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Summary

Auxetic materials are a unique class of materials characterized by a negative Poisson’s ratio, meaning
they expand laterally when stretched longitudinally. This distinctive behavior offers advantages such
as enhanced resistance to indentation, improved energy absorption, and increased fracture toughness.
These properties make auxetic materials ideal for use in fields like soft robotics, biomedical devices,
and advanced textiles.

Helical Auxetic Yarns (HAYs) are a novel auxetic structure where a stiffer fiber helically wraps around
a more compliant core fiber. This design leads to significant lateral expansion under axial strain, mak-
ing HAYs suitable for applications requiring flexibility and durability, such as healthcare, filtration, and
textiles. Factors like the initial wrap angle, diameter ratio, and the Poisson’s ratios of the fibers critically
influence the auxetic behavior of HAYs.

This work investigates the impact of the engulfment effect on the auxetic behavior of HAYs by combining
theoretical modeling, numerical simulations. It reveals that geometric and material parameters such as
diameter ratio, Young’s modulus, and wrap angle play crucial roles in determining auxeticity. The study
identifies that while a higher diameter ratio enhances the auxetic effect, the engulfment effect—where
the wrap fiber indents the core—can diminish the auxetic response under certain conditions. Strategic
recommendations are provided for optimizing HAY design, such as balancing these parameters to
achieve a stable and pronounced auxetic effect while minimizing the engulfment phenomenon. This
research contributes valuable insights to the field of auxetic materials and paves the way for future
applications of HAYs in various industries.
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Nomenclature

Abbreviations
Abbreviation Definition

HAY Helical Auxetic Yarns
NPR Negative Poisson’s Ratio
PR Poisson’s Ratio
SW Stiffer Wrap Fiber
CC Compliant Core Fiber

Symbols
Symbol Definition Unit

DSW Diameter of Stiffer Wrap Fiber [mm]
DC Diameter of Compliant Core Fiber at any time [mm]
DCI Diameter of Compliant Core Fiber at Initial State [mm]
DCT Diameter of Compliant Core Fiber at Twisted State [mm]
DCF Diameter of Compliant Core Fiber at Final State [mm]
D Effective Diameter of HAYs at any time [mm]
D1 Effective Diameter of Stiffer Wrap Fiber Side [mm]
D2 Effective Diameter of Compliant Core Fiber Side [mm]
LSW Length of Stiffer Wrap Fiber [mm]
LC Length of Compliant Core Fiber at any time [mm]
LCI Length of Compliant Core Fiber at Initial State [mm]
LCF Length of Compliant Core Fiber at Final State [mm]
LS Length of HAYs at any time [mm]
LSI Length of HAYs at Initial State [mm]
LSF Length of HAYs at Final State [mm]
dSW Distance between the neutral lines of Stiffer Wrap Fiber and HAYs [mm]
dCC Distance between the neutral lines of Compliant Core Fiber and

HAYs
[mm]

ESW Young’s Modulus of Stiffer Wrap Fiber [MPa]
R Radius of 3D Helix Equation
n Number of Pitches in HAYs
r̃SW (t) Helix function of neutral line of Stiffer Wrap Fiber
s Arc length
t̃(t) Tangent Vector of Helix Function
ñ(t) Tangent Vector of t̃(t)
b̃(t) Vector orthogonal to Tangent Vector of Helix Function
S(t, u) Surface function of HAYs
P Pitch of HAYs
rcontact(t)Equation of Contact Line

θ Wrap Angle of Stiffer Wrap Fiber at any time [°]
θI Wrap Angle of Stiffer Wrap Fiber at Initial State [°]
θT Wrap Angle of Stiffer Wrap Fiber at Twisted State [°]
θF Wrap Angle of Stiffer Wrap Fiber at Final State [°]
β Wrap Angle of Compliant Core Fiber at any time [°]
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Contents 4

