil stresses that are likely
to cause failure. It furthermore shows the capabilities of the model.

Figure 1.3: Sketch of the setup of a numerical model with soil divided in grid cells, spatial variable
loading forces (black arrows) and possible reaction forces (red arrows).

The approaches to objectives 1 and 2 are carried out iteratively. Model tests lead to new
development and model development requires additional testing. Intermediate results of
iterative steps are not presented. The approach to objective 3 is carried out with the
developed model, resulting from the iteration.

The numerical model is drafted from scratch in Matlab to be able to modify all parts
of the model if wanted. It enables to use a stress computation method of choice. It
furthermore enables to simplify model stress calculations where possible, which favours
the computation time. Finally, it is possible to make a single model computing both the
hydrodynamical physics and the geotechnical physics of an overtopping event. Use of
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CHAPTER 1. INTRODUCTION

existing modelling software is considered but rejected because of drawbacks or impossi-
bilities on these points.

Overtopping is a complex process. Within the available time frame of this study it is
impossible to consider the entire process in detail. This study focuses on determining the
geotechnical stresses caused by particular hydrodynamic loads. The load is put in as a
boundary condition. The loss of accuracy in the description of the load that is associated
with this method is expected to be acceptable. In this early stage of model development
it is sufficient to know the order of magnitude of the load and to analyze its effect.
Furthermore, not the entire dike geometry is considered. The model only considers one
part of the dike: the landward slope with a flat, sloped surface, see Figure 1.2. The cover
layer is considered to be a bare clay layer. This survey is on local action of forces on
the dike cover, so transition points of the slope angle and objects on the slope are not
considered.

1.4 Report outline

In Chapter 2 an overview is given of the current relevant knowledge on wave overtopping.
This contains both hydrodynamical and geotechnical processes and both a theoretical and
a practical approach. In Chapter 3 the structure of the numerical model is given. First
the model general equations representing physical processes in the soil and the equations
that define the initial and boundary conditions are derived, followed by descretization
steps to make them suitable for a numerical model. Further, the modelling of overtopping
wave load is explained. Finally, an overview of used assumptions in model derivation is
given. Subsequently, in Chapter 4, a brief recap of the resulting model is given, followed
by results of model runs for qualitative verification and to demonstrate the model use
for overtopping wave computations. Based on the results, the accomplishment of the
research aim and objectives, set in Section 1.2, is discussed in Chapter 5. From the
discussion conclusions are drawn in Chapter 6. Finally, in Chapter 7, recommendations
are given for the future of the model. This is split up in recommendations for the
improvement to a model that is able to give a correct representation of soil reaction for
given load, recommendations for the extension to a widely applicable and useful model
and recommendations on model employment that can be used as a goal in further model
development.
In the appendices information is given that serves as support, frame or background for
this research. It contains pictures showing different types of failure during overtopping
simulations (Appendix A), different soil resistance processes which are acknowledged
(Appendix B), information on the dike breaching process (Appendix C), a theory on
impulsive wave load (Appendix D) and a soil stress computation using existing software
(Appendix E).
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2
Literature

A lot research is done on different phases and components of overtopping failure, leading
to the existence of different theories and models. First of all Section 2.1 shows the
diversity in appearances of dike breaching. Then, knowledge on hydrodynamic load
is presented: Development of wave characteristics in different phases of overtopping
is presented in Section 2.2 and theories on processes imposing the load are given in
Section 2.3. Subsequently knowledge on geotechnical resistance is presented: Section 2.4
elaborates on the elements and composition of a dike cover and Section 2.5 discusses the
strength properties of the cover layer components (soil and grass). Measurements of the
soil stress development under overtopping load are shown in Section 2.6. Finally, a recap
of the knowledge in this chapter is given and the contribution it is presented in Sections
2.7 and ??.

2.1 Different types of failure

Failure depends on load on the soil and resistance of the soil. Both appear in multiple
ways. This is further explained in Sections 2.1.1 and 2.1.2 for load and resistance respec-
tively. This research focuses on the resistance of the soil. With the explanation of the
soil resistance in Section 2.1.2, a further focusing of the research is given

Different combinations of types of loads and resistance lead to a large number of different
types and locations of cover failure. This is shown by observations, given in Appendix
A. This emphasizes the complexity of wave overtopping.

Failure of a dike initiates with the failure of the dike cover. More on the distinct phases
of failure is given in Appendix C. The remainder of this report focuses on the failure of
the cover layer.
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2.1.1 Load components

An overtopping wave can be schematized as an incoming jet passing the crest and in-
teracts with the slope. For a large impact angle this leads to interaction dominated
by jet impact. Albertson et al. [1950] explains the complexity of such a load and the
existence multiple regions with different dynamics. For a small impact angle the forcing
is dominated by shear.
Loading forces that are considered are the dynamic pressure forces imposed by turbu-
lence (e.g. Emmerling [1973]), the normal and shear impact forces imposed by wave
impact (e.g. Ponsioen et al. [2017]) and the shear stress imposed by flowing water over
a surface with certain roughness (e.g. d’Eliso [2007]).

2.1.2 Soil resistance

On the strength of soil multiple approaches exist. This arises from the number of ways
in which soil can be loaded and the complexity of soil as a material. Failure on macro
scale is distinguished from failure on smaller scale. Failure on macro scale in case of
overtopping is the occurrence of sliding of a large part of the slope along a slip circle. An
widely acknowledged and used method to determine the resistance against macro scale
failure is the method of Bishop [1955].
During recent overtopping simulations, small scale failure is observed more frequently
than macro scale failure (Appendix A). d’Eliso [2007] states that the location and way
of failure is determined by the appearance of local weak spots. The non-uniform compo-
sition of soil and grass in a dike cover gives rise to multiple approaches on the strength
of it. Soil strength is approached by the determination of the strength of uniform clean
soil. This is extended by adding grass characteristics in the determination of the pulling
strength (Trung and Verhagen [2014]) and the shear strength (Wu et al. [1979]).
The presence of cracks (weak spots) at the soils surface is a local weak spot, causes a
different failure mechanism to appear (Führböter [1966]). Increase of water pressure in
the cracks can push the walls of the crack away. This can lead to local soil removal.
An extended explanation on the different approaches to determine soil strength is given
in Appendix B.

Different types of failure are observed. Trung and Verhagen [2014] distinguish three
damage types at the cover: head-cut, roll-up and collapse. These are shown in Figures
2.1a, 2.1b and 2.1c respectively. Head-cut damage is the simultaneous removal of the
turf and the clay layer, hence lifting of the soil. It is explained by the occurrence of a
local weak spot at depth. Whether or not this type of damage occurs, largely depends
on the soil composition. Roll-up damage is shear stress induced and occurs when a drag
force acts on the cover over a certain height. The flow than lifts the turf and pushes
it over, slowly down along the slope. This requires protrusion of the cover or presence
of a significant crack or hole in the cover. The type of grass cover influences whether
or not roll-up damage occurs. Collapse type of damage is observed at dikes consisting
of predominantly non-cohesive sandy material. Once initial damage reaches the sandy
core, the sand erodes at a large speed and the cover looses its support, increasing the
erosion rate.
Another type of failure is the sliding off of large parts of a grass cover (Valk [2009],
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(a) Head-cut failure. (b) Roll-up failure

(c) Collapse failure (d) Shallow sliding failure.

Figure 2.1: Principle sketches of some distinguished types of failure due to overtopping (Valk [2009],
Trung and Verhagen [2014]).

’t Hart et al. [2016]), see Figure 2.1d. Infiltration can cause sliding of the slope to occur
for a thin layer with approximately the thickness of the grass layer. This is a macro scale
failure.
Furthermore, the Turf Element Model (Hoffmans et al. [2008]) acknowledges and explains
failure of a cover by lifting of the soil. Based on vertical equilibrium of forces it gives
a measure for the stability of a soil element. Note that the approach of equilibrium of
forces can be used to determine throughout the soil in three perpendicular directions, to
indicate (even subsurface) locations of soil failure.

Occurrence of failure is related to soil stress (Atkinson [2000]). The focus of this research
is on the failure as a direct result of occurring soil stress and present soil strength. This
does not include the development of damage after initial damage. Failure is expected
when soil stress (gradient force) exceeds soil strength. In practice, three combinations
of stress and strength are expected to appear:

• High soil stress overlaying a local weak spot. In this case the soil stress can exceed
the soil strength, causing local collapse of the soil structure;

• Effective soil stress becoming negative, since soil has no tensile strength. This can
be caused by pulling load at the surface or by pore water pressure increase without
total stress increase. In this case the soil looses its coherence;

• Stress gradient force exceeding the soil strength. This can be caused either by very
large stress differences or stress differences over a very short differences.

For prediction of macro scale failure a comprehensive and detailed knowledge on soil
strength in the entire dike is required, which is unrealistic to obtain. The research
focuses on initial, small scale failure. That is failure alike soil lifting and head-cut
damage. Further, the understanding of failure due to overtopping is limited. If there are
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blind spots in the knowledge on geotechnical failure due to soil stresses, the model can
be able to reveal these spots.

2.2 Development of overtopping wave characteris-
tics

This section gives approaches for characteristics of overtopping waves. These character-
istics are used to determine overtopping loads. Considered characteristics are flow depth,
flow velocity and temporal variation during one wave cycle.

2.2.1 Wave development at the crest

The wave thickness at the crest is depending on the thickness of the incoming wave
running up the dike (Schüttrumpf and van Gent [2003]). The development of wave
thickness over the crest provided with definitions of parameters is given in Figure 2.2.
At the seaward edge of the crest the wave thickness decreases to a third of the incoming
wave thickness, due to the change in flow direction (van der Meer et al. [2012]). After
this decrease the wave thickness remains constant for a smooth crest. The incoming
wave thickness at the crest (hc,2%) is related to the wave thickness that is exceeded by
2% of the waves, see Equation 2.1. R2% is the run-up level exceeded by 2% of the waves,
Rc is the crest freeboard and ch,2% is a wave overtopping coefficient.

hc,2%(xc = 0) = 1
3ch,2%(R2% −Rc) (2.1)

Applicable values for ch,2% are 0.20 for slopes of 1:3 to 1:4 and 0.30 for slopes of 1:6.
Coefficients for slopes with a value between these values are found by interpolation. The
value of Ru2% is given by Equation 2.2. Here γb, γf and γβ are influence factors for berms,
slope roughness and oblique wave attack respectively, ξm−1,0 is the breaker parameter
and Hm0 is the incoming significant wave height.

R2%

Hm0
= 1.65γbγfγβξm−1,0 (2.2)

The flow velocity of a wave overtopping the crest depends on the flow velocity of the
wave reaching the crest and the width of the crest (van der Meer et al. [2016]). The
development of wave thickness over the crest provided with definitions of parameters is
given in Figure 2.2. The flow velocity of the wave decreases while passing the dike crest.
The relation between the flow velocity at both edges of the crest is given by Equation
2.3. Here, xc is the location at the crest and Tm−1,0 is the incoming significant wave
period.
The incoming wave velocity (at xc = 0) is approached by Equation 2.4. This equation
gives the flow velocity for the 2% run-up waves. Applicable values for overtopping
coefficient cv,2% are 1.4-1.5 for slope angles from 1:3 to 1:6.
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Figure 2.2: Development of flow overtopping parameters on the crest of a dike van der Meer et al.
[2016])

vc,2%(xc) = vc,2%(xc = 0) exp( −1.4xc
(gT

2
m−1,0
2π )

) (2.3)

vc,2%(xc = 0) = cv,2%

√
g(R2% −Rc) (2.4)

2.2.2 Wave development at the land side slope

The flow velocity and thickness at the land side slope (both relevant for load definition)
depends on the wave that passes the crest, the slope angle and the location on the slope
(Schüttrumpf and van Gent [2003], van der Meer et al. [2016]). Assuming negligible
velocities normal to the slope, a constant pressure over the crest and negligible viscous
effects in the direction parallel to the slope, a relation between flow velocity (vb) and
flow thickness (hb) is given by Equation 2.5. The subscript 0 indicates the start of the
slope (transition with crest). The parameters t and kl are given by Equations 2.6 and
2.7 respectively. In these equations, sb is the distance along the slope from the crest and
θ is the slope angle.
In these equations the only unknowns are the flow velocity and the flow thickness. Using
the mass balance based on the specific discharge (Equation 2.8), the flow velocity and
thickness can be found iteratively.

vb =
vb,0 + hbkl

0.01 tanh (klt2 )
1 + 0.01vb,0

hbkl
tanh (klt2 )

(2.5)

t = − vb,0
g sin θ +

√√√√ v2
b

g2 sin θ2 + 2sb
g sin θ (2.6)
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kl =
√

0.02g sin θ
hb

(2.7)

hb = vb,0hb,0
vb

(2.8)

2.2.3 Temporal distribution of a single wave

The instantaneous wave load on the slope is considered. Besides the maximum wave
load, the gradients in wave load are of interest for the wave forcing on the slope. The
development of flow thickness and velocity during a wave cycle is given by analytical
power-curve forms (Hughes [2011], Hughes et al. [2012]), given by Equations 2.9 and
2.10 respectively. This development is supported by measurements(van der Meer et al.
[2010a]). From these relations follows a similar development relation can be drawn for
the development of the discharge, see Equation 2.11.
Assuming negligible wave deformation in space, these equations are useful to describe
the distribution of a wave in time and space. The local wave front flow velocity (umax)
gives the velocity with which the wave front moves over the slope. The local maximum
values must be used as maximum values in the equations, to include the temporal change
in wave front characteristics in the description.
In these equations t is the point in time in a wave and T0 is the total duration of an
individual wave. The exponents a and b express the extend to which the development
of the flow thickness and the flow velocity respectively, follows the power curve. Since
the specific discharge (q) is the product of the flow thickness and the flow velocity, the
exponent that describes the development of the specific discharge equals a+b. According
to Hughes [2011] it is a reasonable to assume a linear decrease of the flow depth and
velocity, resulting in a value for a and b of 1. With linearization the tail of the wave is
neglected. However, the tail of the wave is of lesser relevance for the overtopping load
and accompanying damage. According to van der Meer et al. [2010b] neglecting the tail
improves the approach of the relevant overtopping wave.

h(t) = hmax(1−
t

T0
)a (2.9)

u(t) = umax(1−
t

T0
)b (2.10)

q(t) = qmax(1−
t

T0
)a+b (2.11)

Gradients in water depth and flow velocity are linked to gradients in stresses, thus to
stress gradient forces (see Section 2.3.2). At the wave front the water depth and flow
velocity gradient are large, so the stress gradient forces are expected to be large as well.
So far the wave front is assumed to have an infinite steepness. Measurements by van der
Meer et al. [2010a] show wave developments in time at fixed locations. The results show
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that the wave front steepness ranges from 0.3 m/s till 0.5 m/s. Accordingly the steepness
of the wave velocity ranges from approximately 5 m/s/s till 45 m/s/s.

2.3 Hydrodynamic load

This section contemplates different types of load that are distinguished. First a dynamic
pressure force, normal to the slope, caused by turbulence in the flow, is discussed in
Section 2.3.1. Furthermore, shear force imposed by the flow over a slope with a certain
roughness is distinguished. This is discussed in Section 2.3.2. Finally, normal and shear
stress caused by wave impact from overtopping waves that have separated from the
surface. This is discussed in Section 2.3.3.

2.3.1 Dynamic pressure induced by turbulence

A forcing mechanism, observed at the onset of slope dislocation, is the dynamic pres-
sure force (described by Hoffmans [2012]). It has been subject of many studies and its
development is advanced. The dynamic pressure force acts normal to the surface. The
force originates from variability of surface pressure due to turbulent motions in the wa-
ter. The pressure variability in time is shown in surface pressure measurements (Verheij
et al. [2015]).
Eddy motions in a turbulent flow generate an instantaneous variable pressure field.
Downward eddy motion imposes larger pressure than upward motion. The latter even
can impose negative pressure. This causes an instantaneous variable force on the soil.
At one instant, the surface water pressure on the grass varies in space. Negative pressure
peaks are linked to a suction force (Kerman-Nejad et al. [2011]). This variability of the
pressure field at one instant is called the instantaneous pressure variability. The concept
of instantaneous pressure variability is shown in Figure 2.3.
Besides instantaneous pressure variability, which is variability in space, there is the local
pressure variability, a variability in time at one location. This means that turbulent flow
load also range from positive to negative on one location.
Note that the dynamic pressure describes the variation of pressure (≈ twice the pressure
signal amplitude). The dynamic pressure can be directed upward and downward. The
upward pressure is considered to be normative for failure by Hoffmans [2012].

Dynamic pressure is induced by flow turbulence. Turbulence can be described by the
depth averaged relative turbulence intensity (r0). This is a function of the (longitudinal)
turbulence intensity (σu) and the depth averaged flow velocity of the mean flow (U0),
see Equation 2.12 (Schiereck and Verhagen [2016]). The longitudinal relative turbulence
intensity is the standard deviation of the streamwise velocity.

r0 = σu
U0

(2.12)

The turbulence intensity is a inconvenient parameter to work with. A simplification
by Graf [1998] replaces σu by a turbulence coefficient (α0) and the shear stress velocity
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Figure 2.3: Conceptual scheme of instantaneous normal forcing on the soil surface generated by unbal-
anced pressure distributions (Bellin and Fiorotto [1995])

(u∗), see Equation 2.13. Subsequently by involving the Chezy value (C) it is given in an
alternative way.

r0 = α0
u∗
U0

= α0

√
g

C
(2.13)

Based on tests, Emmerling [1973] found a relation expressing the maximum pressure
fluctuation (the dynamic pressure) pm in terms of the mean bed shear stress τ0. This
relation is given in Equation 2.14. In this relation, the turbulence coefficient ατ ≈ 18.
Application of Equation 2.14 results in pressure fluctuations up to 10 kN/m2 for wave
overtopping cases.

pm = αττ0 (2.14)

Equations 2.14 is rather incomplete considering physical parameters that influence the
pressure. Measurements had shown that pm is depth dependant, with a maximum where
the flow depth is maximum (Hoffmans [2012]). Furthermore air concentration is con-
siderable in a highly turbulent flow. Measurements also led to a correction factor for
air concentration (ηa) in the flow. Applying these improvements leads to Equation 2.15
which gives the normative load by the dynamic pressure. The slope of the bed is repre-
sented by Sbed.

pm = ατρghmax(1− ηa)Sbed (2.15)

The symbol hmax represents the maximum flow thickness on the bed. On the slope an
accelerating flow can be expected. Mass continuity requires that an accelerating flow
gets shallower. The largest flow thickness is expected where the flow velocity is smallest,
that is at the upper end of the slope. Consequently, the largest dynamic pressure force
is expected at the upper end of the slope.
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2.3.2 Shear stress induced by flow

A second load mechanism is the shear stress caused by the flow over the soil. The
roughness of the surface and protruding elements cause friction between the flow and
the surface. The flow imposes a force on the soil. Note that shear stress is not induced
by turbulence, it is the other way around: shear stress causes a velocity gradient which
is a continuous source of energy for the turbulence (Jimènez [1999]).