Symbol Definition Unit

βT Wrap Angle of Compliant Core Fiber at Twisted State [°]
βF Wrap Angle of Compliant Core Fiber at Final State [°]
νSW Poisson’s Ratio of Stiffer Wrap Fiber
νCC Poisson’s Ratio of Compliant Core Fiber
ϵ Strain of HAYs
ϵmax Maximum Strain of HAYs
ϵC Strain of Compliant Core Fiber



1
Introduction

Auxetic metamaterials[1] are a relatively new class of functional materials characterized by a negative
Poisson’s ratio, meaning they expand laterally when stretched longitudinally[2]. Three well-established
basic structures can explain these mechanisms (Fig. 1.1): re-entrant structures, chiral structures,
and rotating rigid structures[3, 4]. These materials offer many benefits, including higher indentation
resistance, shear resistance, energy absorption, hardness, and fracture toughness[5, 6, 7]. Nowa-
days, auxetic materials have been utilized in many innovative applications such as soft robotics[8],
bio-medicine[9], and soft electronics[10].

Figure 1.1: Different auxetic mechanical structures[11]

Hook et al.[12] proposed a novel geometry and composite for auxetic behavior in the form of a helically
wrapped yarn, which can achieve a significant negative Poisson’s ratio both independently and within
a textile. This structure is known as helical auxetic yarn (HAY). These yarns are categorized based on
the number of fibers, denoted as n-plys HAYs, such as 2-plys and 4-plys, as shown in Fig. 1.2. And in
this work, HAYs will refer to 2-plys HAYs(Fig. 1.2A). HAYs consists of two conventional fibers, where
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a relatively stiffer and thinner fiber is helically wrapped around a more compliant and thicker core fiber,
as illustrated in Fig. 2.1. When longitudinal strain is applied, the difference in the modulus of elasticity
and diameters of the two fibers causes the compliant core to displace laterally due to the stiffer wrap
fiber, resulting in an overall lateral expansion of the yarn’s maximal width. By carefully selecting the
fiber diameters, modulus, and the initial geometry of HAYs, a substantial negative Poisson’s ratio can
be achieved.

Figure 1.2: 2-plys(A)[13, 14] and 4-plys(B)[15] Helical Auxetic Yarns with their cross sections

HAYs have potential applications in filtration[14] and healthcare[16]. Since its invention, the basic
structure and mechanics of HAYs have been extensively investigated both experimentally and theo-
retically[17, 18, 19, 13, 20]. Due to its diverse applications, ongoing research aims to improve its
performance. Additionally, other types of auxetic fibers have been developed by researchers for textile
applications[21, 22, 23]. Sloan et al.[13] identified that the initial wrap angle significantly impacts the
auxetic behavior of HAYs, influencing both the degree and range of strain. They also noted that factors
such as the diameter ratio between the wrap and core fibers and the inherent Poisson’s ratio of the
fibers play crucial roles. Their research focused on stiffer HAYs suitable for high-modulus applications,
such as composites and blast mitigation. Wright et al.[24] explored the manufacturing and properties
of various HAYs and fabrics with lower stiffness or tensile modulus, finding that their auxetic effects
were practical for real-world applications. These materials were deemed suitable for healthcare uses
like bandages and compression garments, as well as fashion. They found that HAYs were particularly
effective in woven fabrics, with the produced plain weave fabric demonstrating an out-of-plane nega-
tive Poisson’s ratio due to its thickening. Shanahan et al.[25] examined the auxetic behavior in fabric
thickness, attributing it to the geometric impact of the woven structure and yarn modulus, highlight-
ing the theoretical auxetic properties in the effective thickness of fabrics. Ge and Hu[15] introduced a
novel auxetic plied yarn structure incorporating two different types of yarn components (Fig. 1.2(B)).
This structure consists of two soft yarns and two stiff yarns, aiming to provide better control over the
yarn’s twist compared to traditional helical auxetic yarns, thereby enhancing twist regularity and overall
stability of the auxetic yarn.