A widely used method to describe flow characteristics in relation to the bottom roughness,
is the Manning formula (Manning [1891]). It gives the relation between the averaged flow
velocity, the bottom roughness and the slope. For convenience the Manning formula is
given in an alternative form in Equation 2.16), which directly gives the shear stress (van
Damme [2016]). An approximation of the roughness of a grassed surface is a Manning
coefficient of approximately 0.03 s/m1/3 (Chow [1959], Chanson [2004], Abood et al.
[2006]).

τ = ρgU2
0n

2

h
1
3

(2.16)

Gradients in shear stress, parallel to the wall or surface, are a load as well (Gijsen et al.
[1997], Cherubini et al. [2015]). This is shown in Figure 2.4. These stress gradients can
be large for variable loads, in particular for an overtopping wave front or turbulent load
oscillations. This applies on variable loads in particular and can be an explanation for
observed differences between overtopping and overflow (van Damme et al. [2017]).

Figure 2.4: Principle sketch of shear stress gradient load, with in red the shear stress and in blue the
shear stress gradient force.

Excess overload method
Dean et al. [2010] approaches the normative load as a load that excesses a certain thresh-
old. This load can be expressed in terms of velocity (U), shear stress (U2) and work (U3).
The threshold value is expressed as a function of the critical flow velocity (Uc). Damage
is expected when a load exceeds the threshold value (van der Meer et al. [2010a]).

The shear stress based approximation that is currently applied in The Netherlands, is the
Cumulative Overload Method. It is given by Equation 2.17. The first term represents the
load on the grass and the second term represents the strength. Note that this equation
is is only valid if αMU2 > αsU

2
c .

In this equation is D the damage factor and αM a load factor for an increase in the
velocity of the overtopping wave (U). Furthermore, αs is a strength factor for a decrease
in the strength of a grass sod, where the strength of the grass sod is expressed as critical
velocity (Uc). The relation between this Uc and the actual strength of the soil is unclear.
According to Steendam et al. [2014] the factor αM can be related to the shear stress.
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Apart from this relation and the proportionality to u2, the relation between this method
and the actual load is unclear. Both the load and strength definitions are no physical
explanation for (the time dependency) failure.

D =
∑

(αMU2 − αsU2
c ) (2.17)

2.3.3 Normal and shear stresses induced by wave impact

A third forcing mechanism is the impact of a plunging overtopping wave. An impacting
wave can impose a large and very local load on the slope. In recent research van Damme
et al. [2016] observed that overtopping waves separate from the surface at the transition
of the dike crest to the land side slope (for a steep slope of 1:1.7), see Figure 2.5. This
observation is supported by previous research on flow separation (Keutner [1934], Moss
[1972], Ramamurthy and Vo [1993]). The wave motion is schematized as a ballistic
projectile motion of a solid mass, starting with a horizontal motion on the dike crest.
The physical explanation is done likewise. The forcing mechanism is shown in Figure
2.6.
In Figure 2.6 the x, z reference frame is oriented to the crest; axes are in horizontal and
vertical direction. Hence, ux equals ucrest. Figure 2.6 shows an additional χ, ζ reference
frame that is oriented on the slope. This reference frame is rotated with slope angle θ
with respect to the first reference frame. The distinction in frames of reference is made to
be able to make a clear distinction between forces that are directed normal and parallel
to the soil surface, both on the crest of the dike and on the slope. In the remainder of
this report the distinct indications for the frames of reference are used only when both
are relevant. Otherwise x and z are used instead of χ and ζ to indicate the reference
frame oriented to the slope.

The wave impact force acts on the slope under and angle, which is decomposed into
components normal and parallel to the slope. Ponsioen [2016] assumes that both forces
are entirely transmitted to the grass. For the normal forcing this is a valid assumption.
For shear forcing this is not, since a part of the momentum of the water moves down the
slope. The equation giving shear force must contain a friction factor (cf ) to account for
the portion of the shear momentum that is transmitted as a shear force on the surface.
For this the shear stress equation with the Manning coefficient is used (Equation 2.16).
In this equation ρU2

0 represents the pressure potential in the wave. The remainder
represents the portion of this pressure potential acting as a shear stress on the surface.
This remainder is Manning’s coefficient, rewritten to a friction factor by inclusion of the
gravitational constant and the flow depth (Equation 2.18).

cf = gn2

h
1
3

(2.18)

For the decomposition of the incoming wave the velocity is decomposed in a component
normal and parallel to the slope. This is given by Equations 2.19 and 2.20 respectively.
The absolute velocity of the wave is given by |u| and the impact angle is given by β.
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Figure 2.5: Separation of an overtopping 1000 l wave before impacting on the land-side slope. (Ponsioen
[2016])

Figure 2.6: Approach for forcing on the slope by an impacting wave, per unit width (Ponsioen et al.
[2017])

The decomposed velocities give expressions for the decomposed forces. This is shown in
Equations 2.21 and 2.22 for the normal and shear stress respectively.

~uζ = |u|sin β (2.19)
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~uχ = |u|cos β (2.20)

σζζ = ρ|u| ~uζ = ρu2 sin β (2.21)

τχζ = cfρ|u| ~uχ = cfρu
2 cos β (2.22)

The wave impulse depends on the wave impact velocity (uimp) which equals the absolute
velocity of the wave. The impact velocity has a vertical and a horizontal component.
The horizontal component is assumed to be equal to the horizontal velocity at the crest,
since it experiences negligible resistance in the separated state. The vertical component
is caused by gravitational acceleration, between the moment of wave separation and
the moment of impact. The wave impact velocity is given by Equation 2.23. The flow
velocity at the crest is given by ucrest and the travelled vertical distance by the water
between the point of wave separation and the point of impact is given by Zwave.
The travelled vertical distance is different for different parts of the overtopping wave. It
is assumed that the wave is a laminar flow when separated. The water at the surface of
the wave when it is at the crest has thus a have larger impact than water at the bottom
of the wave. This difference is small and therefor the impact force is approached by the
maximum impact force.

uimp = |u|=
√
u2
crest + 2gZwave (2.23)

Substitution of the wave impact location in Equation 2.23 and subsequent substitution
of Equation 2.23 in stress Equations 2.21 and 2.22, gives an expressions for the normal
and shear impact stresses, given by Equations 2.24 and 2.25 respectively. (For more
detailed derivation, see Ponsioen [2016].) The angle of impact φ expressed by Equations
2.26. Further, θ represents the slope angle and hcrest the water depth at the crest.

σζζ,max = ρu2
crest(1 + 2 tan2 θ + 2 tan θ

√
tan2 θ + 2ghcrest

u2
crest

) cosφ (2.24)

τχζ,max = cfρu
2
crest(1 + 2 tan2 θ + 2 tan θ

√
tan2 θ + 2ghcrest

u2
crest

) sinφ (2.25)

φ = tan−1 (tan θ +
√

(tan θ)2 + 2ghcrest
u2
crest

)− θ (2.26)

Spatial variation of stresses causes a pressure-gradient force, directed parallel to the
slope from a point with a higher stress towards a point with a lower stress. Especially the
variation between the stress in the impact area and just outside of it is large. Accordingly,
a large pressure-gradient force is expected between the impact area and adjacent soil.

The approach of the wave impact load can be improved by application of the theory on
pressure impulse theory for liquid impact problems (Cooker and Peregrine [1995]). This
theory is further explained in Appendix D. In this research this improvement is omitted.
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2.4 Composition of a cover layer

Strength of a dike cover layer strongly influenced by its heterogeneity. A cover consists
of clay and grass with overlapping zones. Both are non-isotropic elements with different
characteristics. Muijs [1999] recognizes distinct components in the cover layer, see Figure
2.7. The flexible, upper part of the grass is the sward, the lower and stiffer part the
stubble. Together with the subsurface parts of the grass, the roots, they form the herbage.
The subsurface zone with close packed roots and the stubble together form the turf. The
cover layer below the turf is the substrate.

Figure 2.7: Distinction of components of a grass cover layer (Muijs [1999])

Clay in a dike cover is not uniform. It contains cracks and aggregates of various di-
mensions, especially when it is sparsely vegetated (TAW [1996a], Coppin and Richards
[2007]). They are caused by burrowing animals, changing ground water conditions or ge-
ological conditions. Cracks and aggregates in the soil are weak spots that are vulnerable
for erosion.

The purpose of grass is to protect and reinforce the soil below. A dense and regular
grass cover is beneficial for the resistance against (Sprangers [1999]). An open spot in
the vegetation is vulnerable for erosion and potentially the initiation location of failure.
Grass roots are holding soil aggregates together (Stanczak et al. [2008]). Coppin and
Richards [2007] show that vegetation protects soil from drying out; absence of vegetation
can lead to additional cracks in the soil.

2.5 Geomechanical resistance

This section describes soil characteristics provide resistance. The first are the strength in
the shear and in the normal direction, discussed in Sections 2.5.1 and 2.5.2 respectively.
Soil strength variability and the conditions this variability depends on is discussed in
Section 2.5.3.
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Soil stress consists of effective soil stress (particles stress) and the pore water pressure.
Equation 2.27 shows this relation with σ being the soil stress, σ′ the effective soil stress
and p the pore water pressure. Common geotechnical computations assume either fully
drained (p = 0) or fully undrained soil (p = σ). However, in reality loading and unloading
causes the degree of saturation to change (Lloret-Cabot et al. [2018]).

σ = σ′ + p (2.27)

2.5.1 Soil strength

The theory of Coulomb [1776] the critical shear stress that soil is able to withstand de-
pends on cohesion and friction. The latter depends on angle of repose and the governing
effective stress. The relation is given in Equation 2.28. Here τc is the critical shear
strength, c is the cohesion, σ′ is the normal effective stress and φ is the angle of repose.
Mohr’s circle (Mohr [1900]) describes and visualizes all possible combinations of shear
stress and normal stress (stress states) for certain loading conditions.
The Mohr-Coulomb criterion states that for preventing failure of the soil all stress states
must be below the critical stress states given by Equation 2.28. The Mohr-Coulomb
criterion is visualized in Figure 2.8. The figure shows a case for which two stress states
are critical (indicated by C and D) and all others (other points on the circle) are below
critical. The Mohr-Coulomb criterion gives the expected angle of a failure plane.

τc = c+ σ′ tanφ (2.28)

Figure 2.8: The Mohr-Coulomb criterion. The circle represents possible combinations of shear and
normal effective stress. The straight lines represent critical combinations of shear and normal effective
stress.
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According to the Mohr-Coulomb criterion for all stress states a soil element orientation
exists for which only normal stresses act on the element. These normal stresses are the
major principle stress (σ′1) and the minor principle stress (σ′3). The relation between the
normal and shear stresses and the principle stresses are given in Equation 2.29. Here α
gives the rotation angle that a soil element must rotate with respect to the horizontal
position for the shear stress to become zero. Equation 2.30 expresses the relation be-
tween the principle stresses (Verruijt and van Baars [2009]).

[
σ′xx τ ′xz
τ ′zx σ′zz

]
= 1

2(σ′1 + σ′3)
[
1 0
0 1

]
+ 1

2(σ′1 − σ′3)
[
− cos 2α sin 2α
sin 2α cos 2α

]
(2.29)

σ′3 = σ′1
1− sinφ
1 + sinφ + 2c cosφ

1 + sinφ (2.30)

Angle of repose
Particle interlocking causes soil to have an angle of repose. This is the steepest angle
at which the an unsupported slope angle remains stable. Common design practice is to
use the drained angle of repose, which is roughly between 15◦ and 30◦ for clay (Verruijt
and van Baars [2009], NEN [2007]). The angle of repose goes to zero for a saturated soil,
explained by the three phenomena listed below (Terzaghi [1932, 1936]).

1. Soil strength depends on intergranular forces only;

2. The pore volume is large and interconnected enough to make the pore water pressure
not affect intergranular forces;

3. The incompressible water fully carries pressure changes. Unless drainage occurs,
the soil structure (hence the soil volume) remains unchanged.

These phenomena and the angle of repose for among others clay are tested and shown
to be just (Terzaghi [1936], Golder and Skempton [1948], Bishop and Eldin [1950]). The
third phenomena is proved by Smeulders [1992] and van der Grinten [1987].

An accessible test to obtain the angle of repose is the Simple Shear Test (SST), in which a
soil is exposed to an angular deformation (Roscoe [1953]). The horizontal stress, required
for the Mohr-Coulomb failure criterion, is not exactly known in the SST, introducing
some uncertainty in the results. An accurate but extensive test to find the angle of repose
is the Triaxial shear test. In this test a sample is exposed to both an axial and a radial
stress, till failure. Based on the conditions at failure, the accompanying Mohr’s circle is
drafted. If the cohesion is known or if multiple tests are executed, the angle of repose
can be determined.

Cohesion
Cohesion is shear strength that is independent from the governing normal stress. It
originates from connections between individual particles. Cohesion is an umbrella term
consisting of different connecting mechanisms. Mechanisms that contribute to the co-
hesion are chemical binding (cementation), particle interlocking, water affinity of clay
particles and suction pressure (TAW [1996a], Mitchell [1993]). Cohesion is an isotropic
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soil characteristic. According to Verruijt and van Baars [2009] cohesion of clay is be-
tween 5 kPa and 50 kPa (or even larger). Practical values of the cohesion are lower.
NEN [2007] assigns values from 0 kPa (no cohesion) up to 15 kPa to the cohesion of clay.
The cohesion of clay depends on the history of load. Loading and subsequently unload-
ing (overconsolidation) increases the cohesion. This increase can be approached by the
Overconsolidation Ratio (OCR) (Casagrande [1936]).
The cohesion of a soil can be determined by executing a Triaxial shear test. If the angle
of repose is known or if multiple tests are executed, the cohesion can be determined.

2.5.2 Compression

The development of soil stresses and strain (ε) are related to each other. Every doubling
of the stress generates an equal compression (Terzaghi [1940]). It is expressed in a loga-
rithmic relation, see Equation 2.31 (Keverling Buisman [1941]). In this formula is σ the
governing stress, σ1 the stress before loading and C10 is a dimensionless compression co-
efficient that describes the relation between stress increases and compression. According
to Verruijt and van Baars [2009] C10 of clay has a value between 4 and 40. Koppejan
[1948] added time dependency with Equation 2.32. In this equation Cp and Cs are the
primary and secondary compression coefficient respectively and t is the load time. The
time is expressed in days, indicating the large time span of the calculated compression.

ε = 1
C10

log( σ
σ1

) (2.31)

ε = −( 1
Cp

+ 1
Cs

log(t)) log( σ
σ1

) (2.32)

Verruijt [2008] gives the relation between effective stress and strain, see Equation 2.33.
K is the compression modulus, which is a measure for the relation between stress and
strain (comparable to the function of the Ci coefficients in previous relations). G is the
shear modulus, expressing shear. These moduli cover the elasticity and the lateral effects
of the soil compression.

εii = − σ′1
2K + 4

3G
(2.33)

The history of loading influences the stiffness of the soil. Soil that has been loaded and
unloaded repeatedly reacts more stiff during loading than soil during a virgin loading.
This effect is shown in Figure 2.9.
The compression strength of soil is measured with the oedometertest. In this test a soil
sample is put in a ring, to prevent occurance of horizontal deformation. Hence, vertical
strain equals volume strain. The sample is covered by a circular, porous plate which is
loaded. The relation between the compression (vertical displacement) and the load gives
the compression strength.

Isotropy
Consolidation and settlement causes vertical soil compression. This and the lack of
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Figure 2.9: The effect of multiple loading events on the stiffness of soil (Verruijt and van Baars [2009]).

horizontal motion causes a layered composition of the clay particles. This is largely due
to the flaky appearance of clay particles, as is explained by Buessem and Nagy [1953].
Logically, this layered state is especially present in clay that is in place for a long time or
artificially compressed clay. Clay on a dike can only be the latter, or it is remolded and
not layered at all. Ansal and Erken [1989] found that remolded clay samples are more
resistant to cyclic shear stresses than layered ones.

Elasticity
Elasticity of soil is approached by the relation of Terzaghi and Young’s modulus (E).
The relation giving Young’s modulus is given in Equation 2.34. Note that it describes a
linear relation, but soil behaviour is not linear elastic. The Young’s modulus of a type of
soil thus changes for changing governing stress in the soil. The governing stress is given
by σ, the compression by ε and Young’s modulus by E.

E = σ

ε
(2.34)

The value of the Young’s modulus of clay has a large spreading (Kezdi [1974], Prat et al.
[1995]). Hardness and plasticity of the clay are variables that influence the elasticity.
The Young’s modulus of hard clays is an order of magnitude larger than that of soft
clays. The Young’s modulus of clays with limited plasticity is larger (slightly larger to
several times larger) than that of highly plastic clays. The latter difference is larger for
harder clays. Values of Young’s modulus for soft clays lay between 0.3 and 5 MPa. For
hard clays this is between 20 and 70 MPa. For one type of clay there is quite some
spreading in the Young’s modulus. The spreading in the value is larger for softer clays.

According to Bijlard [2015] previous research states that the modulus of elasticity of
grass can be linked to the Young’s modulus of pine wood (≈ 9GPa). Figure 2.10 shows
that the Young’s modulus of all wood like material (among which grass and pine wood)
is in the same region. Research on in-situ grass by Bijlard [2015] shows that the Young’s
modulus of a grass cover has an order of magnitude 0.1 GPa.

Lateral effects
Equation 2.34 is a simplified approximation of elasticity, based on a one dimensional case.
In practice stresses and deformations are three dimensional, complicating the relation
between stress and strain. Stresses in a direction also affect the strain in transverse
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Figure 2.10: Young’s modulus of distinct groups of materials (Cambridge University [2002])

directions. The ratio between axial and transverse strain is expressed with Poisson’s
ratio (ν). The value of Poisson’s ratio is material dependent. Application of Poisson’s
ratio in Equation 2.34 gives Equation 2.35.

εxxεyy
εzz

 = 1
E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1


σxxσyy
σzz

 (2.35)

Values of Poisson’s ratio for clay show large variation (Patel et al. [2017]). An upper
boundary of Poisson’s ratio, applying to saturated undrained clay, is 0.5 (Yokota and
Konno [1980], Pickering [1970]). Partially saturated clay has a Poisson’s value roughly
somewhere between 0.4 and 0.5. The Poisson’s ratio shows dependencies on soil condi-
tions (Pan et al. [2010]). The occurring shear strain is of large influence on the Poisson’s
ratio. For small strains (η ≈ 0.0001), Poisson’s ratio can get as small as 0.2. The ratio
of the axial over the normal (in lab tests: radial) stress and the effective confining soil
pressure are of minor influence.