However, there is still a less clear phenomenon named engulfment effect happening. The configuration
of a HAY requires the core to be more flexible than the wrap. If the core is both compliant and elastic,
it performs two functions: enabling large lateral deformation when strain is applied and acting as a
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‘return spring’ to recover its original position and reform the helix in the wrap once the load is removed.
However, the compliance of the core can potentially introduce an undesirable mechanism within the
HAYs. Under tension, the wrap may indent and embed itself into the surface of the core. Consequently,
this interaction could reduce the negative Poisson’s ratio and thus diminish the auxetic behavior of the
HAYs. These interactions are illustrated in Fig. 1.3.

Figure 1.3: Possible cases(left) of engulfment effect and cross-sectional and external images(right)

This work develops an innovative theoretical model to investigate the auxetic behavior of Helical Auxetic
Yarns (HAYs) by examining various parameters such as Young’s modulus and diameter ratio. The
model introduces a novel triangular approach that transitions the cross-sectional assumption from a
circle to an ellipse, allowing for more accurate predictions of HAYs behavior from initial to final states.
Additionally, a detailed helical 3D model of HAYs was derived using Maple, further refining the analysis.
The finite element model for HAYs was established in Abaqus, and through numerical simulations, this
work systematically explored the relationship between the initial wrapping angle, the diameter ratio of
the fibers, and the resulting Poisson’s ratio. This provided a comprehensive reference for future studies
on the Negative Poisson’s Ratio (NPR) effect in HAYs, contributing valuable insights for optimizing their
design.



2
Methodology

2.1. Geometrical Description of the HAYs
2.1.1. Geometrical Model
A helical auxetic yarn (HAY) is constructed by combining two fibrous components in a double helix, as
described by Hook et al.[12]. For optimal functionality, it is proposed that the components must have
different modulus and diameters. The yarn geometry is first introduced: a low-modulus, initially straight
core fiber is uniformly wrapped with a stiffer wrap component of a smaller diameter, as shown in Fig.
2.1(a). At zero strain, the compliant core and the stiffer wrap fibers are in uniform contact, with the
core straight and the wrap helically wound with an internal helix diameter equal to the diameter of the
core fiber. Upon the application of axial tensile strain(Fig. 2.1(b)), the wrap fiber straightens, displacing
the core laterally and thus increasing the effective diameter of the system. At full strain, the geometry
of the core and wrap fibers is reversed compared to the starting configuration. Fig. 2.1(c) shows the
HAYs at maximum strain.

Figure 2.1: Three states of the HAYs, (a)the initial state, (b)the twisted state, (c)the final state

Fig. 2.2 defines the geometric parameters associated with HAYs having components of circular cross
section. The initial diameters of the compliant core and stiffer wrap fibres can be defined as DCI and
DSW , respectively. To predict the behavior of HAYs, we focused on the initial and final states. This
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2.1. Geometrical Description of the HAYs 9

Figure 2.2: Geometrical representations of (a)initial and (b)final states; Triangular model with distance between neutral lines

approach allows us to make an initial prediction of the auxetic character at these well-defined points.

Assumptions:

• Both axial strain and radial strain of stiffer wrap fiber is zero.
• Two fibers always kept in contact and the interactive force was evenly distributed.
• One pitch of HAYs could be selected to represent the n-pitchs HAYs(means n = 1).

In the initial state, the stiffer wrap fiber of length LSW , diameterDSW , and Poisson’s ratio νSW = 0.34 is
wrapped with an angle θI around the compliant core fiber of length LCI , diameter DCI , and Poisson’s
ratio νCC (here we will consider νCC = 0.45). with triangular model, the length of stiffer wrap LSW and
the initial length of compliant core LCI could be derived as

LSW =
π(DCI +DSW)

sin(θI)
(2.1)

LCI = LSW · cos(θI) (2.2)

LS = LSW · cos(θ) (2.3)

The initial length of HAYs (no strain is applied) is defined by the length of compliant core fiber

LSI = LCI (2.4)
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In the final state, the stiffer wrap fiber replaces the core position and defines the final length of HAYs
LSF = LSW . Then the final length of compliant core is

LCF =
√
L2
SF + π2(DSW +DCF)2 (2.5)

The angle θ goes from the initial angle θI at the initial length LSI (when no strain is applied) to a final
angle θF at the final length LSI , meanwhile the angle α goes from the initial angle 0 to a final angle αF .
The evolution of the angle θ and angle α are known at every stage by the length of HAYs and given by
the trigonometry formula:

cos(θ) =
LS

LSW
(2.6)

θ = arccos

(
LS

LSW

)
(2.7)

cos(α) =
LS

LC
(2.8)

α = arccos

(
LS

LC

)
(2.9)

We can define the strain applied on HAYs as:

ϵ =
LS − LSI

LSI
=

1

cos(θ)
− 1 (2.10)

ϵmax =
LSF − LSI

LSI
(2.11)

And substitute length with strain, the formula of θ is

θ = arccos (1 + ϵ) cos θI (2.12)

In order to get parameters from every state, distances between neutral lines dSW and dCC are derived
according to Fig. 2.2

dSW =
LSW sin(θ)

2π
(2.13)

dCC =
DSW

2
+

DC

2
− dSW (2.14)

The diameter of the compliant core fiber, dependant on the strain applied is reduced due to the Poisson’s
ratio. The general Poisson’s equation, that is not limited to small strain, is the following:(

1 +
∆LC

LCI

)−νCC

= 1 +
∆DC

DCI
(2.15)

For small strain, the first order approximation yields to the ”classical Poisson’s equation”:

DC = (1− νCCϵC)DCI (2.16)

where ϵC is calculated from

ϵC =
LC − LCI

LCI
=

√
(2πdCC)2 + LS

2 − LCI

LCI
(2.17)

The effective diameter of HAYs is defined by D is always the maximum between D1 and D2, and
DI = 2DSW +DCI . Fig. 2.3 shows the behavior of D related to D1 and D2, where

D1 = DSW + 2dSW , D2 = DC + 2dCC (2.18)

D = Max(D1, D2) (2.19)

Consequently, with the maximum strain ϵmax, the strain range is uniformly divided into 100 equal parts,
resulting in 100 states throughout the process. By combining this with equations 2.14, 2.16, and 2.17,
all the geometric parameters can be derived. And the Poisson’s ratio could be calculated following the
equation

PR =
D−DI

DI

ϵ
(2.20)
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Figure 2.3: Effective Diameter D illustration

2.1.2. 3D Model in Maple
Based on the theoretical analysis of HAYs in the previous section, all the geometric parameters are
now known. In this section, we aim to construct a three-dimensional model using these parameters.
Maple is a powerful software tool well-suited for symbolic computation and mathematical modeling. All
the work in this section was completed using Maple (Appendix A.2).

Figure 2.4: Helical 3D schematic figure

First, we assume that the shape of the neutral lines of both fibers approximates the Helix equation
(where n = 1 and P = LS):

x(t) = R cos(t)

y(t) = R sin(t)

z(t) = nP
2π t

⇒ rSW (t) =


x(t) = dSW cos(t)

y(t) = dSW sin(t)

z(t) = nP
2π t

rCC(t) =


x(t) = dCC cos(t+ π)

y(t) = dCC sin(t+ π)

z(t) = nP
2π t

(2.21)

Next, since the two fibers share similar equations, we can analyze the stiffer wrap fiber using its helix
function of the neutral line r⃗SW(t). The tangent vector can be obtained by differentiating:

t⃗(t) =
dr⃗SW(t)

dt
=

(
−dSW sin t, dSW cos t,

nP

2π

)
. (2.22)
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We note that this has a constant length
√
d2SW +

(
nP
2π

)2. With a more general curve, this is not neces-
sarily the case, and we would normalize this to unit length and switch to using the natural parameter
s = arc length. This time ds/dt =

√
d2SW +

(
nP
2π

)2, and we can keep using t as long as we remember
to normalize.