Modeling damped elastic behaviour
A simple way to model elastic behaviour of the soil is drafted by Winkler [1867]. In this
model soil is represented by a number of discrete, independent, linear elastic springs.
Each spring represents a certain surface of the soil. The strain is related to the applied
force with the spring constant. Using the represented surface per spring, the force can
be translated into a stress. With this stress Young’s modulus is determined, relating the
spring constant in the model to the Young’s modulus of the soil (Lysmer and Kuhlmeyer
[1969]).
An extension to this model is the Kelvin-Voigt model (Figure 2.11) where damping is
included by adding a dashpot parallel to the spring. This is applied in the Winkler model
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in Figure 2.12. This model is found to be representative for the behaviour of soil (Cuomo
et al. [2011], Al-Kafaji [2013]).

Figure 2.11: Kelvin-Voigt diagram with a spring element, representing elasticity (K), and a dashpot
element representing damping (C).

Figure 2.12: Soil layer springy and damping support modelled by a Winkler model with Kelvin-Voigt
diagrams, for a random load.

2.5.3 Factors influencing strength

Degree of saturation
The degree of saturation of the soil influences the state of the soil and its behaviour.
A conventional geotechnical model uses either a fully saturated or a fully unsaturated
approach. However, correct modelling of degrees of saturation in between is required to
properly represent soil behaviour (Elsafti [2015]).
The Atterberg limits demarcate distinct soil states (Casagrande [1932]). The soil states
are, from most solid to most liquid, solid, semi-solid, plastic and liquid. The limits that
separate the soil states are called the Atterberg Limits. They are, from most solid to
most liquid, the Shrinkage Limit, the Plastic Limit and the Liquid Limit. Each limit is
based on a different test.

The infiltration rate of soils is described by the hydraulic conductivity (Green and Ampt
[1911], Hendriks [2010]). The hydraulic conductivity is expressed by Darcy’s law (Darcy
[1856]). Although Darcy’s law neglects factors that are considered by more elaborate
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models, it gives an order of magnitude of the infiltration rate. According to Bear [1972]
the hydraulic conductivity for clay is 10−6 m/s or smaller.

It is a common approach to assume saturated soil during overtopping (e.g. Hoffmans
et al. [2008]). No strength reduction by soil infiltration is expected during overtopping.
Moreover, from Bear [1972] is concluded that soil saturation is not influenced by a single
overtopping wave. Infiltration can be influential on unsaturated soils.

Fatigue
Load repetition influences the strength of clay by remolding of the particle composition
(Yasuhara et al. [1982]). The strength of the soil decreases after multiple load cycles
(Bijlard [2015]). Further, the modulus of deformation increases. Based on axial loading
laboratory tests, shear strength reductions up to 65% are found (Ansal and Erken [1989]).
The existence of a strong relation between the applied cyclic stress and the number of
load repetitions before failure is shown by Yasuhara et al. [1992]. He also shows that
clay fails for repetitive load below the critical stress.

Fatigue itself is not a soil characteristic. It influences other characteristics, such as
Young’s modulus. Its influence is only relevant for an overtopping event with multiple
overtopping loads.

2.6 Soil pressure measurements

Measurements of pressure development in the soil are done during overtopping simula-
tions at dikes at Millingen aan de Rijn (Verheij et al. [2015]). Pressure is measured at
the surface and at a certain distance below it. Reference pressure is the pressure at the
an unloaded surface, that is the atmospherical pressure. The measured pressure at the
surface and in the soil is the (pore) water pressure. At the surface, this equals the total
pressure. Sensors measured signals with a 5000 Hz frequency.

Surface pressure is measured by a pressure sensor placed at surface level in the soil.
Pressure in the soil is measured by a pressure sensor at approximately 10 cm below the
surface. It is installed by boring a hole from outside the test area to the sensor location.
The test setup is shown in Figures 2.13 and 2.14.

Results are presented in a 10 s time span per wave. Besides pressure, the results con-
tain measurements on other wave characteristics, such as velocity and thickness. Two
measured waves are selected from the results. These waves are selected because all con-
sidered measurements are complete and the results show a clear reaction of soil stresses.
Selected pressure measurements are shown in Figure 4.12. The dark red line gives the
surface pressure and the blue line the soil pressure. The results show that the pressure
reaction in the soil is marginal. This indicates damping and the diffusion of the absolute
value and the amplitude of pressure over depth. The suction pressure shown in Figure
2.15a is explained with the presence of unsaturated soil during the first tests by Verheij
et al. [2015].
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Figure 2.13: Cross section of the test setup during the measurement campaign that includes pressure
measurement during wave overtopping simulations (Verheij et al. [2015], edited).

Figure 2.14: Test setup for pressure measurement during wave overtopping simulations (Verheij et al.
[2015]).

2.7 Literature conclusions

Conclusions, based on literature, are given in this section. First, in Section 2.7.1, the
current knowledge on the process of failure due to changing soil stress is summarized.
Next, in Section 2.7.2 a model outline is drafted.

2.7.1 Conclusions on knowledge

Due to the complexity of overtopping, there are many types of failure due to overtopping
(Section 2.1). Some types are related directly to the stress in the soil, e.g. head-cut failure
or soil lifting failure (described by the Turf Element Model). Some types, like collapse
failure or layer sliding failure, also depend on local variations in soil strength.

The different appearances arise from the different load mechanisms within one overtop-
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(a) Pressure development for an overtopping wave volume of 2500 l/m, at location B,
during test series 1.

(b) Pressure development for an overtopping wave volume of 5000 l/m, at location B,
during test series 1.

Figure 2.15: Pressure development as function of time for sensor 3 below surface and sensor 4 at surface
(Verheij et al. [2015].

ping wave (Section 2.3) and the wave development during one overtopping wave cycle
(Section 2.2). The magnitude of load on the slope differs in space and time during one
cycle and also between overtopping wave cycles. The normative load can be different for
each overtopping wave.
Parts of the wave load, that are likely to be normative, are the locations of the wave im-
pact and the wave front. At the location of the wave impact the normal stress peaks very
locally. At the location of the wave front there are large stress gradients. Furthermore,
at this location the stresses are the largest of the entire wave (excl. wave impact).
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A difference exists between the reaction of different soil stress components to load (Sec-
tion 2.5). Load (assume pushing) on the soil causes an increase in the total soil stress.
Initially this increase is fully carried by the pore water pressure. The influence of loads
of short duration on the effective stress is negligible.
For a constant load at a finite area the following chain of events is expected. The load
causes an increase in soil pressure, causing an initially equal increase in pore water pres-
sure. This causes a water pressure gradient, hence water outflow which decreases the
pressure gradient. The water flow continues as long as a pressure gradient exists. Soil
volume decreases (negative strain) due to water outflow. The decrease in pore water
pressure and the decrease in volume cause an increase in effective stress. The described
chain of events is shown in Figure 2.16. Failure is expected to occur when, during this
soil reaction, one of the conditions that is listed further down in this section, is met.

Figure 2.16: Chain of events that is expected as a reaction on surface load.

Soil stress is influenced by a large number of characteristics (Section 2.5). The most
important soil characteristics are the cohesion, angle of repose, the (lateral) elasticity
and hydraulic conductivity (which defines the infiltration speed). The cohesion is a
measure for the extend to which soil particles are connected to each other. It defines
the strength of the soil on very small scale. The angle of repose is a measure for the
ability of the soil to pile up. A large angle of repose is favorable for the soil strength
against collapsing. However, the angle of repose of saturated clay is very small. The
elasticity of the soil (expressed by Young’s modulus and Poisson’s ratio) is a measure
for the relation between the occurring stress and strain. It influences the speed to which
the soil can adapt to the new load situation. The hydraulic conductivity is a measure
for the flow velocity of pore water, which also influences this adaptations speed. This
adaptation speed is relevant regarding geotechnical failure. A low adaptation speed can
lead to local pressure build-up and large stress gradients. During model development it
is shown that some soil characteristics can be neglected (Section 3.1.3).

In practice uncertainty exists on the values of specific soil characteristics. A reason for
this is the spatial variability of soil. This means that also strength characteristics are
location dependent. This is of influence on geotechnical failure.
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Geotechnical failure is related to soil stresses but knowledge on short term soil behaviour
under variable loading conditions is limited. Suitable modelling of short term soil stress
reaction can provide additional insight in this behaviour. The distribution and devel-
opment of soil stresses provide information on causes of failure. When soil strength is
considered as well, failure can be predicted. Geotechnical failure can be expected from
three combinations of stress and soil strength:

• High soil stress on local weak spot;

• Negative effective soil stress;

• Stress gradient force exceeding the soil strength.

2.7.2 Conclusions on modelling

To improve knowledge on geotechnical failure related to soil stress, a soil stress model is
developed. Stresses are computed in a 2D space, representing a part of the cross section
of the land side slope of the dike. Stresses are approached numerically, in a finite element
grid. The model represents soil behaviour, as summarized in Section 2.7.1. It shows the
distribution and development of total stress, effective stress and pore water pressure for
a given load.

The soil stress model must be able to deal with load variation on short scale in space
and time.
The model results must show stress increase for a pushing load and a stress decrease for
a pulling load. It must show that the pore water pressure initially carries load changes
and gets relieved in time. On the contrary, the effective stress is initially not influenced
by load changes but starts carrying the load as time passes.
The soil stress at the surface must adapt to the surface load. It must carry the load,
by the effective stress and the pore water pressure. Both side boundaries of the model
must be of no influence on the model. They must be such that the model can be a
representation of a random section of an infinite long, loaded clay layer. At the bottom
of the model an interface between a clay layer and a sand layer (commonly constructed
sublayer) must be represented. Sand is stiffer than clay, causing more effective stress
build-up at the bottom, and more permeable than clay, causing no restrictions on flow
of water through the bottom.

A good image of the distribution and development of stresses, indicates occurrence of
immediate failures (that is during a certain stress state). Failure caused by soil lifting,
head-cut failure or of different scale (Turf Element Model) can be predicted well by the
model. Furthermore, the model possibly reveals blind spots on knowledge on geotechni-
cal failure. Additional knowledge on the spatial variability of soil strength improves the
capability of the model to indicate collapse failure and layer sliding failure. During grad-
ually developing failure, such as roll-up failure, soil stresses change, in particular around
the changed geometry of the location of initial failure. This applies to development of
failure (after initial damage) as well. The model is not yet suited to predict these types
and paths of failure.
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3
Methodology

This chapter presents the approach to the third objective. A first step is to derive model
equations, that describe soil pressure development for a given load. These equations are
derived from accepted theory on soil forces such as impulse and mass balances. Deriva-
tion of model equations is given in Section 3.1.
Subsequently, a model is drafted from the model equations, initial conditions and bound-
ary conditions. The boundary condition at the surface determines the ratio between the
water pressure and the effective stress. Since this develops during load and since the load
is applied on the surface boundary, the surface boundary condition is more complicated
and of larger effect on the model results, than other boundary conditions. The initial
and boundary conditions are given in Sections 3.2, 3.3, 3.4 and 3.5.
The model is set up in a model framework with distinct point in space and time. The
stress equations, boundary conditions and initial conditions are discretized to be able to
apply them on the model framework. These steps are explained in Section 3.6.
To determine the load on the geomechanical part of the model, different modes are op-
tional. With the manual mode the surface stresses on each point in space and time must
be defined manual, which is suitable for simple loads (e.g. constant in space or time).
Application of this mode is suitable for model verification computations and simple in-
dicative computations. With wave load mode the surface stress during an overtopping
wave is computed. The background of this mode is given in Section 3.7. Application of
the wave load mode is suitable for model verification by comparison with measurements
and predictive computations when the model is ready to use.
In drafting the model a number of equations is made, which are put together in Section
3.8.

Once drafted the model is used, see Chapter 4. Results of model use shows to weaknesses,
flaws and/or usability limits of the model. This can be used to improve the model, leading
to a continuous iterative process of modelling and model use.
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3.1 Balance equations describing pressure develop-
ment

A numerical model computing the propagation of soil pressure under an overtopping load
is drafted. It models soil in a two-dimensional space along the cross section of the dike.
The soil is divided in distinct rectangular cells. Normal and shear forces act on the the
edges of the cell, shown in Figure 3.1. These forces originate from soil stress in adjacent
cell or, for model boundary cells, boundary conditions.

Forces in the soil are described by balance equations describing horizontal and vertical
impulse and mass of water and particles, given in Sections 3.1.1 and 3.1.2. In Section
3.1.3, these balance equations are transformed to a single equation, expressing the stress
in the soil in terms of the major principle stress. Derivation of the model equations is
based on van Damme [2018b]. All stresses are expressed in a frame of reference with an
x-axis parallel to and a z-axis normal to the soil slope.

Figure 3.1: Forcing on an inclined soil element of finite dimensions.
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3.1.1 Impulse balance

The impulse balances in x and z direction for a saturated sloping soil are given by
Equations 3.1 and 3.2 respectively (Verruijt and van Baars [2009]). Soil is likely to
be saturated during an overtopping event (e.g. Bijlard et al. [2017]). The gradients in
effective shear stress (τ ′), effective normal stress (σ′) and the pore water pressure (p) and
the gravitational force contribute to the balance. The pore water pressure is isotropic,
the effective soil stress and the effective shear stress are not. The slope angle is given by
θ and the soil density by ρs. The described forces on the soil are displayed in Figure 3.1.

∂σ′xx
∂x

+ ∂τ ′zx
∂z

+ ∂p

∂x
= ρsg sin θ (3.1)

∂σ′zz
∂z

+ ∂τ ′xz
∂x

+ ∂p

∂z
= ρsg cos θ (3.2)

3.1.2 Mass balance

Initiation of failure is considered, that is before occurrence of plastic deformation. In this
situation, the principle of mass balance is applicable. The mass balance for soil particles
is given by Equation 3.3 and for pore water by Equation 3.4. Here n is the porosity and
u is the average velocity of a soil particle. The subscripts w and p denote water and
particles respectively.

∂ρp(1− n)
∂t

+∇(1− n)ρpup = 0 (3.3)

∂ρn

∂t
+∇nρuw = 0 (3.4)

It is more likely that stress increase causes a volume change than compression of individ-
ual soil particles, giving that soil density is constant in time. Assuming homogeneity of
soil, the density is constant is space. Constant soil density reduces Equation 3.3 to Equa-
tion 3.5. Water is considered to be incompressible and homogeneous, similarly reducing
Equation 3.4 to Equation 3.6.

∂(1− n)
∂t

+∇(1− n)up = 0 (3.5)

∂n

∂t
+∇nuw = 0 (3.6)
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3.1.3 Derivation of model equations

The effective stresses and the principle stresses in the soil are described by Mohr’s cir-
cle (see Figure 2.8) and accompanying relations (Equations 2.29 and 2.30, repeated by
Equations 3.7 and 3.8).

[
σ′xx τ ′xz
τ ′zx σ′zz

]
= 1

2(σ′1 + σ′3)
[
1 0
0 1

]
+ 1

2(σ′1 − σ′3)
[
− cos 2α sin 2α
sin 2α cos 2α

]
(3.7)

σ′3 = σ′1
1− sinφ
1 + sinφ + 2c cosφ

1 + sinφ (3.8)

The derivatives of stresses, obtained from Equation 3.7, are substituted in the impulse
balance equations (Equations 3.1 and 3.2). By substituting Equation 3.8 into it, the
impulse balances are expressed as a function the major principle stress as only stress.
The cohesion of clay is assumed to be constant in space and time causing the last term of
Equation 3.8 to be constant and dropping out with derivation. The resulting derivatives
of the normal stresses are given in Equations 3.9 and 3.10 and of the shear stresses in
Equations 3.11, 3.12, 3.13 and 3.14.

∂σ′xx
∂x

= ∂

∂x

(1 + cos 2α sinφ
1 + sinφ σ′1

)
(3.9)

∂σ′zz
∂z

= ∂

∂z

(1− cos 2α sinφ
1 + sinφ σ′1

)
(3.10)

∂τ ′xz
∂x

= 2 ∂

∂x

(sinφ sin 2α
1 + sinφ σ′1

)
(3.11)

∂τ ′xz
∂z

= 2 ∂
∂z

(sinφ sin 2α
1 + sinφ σ′1

)
(3.12)

∂τ ′zx
∂x

= 2 ∂

∂x

(sinφ sin 2α
1 + sinφ σ′1

)
(3.13)

∂τ ′zx
∂z

= 2 ∂
∂z

(sinφ sin 2α
1 + sinφ σ′1

)
(3.14)

The angle of repose of clay is a value close to zero (Terzaghi [1932, 1936]), assuming
saturated undrained clay, which is valid for the clay layer under overtopping load. If
φ → 0, then sinφ ≈ φ (φ expressed in radians). Neglecting sinφ reduces Equation 3.9
to Equation 3.15 and Equation 3.10 to Equation 3.16. Furthermore it reduces Equations
3.11, 3.12, 3.13 and 3.14 to Equation 3.17, showing that shear stresses are of no influence.

∂σ′xx
∂x

= ∂σ′1
∂x

(3.15)
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∂σ′zz
∂z

= ∂σ′1
∂z

(3.16)

∂τ ′xz
∂x

= ∂τ ′xz
∂z

= ∂τ ′zx
∂x

= ∂τ ′zx
∂z

= 0 (3.17)

According to Darcy’s law the water pressure gradient is proportional to the flow through
the soil (Equation 3.18, Darcy [1856]). The specific discharge (q) equals the porosity
multiplied by the relative velocity of the fluid with respect to the solid (see Equation
3.19). The mass balances in both directions (Equations 3.3 and 3.4) are summed and
with substitution of Equation 3.19 rewritten to Equation 3.20. The spatial gradient in
discharge is related to the temporal gradient in strain as given by Equation 3.21. In
this equation ε gives the volume strain, γw the volumetric weight of water and ks the
hydraulic conductivity of the soil. When γw

ks
is constant, Equations 3.18 and 3.21 are

substitutable in each other.

∂p

∂x
+ ∂p

∂z
= −γw

ks
qx −

γw
ks
qz (3.18)

q = n(ww − wp) (3.19)

∂n(uw,x − up,x)
∂x

+ ∂n(uw,z − up,z)
∂z

+ ∂up,x
∂x

+ ∂up,z
∂z

= ∂qx
∂x

+ ∂qz
∂z

+ ∂ε

∂t
= 0 (3.20)

− γw
ks

(∂qx
∂x

+ ∂qz
∂z

)
= γw
ks

(∂ε
∂t

)
(3.21)

A relation between strain and effective stresses is given by Equation 3.22, assuming a
Hookean relation for small displacements and an isotropic material (Verruijt and van
Baars [2009]). Here ε is volume strain and εii is one dimensional strain, with subscript
ii giving the direction. The relation between volume strain and one dimensional strain
in a two-dimensional space is given in Equation 3.23 (Verruijt [2008]). Equation 3.22
shows that if σ′xx = σ′zz = σ′1, perpendicular strains are equal (εxx = εzz). Subsequently,
Equation 3.24, giving the strain, is derived from Equation 3.23.

[
σ′xx τ ′xz
τ ′zx σ′zz

]
= −(K − 1

3G)
[
ε 0
0 ε

]
− 2G

[
εxx εxz
εzx εzz

]
(3.22)

εxx = εzz = − σ′1
2K + 4

3G
(3.23)

ε = εxx + εzz = ∂ux
∂x

+ ∂uz
∂z

= − σ′1
K + 2

3G
(3.24)
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Parameters K and G in Equations 3.22 and 3.23 are the compression modulus (or bulk
modulus) and the shear modulus of the soil respectively. They are expressed as a function
of Young’s modulus (E) and Poisson’s ratio (ν), as is shown in Equations 3.25 and 3.26
(Hölscher [2016]).

K = E

3(1− 2ν) (3.25)

G = E

2(1 + ν) (3.26)

To obtain a single equation describing the soil stress state the divergent of Equations 3.1
and 3.2 is summed, giving Equation 3.27.

∂2σ′xx
∂x2 + ∂2τ ′xz

∂x∂z
+ ∂2p

∂x2 + ∂2σ′zz
∂z2 + ∂2τ ′zx

∂x∂z
+ ∂2p

∂z2 = 0 (3.27)

The terms describing the effective stress and the shear stress are given by the derivatives
of Equations 3.15, 3.16 and 3.17. An expression for the terms describing the water pres-
sure is obtained by substituting Equation 3.18 into Equation 3.21, resulting in Equation
3.28. Substituting Equations 3.23, 3.25 and 3.26 into Equation 3.28 and substitution
of the result, together with the expressions for the other terms of Equation 3.27 into
Equation 3.27, results in Equation 3.29. When the Young’s modulus (E), Poisson’s ratio
(ν), the hydraulic conductivity (ks) and the weight of water (γw) are known, the major
principle stress is the only unknown.

∂2p

∂x2 + ∂2p

∂z2 = γw
ks

∂ε

∂t
(3.28)

− ∂2σ′1
∂x2 −

∂2σ′1
∂z2 + 3γw

ks

∂

∂t

( σ′1
E

1−2ν + E
1+ν

)
= 0 (3.29)

3.2 Initial conditions

The initial stress distribution is that of an unloaded slope in stress equilibrium. Note
that the soil has two contributing elements to the equilibrium: water and soil particles.
Along each line parallel to the slope surface, the soil is at the same depth. Consequently,
both the effective stress and water pressure along the x-axis is constant. This gives a
zero stress gradient, see Equations 3.30 and 3.31.
In equilibrium groundwater is assumed to flow parallel to the surface. This represents a
saturated dike without water outflow. Soil stress (both pore water pressure and effective
stress) at the surface is zero. To obtain no outflow, pore water pressure increases linearly
along the z-axis, see Equation 3.33. Effective stress increases linearly with the actual
depth, which has an angle θ with the z-axis. The effective stress gradient along the z-axis
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is given by Equation 3.32. Figure 3.2 shows the differences between the water pressure
gradient and the effective stress gradient.

∂σ′

∂x
= 0 at t = 0 (3.30)

∂p

∂x
= 0 at t = 0 (3.31)

∂σ′

∂z
= (ρs − ρ)g at t = 0 (3.32)

∂p

∂z
= ρg cos θ at t = 0 (3.33)

Figure 3.2: Water pressure increase along the z-axis (blue) and effective stress increase along the actual
depth (brown).

3.3 Surface boundary conditions

Correct modelling of the surface boundary condition is the hardest problem in the entire
model. The surface boundary condition must be able to handle loaded and unloaded sit-
uations, also when they occur at the same time at different locations. The configuration
of loaded/unloaded locations and the magnitude of the load varies in time. Furthermore,
the surface boundary condition must be able to give a correct definition of the increase in
pore water pressure and the effective stress w.r.t. the load. Because these ratio’s change
during a load cycle.

At the soil surface (z=0) a surface boundary condition is set. This boundary condition
is a Dirichlet or a Cauchy boundary condition (Cheng and Cheng [2005]), depending
on the load situation. At unloaded points on the slope a Dirichlet boundary condition.
At loaded points a Cauchy boundary condition is applied, to represent load by both
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stress and stress gradient correctly. The spatial distribution of the surface boundary
conditions application is shown in Figure 3.3. The figure shows application of different
boundary conditions for loaded and unloaded soil. Note that wave propagation causes
temporal variation as well. Additionally, Figure 3.4 shows an overview of the all boundary
conditions on the model, including the surface boundary condition.

Figure 3.3: Overview of the spatial variable use of Dirichlet and Cauchy boundary conditions on the
surface boundary at the locations with and without wave load.

3.3.1 Boundary conditions for different load situations

Four load situations are distinguished: no load, load by normal stress, load by shear
stress and load by normal stress and shear stress. When the soil is unloaded a Dirichlet
boundary conditions, stating that the water pressure and the effective stress at the
surface equal 0 Pa, is applied. When only normal stress load is considered a Dirichlet
boundary condition is applied. When only shear stress or both shear and normal stress
are considered, a Cauchy boundary condition is applied. The derivation of the stress
gradient in the Cauchy boundary condition, based on the equilibrium of a soil element,
is explained below.

The impulse balance equations in x- and z-direction (Equations 3.1 and 3.2) are rewritten
to Equations 3.34 and 3.35. The forces represented by the terms of these equations are
shown in Figure 3.5.

∂σxx
∂x

+ ∂τzx
∂z
− γsinθ = 0 (3.34)

∂τxz
∂x

+ ∂σzz
∂z
− γcosθ = 0 (3.35)

Assuming irrotationality of a soil element, perpendicular shear stresses must be equal,
see Equation 3.36. This is substituted into Equation 3.35 giving Equation 3.37.
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Figure 3.4: Schematic representation of all boundary conditions (BC) on the soil model. The surface
BC is explained in Section 3.3, the side BC in Section 3.4 and the bottom BC in Section 3.5. The BC
for effective stress are shown in brown and the BC for water pressure are shown in blue. The surface
BC for effective stress and water pressure are linked and are variable in configuration. More detail of
this BC is given in Figure 3.3.

The total stress equals the sum of the water pressure and the effective stress. The gradi-
ents of these stresses are related likewise, transforming Equation 3.37 into Equation 3.38.
These equations show that the shear stress gradient in x-direction is inversely propor-
tional related to the effective stress gradient and total stress gradient in z-direction. For
a stress state that is conditioned by stress at the surface, which is the case for a Cauchy
boundary condition, a positive shear stress gradient causes a pulling force on the soil.

τzx = τxz (3.36)

∂σzz
∂z

= −∂τzx
∂x

+ γcosθ (3.37)

∂σ′zz
∂z

= −∂τzx
∂x

+ γcosθ − ∂p

∂z
(3.38)

The ratio between the water pressure and the effective stress is unknown. Moreover,
this ratio develops during loading. Their sum, the total stress, is known. Furthermore
it is known that a stress increase initially is entirely carried by pore water pressure
(van der Grinten [1987], Smeulders [1992]). The determination of the development of
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Figure 3.5: Forces originating from stress gradients and gravity, that contribute to the 2D force equilib-
rium on a soil element. Displayed forces are not to scale.

water pressure and effective stress as a function of the total stress is given in Section
3.3.2.

3.3.2 Ratio soil stress components

To determine the ratio between the effective stress and the water pressure as a function
of the total stress at the surface, a relation between the total stress and the effective
stress is derived. It is derived from Equations 3.39 and 3.40. These are expressions for
the development of strain (van Damme [2018a]) and water pressure (Equation 3.28) in
space and time, respectively.

∂2ε

∂x2 + ∂2ε

∂z2 = γw
ks4(λ+ µ)

∂ε

∂t
(3.39)

∂2p

∂x2 + ∂2p

∂z2 = γw
ks

∂ε

∂t
(3.40)

In Equation 3.39, λ and µ denote the 1st and 2nd Lamé parameter respectively. These
parameters represent the elasticity of the soil and can be rewritten to an expression for
the elasticity in terms of compression modulus K and shear modulus G, as shown in
Equations 3.41 (Mavko et al. [2009]).

λ = K − 1
3G, µ = G (3.41)
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Substituting Equations 3.24, 3.23 and 3.41 into Equations 3.39 and 3.40 results in Equa-
tions 3.42 and 3.43, respectively. Equation 3.42 relates the effective stress distribution
in space to the effective stress development in time. Equation 3.43 relates the water
pressure distribution in space to the effective stress development in time.

∂2σ′1
∂x2 + ∂2σ′1

∂z2 = γw
4ks(K + 2

3G)
∂σ′1
∂t

(3.42)

∂2p

∂x2 + ∂2p

∂z2 = −γw
ks(K + 1

3G)
∂σ′1
∂t

(3.43)

The sum of Equations 3.42 and 3.43 is Equation 3.44, giving the relation between the
total stress distribution in space and the effective stress development in time. The total
stresses at the surface are known, so the derivative in x-direction is known as well. If
Equation 3.44 is solved explicitly (based on values at previous time step) the derivative in
the z-direction is known as well. Then the effective stress gradient is the only unknown.
Equation 3.44 is applied to determine the portion of the total stress that acts on the
effective stress. From these stresses follows the portion that acts on the water pressure.

∂2σ

∂x2 + ∂2σ

∂z2 =
( γw

4ks(K + 2
3G) + −γw

ks(K + 1
3G)

)∂σ′1
∂t

(3.44)

Executing model runs shows that this approach gives realistic results for cases with
Dirichlet surface boundary conditions (that is a normal stress) only. For cases with a
Cauchy surface boundary condition, considering both normal stress at the surface and
stress gradient through the surface, it gives non-realistic results. To be able to run such
cases an approximation on the stress development is drafted, see Section 3.3.3.

3.3.3 Theoretical approximation on stress development

The development of water pressure in time in a loaded soil is approached with a Laplace
transform method (Verruijt [2008], Churchill [1972]) resulting in the exponential func-
tions given by Equation 3.45. Here p denotes the water pressure, t the time and s a
positive parameter that determines the shape of the function.

dp

dt
= −se−st, p = e−st (3.45)

Equation 3.45 describes only the shape of the function giving the development of water
pressure. The actual water pressure starts at the initial water pressure and develops to
an equilibrium value, which is zero for the surface load. The initial value, denoted by
∆σ, is the difference between the governing water pressure and the equilibrium value. It
equals the sum of the total stress increase and the exponential decrease. The effective
stress development follows from the water pressure development and the total stress
development.
The exponential function is based on a constant load and is therefore adjusted to suit
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a variable load. For a variable load the value of σ must be updated every time step,
automatically updating ∆σ as well. Additionally, the change in total stress is added on
the water pressure. After this update the exponential decrease of the water pressure and
increase of the effective stress starts again.
A second adjustment is the correctional load factor fload is added. This factor equals
varying load integrated over time divided by the load at previous time step (a constant
value) integrated over one time step, see Equation 3.46 and Figure 3.46. Consequently
it is a measure for the actual accumulated load during a time step, with respect to the
accumulated load during that time step if the load would be constant. Here t denotes the
time, σ denotes the total stress which is the load and the subscripts t and t− 1 indicate
current and previous time step respectively.

fload =
∫ t
t−1 σtdt∫ t
t−1 σt−1dt

(3.46)

Figure 3.6: Origin of the numerator and denominator in the definition of fload (Equation 3.46).

Applying the exponential development function (Equation 3.45) with the load decrease
factor and considering the stress update during load increase, Equations 3.47 and 3.48
are drafted. The development of the water pressure is given by Equation 3.47. The
development of the water pressure is given by Equation 3.48.

p = σ −∆σfloade−st (3.47)

σ′ = ∆σfloade−st (3.48)

Based on the model runs with Dirichlet boundary conditions the value of s is deter-
mined. Figure 3.7 shows the effective stress development resulting from a such a run
and an approach of the effective stress development with the exponential function in
Equation 3.45. From this comparison it results that s ≈ 6.4 ∗ 10−4.
Figure 3.7 shows that the modelled effective stress and the effective stress derived from
the theoretical approximation, develop accordingly. This indicates that the stresses re-
sulting from modelling are reasonable. Furthermore, it shows that the exponential func-
tion slightly overestimates effective stresses in the first phase of load. In the subsequent
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phase it underestimates the effective stresses. The development of water pressure is the
inverse of that of effective stress.

Figure 3.7: Effective stress development in the soil resulting from a model with Dirichlet surface bound-
ary conditions and an approach of this development with the exponential function derived from theory
(Equation 3.48) with s = 6.4 ∗ 10−4.

For validation of the theoretical approximation on the load a comparison is made between
the resulting soil stresses from model runs with a Dirichlet surface boundary condition
and with a Cauchy surface boundary condition with theoretical approximation. This
comparison is shown in Figure 3.8. The comparison is done for a case with a normal
stress load of 1000 Pa during the first 500 seconds and 0 Pa during the subsequent
500 seconds. It shows that the theoretical approximation on the load approximates the
results of the model without the approximation. It gives an underestimation of the speed
of adaptation of effective stress and water pressure, at the start of load decrease (approx
between 500 and 600 s) .

(a) Dirichlet, without theoretical approxi-
mation.

(b) Cauchy, with theoretical approxima-
tion.

Figure 3.8: Resulting effective stresses, water pressures and total stresses from model runs with applica-
tion of different boundary conditions.
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3.4 Side boundary conditions

At the sides of the model (x = xmin and x = xmax), a side boundary condition is set.
This boundary condition is a Neumann boundary condition (Cheng and Cheng [2005]).
The application of boundary conditions is shown in Figure 3.4.
The side boundaries represent the soil at a section normal to the slope at a random
location. These boundaries must be permeable for soil stresses, without influencing
the stress development inside the model. Therefore, the effective stress and the water
pressure at the boundary is set to get the same value as the effective stress and the water
pressure in the soil adjacent to it, see Equations 3.49 and 3.50.

∂σ′

∂x
= 0 (3.49)

∂p

∂x
= 0 (3.50)

The side boundary conditions can have a small reflective influence on the soil stress
propagation. To eliminate the effect of this, the model is nested. At both sides of the
model nesting cells are added, as shown in Figure 3.9. The dimensions of the nesting
cells equal that of the model cells. The boundary conditions are applied on the outer
boundaries of the nested model. The nesting cells are considered in computation, but
not in output generation. Consequently, no potentially influencing conditions are set on
the side boundaries of the model cell domain. The width of the nest is adjustable to the
range of appearing boundary influences.

Figure 3.9: Model nesting as applied.
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3.5 Bottom boundary conditions

At the bottom of the clay layer (z = zmax) a bottom boundary condition is set. This
boundary condition is a Neumann boundary condition (Cheng and Cheng [2005]). The
application of boundary conditions is shown in Figure 3.4.
The bottom boundary represents the interface between the clay layer and the sublayer.
Assuming that the sublayer is made of sand, the sublayer stiffness has a larger, finite
value than the clay layer stiffness (Esand > Eclay), causing damping at the bottom. A
Kelvin-Voigt boundary is used to model this boundary, see Section 2.5.2. According to
Tan [2016] the force at the absorbing boundary is given by Equation 3.51. S is the area
of the absorbing boundary, NT is the transposed shape function and σbot is the bottom
boundary stress.

Fvb =
∫
S
NTσbotdS (3.51)

NT is the shape function giving the interpolation of values in between points of calcu-
lation, the nodes in a discretized soil grid (Egger [2015]). Only the nodes of calculation
are considered, where the shape function equals 1.
The bottom boundary stress consists of spring traction (σspring) and dashpot traction
(σdashpot). Spring traction is the product of the spring coefficient (kn) and the dis-
placement (u). Dashpot traction is the product of the dashpot coefficient (cn) and the
displacement velocity (u̇ = ∂u

∂t
). The relation giving the bottom boundary stress (σbot) is

shown in Equation 3.52.

σbot = σspring + σdashpot = knu+ cnu̇ (3.52)

The spring and dashpot coefficients are given by Equation 3.53 and 3.54 respectively.
Ec is the constrained Young’s modulus which is a function of Young’s modulus and
Poisson’s coefficient, see Equation 3.55. Furthermore, ρ is the soil density. The coefficient
δ denotes the virtual thickness of the layer that is modelled as a spring. It is assumed
that the sublayer is of such thickness that it is the only layer of influence at the bottom
boundary. It is modelled that δ = 10m. Coefficient αn is a factor giving the magnitude
of the dashpot effect. For αn = 0 the boundary acts like a spring only and for αn = ∞
the boundary acts rigid. Tan [2016] uses values of approximately αn = 1 for an absorbing
bottom boundary.

kn = Ec
δ

(3.53)

cn = αn
√
Ecρs (3.54)

Ec = (1− ν)E
(1− 2ν)(1 + ν) (3.55)
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The stiffness of the bottom boundary depends on the displacement, which is unknown.
The spatial derivative of the displacement normal to the boundary is known as a function
of the strain (Equation 3.24). This is applied in Equation 3.56. The strain is a function
of the effective major principle stress (Equations 3.23).

∂σbot
∂z

= knεzz + cn
∂εzz
∂t

(3.56)

For the water pressure at the bottom boundary a Neumann boundary condition is ap-
plied. Due to incompressibility water adapts immediately to stress increase, without
any damping. The only spatial variation in stresses is caused by its own weight. The
stress gradient is therefor equal to that in unloaded state. This gives Equation 3.57 as a
boundary condition.

∂p

∂z
= ρg (3.57)

3.6 Discretization

3.6.1 Discrete model dimensions

The model gives the development of stresses in discrete steps in space and time. The
model consists of a rectangular spatial grid on each time step, as shown in Figure 3.10.
Default spatial grid dimensions are given in Table 3.1.

Table 3.1: Default spatial model dimensions.

model dimension cell size number of cells total length dimension
parallel to slope dx = 0.05 m I = 100 x = 5.00 m
normal to slope dz = 0.05 m J = 10 z = 0.50 m

3.6.2 Effective stress

The effective soil stress is computed with Equation 3.29. This is a diffusion equation
with the form of Equation 3.58.

− ∂2σ′

∂x2 −
∂2σ′

∂z2 + ∂σ′

∂t
= 0 (3.58)

Equation 3.58 is discretized with a Theta-Central scheme, with θ = 1, which is a com-
bination of the Central scheme for space integration and the Implicit Euler scheme for
time integration (Zijlema [2015]). This scheme is unconditionally stable. As a mea-
sure of accuracy the truncation error is τ∆t∆x∆z = O(∆t,∆x2,∆z2). Figure 3.11 shows
the dependencies of a computation point with adjacent points in space and time. The
discretized equation is given by Equation 3.59.
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Figure 3.10: A 3 dimensional discrete model grid with a width of I cells and a depth of J cells on each
time step t.

−σ′n+1
i−1,j + 2σ′n+1

i,j − σ′n+1
i+1,j

∆x2 +
−σ′n+1

i,j−1 + 2σ′n+1
i,j − σ′n+1

i,j+1

∆z2 +
σ′n+1
i,j − σ′ni,j

∆t = 0 (3.59)

Figure 3.11: Stencil of the Theta-Central scheme with θ = 1. In horizontal direction integration steps
in space (i,j) and in vertical direction integration steps in time (n) are shown. The white dot is the
computed value σ′n+1

i,j .

3.6.3 Water pressure

A relation between the water pressure and the strain (Equation 3.28) is used to compute
the water pressure. This relation is a diffusion equation of the form of Equation 3.60.
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Water pressure is related to the previous time step by the strain gradient in time (∂ε
∂t
),

which is known. The equation applies on the same grid as the effective stress, presented
in Table 3.1 and Figure 3.10.