We obtain a local normal n⃗(t) vector by differentiating the normalized tangent:

n⃗(t) =
d

dt

(
t⃗(t)

∥t⃗(t)∥

)
= (− cos t,− sin t, 0) . (2.23)

As the name suggests, this is orthogonal to the tangent vector (in the direction of change of the tangent).
The third basis vector is the bi-normal:

b⃗(t) =
1

∥t⃗(t)∥
(
t⃗(t)× n⃗(t)

)
=

1√
d2SW +

(
nP
2π

)2
(
nP

2π
sin t,−nP

2π
cos t, dSW

)
. (2.24)

This is, of course, orthogonal to both t⃗ and n⃗.

The key is that we get the desired surface by drawing (3D) circles with the axis direction determined by
the direction of the curve, i.e., the tangent. Equivalently, we draw a circle of diameter dSW in the plane
spanned by n⃗ and b⃗. Hence, we get the entire surface S parameterized as:

S(t, u) = r⃗SW(t) +
dSW

2
n⃗(t) cosu+

dSW

2
b⃗(t) sinu (2.25)

with t ranging over many loop, and u ranging over the interval [0, 2π]. In terms of individual coordinates,

x(t, u) = dSW cos(t)− dSW

2 cos(t) cos(u) +
dSW

2 (nP
2π ) sin(t) sin(u)√

(
dSW

2 )2+(nP
2π )

2

y(t, u) = dSW sin(t)− dSW

2 sin(t) cos(u) +
dSW

2 (nP
2π ) cos(t) sin(u)√

(
dSW

2 )2+(nP
2π )

2

z(t, u) = nP
2π t+

(
dSW

2 )2 sin(u)√
(
dSW

2 )2+(nP
2π )

2

(2.26)

Finally, based on the results above, we could derive the helix equation of the contact line between two
fibers, which is

rcontact(t) =


x(t) = (dSW − DSW

2 ) cos(t)

y(t) = (dSW − DSW

2 ) sin(t)

z(t) = nP
2π t

(2.27)

Figure 2.5: (a)Helix function of neutral lines, (b)with cross circles, (c)with contact line.
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(a) A rigid sphere in contact with an elastic half-space
(b) Contact between two bodies with

curved surfaces.

Figure 2.6: Illustrations of contact theory[26]

2.2. Description of Engulfment effect in HAYs
2.2.1. Hertz Contact Theory
Contact mechanics focuses on the study of how solids deform when they come into contact at one or
several points. The study of elastic body contact is particularly useful for determining contact areas
and depths of indentation in simple geometries. Currently, there are established solutions for a variety
of technically significant shapes, including truncated cones, worn spheres, rough profiles, and hollow
cylinders[26].

In Fig. 2.6a, a contact between a rigid sphere and an elastic half-space is shown schematically. The
displacement of the points on the surface in the contact area between an originally even surface and a
rigid sphere of radius R is equal to

uz = d− r2

2R
(2.28)

And it is assumed the pressure is exerted on a circle-shaped area with the radius a. It follows for the
contact radius

a2 = Rd (2.29)

and for the maximum pressure

p0 =
2

π
E∗

(
d

R

)1/2

(2.30)

Then we obtain a normal force of
F =

4

3
E∗R1/2d3/2 (2.31)

The results from Hertz’s theory (2.28), (2.29) and (2.30) can also be used with few modifications in the
following cases.

(A) If both bodies are elastic, then the following expression for E∗ must be used:

1

E∗ =
1− ν21
E1

+
1− ν22
E2

(2.32)

Here, E1 and E2 are the modulus of elasticity and ν1 and ν2 the Poisson’s ratios of both bodies.

(B) If two spheres with the radius R1 andR2 are in contact (Fig. 2.6b), then the equations (2.28), (2.29),
and (2.30) are valid using the equivalent radius R :

1

R
=

1

R1
+

1

R2
(2.33)

2.2.2. Load analysis in HAYs
Considering the compressive force exerted on the contact line due to the stretching along the neutral
axis of the stiffer wrap, we refer to the model proposed by S.Machida[27, 28], as illustrated in Fig. 2.7.

The estimation of such lateral pressure in a yarn has been based, in the past, on the assumption that the
fibres as structural members do not possess either bending or torsional rigidity. Under this assumption,
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Figure 2.7: Equilibrium of force in an element of stiffer wrap fiber

Figure 2.8: Cross section of HAYs at random state

the lateral force (linear density) on a fibre under tension, when bent against a curved surface of constant
radius, is derived as:

N =
T

ρ
(2.34)

where N is the lateral force per unit length, T is the tension in the stiffer wrap fibre, and ρ is the radius
of curvature of the contact surface.

2.2.3. Contact Model in HAYs
Based onHertz Contact theory, it is essential to understand the contact situation. To do this, we examine
the cross section of HAYs at a random state, as shown in Fig. 2.8 The cross sections of both fibers
will be ellipses but not perfect circles due to the effect of the wrap angle on each fiber. Assumption:
consider the stiffer wrap fiber as elastic fiber but with extremely high Young’s modulus while applying
contact models.

Then, with known parameters, the major radius and the minor radius of each ellipse, aSW , bSW , aCC ,
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bCC , could be derived as equations

ellipseSW

{
aSW = DSW

2

bSW = DSW

2 cos θ

ellipseCC

{
aCC = DC

2

bCC = DC

2 cosα

(2.35)

The contact between two elliptical cross-sections can be approximated as the contact between two
circular surfaces, yellow dotted circle in Fig. 2.8. The approximate radius of the circles is the radius of
curvature of each ellipse at the contact point. Given the parameters of the two ellipses, their respective
radii of curvature can be determined using the following equations:

RSW =
(bSW)

2

aSW
and RCC =

(bCC)
2

aCC
(2.36)

According to Hertz Contact Theory, the contact surface of HAYs conforms to the model of contact
between two bodies with curved surfaces, as shown in Fig. 2.6b. Therefore, the effective radius Reff

is given by eq. 2.33 as
1

Reff
=

1

RSW
+

1

RCC
(2.37)

When analyzing the existing contact models in comparison with the HAYs situation, two models exhibit
similarities to the real case: Model 1 (Fig. 2.9a) and Model 2 (Fig. 2.9b). However, both models still
have discrepancies when compared to the ideal scenario. Consequently, this work introduces Model 3
(Fig. 2.9c), which integrates and improves upon the advantages of the previous two models. Following
paragraphs will discuss the models in detail.

Figure 2.9: Three contact models: (a)Two crossed cylinders in contact, (b)Two cylinders in contact with parallel axes, (c)Two
cylinders in contact with angle β

Model 1
If two elastic cylinders are in contact and lie on perpendicular axes with radius R1 and R2 (Fig. 2.9a),
then the distance between the surfaces of both bodies at the moment of the first contact (still without
deformation) is given by

h(x, y) =
x2

2R1
+

y2

2R2
. (2.38)

This is exactly in accordance with a contact between an elastic half-space and a rigid body for ellipsoids
with radius of curvature R1 and R2. Therefore, Hertz relations are valid if the effective radius

R̃ =
√

R1R2. (2.39)

is used. Given the uniformly distributed compressive pressure N per unit length along the contact line
from eq. 2.34 and the contact radius parameter a, the force F can be approximated as F ≈ N · 2a.
Then combine eq. 2.29 and eq. 2.31, and substitute r with Reff , we get
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N · 2a =
4

3
E∗R

1
2 d

3
2

⇒ N · 2
√
Rd =

4

3
E∗R

1
2 d

3
2

⇒ d =
3

2

N

E∗ (2.40)

where d is the maximum engulfment displacement at the contact area.