− ∂2p

∂x2 −
∂2p

∂z2 = ∂ε

∂t
(3.60)

Equation 3.60 is discretized with a Central scheme for space integration. As a measure
of accuracy the truncation error is τ∆x∆z = O(∆x2,∆z2). Figure 3.12 shows the depen-
dencies of a computation point with adjacent points in space. The discretized equation
is given by Equation 3.61. Note that the strain gradient is known and therefor not
discretized.

−pi−1,j + 2pi,j − pi+1,j

∆x2 + −pi,j−1 + 2pi,j − pi,j+1

∆z2 = ∂ε

∂t
(3.61)

Figure 3.12: Stencil of the Central scheme. In horizontal direction integration steps in space (i,j) are
shown. The white dot is the computed value pn+1

i,j .

3.6.4 Surface boundary condition

The ratio between the effective stress and the water pressure as a function of the total
stress at the surface boundary is computed with Equation 3.44. This is a diffusion
equation of the form of Equation 3.62.

− ∂2σ

∂x2 −
∂2σ

∂z2 = ∂σ′

∂t
(3.62)

Equation 3.62 is discretized with the explicit FTCS scheme (Zijlema [2015]). (FTCS
means Forward in Time, Central in Space.) As a measure of accuracy the truncation error
is τ∆t∆x∆z = O(∆t,∆x2,∆z2). Figure 3.13 shows the dependencies of a computation
point with adjacent points in space and time. The discretized equation is given by
Equation 3.63.

σ′n+1
i,j

∆t =
σ′ni,j
∆t −

−σni−1,j + 2σni,j − σni+1,j

∆x2 −
−σni,j−1 + 2σni,j − σni,j+1

∆z2 (3.63)

3.7 Overtopping load computation

Load computation is based incoming wave characteristics and dike geometry, in accor-
dance with Section 2.3. This includes dynamic loading as a measure of the turbulent
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Figure 3.13: Stencil of the FTCS scheme. In horizontal direction integration steps in space (i,j) and in
vertical direction integration steps in time (n) are shown. The white dot is the computed value σ′n+1

i,j .

load. Required input for this is obtained in accordance with Section 2.2. The compu-
tation input values and their origin are given in this section. The resulting loads are
presented in Section 4.3.

Multiple overtopping cases can be considered by changing one or more input parameters.
Used values of parameters are based on the CLASH database (Steendam et al. [2004],
Verhaeghe [2005]). In this research only a default case is considered, shown in Table 3.2.
Incoming waves are represented by wave height Hm0 and wave period Tm−1,0, both values
at the outer toe of the dike. The dike geometry is represented by crest height Rc, slope
angle cotθ and crest width xc. For the computations a slope length of 10 m is considered.
Negative values of the slope angle in CLASH neglected. The maximum considered slope
angle of cotθ = 1.7 is based on a case where wave separation was observed (Ponsioen
et al. [2017]).
Some combinations of values give non-existing situations during computations, e.g. nega-
tive distances. If so, parameter values deviating from CLASH are used. Possible existence
of a correlation between different variables is ignored.

Additionally a number of coefficients, given in Table 3.3, is used. The coefficient values
are based on van der Meer et al. [2016]. Wave impact reducting elements are considered
to be of no reducing influence, considering the maximum wave impact for the prevailing
conditions: γb, γf , γβ = 0. The coefficients describing flow characteristics on the dike
crest, given by c, have a value corresponding with an outer slope angle of cotθ = 5.

To describe spatial distribution of the wave characteristics the temporal distribution of
Hughes [2011] (see Section 2.2.3) is applied. Because of the number of unknowns, an
approximation is used. The total wave duration depends on the average wave velocity
which, considering a linear decreasing wave velocity (see Section 2.2), is approached by
half the maximum wave velocity. The development of the wave height and velocity in
time, for the entire wave is based on the wave front velocity in stead of the actual velocity
of each point of the wave. Then the passing time (t) equals the distance over the velocity
(x⁄umax), which gives a spatial distribution. This is applied in the formulae from Section
4.3. For instance, Equation 2.9 turns into Equation 3.64. The approximation steepens
the tail of the wave and so shortens the modelled wave with respect to the reality.
Since the front of the wave in particular is interesting in overtopping, the assumption is
considered suitable.
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Table 3.2: Values of parameters used for indicative load computations, based on CLASH.

Symbol Unit Explanation Default value
Hm0 m Significant wave height 1.0
Tm−1,0 s Mean wave period 4.0
Rc m Crest freeboard 1.0
cotθ - Slope angle 3.0
xc m Crest width 0.3
q m3/s/m Overtopping discharge 0.1

Table 3.3: Values of non-variable coefficients used for indicative load computations.

Symbol Explanation Value
γb Coefficient for influence of a berm 1.0
γf Coefficient for influence of slope roughness 1.0
γβ Coefficient for influence of oblique wave attack 1.0
ch,2% Coefficient for flow thickness at the crest 0.25
cv,2% Coefficient for flow velocity at the crest 1.47

h(t) = hmax(1−
( x
umax

)
T0

)a (3.64)

3.8 Model assumptions

In model derivations assumptions are made. Some of them are the assumption about
principles (or sometimes facts) that are valid, see Section 3.8.1. Others are about default
values for specific model parameters, see Section 3.8.2.

3.8.1 Principles

Assumptions, made for model development, are listed below. These assumptions influ-
ence the applicability of the model and frame the possibilities for further model devel-
opment.

The first list gives assumptions that are fundamental for this way of modelling and are
therefor considered to be unchangeable.

• The dike cover layer consists of clay. The assumption to focus on one soil type is
made because of the differences in the action of forces in different soil types. Clay
is chosen because it is much used dike cover material. This assumption underlies
other assumptions;

• The density of soil particles (ρs) and of water (ρ) is spatial invariable. This assump-
tions enables neglecting terms in model derivation (Section 3.1.2), so it simplifies
model equations;
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• The cohesion of clay in the model is constant in space and time. This assumptions
enables neglecting terms in model derivation (Section 3.1.3), so it simplifies model
equations;

• The saturation of the soil is such that the angle of repose of clay is small. This
assumptions enables neglecting terms in model derivation (Section 3.1.3), so it
simplifies model equations and reduces required knowledge of soil characteristics;

• A soil element in the dike cover is irrotational. This assumption to link shear stress
in perpendicular directions to each other and subsequently to link the shear stress
gradient to the normal stress gradient in perpendicular direction (Section 3.3.1).
This is used to apply the shear stress on the model in which the calculations are
based on principle stresses, which are normal stresses.

The second list gives assumptions done to reduce the workload to a reasonable amount
within the frame of this thesis. These assumptions can easily be changed during further
development of the model.

• Ground water flows parallel to the soil surface. This assumption is based on an
entirely saturated dike in, which is an approach for a dike during storm conditions,
under overtopping load (Sections 3.2, 3.4 and 3.5). It enables to write simple
equations on spatial variation of the hydrostatic pore water pressure.

• Soil stress development in time under a variable overtopping load, can be ap-
proached by an exponential function. This assumption is based on the approach
of the soil stress development under a constant load. It is applied for a variable
load with matching adjustments (Section 3.3.3). This assumption is made to over-
come a deadlock in modelling the surface boundary conditions such that the model
generates realistic results;

• Load by wave impact and load by a flowing wave, both having a shear and normal
stress component, both occur in one overtopping wave cycle This assumption is
based on the lack of support for excluding one of the load mechanisms from the
total load (Section 3.7). It is chosen to use one load case because comparison of
load cases is not the focus of this research;

• The spatial distribution of an overtopping wave is related to the flow velocity of
the wave front instead of the local velocity. This assumption is made to enables to
determine the distribution of wave thickness and velocity within one overtopping
wave, with the minimal number of known wave characteristics (3.7). It steepens
and shortens in particular the tail of the wave, which is of lesser interest.

3.8.2 Parameter values

A number parameters, describing a soil characteristic, are used. Some of them have
a value in a large range, but are assigned a value that is representative for this case.
These values are given in Table 3.4. For background information on the parameters, see
Sections 2.5 and 3.5.
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Table 3.4: Default parameter values for soil pressure modelling.

Symbol Unit Explanation Value
E MPa Young’s modulus 10
ks m/s Hydraulic conductivity 1.0E−7

αn - Dashpot effect factor 1
δ m Virtual sublayer thickness 10
ν - Poisson’s ratio 0.4
ρ kN/m3 Water density 1000
ρs kN/m3 Clay density 1700
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4
Results

In the previous chapter a soil stress model is described. In Section 4.1, in a brief recap,
the model is presented. Subsequently, the model is used for different load cases and the
results are analyzed for qualitative verification of the model. These cases are simple and
comparisons with results are obtained in various ways. Verification is reported in Section
4.2. Finally, the model is fully applied on overtopping. The effect of a single overtopping
wave running over the dike slope is computed. This is reported in Section 4.3.

4.1 Soil stress model

This section describes the developed soil stress model. Section 4.1.1 describes the current
version of the model. Section 4.1.2 describes and explains development approaches that
have not lead to result. These are useful to be taken notice of in further development.

4.1.1 Current model

A 2D soil stress model is developed. It computes the soil stress response, in space and
time, on a load on the surface. The model is developed to compute soil stresses during
wave overtopping events. Model development consisted of theoretical derivation and
numerical programming.
The model dimensions are variable (see Table 4.1). The total modelled length of two
spatial dimensions can be set, as well as the total timespan. Furthermore, the grid size
of the model in two dimensions and the time steps can be set as well.

The model computes soil stresses for an load defined as a normal stress, shear stress or
a combination of both. The model functions for a load that is constant or variable in
time and for a load that has a positive or a negative value. There are three different load
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Table 4.1: Changeable variables in the soil stress model. Sections from top to bottom contain vari-
ables considering the following characteristics: numerical, geotechnical, geometrical and hydrodynamical
characteristics.

Symbol Explanation
I Number of model cells in x-direction
J Number of model cells in z-direction
tn Number time steps
dx Length of a cell in z-direction
dz Length of a cell in z-direction
dt Length of a time step
fnest Nesting width factor
E Young’s modulus
ks Hydraulic conductivity
n Manning’s roughness coefficient
αn Dashpot effect factor
δ Virtual sublayer thickness for damping
ρs Soil density
ν Poisson’s ratio
Rc Freeboard
xc Width crest
θ Dike slope
θsea Dike slope at water side
ch,2% Coefficient for flow thickness at crest
cv,2% Coefficient for flow velocity at crest
Hm0 Incoming wave heigth
q Overtopping discharge
Tm1,0 Incoming wave period
ατ Turbulence coefficient
γb Coefficient for berm influence
γf Coefficient for slope roughness influence
γβ Coefficient for wave attack obliqueness influence
ηa Air concentration

modes included, with necessary supporting functions, to write input load files.
The three load modes are manual, manual wave and waveload. In the mode manual the
load must be defined manually. This is suited for simple load cases, like a constant load
on a specific area. In the mode manual wave a wave load is defined by assigning values to
specific wave characteristics. This is suited to make calculations matching overtopping
measurements. In the mode wave load a wave load is defined by assigning values to a
characteristics of the incoming wave conditions and the dike geometry.
Based on the variable input load and predefined stress relations and boundary conditions
the soil stresses are computed. A distinction is made between the total stress, effective
stress and water pressure. The model does not compute fully saturated conditions but
it describes the development of stress components from an initial saturated situation to
a new (not saturated) equilibrium.
The results of the computation are presented numerically and graphically. The graphical
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representation is optional and can be switched on and off. The numerical representation
are 3D matrices with the values of the results. The graphical representation consists
of animations showing the development of stresses during the model run and 2D plots
showing, among others, stress development in time, stress distribution in depth, stress
distribution along the surface and plots of stress gradients.
The model has a number of variables, see Table 4.1. Some of the variables, mostly the
ones concerning geotechnical characteristics, are in the main part of the model. Others
are in supporting functions. All variables have predefined values, representative for the
case of an overtopping wave load on a dike with a cover layer.

4.1.2 Approaches on modelling the surface boundary condition

In an attempt to model the surface boundary conditions correct, several approaches have
been applied which eventually turned out to give incorrect results. These approaches
and the resulting flaws are explained below and a brief overview is given in Table 4.2.
The knowledge that these approaches are defective is useful in further development. The
approach that used in the final model is explained in Section 3.3.2 and is not discussed
in this section.

Table 4.2: Overview of applied defective approaches on modelling of the surface boundary condition and
corresponding flaws in the results.

Approach Flaw
Dirichlet surface boundary condition only Excessive numerical stability
Neumann surface boundary condition only Numerical instability
Iteration between σ′ and p Numerical instability

It is tried to impose a Neumann or Dirichlet surface boundary condition only, instead
of a combination of both or a more complex Cauchy boundary condition. Imposing a
Dirichlet boundary condition only is done by calculating an imposed stress at the surface
from the soil stress near the surface at the previous time step and the stress gradient at
the surface. This led to excessive stability, resulting in no development of soil stresses
between time steps, after initial response to load.
Imposing a Neumann boundary condition only is done by rewriting stress at the surface
as a stress gradient, using the difference between soil stress at previous time step and
the imposed stress at the considered time step. To prevent from values going to infinity,
one of the outer nested cells at the surface had a predetermined value, based on the
surface load. This approach led to instability, resulting in unrealistic soil stresses, even
exceeding imposed load.

Since the load on the surface equals the total stress and the ratio of the stress components
develops during loading, it is necessary to find the ratio between the effective stress and
the pore water pressure on each time step. It is tried to do this iteratively. The iteration
starts from an assumed ratio between those values. Each iteration step the effective
stress, the total stress and the pore water pressure are updated, based on previous values
of the other two. Application of this iteration led to instability, resulting in unrealistic
soil stresses, even exceeding imposed load.
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4.2 Qualitative verification

To verify the representation of the soil stresses a number of simple, steady state load
cases is computed. These cases are shown in Figure 4.1. The figure shows the normal
stresses and the shear stress gradients that are applied as a surface boundary condition.
Both stresses are applied on the pore water initially. During a load case they increasingly
apply on the soil particles and decreasingly on the pore water pressure, as is described
in Section3.3.2. The cases are reported in Sections 4.2.1, 4.2.2 and 4.2.3. Furthermore
a comparison is made with the results from pressure measurements during overtopping
simulations, see Section 4.2.4. An additional verification run is done with other software.
This led just to conclusions that are not relevant for verification. This is presented in
Appendix E.

(a) Unloaded.

(b) Normal stress of σ = 1000Pa.

(c) Local normal stress of σ = 1000Pa.

(d) Shear stress gradient of ∂τ
∂z = 100Pa/cell = 2000Pa/m.

(e) Local shear stress gradient of ∂τ
∂z = 100Pa/cell = 2000Pa/m.

Figure 4.1: Computed simple load cases.

58



CHAPTER 4. RESULTS

The initial situation of the model represents an unloaded soil. The only force acting on
the soil is the gravitational force, balanced by the prevailing soil pressure. Consequently,
effective stress and pore water pressure increase linearly with slope normal depth. Figure
4.2 shows the initial stress distribution of the effective stress and the pore water pressure
respectively. The linearity of the stress increase and the matching the soil stresses in
unloaded equilibrium and initial situation is clearly shown in Figure 4.4a.

(a) Effective stress.

(b) Pore water pressure.

Figure 4.2: Initial stress distribution, showing a linear slope normal stress increase.

4.2.1 Unloaded slope

A model case without load was run, see Figure 4.1a. Here, the initial stress distribution
must remain constant an alike initial conditions. Figure 4.3 shows the change in effective
stress and water pressure respectively, with respect to the initial situation (given in
Figure 4.2), which is zero. Figure 4.4 shows the stress distribution in depth, for the
initial situation and after a model run. These figures show that the stress distribution
at the start and the end of the model run is similar.

4.2.2 Slope loaded by homogeneous normal stress

A test case concerns a homogeneous load, being a normal stress of σ = 1000Pa on the
entire model surface, see Figure 4.1b. Figure 4.5, shows the development in time of
computed total stress, effective stress and pore water pressure in the soil, at different
depths. A similar model case, with normal stress changed to σ = −1000Pa (a pulling
force) was run. According to expectation, the stress develops inversely w.r.t. the case
with pushing load.
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(a) Effective stress.

(b) Pore water pressure.

Figure 4.3: Value of the soil stress, relative to the initial stress state, after 1000 seconds of zero load.

(a) Initial stress distribution. (b) Resulting stress distribution.

Figure 4.4: Comparison of the slope normal stress distribution of a soil in unloaded equilibrium with the
initial slope normal stress distribution in the model and the slope normal stress distribution resulting
from a model run.

Figure 4.5 shows the immediate response of the water pressure and the total stress to
surface load. It shows that the effective stress does not respond and the pore water
pressure immediately fully carries the surface load.
This behaviour can be explained with the combination of the load on the entire surface
and the other boundary conditions (see Sections 3.3, 3.4 and 3.5). A stress increase,
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Figure 4.5: Development of effective stress (top plot), pore water pressure (middle plot) and total stress
(bottom plot) for a homogeneous positive normal surface pressure, for points at different depths.

which is initially carried by the water pressure, is omnipresent in the modelled soil
and the water pressure gradient remains unchanged. Consequently, water does not flow
out, no strain occurs, so the effective stress does not change (see Equation 3.23). Note
that this behaviour does not occur with an overtopping event in reality. For modelling
overtopping waves that cover the entire model surface it is tackled by forcing the surface
cell at the side boundary at the tail side of the wave to be unloaded.

The same stress is applied on a confined area of 1 m in the middle of the model, shown
in Figure 4.1c. Also the results of this case show that the total stress is immediately in
equilibrium. The equilibrium total stress distribution is shown by 4.6. The ratio between
the effective stress and the water pressure develops. Initially the water pressure carries
all the load and it develops to a situation where the effective stress carries all the load.
This development is shown in Figure 4.7. The figure shows the deviation of the stresses
from their values in the initial situation. The change in ratio is related to strain and
flow of water. This implies that the stress distribution that is shown in Figure 4.6 equals
the water pressure distribution immediately at the start of the load and it equals the
effective stress distribution when a stress equilibrium is reached.

Figure 4.6: Deviation with respect to the unloaded situation of total stress in equilibrium state below a
confined homogeneous normal stress load (see Figure 4.1c).
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Figure 4.7: Development of the deviation from the initial values of effective stress (top plot) and pore
water pressure (bottom plot) for a confined homogeneous normal stress load of 1000 Pa, for points at
different depths at the middle vertical of the model.

4.2.3 Slope loaded by homogeneous shear stress gradient

A model case with a homogeneous shear stress load, with a constant gradient of ∂τ
∂z

=
100Pa/cell = 2000Pa/m on the entire model surface, was run, see Figure 4.1d. A
positive shear stress gradient along the surface causes a pulling force on the soil (see
Section 3.3.1).

Figure 4.8 shows the effect of a shear stress gradient on the total stress development.
It is shown that the total stress is gets directly in an equilibrium. The deviation from
to the initial situation is small. Additionally Figure 4.9 shows the development of the
effective stress and water pressure.

Figure 4.8: Development of the deviation from the initial values for the total stress for a homogeneous
shear stress gradient load of 2000 Pa/m, for points at different depths at the middle vertical of the model.

Figure 4.9: Development of the deviation from the initial values for the effective stress (top plot) and
the water pressure (bottom plot) for a homogeneous shear stress gradient of 2000 Pa/m, for points at
different depths at the middle vertical of the model.
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The same stress is applied on a confined area of 1 m in the middle of the model, see
Figure 4.1e. It shows a similar stress development for the total stress, with the difference
that the deviation of the equilibrium stress with respect to the initial stress depends
on the location in the soil, see Figure 4.10. At a larger depth the final stress deviation
is larger. This is also valid for the effective stress and the water pressure, as shown in
Figure 4.11.

Figure 4.10: Development of the deviation from the initial values for the total stress for a confined
homogeneous shear stress gradient load of 2000 Pa/m, for points at different depths at the middle
vertical of the model.

Figure 4.11: Development of the deviation from the initial values for the effective stress (top plot) and
the water pressure (bottom plot) for a confined homogeneous shear stress gradient of 2000 Pa/m, for
points at different depths at the middle vertical of the model.

Figures 4.9 and 4.11 suggest that inertia plays a role in the pressure propagation through
the soil. The figures show that at smaller depths the stress change occurs earlier and the
change is faster, than at larger depth.

4.2.4 Comparison with pressure measurements

For model verification, the measurements presented in Section 2.6 are modelled. For
practical reasons an approach to the actual pressure signal is used: large stress gradients
and the small time steps in the turbulent pressure signal raise the risk of instability and
large inaccuracy in the current stage of model development. The approach is a smoothed
wave signal, approaching the middle points of the turbulent oscillations. It is shown in
Figure 4.12.
The shape of this wave signal matches the linear wave shape approach (Hughes [2011],
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Hughes et al. [2012]). It states that wave characteristics decrease linearly, after passing
of the wave front. The linearized wave signal in Figure 4.12 is shown by a bright red
line. The characteristics of these approaches are given in Table 4.3.

(a) Pressure development for an overtopping wave volume of 5000 l/m, at location B,
during test series 1.

(b) Pressure development for an overtopping wave volume of 5000 l/m, at location B,
during test series 1.

Figure 4.12: Pressure development as function of time for sensor 3 below surface and sensor 4 at surface
and the linear wave shape approach for the surface wave given by a bright red line (for background of
this figure, see Section 2.6).

Besides stress on the surface, shear stress acts on the surface. Shear stress (τ) is linked
to the flow velocity (u), the density of water (ρ) and a friction factor (cf ), see Equation
4.1. A formula for the friction factor is given by Equation 2.18. Verheij et al. [2015]
gives flow thickness measurements from the same campaign, showing that the maximum
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Table 4.3: Characteristics of the linear approach of the pressure (σ) signals.

Wave number Figure σmax ∂σ/∂t front ∂σ/∂t tail
[Pa] [Pa/s] [Pa/s]

025 4.12a 2800 5000 400
040 4.12b 3800 14 000 450

flow thickness per wave for the considered cases is approximately 0.15 m, which is used
to compute the friction factor.

τ = cfρu
2 (4.1)

The velocity measurements of the selected waves, are shown in Figure 4.13. Per type of
wave two different records are available, without any clear label on matching test wave
number. The wave signals look alike. With lacking sufficient labeling and for simplifica-
tion a linear approach on the wave velocity signal is drafted, alike the approach on the
pressure signal. The characteristics of these approaches are given in Table 4.4.

Table 4.4: Characteristics of the linear approach of the wave velocity (u) signals.

Wave number Figure umax ∂u/∂t front ∂u/∂t tail
[m/s] [m/s2] [m/s2]

025 4.13a 8 40 0.98
040 4.13b 9 45 0.87

The results of the comparison computation are shown in Figure 4.14. In comparison
with the measured pressure signals (see Figure 4.12) two significant differences on the
pressure in the soil are observed.
First, the initial pressure in the soil is larger in the model results. The model computes
the equilibrium pressure, based on a linear pressure increase linearly with depth. The
measurements show negative initial pressures, indicating suction, with totally different
values in both cases. This is supported by the observation that the initial stresses in the
soil increased with increasing soil saturation, during the measurements (Verheij et al.
[2015]).
Second, the change of pressure in the soil is larger in the model results. The change of
pressure in the soil is almost as big as that on the surface, in the model results. The
difference between the soil at the surface and in the soil in the measurements suggest
the existence of pressure damping in the soil. The model results show no damping in
vertical direction.

4.3 Model employment

To show the possibilities and the potential of the soil stress model, the current model
is employed. A model case with a single wave was run. Section 4.3.1 gives the load
computed with the concerned model function. This load is used as an input for the soil
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(a) Flow velocities for a wave volume of 2500 l/m.

(b) Flow velocities for a wave volume of 5000 l/m.

Figure 4.13: Flow velocities for overtopping waves with location PW8 matching location B and linear
wave velocity approach given by a black line (Verheij et al. [2015], edited).

stress model. The resulting stress distribution from the model run are shown in Section
4.3.2. The model is not finished yet and the resulting stresses are therefore considered
to be a provisional approach. The resulting stresses are not further discussed in next
chapters.
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(a) Results of modelling wave 025, for comparison with Figure 4.12a.

(b) Results of modelling wave 040, for comparison with Figure 4.12b.

Figure 4.14: Pressure development as function of time resulting from comparison computations, showing
the measured stress at the surface (red) and the pore water pressure in the soil (blue).

4.3.1 Computed single wave load

Load on the slope is based on the approaches of wave distribution and development,
presented in Section 2.2. The results for the default case are displayed in Figures 4.15
and 4.16. The location on the slope (x) is defined as distance along the slope surface to
the crest.

Figure 4.15 shows the distribution of the peak flow depth and the peak flow velocity. It
shows an increase in peak flow depth and a decrease in peak flow velocity, both declining
with increasing distance to the crest. A decrease in peak flow depth causes an increase
in peak shear stress and a decrease in peak normal stress.
It is assumed that stress by wave impact and by flow occur both in one overtopping
cycle: A wave impacts and subsequently flows off. Figure 4.16 shows the normal and
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Figure 4.15: Distribution of wave depth and wave velocity of the wave front over a dike slope for the
default overtopping case without wave separation.

Figure 4.16: Instantaneous load, expressed in normal stress (upper plot) and shear stress (lower plot),
of an overtopping wave with a display interval of ∆t = 0.2s.
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Table 4.5: Comparison of maximum values of different parts of the load for a default overtopping wave.

wave impact dyn. pressure shear stress
Hm0 Tm−1,0 cotθ Rc σζζ,max τζχ,max pm τ ∂τ/∂z
m s − m [kN/m2] [kN/m2] [kN/m2] [kN/m2] [kN/m3]
1.0 4.0 1.0 3.0 6.66 0.47 2.27 0.60 4.31

shear stresses for this combined stress approach for the default load case. The plots
show an instantaneous display of the wave load with a time interval of 0.2 seconds.
They show a wave impact at approximately 1 meter from the crest, imposing a stress
peak in normal stress. The shear stress increases when the waves flows down the slope.
The normal stress decreases directly to values below the impact value and keeps slightly
decreasing when the waves flows down the slope. The normative dynamic pressure is
considered to be upward directed, in accordance with Hoffmans [2012].

4.3.2 Resulting soil stresses

This section shows some results of the soil stress computations for a case with load by
a single overtopping wave. The model is able to produce more output than showed.
Because the model is provisional and the results are not further discussed, the presented
selection is limited to general soil stress results. Furthermore, the model is able to
generate animations showing the development of soil stresses.

Figure 4.17 shows the development of the soil stresses different depths at one vertical
at the slope. The stress signals look very similar. The maximum stress increase occurs
later at a point deeper in below the surface. Furthermore the stresses directly prior to
passing of the wave show a small decrease, which can be related to the total pull by the
shear stress gradient at the wave front (see Section 3.3).

Figure 4.18 shows the deviation of the distribution of total stresses, with respect to the
initial situation. Figure 4.18a shows it for a point in time during the passing of the wave
front and Figure 4.18b shows it for a point in time during the passing of the wave tail.
The figures show the largest stresses below the wave impact area and the wave front.
They furthermore show limited horizontal dispersion of stresses, leaving the upper end
of the dike (approximately 0m < x < 0.5m) unloaded.

69



Figure 4.17: Development of total stress for a single wave overtopping load, for points at different depths
at the middle vertical of the model.

(a) Passing of the wave front.

(b) Passing of the wave tail.

Figure 4.18: Deviation of the soil stress distribution with respect to the initial situation, at a distinct
point in time, during the passing of a wave.
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5
Discussion

The results are discussed in this chapter. The current model and the results of executed
model runs are discussed Section 5.1. Next, in Section 5.2 adjustments to certain model
characteristics, to improve the performance of the model, are discussed.

5.1 Current model

The current version of the soil stress model computes the distribution and development
of soil stresses under a variable overtopping load in a 2D space. Comparison of stresses
with soil strength, gives a prediction of failure caused by changes in soil stresses, alike
soil lifting and head-cut damage. Further, the model can reveal blind spots in knowledge
on geotechnical failure.
The model is unique in its ability to compute, aside from the soil stress reaction on
load, the wave load on the soil itself. Based on the incoming wave conditions and dike
geometry, considering multiple load mechanisms, the model computes a realistic wave
load.

Results of soil stress computation for simple load cases are generally in agreement with
the expectations based on analytical relations. The results can be explained, analytically
or numerically. Load overtopping simulations by Verheij et al. [2015] are modelled as
well. The resulting stresses from the model are compared with the measured soil stresses
during simulations. The results show similarities and differences, indicating the need for
further model development.

The model is developed with the intention to predict failure from comparing soil stress
with soil strength, like e.g. Del [2016]. A good representation of occurring stresses is
prioritized above adding soil strength and a comparison of stress and strength to the
model. Implementation of soil strength is to be done. To predict failure it is required to
consider variation of both wave load and soil strength (Zapata [1999], Verhaeghe [2005]).
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To achieve this, a lot of effort has to be put in overcoming numerical difficulties (Chavent
and Jaffré [1986]). In the current state of model development, the use of non-variable
characteristics is sufficient.
Failure can be expected for the following combinations of stress and strength: Soil stress
exceeding soil strength, negative stress exceeding soil tensile strength and stress gradient
force exceeding soil strength (Section 2.1.2). Small negative stresses, significant increase
in soil stresses and large stress gradients have been observed in the model results. This
indicates the model’s ability to compute failure. Note that the actual occurrence of
failure depends on soil strength as well.

Further development makes the model applicable in dike design and assessment. This
contains among other the introduction of probabilistic definitions, improvement of wave
load definition, addition of damping (Sections 7.1 and 7.2). The fully developed model
must be able to show accurately the soil stresses in realistic (minimal idealization) cover
layers of realistic dike geometries and use that to determine the chance of local initiation
of failure. These functions are useful in improving accuracy of safety calculations during
dike design and assessment and in research on failure mechanisms caused by overtopping
load (see Section 7.3).

5.1.1 Model structure

Balances
The model is based on an equilibrium of forces in the vertical and horizontal directions
and irrotationality, limiting it to compute initiation of motion. Equilibrium of forces in
a direction means the stresses at both sides of a soil section are equal, thus that all loads
acting on one side of the model are transferred through the model. This neglects the
soil strength, for instance provided by cohesion or internal soil deformation, which gives
soil itself the ability to (partly) balance the load. This further neglects the presence
of damping of forces in the soil, since all forces on the soil require an equal force in
the opposite direction to keep forces balanced. This is supported by the validation case
(Section 4.2.4), where the models shows a lack of stress decrease for a stress propagating
through the soil. Rayhani and El-Naggar [2008] shows that the damping of forces in clay
is significant. This gives rise to a significant difference between stresses in model results
and reality. This difference and the lack of modelled damping is observed in Section
4.2.4.
The model is based on the assumption of mass balance, stating that no soil enters or
leaves a grid cell. The effective stress and the pore water pressure are related via strain;
strain is required for a change in effective stress to occur. However, strain violates the
assumption of mass balance. For small strains and small grid cells, the change of mass
in a cell is small. The model is valid till initiation of failure, thus deals with small strains
only. Consequently, this violation of the mass balance is acceptable.

Surface boundary condition
For stability, the soil must satisfy horizontal, vertical and moment equilibrium. The
boundary shear stress gradient matters for these, but is not considered previously. It is
considered as a surface boundary condition in the developed soil stress model. Its effect
when acting solely is shown in Section 4.2.3 and its effect at an overtopping wave front
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in Figures 4.14 and 4.17. It seems to be of lesser influence than the normal stress. Its
contribution to the total soil stress reaction has to be proved.
The shear stress from a flow on soil is debated, according to the number of existing def-
initions (e.g. Darcy [1857], Manning [1891], Colebrook and White [1937], Rouse [1943]).
Mutual differences are usually small. For this research the Manning formula is used for
its physical background, its open flow origin and its wide use.

Soil saturation
The conventional assumption of saturated soil during overtopping conditions, usually
stormy conditions, is used (Young [2005], Hoffmans et al. [2008], Bijlard et al. [2017]).
This makes the model apply on cases with a load on soil in a wet environment, like
wave overtopping, wave run-up and dredging. However, considering some observations
during tests this can be debated (Collison and Simon [2001], van Hoven et al. [2011],
Verheij et al. [2015]). These test where during simulations, not during actual storm
conditions. Observations indicating unsaturated soil are considered not representative
for wet, stormy conditions. The conventional assumption is considered to be valid.
Fully saturated soil implies a ground water flow parallel to the slope. If the slope of the
flow is more gentle, the degrees of saturation vary along the slope, which influences the
soil behaviour (Sun et al. [2012]). According to the conventional assumption of saturated
soil, the variation of saturation along the slope is considered to be small and the approach
to be sufficient.

Stress definitions
The relation between the effective stress and pore water pressure, a coupled approach, is
newly derived (Section 3.3.2). The initial situation and soil reaction is fully saturated,
and becomes unsaturated under persistent load. The development of the pore water
pressure and effective stress, w.r.t. each other, that is shown in simple load cases (Section
4.2) matches expectations (Section 2.7).
A conventional approach for wave overtopping computations is to consider fully saturated
soil only. For instance, the CSSM model, based on the critical state concept is used in
macro stability assessments (Roscoe et al. [1958], Schofield and Wroth [1968]). In reality
the degree of saturation is somewhere in between and the load is distributed over the
effective stress and the pore water pressure. Hence, saturated soil computations give an
underestimation of effective stress. An uncoupled approach takes this distribution into
account (Wang [2000]). The drawback of this approach is that it neglects the deformation
of soil and the interaction between pore water and soil particles. Coupled approaches,
relating soil particle behaviour to pore water behaviour, exist as well, e.g. Griffiths
[1994], Elsafti [2015]. No approach is found to be applied on wave overtopping, making
comparison with the developed soil stress model hard.

Soil stress development in time during a variable load is approached by an exponential
function. This is considered as valid as the similar approach of a constant load (Churchill
[1972], Verruijt [2008]), provided the application of an adjustment. Comparison of an
original load with the approach shows small differences (see Section 3.3.3). These can
arise from the inaccuracy in the exponential approach or the numerical approach. Devi-
ations between the load applications are small w.r.t. load changes in time. The approach
is sufficient for this research.

The total stress is defined as the sum of the effective stress and the pore water pressure.

73



Other modelling software, for instance Plaxis2D, defines total stress independently from
the effective stress and pore water pressure (Brinkgreve et al. [2018]). Due to this defini-
tion, the model cannot deal with wave imposed liquefaction alike failure, where increase
in pore water pressure and constant total stress lead to a loss of effective stress. This
failure is observed by Suzuki and Takahashi [2003] and imaginable to occur in saturated
soil. Since it is not acknowledged as a type of failure due to overtopping on dikes (Section
2.1), this deficiency is considered to be tolerable for the purpose of this research.

5.1.2 Verification and validation

Verheij et al. [2015] provides data of 28 waves that are used for validation. Unreliable
measurements are indicated in the data set. No large deviations, indicating errors, are
observed between different measurements. An omnipresent error, e.g. a sensor error,
can flaw the data. Furthermore, soil discontinuities - the sensor itself is one - can affect
transmission of stress on the sensor (Lamandé et al. [2015]). However, the results show
reasonable wave data. Besides, the data is considered to be useful by experienced parties
in this research field, suggesting reliable and useful data.
Note that the data originates from a single test location. It is representative for the
tested dike sections and similar dikes only (see Greeuw [2013] and Verheij et al. [2015]).

Qualitative verification shows reasonable model results. Unloaded soil does not react, as
is expected. Soil loaded a normal stress or a shear stress gradient shows a corresponding
change in stress; stress increase for a pushing force and stress decrease for a pulling force.
The pore water pressure carries initially all load and is gradually released by the effective
stress, as expected. Deviating results (see Section 4.2.2) are explained numerically.
More complex overtopping loads (Sections 4.2.4 and 4.3) are hard to verify using ana-
lytical solutions. The results in Section 4.2.4 are compared to measurements, and show
large similarities. The results in Sections 4.2.4 seem to be reasonable.

5.2 Limitations and points of improvement

Load by dynamic pressure is approached by a representative value, related to the water
depth. This creates a smooth pressure signal. Pressure oscillations in the actual load
create a dynamic stress environment in which the physics is hard to model. Christakos
[2003] shows a difference in resulting soil pressure, for a variable and a constant load.

Wave impact load is defined using a continuum approach. Cooker and Peregrine [1995]
show that impulsive load gives different stresses. This causes differences between the
modelled stress and real stress.
The impulsive load approach applies on wave impact on convex slope transitions and
objects as well. These are to be included.

The assumption of a very small angle of repose limits the domain of applicability to
saturated soils. This assumption is fundamental for the model structure, thus it has a
limiting effects on model extension. The current domain is sufficient for this research.
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CHAPTER 5. DISCUSSION

The current model is designed for a single wave load on a soil in force equilibrium. Bijlard
[2015] shows that load repetition reduces the soil strength (fatigue). Furthermore, the
load history, expressed in the Overconsolidation ratio, has an increasing effect on the soil
strength (Stróžyk and Tankiewicz [2014]). These effects are to be included in the model
to improve the accuracy of computing series of waves.
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6
Conclusions

This chapter gives the final conclusions of this research, split up in conclusions on the
research objectives (Section 6.1) and conclusions on the research aim (Section 6.2), both
introduced in Section 1.2.

6.1 Objectives

In this section the conclusions on the accomplishment of the research objectives is given
separately. The research objectives are given below, followed by the accompanying con-
clusions.

Develop a model to compute the development of soil stresses for an imposed hydro-
dynamical overtopping load.