Model 2
In the case of the contact between two cylinders with parallel axes (Fig. 2.9b), the force is linearly
proportional to the penetration depth

F =
π

4
E∗Ld (2.41)

where F = N · L. Then substitute the term in eq. 2.41, we could get

N · L =
π

4
E∗Ld

⇒ d =
4

π

N

E∗ (2.42)

Model 3
We assume that the contact plane is horizontal and β = θ+α. The distance between the surface of the
first cylinder and this plane (at the first moment of contact) z1 and the distance for the second cylinder
z2 are equal to

z1 =
x2

2R1
, z2 = − (cos(β)x− sin(β)y)2

2R2
(2.43)

The distance between both surfaces is then

h = z1 − z2 =
x2

2R1
+

(cos(β)x− sin(β)y)2

2R2
(2.44)

The principal curvatures are calculated as the eigenvalues of this quadratic form, using the equation,∣∣∣∣∣ cos
2(β)
R2

+ 1
R1

− κ − cos(β) sin(β)
R2

− cos(β) sin(β)
R2

sin2(β)
R2

− κ

∣∣∣∣∣ = 0

to κ1 and κ2. Then the principal radius of curvature are accordingly R1,2
′ = 1

κ1,2
.

Based on eq. 2.39, the resulting Gaussian radius of curvature is

R̃ =
√

R1
′R2

′ (2.45)

We assume the contact force per unit length works on a small contact distance δl, where δl = DSW sinβ.
Then with eq. 2.31. In this case, the relationship between the force and the penetration depth is

d =

(
3

4

N · dl
E∗R̃

1
2

) 2
3

(2.46)

And for all three models, E∗ follows eq. 2.32.

2.3. Finite Element Analysis
The model of HAYs is constructed using Abaqus software. According to the theoretical model in Fig.
2.2, the parameters are applied to establish the finite element model of HAYs. Fig. 2.10 shows the 3D
model of fiber HAYs. This model is built based on the actual parameters and consists of two parts: the
’stiffer wrap’ and the ’compliant core.’ The calculation method for the pitch is provided by Eq. 2.3, and
the parameter setting details for HAYs are presented in Appendix A.2.
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2.3.1. Simulation Design
Based on the theoretical model equations(2.1 to 2.16), the main variables for HAYs are identified as
diameter ratio and wrap angle (both considered geometric parameters), and Young’s Ratio (considered
a material parameter). To investigate the impact of these factors on the auxeticity of HAYs, a controlled
variable approach was adopted in the simulation experiments.

Firstly, four major groups representing different wrap angles were established: 25°, 30°, 35°and 40°.
Within each major group, four subgroups were created based on variations in Young’s Ratio: 10, 20, 50
and 100. In these subgroups, the compliant core modulus (ECC ) was fixed, with Young’s Ratio defined
as the ratio of the stiffer wrap modulus (ESW ) to the compliant core modulus (ECC).

Within each subgroup, the diameter ratio also varied. With the core diameter (DCC) fixed at 12mm, the
sheath diameter (DSW ) was varied as 6mm, 4mm, 3mm and 2mm to explore the effects of changing
the diameter ratio on the HAYs.

The specific experimental parameters are as follows:

• Wrap Angle: 25°, 30°, 35°, 40°
• Young’s Ratio (ESW

ECC
): 100, 200, 500, 1000

• Diameter Ratio (DSW

DCC
):

– Fixed DCC [mm] at 12
– DSW [mm] varied as 6, 4, 3, 2

This design allows for a systematic investigation of the effects of geometric and material parameters on
the auxeticity of HAYs, providing a comprehensive understanding. By employing a controlled variable
method, the reliability and accuracy of the experimental results are enhanced, as it ensures that when
examining the impact of one variable on auxeticity, all other variables remain constant. The completed
setting chart is shown in Appendix B.