A new model is developed that computes stresses caused by surface load, for application
on wave overtopping cases and cases of similar environmental conditions. The model
contains a newly derived load definition, considering shear stress gradient force on the
surface, and a newly derived coupled definition for the effective stress and pore water
pressure. Next to soil stress computations, the model is able to compute overtopping
wave load, from wave conditions and dike geometry characteristics.
During model development, some assumptions are made and some uncertainties are
accepted. This gives rise to possibilities for further development that will improve the
model.

Validate the soil stress representation of the model.

The model results for simple loads match the expectations based on analytical solu-
tion. Model results for an overtopping wave show similarities with measurements during
overtopping simulations. Observed differences emphasize the possibilities for further de-
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velopment that are mentioned before.
Overall, the model gives a reasonably matching soil stress representation.

Employ the model to predict geotechnical failure.

The current model can indicate locations with a risk for failure, based on the stress dis-
tribution. These are failures by soil lifting (head-cut or of different scale) and possibly
yet unknown mechanisms. It does not yet consider soil strength and is thus not yet able
to give an accurate prediction of geotechnical failure. Soil strength is to be implemented.
Model employment for an overtopping wave indicates a few locations that require at-
tention regarding failure due to stresses: stress decrease at the wave front, large stress
gradients below the wave front, large stress increase below the wave peak and local stress
increase at the wave impact location.

6.2 Research aim

In this section the conclusions on the accomplishment of the research aim are given. The
research aim is given below, followed by the accompanying conclusions.

Improve the understanding of initiation geotechnical failure of a dike cover during
overtopping wave load.

The developed model is a tool to disclose and show the effects of an overtopping wave
on the soil stress in the dike. This is a new and fundamental approach to researching
and explaining overtopping failure.
The model development itself does not lead to an improved understanding of geotechnical
failure caused by wave overtopping but use of this tool for multiple different cases does.
Hence, this research has not yet improved the understanding of geotechnical failure
caused by wave overtopping. However, by developing a tool that can be applied on
individual overtopping cases it has made a large contribution to it.
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7
Recommendations

The model development is not finished. This chapter addresses the future of the soil stress
model. The model can be improved on many points. Section 7.1 gives the improvements
that are most important and realistic to execute. The model improvement is defined
as the trajectory till the model gives correct representation of soil stress for a certain
load. In Section 7.2 long term developments are described. Once the current model
works properly, these can be executed to extend the model and enlarge its domain of
applicability. Finally, Section 7.3 gives a number of model runs that serve as goals in
further development. At the start of this research it was intended to solve these cases
with the soil stress model.

7.1 Model improvement

Do additional model validation.
The model is limitedly validated. Validation can be improved with comparing a model
case with other suitable software, e.g. PLAXIS 2D or COMSOL multiphysics. It can also
be improved with a comparison of accurately matching overtopping wave and model case.
An accurate match can be best achieved by doing an overtopping wave simulation in a
laboratory flume, from which all relevant characteristics from wave and dike are known
or can be measured. Additional validation can lead to additional recommendations
concerning further model development.

Improve input characteristics.
Most wave load and soil characteristics can appear in a range of values and are applied
with uncertainty. Further research on the values of corresponding parameters, site re-
search when computing real cases and application of probabilistic definitions decreases
this uncertainty. It is advisable to use a Monte Carlo method for probabilistic analysis,
as it is efficient, simple and commonly used (Kroese et al. [2014]). A sensitivity anal-
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ysis indicates the parameters that have most influence on the model results have to be
prioritized in further research.

Implement turbulent oscillations in the wave overtopping load.
Oscillatory turbulent wave load is replaced by a more constant representative value.
Oscillatory and constant loads lead to different soil stresses. The correctness of wave
load representation improves by addition of turbulent motion. Due to the complexity
of turbulence and its role in the model, it is advisable to develop an approach to the
turbulence induced load based on spectral analysis of turbulent flows (see e.g. Bolotnov
et al. [2010]) or, if possible, to do load measurements. Short oscillatory motions increase
the risk of model instability and significant inaccuracy. Measures must be taken to
prevent this. For instance, by changing the size of the time step and model grid cells.

Improve the approach of wave impact load.
Wave impact load is modelled using a continuum approach, but it is not a continuous
load. Continuous and non-continuous load lead to different soil reactions. Impact load
representation improves with application of a method that suits impulsive loads caused
by impacting water (Cooker and Peregrine [1995]).

Add damping on the soil stress.
Model results suggest the lack of soil damping in the model. Adding damping improves
the model. To add damping an extra soil characteristic, concerned with damping, can
be applied. Soil stress damping is extensively researched in the field of earthquake
engineering (e.g. Ashmawy et al. [1995]). Further, it is advisable to study whether the
water pressure propagation can be a source of damping: viz it can be reasoned that pore
water pressure not immediately adapts to added load in a clay dike cover.

7.2 Model extension

Add computation step to determine chance of failure.
The model does not indicate the initiation of failure yet. A comparison between occurring
soil stresses and present soil strength, accomplishes this. If model parameters are defined
probabilistic, the chance of failure of each point in the model domain can be determined.

Add the option for computation with spatial variability in the soil.
The current model lacks spatial variability in the soil. To do research on the influence of
soil discontinuities, such as holes and soil layer separation, it must be possible to model
them. For calculating the chance of failure it is useful to input soil discontinuities, such as
grass and pavement. To input spatial variability, soil characteristics must be determined
for each point in the computation grid. Considering usability, soil characteristic definition
must be less effort than manually importing all values for each point in the grid.

Enable computations for non-planar parts of the slope surface.
To apply on the entire dike slope, the model must be able to deal with objects on the
slope, concave slope angle transitions and convex slope angle transitions. Application
of a method that suits impulsive loads (Cooker and Peregrine [1995]) contributes to
ability of the model to deal with objects and convex transitions. Further research on
flow separation (Ramamurthy and Vo [1993]) contributes to ability of the model to deal
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CHAPTER 7. RECOMMENDATIONS

with concave transitions. Note that objects and slope transitions locally influence the
flow and the amount of turbulence (see e.g. Dargahi [1989]). The effect of this influence
must be researched.

Enable the connection with other hydrodynamic models.
Detailed hydrodynamic models computing overtopping load, exist (e.g. Bomers et al.
[2016]). The applicability of the model profits from the option to connect it to existing
models. This option reduces the urgency to improve load modelling to large accuracy
(see Section 7.1), shifting priority to the improvement of the soil stress part of the model.

7.3 Future model employment

This research started with the intention to improve the knowledge on failure due to
overtopping. The soil stress model development is started with the intention to compute
the soil stress distributions and development in the soil under overtopping load. In this
context model development started with the final goal to employ the model by computing
cases that can contribute to the knowledge of wave overtopping. These employment cases
must serve as long term goals in further development. The following employment cases
are considered:

• Research on the influence of different load mechanisms: Compare results of different
models with different single load mechanisms;

• Research on the difference between overtopping and overflow: Compare model
results of a continuous overflow load without a point of impact wave with the
results of repetitive overtopping waves of the same cumulative wave volume per
unit of time;

• Research on the effect of pulsating load: Compare model results of one big over-
topping wave with the results of multiple small waves of the same cumulative wave
volume;

• Research on the required strength a grass cover: Compare resulting soil stress
distribution with the soil strength distribution to determine the additional strength
that grass have to provide to prevent failure;

• Research on the effect of local weak spots in the soil: Compare model results of
models with and without different weak spots in the soil composition;

• Research on accumulating effect of an entire overtopping event: Model an over-
topping load that represents an entire overtopping event, by using a probabilistic
definition of model parameters.
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Nomenclature

Latin symbols

a Depth of a soil crack m

a Wave shape exponent −

b Wave shape exponent −

C Chezy coefficient m1/2/s

c Soil cohesion N/m2

cf Friction factor −

cn Dashpot coefficient in normal direction −

Cp Primary compression coefficient −

CR Apparent root cohesion m1/2/s

Cs Secondary compression coefficient −

C10 Logarithm compression coefficient −

Cclay Rupture strength of clay N/m2

ch,2% Overtopping wave coefficient −

cv,2% Overtopping wave coefficient −

D Damage factor −

E Young’s modulus N/m2

Ec Constrained Young’s modulus N/m2

F Factor of stability −

Fc Cohesional shear force N

FP Impact pressure force N
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Fp Pulling strength of a root N

Fp Upward dynamic pressure force N

Ft Tensile force N

Fw Submerged weight of the soil N

Fcrack Bearable force of a soil crack N

fload Correctional load factor −

Fvb Absorbing boundary force N

G Shear modulus Pa

g Gravitational constant m/s2

h Flow depth / wave thickness m

Hm0 Significant wave height m

K Compression/Bulk modulus Pa

kl Wave overtopping parameter −

kn Spring coefficient in normal direction −

ks Hydraulic conductivity of soil m/s

L Length of a crack m

l Length of a side of a turf element m

N Shape function −

n Manning roughness coefficient s/m1/3

n Number of oscillating component Fourier series −

n Soil porosity (≈ 0.4) −

nr number of roots −

O Order of magnitude N/m2

P Bearable impact pressure pressure N/m2

P Pressure impulse Ns/m2

p Water pressure or total pressure N/m2
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Nomenclature

pm Maximum pressure fluctuation N/m2

pmax Maximum impulse pressure N/m2

q Specific discharge m2/s

R Vertical distance above the mean water level m

r0 Depth averaged relative turbulence intensity −

rs Radius sample area m

S Area absorbing boundary m2

S Stress along shear plane N/m2

s Exponential shape parameter m

sb Distance along the slope m

Sbed Slope of the bed −

t Loading time for settlement calculation days

t Time s

t Wave overtopping parameter −

T0 Total wave duration s

TR Tensile strength of a root −

Tm−1,0 Significant wave period m

U Flow velocity m/s

u Flow velocity in x-direction m/s

u Soil displacement m

u∗ Bed shear velocity m/s

U0 Depth averaged flow velocity m/s

uimp Impact flow velocity of an overtopping wave m/s

V Volume of soil m3

v Flow velocity m/s

VR Volume of roots in the soil m3
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W Resisting force of a crack N

wp Average velocity of soil particle in soil deformation m/s

ww Average velocity of pore water in soil deformation m/s

x Longitudinal coordinate m

z Vertical coordinate m

Zwave Vertical location of wave impact w.r.t. crest m

Greek symbols

α Angle of a shear plane of a crack ◦

α Bottom slope angle of a soil slice of a slip circle ◦

α Rotation angle for which the soil stress state exists of normal stresses only ◦

α0 Turbulence coefficient −

αM Load factor −

αn Factor for dashpot coefficient in normal direction −

αs Factor for dashpot coefficient in tangential direction −

ατ Turbulence coefficient of Emmerling (≈ 18) −

β Impact angle bottom layer overtopping wave w.r.t. slope ◦

βf Compressibility of fluid ◦

χ Longitudinal coordinate in coordinate system oriented to the slope m

∆ Change of unit −

δ Virtual sublayer thickness m

ηa Air concentration −

γ Specific weightr N/m3

γβ Influence factor for oblique wave attack −

γb Influence factor for berms −

γf Influence factor for slope roughness −

λ First Lamé parameter −
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Nomenclature

µ Second Lamé parameter −

ν Poisson’s ratio −

φ Angle of repose (=internal friction angle) ◦

φ Impact angle surface layer overtopping wave w.r.t. slope ◦

ρ Density kg/m3

ρp Particle density kg/m3

Σ Summation −

σ Normal stress or normal strength N/m2

σ′ Effective normal stress N/m2

σ′1 Effective major principle stress N/m2

σ′3 Effective minor principle stress N/m2

σl Stress before loading N/m2

σu Longitudinal turbulence intensity −

σbot Normal stress on absorbing boundary N/m2

σdashpot Reaction stress from absorbing boundary, acting dashpot alike N/m2

σgrass Normal strength of grass N/m2

σspring Reaction stress from absorbing boundary, acting spring alike N/m2

τ Shear stress or shear strength N/m2

τ Truncation error N/m2

τ ′ Effective shear stress or shear strength N/m2

τ0 Mean bed shear stress N/m2

τr Accumulated tensile strength of roots N/m2

τgrass Shear strength of grass N/m2

θ Angle between jet and impact plane ◦

θ Root angle of shear rotation ◦

θ Slope angle ◦
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ε Strain −

ξm−1,0 Breaker parameter −

ζ Vertical coordinate in coordinate system oriented to the slope m

Other symbols

∇ 3-dimensional vector differential operator

Subscripts

2% Value reached by 2% of incoming waves −

χζ Acting on plane normal to χ, in the direction of ζ

χ Longitudinal coordinate in coordinate system oriented to the slope

ζζ Acting on plane normal to ζ, in the direction of ζ

ζ Vertical coordinate in coordinate system oriented to the slope

b Value at the slope

b, 0 Value at the start of the slope

c Critical value

c Value at dike crest

crest Value at dike crest

i Index, representing different unit

i Value at current spatial step in x-direction

j Value at current spatial step in y-direction

max Maximum value

min Minimum value

p Concerning soil particles

s Concerning soil

w Concerning water

x Value in x-direction

xx Acting on plane normal to x, in the direction of x
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Nomenclature

xy Acting on plane normal to x, in the direction of y

xz Acting on plane normal to x, in the direction of z

yx Acting on plane normal to y, in the direction of x

yy Acting on plane normal to y, in the direction of y

yz Acting on plane normal to y, in the direction of z

z Value in z-direction

zx Acting on plane normal to z, in the direction of x

zy Acting on plane normal to z, in the direction of y

zz Acting on plane normal to z, in the direction of z

Superscripts

n Value at current time step
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A
Appendix: Pictures of overtopping

simulations

In this appendix pictures are collected of a number of overtopping simulations that have
been executed. The pictures show a number of differences in the failures mechanisms.
The differences that can be observed from the pictures are described in this appendix.

Location of damage
It appears from simulations that different overtopping situations have a different location
of initial damage. Initial failure close to the crest of the dike or at the toe are expected
types of failure and most often observed. Figures A.10 and A.13 show examples of initial
damage close to the crest of the dike. Figure A.9 shows initial damage at the toe of the
dike. Also initial damage somewhere halfway the slope is observed, see Figure A.3. It
is even observed that damage initiates at multiple independent locations on the slope.
Figure A.11 shows an example where damage initiated at three locations on the slope.

Reason for damage initiation
Regarding the reason for damage overtopping simulations have shown different results.
Objects on the slope prove to be often a weak spot. An example of this is the tree that
protrudes into the flow in Figure A.13. Another example is the juncture between the soil
cover and the stairs that are constructed in the slope surface, shown in Figure A.7.
It appears from simulations that not always expected weak spots are indeed the locations
of initial failure. Figure A.8 proves that not always the object is the weakest spot. Here
the slope cover has failed at an open area, whereas the slope cover is intact around
the fence. The reason for damage on a slope without objects gets not very clear from
simulations. Figures A.6 and A.5 show that initial damage, caused by burrowing animals
do not have to be normative. Initial unevenness, either a protrusion or a hole, can lead
to failure by bulging, as is shown in Figure A.4.

Development of damage
Simulations show differences in the way in which initial damage develops towards large
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scale failure. An often observed type of damage development is the deepening of initial
damage into a head-cut erosion hole. An example of this is shown in Figure A.14. Other
simulations show erosion that develops evenly over a large part of the slope. The damage
development into the soil is slow with respect to the development parallel to the slope.
This is shown in Figures A.10 and A.1. Also a combination of previous mentioned types
of development is observed, see Figure A.13. A third type of damage development is
macro instability. Figure A.8 shows a simulation for which a large chunk of soil slipped
off.
Another observation from the simulation is the difference in direction of damage devel-
opment. Development is observed in the direction of the flow and against the direction
of the flow. Both are observed for head-cut erosion and for even, shallow erosion. (Note
that the development of a slip circle macro instability is always in the same direction.)
Simulations where head-cut erosion developed in and against the flow direction are shown
in Figures A.14 and A.5 respectively. Simulations where even, shallow erosion developed
in and against the flow direction are shown in Figures A.10 and A.1 respectively.

A.1 Afsluitdijk

The picture in this section is obtained from van der Meer et al. [2015].

Figure A.1: Afsluitdijk, section 1. Final slope failure after 6 hours simulation with a maximum load
of 75 l/s/m overtopping waves. Damage appears as rather even removal of the upper layer, starting at
the toe of the dike and developing slope upward, but no hole develops.
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A.2 Boonweg

The pictures in this section are obtained from Bakker et al. [2008].

Figure A.2: Boonweg, section 3, initial damage. Slope failure of a saturated grass cover during
a simulation, during the second hour of 75 l/s/m overtopping waves. The forcing of the water caused
roots to snap, which enabled the formation of a protruding bulge filled with water under the grass cover.
During further load the balloon bursted and the grass cover flushed away.

Figure A.3: Boonweg, section 3, final damage. Failed slope after a simulation with a maximum
load of 75 l/s/m overtopping waves. Failure started halfway the slope of the dike and developed down
the slope.
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Figure A.4: Boonweg, section 4. Slope failure during a simulation with a load of 75 l/s/m overtopping
waves. Development of a protruding bulge filled with water. Bulge withstood overtopping waves for 5
minutes before bursting.
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A.3 Kattendijke

The picture in this section is obtained from Bakker et al. [2008].

Figure A.5: Kattendijke, section 1. Slope failure after 5 hours and 40 minutes simulation with a
maximum load of 75 l/s/m overtopping waves. Failure of the maintenance road down the toe of the dike,
starting at the side away from the dike and developing towards the dike.

A.4 Sint Philipsland

The picture in this section is obtained from Bakker et al. [2008].

Figure A.6: Sint Philipsland. Slope failure after a simulation with a maximum load of 50 l/s/m
overtopping waves (right picture). Failure from the slope of the dike, expected weak spot of a large mole
hole remained intact (left picture).
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A.5 Tholen

The pictures in this section are obtained from Bakker et al. [2011].

Figure A.7: Tholen, section 2. Slope failure during a simulation, after 1 hour of 5 l/s/m overtopping
waves. Clear development of damage in the juncture between the soil cover and the stairs.

Figure A.8: Tholen, section 3. Failed slope after a simulation with a maximum load of 5 l/s/m
overtopping waves. Failure shows macro instability: a large chunk of soil has slipped off. It is remarkable
that a location at the slope cover was a weaker spot than the objects on the slope.
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Figure A.9: Tholen, section 4. Slope failure after a simulation with a maximum load of 30 l/s/m
overtopping waves. Failure at the toe of the dike, in the transition from the sloping to flat soil surface.

A.6 Tielrode

The pictures in this section are obtained from Peeters et al. [2012].

Figure A.10: Tielrode, section 1. Slope failure after 35 minutes simulation with a maximum load
of 30 l/s/m overtopping waves. Start of failure of the slope cover close to the crest of the dike and
developing downwards.
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Figure A.11: Tielrode, section 4. Slope failure after 3 hours simulation with a maximum load of 10
l/s/m overtopping waves. Start of failure of the slope cover at multiple locations.

A.7 Vechtdijk

The pictures in this section are obtained from van der Meer et al. [2015].

Figure A.12: Vechtdijk, test 2. Start of failure by heavy erosion around a protruding object.
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Figure A.13: Vechtdijk, test 3. Slope failure after incremental development. Damage started close to
the crest, developed down slope as removal of grass layer and started to develop as a head-cut erosion at
the lower half of the slope.
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A.8 Wijmeers II

The pictures in this section are obtained from Bakker and Mom [2015].

Figure A.14: Wijmeers II, section III. Slope failure after 1,5 hours simulation with a maximum load
of 25 l/s/m overtopping waves. Failure started as a shallow damage (removal of grass cover over the
total length of the slope) and eroded to the core of the dike.
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B
Appendix: Geotechnical resisting

mechanisms

This appendix shows multiple approaches to the geotechnical resistance of a grassed
dike cover to overtopping load. The different approaches are based on different failure
mechanisms. Most approaches consider small scale failure. Since some larger scale sliding
is observed as well (see Appendix A), this type of failure is given as well.

B.1 Soil crack strength

The strength of soil under impacting water load is described by Führböter [1966]. He
states that an impacting pressure on a water filled soil crack, instantly and fully transfers
on the sides of the crack. Note that a water filled soil crack is a valid assumption under
overtopping conditions. The transfer of pressure is because the dimensions of the crack
are negligible with respect to the speed of a pressure wave in water. Führböter [1966]
states that the cohesion is the resisting force for this type of load. This leads to the
relation given by Equation B.1. In this equation Pmax stands for the maximum bearable
impacting pressure and c stands for the cohesion of the soil.
With the maximum bearable pressure, the maximum bearable force on the wall of a
crack (Fcrack) is determined. This is done with Equation B.2. In this equation a is the
depth of the crack and L is the length of the crack.

Pmax = 2c (B.1)
Fcrack = PmaxaL (B.2)

The shear strength of the soil counteracts the impact forces. The result is a failing soil
that slides on a shear plane. This shear plane makes angle α with the impact force. This
is schematized in Figure B.1. Since the dimensions of a single crack are small, the weight
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Figure B.1: Model of action of forces for a crack exposed to an impacting pressure (Stanczak et al.
[2007])

of the soil body is negligible small compared to the impact forces (Führböter [1966]).
The shear stress (S) along the shear plane is given by Equation B.3. The resisting
force (W ) is given by Equation B.4. In laboratory tests Stanczak et al. [2007] found
that considering additional forces on the approach by Führböter [1966] leads to better
results.

S = aLPmax cosα (B.3)

W = aLc

sinα (B.4)

Richwien [2003] extended Führböters model by considering forces that where neglected:
the weight of the soil (G), the pore water pressure (U) and the soil reaction (Q). Consid-
ering these forces changes the total action of the forces, see Figure B.2. For this extended
model, no equation exists to determine the maximum impact force that is possible to
resist (Sposs in the figure). That must be done visually. The maximum resistible impact
force is the force that closes the force polygon.

B.2 Pulling force of grass

In literature study Trung and Verhagen [2014] found that grass roots provide the soil
cover with an additional cohesion and the ability to resist a pulling force. The root
density in the soil decreases with depth. This is described by Sprangers [1999] with the
Root Volume Ratio (RVR), see figure B.3. Accordingly, the strength of the soil decreases
with the depth.
The accumulated tensile strength at a depth is given by Equation B.5. It is assumed
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Figure B.2: Extended model of action of forces for a crack exposed to an impacting pressure (Stanczak
et al. [2007])
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that all roots resist a force simultaneously. In this equation nr is the number of roots,
rs is the radius of the sample area and Fp is the pulling force that a root can resist.

∑
τr = nrFp

1
πr2

s

(B.5)

Figure B.3: Root Volume Ratio (RVR) as a function of depth under the surface for dike grass (Sprangers
[1999])

B.3 Shear strength, apparent root cohesion

The presence of roots in the soil adds cohesion to the soil. The cohesion added by the
presence of roots is called the apparent root cohesion (CR). Its effect is shown in Figure
B.4. A way root presence contributes to the apparent root cohesion is by the tensile
strength of the roots. This is shown in Figure B.5. According to Wu et al. [1979] it can
be calculated by Equation B.6. In this equation TR is the root tensile strength, VR

V
is the

ratio of volume of roots over volume of the soil, θ is the root angle of shear rotation at
which a root breaks and φ is the internal friction angle of the soil.

CR = TR
VR
V

(cos θ tanφ+ sin θ) (B.6)

The tensile strength depends on a large number of variables, and can range from 1.3 -
56 MPa (Young [2005]). For Festuca, a genus of grass that is used for dike covers, in a
saturated soil, Hähne [1991] did tests and determined that the tensile strength is roughly
5 kN/m2. He included the ratio of the roots over the soil in this value. BAW [2005]
states that this value proves local stability only for depths up to 0.2 m. Research on the
root angle of shear rotation is very limited, but for grass values close to an upper limit
of 70◦ are suggested (Young [2005]). The ratio of volume of roots over volume of the soil
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Figure B.4: Apparent root cohesion (Vavrina [2006]).

Figure B.5: Principle sketch of flexible elastic perpendicular root reinforcement leading to apparent root
cohesion (Wu et al. [1979]).

is depth dependent, see Figure B.3. Results from this method match the results from
laboratory tests by Stanczak et al. [2007].

B.4 Slip circle

The model by Bishop [1955] is one of the methods that is developed to determine the
resistance against a failure along a slip circle. In this model the stability of a slip circle
is determined by dividing the subsurface part of the slipping circle into small slices and
determining the forces on each slice. Forces considered are the weight of the soil, the
horizontal soil pressure from adjacent slices, normal bearing force of the subsoil and the
shear stress along the slip circle. Note that the internal shear resistance that is triggered
by deformation of the slipping soil, is not considered. The model is shown in Figure B.6.

The stability of the slip circle is expressed in stability factor F . The resisting forces of
the slip circle are larger than the driving forces if F > 1.0. In that case the slope can
be considered safe. Equation B.7 determines the stability of a slip circle according to
Bishops model. This equation contains the following soil parameters: c is the cohesion,
γ is the specific weight and φ is the angle of repose. Further parameters are the height
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Figure B.6: Slip circle model for stability calculation based on the weight of the soil (W ) the normal
bearing force (P ), the horizontal soil pressures (En and En+1) and the shear stress along the slip circle
(S) (Bishop [1955])

of the soil slice h, the pore water pressure p and angle between the slip circle at the base
of the soil slide and the horizontal α.

F =

∑ ( c+(γh−p) tanφ
cosα(1+ tanα tanφ

F
)
)∑ (γh sinα) (B.7)

According to Verruijt and van Baars [2009] this model is the best method regarding the
accuracy of the results with respect to the complexity of the model. Results from the
simpler Fellenius’ model are less accurate than the results from Bishops model. The
results of more extended models hardly deviate from it. Therefore Bishops model is a
good approach to the failure of a slope along a slip circle.

B.5 Turf element model

The turf element model is a model by Hoffmans [2012] that describes the equilibrium
of forces on a cube of turf (soil with roots) with finite dimensions. The equilibrium of
forces is shown in Figure B.7. The model assumes that the loading force is the upward
directed dynamic pressure (Fp). The model can be applied on other types of load if the
equilibrium of forces is redrafted. All other forces are resisting forces. These are the
tensile force at the bottom (Ft), the shear force at four sides that are caused by cohesion
(Fc) and the submerged weight of the soil (Fw). The dimensions of the element are given
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Figure B.7: Forces acting upon a turf element according to the turf element model (Hoffmans [2012])

by lx, ly and lz respectively. Since the element is cubic it holds that l = lx = ly = lz. The
turf element model states that the soil is stable if the summed resisting force is larger
than the summed loading force.

The turf element model provides equations that approach the value of the forces. Based
on the assumption that the loading force is caused by the upward dynamic pressure, the
loading force is given by Equation B.8. The tensile strength at the bottom of the element
is given by Equation B.9. The combined cohesion induced shear strength of the four sides
of the element is given by Equation B.10. The submerged weight of the turf element
is given by Equation B.11. In these equations Cclay,c is the critical rupture strength of
clay, τgrass,c is the critical mean shear strength of grass of the intersected roots per side
wall averaged over lz, σgrass,c is the critical normal strength of the intersected grass roots
averaged over the bottom of the element, ρ is the water density, ρs is the soil density
and n (≈ 0.4) is the porosity.

Fp = pml
2 (B.8)

Ft = (1− n)(Cclay,c + σgrass,c(z = −l))l2 (B.9)

4Fc = 4(1− n)(Cclay,c + τgrass,c)l2 (B.10)

Fw = (1− n)(ρs − ρ)gl3 (B.11)
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C
Appendix: Phases of dike breaching

In the process of dike breaching different phases can be distinguished. Based on experi-
mental research Visser [1998] introduced the 5 phase model, describing different phases
of dike breaching. Phase I and II describe the initial failure in this model. d’Eliso [2007]
extended this to a description of dike failure consisting of 6 phases, see Figure C.1. Both
models state that breaching initiates by failure of the grass cover.

The stages that are distinguished by d’Eliso [2007] are:

1. Failure of the grass due to gradual erosion.

2. Local erosion of the clay cover.

3. Scour erosion and head-cut advance

(a) Scour erosion and head-cut advance in the clay cover up to sand core exposure
to flow action

(b) Instantaneous sliding of the clay cover, initial breaching channel at the inner
slope with bed of sand and slopes of clay.

4. Dike crest shortening due to scour erosion in sand, progressive failure of the clay
cover at the crest.

5. Dike lowering

(a) Dike crest lowering and breach widening due to scour erosion in sand and
breach slopes instability, progressive failure of clay cover at the outer slope,
driven by wave overtopping.

(b) Dike crest lowering and breach widening due to scour erosion in sand and
breach slopes instability, progressive failure of clay cover at the outer slope,
driven by combined flow.

6. Breach widening up to equilibrium final breach
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Figure C.1: a) Failure of the clay cover with grass in breaching of a sea dike initiated by wave overtopping.
b) Failure of the sand core in breaching of a sea dike initiated by wave overtopping. Modelling phases
and simulated processes as described by d’Eliso [2007].

(a) Full breach, breach widening due to scour erosion in sand and breach slopes
instability driven by super-critical flow in the breach (transitional flow).

(b) Breach widening due to scour erosion in sand and breach slopes instability
up to equilibrium final breach driven by sub-critical flow in the breach (non-
transitional flow).

Stage 1, 2 and 3 describe the failure of the grass and clay cover, of which stages 1 and 2
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APPENDIX C. PHASES OF DIKE BREACHING

describe the initial failure. van der Meer et al. [2007] distinguishes a fourth step in the
cover failure: the erosion of loose material that happens before the failure of the grass.
The remainder of the described stages correspond with the first three stages recognized
by d’Eliso [2007]. Phase 1 and 2 according to d’Eliso [2007] are in the interest of this
research. The processes that play a role in these phases are discussed hereafter.
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D
Appendix: Pressure impulse by wave impact

An accurate approach of wave impact forcing is given by the pressure impulse theory for
liquid impact problems (Cooker and Peregrine [1995]). Accompanying impact stresses
are derived from this theory.

D.1 Derivation of pressure impulse forcing

Pressures imposed by an impacting wave deviate from the pressure imposed by a contin-
uous flow (Cooker and Peregrine [1995]). The maximum pressure distribution over the
wave impact area in space is not linear, but close to quadratic (Hofland [n.d.]).
The pressure impulse field is given by Equation D.1 and shown in Figure D.1. P is the
pressure impulse, z is the distance from the free surface normal to the flow direction, x
is the distance from the plane of impact in flow direction, h is the depth of the flow, ρ is
the density of water and U0 is the depth averaged incoming flow velocity. Note that the
flow depth corresponds with half the radius of a jet.

The boundary condition at the bottom (z/h = −1) is ∂P/∂z = 0. This is valid for the
centre line of the jet as well, assuming a symmetrical jet. The boundary condition at
the free surface (z/h = 0) is P = 0. This is valid for the free surface of the jet as well.
The boundary condition at the impact plane (x/h = 0) is ∂P/∂x = ρU0, meaning that
the total flow velocity impulse is transmitted from the water to the impact surface.

P = ρhU0
∑

n=1,2...

−4 sin ((n− 1
2)π z

h
) exp ((n− 1

2)π x
h
)

(2n− 1)(n− 1
2)π2 (D.1)

The presented pressure impulse field is maximum in the center of the jet. The maximum
value is approached by Equation D.2 (Hofland [n.d.]). The impulse is the product of the
pressure and the time. Assuming a pressure peak shaped like a right-angled triangle,
with a peak at the start and a total duration ∆t (a rough version of the approach of
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Figure D.1: Pressure impulse field for half a jet impacting on an infinite stiff wall normal to the direction
of the jet flow. The center of the jet is at z/h = -1, the free surface of the jet at z/h = 0.

Hughes [2011]), the maximum pressure due to pressure impulse is given by Equation
D.3. The total force on the impact plane is found by integrating the impact pressure
over the impact plane, giving Equation D.4.

P = 0.742ρhU0 (D.2)

pmax = 1.484ρhU0

∆t = 1.484ρq
∆t (D.3)

FP = 0.543ρh2U0 (D.4)

D.2 Effect of impact angle

Section D.1 describes an impact on a wall that is perpendicular to the flow direction.
Overtopping waves impact under an angle, comparable with an impact on an inclined
wall. The position of the wall influences the boundary condition at the impact side of
the computation domain. This influences the forcing. The impact inclination is added
to the pressure impulse equations.

Inclined wave impact is schematized as a jet impacting on an inclined wall, as shown in
Figure D.2. In this impact not all incoming momentum is stopped, it partly travels along
the wall. The fraction of the force that is stopped by the impact, equals the reaction
forces of the soil. The normal and shear reaction forces are given by Equations D.5 and
D.6 respectively. The resulting shear forces are multiplied by a friction factor (cf ).
For this situation a new boundary condition must be set. The interaction of forces on
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APPENDIX D. PRESSURE IMPULSE BY WAVE IMPACT

(a) Impact forces. (b) Reaction forces.

Figure D.2: Decomposition of the forces of a jet impacting on an inclined surface.

the inclined plane is assumed to be on a plane perpendicular to the centre line of the
jet, making the approach compatible with Section D.1. The considered reaction forces
are the forces that are in the opposite direction of the incoming jet flow. The boundary
condition at the impact side of the domain, state that only the amount of impulse that
is transferred to the soil, does not pass the boundary. The impulse travelling along
the slope, travels through the boundary. The resulting boundary condition is given in
Equation D.7.

σ = FP sinθ (D.5)

τ = cfFP cosθ (D.6)

∂P

∂x
= ρU0(sinθ + cfcosθ) (D.7)

D.3 Demonstration case

To demonstrate the approach an impact case is calculated.

Hughes et al. [2012] shows that for a situation with an average wave overtopping discharge
of q = 0.370 m2/s, the maximum overtopping discharge (qmax) is usually lower than 2
m2/s. The maximum discharge coincides with the the leading edge of the wave. This
value is used to determine the normative impact pressure. The use of a maximum value
makes assumptions on the total duration of an overtopping wave redundant. For the
slope angle 14◦ is used, which matches a slope with cotθ = 4. For the friction factor a
value of 0.1 is assumed.
This case results in a maximum pressure on the wall of 0.880 kN/m2 in the direction
of the flow. Note that this pressure is not normal to the slope surface. The maximum
pressure occurs in the center of the jet. The pressure distribution that results from the
wave impact in the incoming jet is shown in Figure D.3. Note that the figure gives the
stresses in one half of the jet.
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Figure D.3: Pressure field caused by impulse for half a jet impacting on an infinite stiff wall with an
inclination with respect to the direction of the jet flow. The center of the jet is at z/h = -1, the free
surface of the jet at z/h = 0.
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E
Appendix: Comparison with modelling in

COMSOL multiphysics

The soil stress model is verificated using COMSOL multiphysics computations. Cases
with a normal stress of -1000 Pa (pull) on the middle meter of the surface and on the
total surface, are computed. Some input parameters for COMSOL differ from the default
case in the soil stress model or are not present in it. They are displayed in Table E.1.
Another difference in COMSOL is the definition of the boundary conditions. The bottom
boundary and the side boundaries have no displacement normal to the boundary. In the
soil stress model approach this means that the stresses at both sides of the boundary are
equal (derivative of Equation 3.24). The side boundary conditions remain the same, the
bottom boundary conditions change to Equations E.1 and E.2.

Table E.1: Deviant and additional model parameter input for the COMSOL model.

Symbol Unit Explanation Value
I ∗ dx m Model width 10
E MPa Young’s modulus 15
βf Pa−1 Compressibility fluid 5.0E−7

n - Porosity 0.4

∂σ′

∂z
= (ρs − ρ)g (E.1)

∂p

∂z
= ρg cos θ (E.2)

The resulting distributions of the changes in stress, are shown in Figures E.1 and E.2.
The results of matching soil stress model runs are shown in Figures E.3 and E.4.
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Figure E.1: Distribution of change in effective stress with respect to the initial situation, for a homoge-
neous surface load of -1000 Pa, after a COMSOL model run of 15 seconds.

Comparison of Figure E.1 with Figure E.3 and Figure E.2 with Figure E.4 shows differ-
ences. In general, both the change in stress and the penetration depth of the reaction
are larger in the COMSOL results.
Comparison of Figures E.1 and E.3 shows that the soil stress increase at the surface is of
comparable value: ≈-600 Pa according to the soil stress model and ≈-750 Pa according
to the COMSOL model. The difference is largely caused the calculation grid size.
Figures E.1 and E.3 both show an area of soil stress decrease below the load, of compa-
rable shape. The decreases are of different different magnitude.
Figure E.2 shows a negative surface pressure causing positive soil stress in the soil below
the load and in the soil adjacent to the load. Areas of positive and negative soil stress
seem to be arranged such that the sum of the soil stress on each horizontal and vertical
equals zero. Furthermore, the negative stress in the soil below the load exceed the value
of the load.

Comparison of soil stress model results with the COMSOL results show limited similar-
ities, but the difference dominate. Figure E.2 shows behaviour that is not realistic in
reality. This indicates that the COMSOL computation is flawed. The origin of the flaw
is unknown and can be present in the other COMSOL results as well. It is concluded
that this comparison is not suited for verification of the model, due the large amount of
differences and the indication of flaws in the COMSOL computation. Considering the
limited availability of time within this research, no further effort is put in this verification
case.
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APPENDIX E. COMPARISON WITH COMSOL

Figure E.2: Distribution of change in effective stress with respect to the initial situation, for a surface
load of -1000 Pa at the middle 2 meters of the model surface, after a COMSOL model run of 15 seconds.

Figure E.3: Distribution of change in effective stress with respect to the initial situation, for a surface
load of -1000 Pa, after a model run of 15 seconds.

Figure E.4: Distribution of change in effective stress with respect to the initial situation, for a surface
load of -1000 Pa at the middle 2 meters of the model surface, after a model run of 15 seconds.
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