2.3.2. Abaqus Model Setting
For the building process of finite element analysis model, Y. Ma’s method[29] is used. In Abaqus,
two parts are created under ’Part’: the ’compliant core’ fiber and the stiffer wrap fiber. Both parts are
defined as three-dimensional, deformable, and solid entities. Due to the varying settings of the models,
the elastic modulus and Poisson’s ratio, two crucial material properties, are incorporated accordingly.

To accurately model the frictional interaction between the wrapped fiber and the core fiber, a surface-
to-surface contact interaction is established between the fiber components. The mechanical constraint
is implemented using the kinematic contact method, with tangential behavior defined as the contact
action. A friction coefficient of 0.1 is applied to represent the frictional forces between the fibers.

For motion simulation, one end of the fiber is fixed while the other end simulates the tensile motion
by applying displacement. At one end, both the compliant core fiber and the stiffer wrap fiber are
completely fixed in the initial step (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0) to prevent relative sliding
between the two components during stretching. At the opposite end, a reference point, RP-1, is created
and coupled to the ends of both the core fiber and wrapped fiber, ensuring they move together during
stretching with certain displacement. Additionally, the reference point is constrained in all directions
except for the tensile direction, where degrees of freedom are set to 0. The result models are shown
in Fig. 2.10.
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Figure 2.10: Finite element analysis model for stretching



3
Results

3.1. Theoretical Model Representation
This section provides a detailed analysis of the theoretical model developed to represent the behavior
of Helical Auxetic Yarns (HAYs) under varying strain conditions. The theoretical model predicts the
geometric adjustments and auxetic behavior of HAYs by calculating the relationships between angles,
fiber lengths, and effective diameters as the material undergoes axial stretching. Key parameters such
as strain and Poisson’s ratio are explored to illustrate how HAYs transition from initial to final states,
offering a foundational understanding of their auxetic response.

3.1.1. Geometry Parameters Generation Results
The following set of results illustrates the behavior of HAYs under varying strain conditions and the
cross sections as predicted by the theoretical model. The Matlab code used to plot the curves can be
found in the Appendix A.1.

Fig. 3.1a compares the angles θ and α as functions of axial strain. It reveals that as the strain increases,
the angle θ decreases while α increases, indicating a geometric adjustment within the structure.

Fig. 3.1b presents a comparison between the effective diameter D, the compliant core fiber diameter
DC , and the stiffer wrap fiber diameter DSW . The effective diameter D initially decreases and then
increases, eventually surpassing its initial value. This behavior satisfies the definition of auxeticity,
where the material exhibits an increase in its lateral dimensions when stretched along its axis.

Fig. 3.1c explores the changes in fiber lengths LSW and LCC under strain. While LSW remains con-
stant zero, LCC increases significantly, suggesting that the compliant core fibers undergo substantial
elongation relative to the stiffer warp. Finally.

Fig. 3.1d compares the strain experienced by the compliant core (ϵCC) and the surrounding warp (ϵSW ),
which are derived based on eq. 2.17. The strain in stiffer wrap fiber (ϵSW ) is assumed to be constant
zero.

In Fig. 3.2, two figures shows the initial state and the final state of HAYs, which contain details like the
shape is ellipse in most time and the neutral line of HAYs will shift from the center of Compliant Core
fiber to Stiffer Wrap fiber.
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(a) Comparison of θ and α (b) The effective diameter D compare with DC and DSW

(c) Comparison of LCC and LSW (d) Comparison of ϵCC and ϵSW

Figure 3.1: Evolution of (a) The angles of θ and α, (b) The effective diameter of HAYs, (c) The length of the fibers, (d) The
strain of both fibers with the change of strain of HAYs

(a) Cross section of HAYs in Initial State (b) Cross section of HAYs in Final State

Figure 3.2: Cross sections of HAYs in two typical cases: Initial State(a) and Final State(b)
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3.1.2. Maple Results
Based on the theory outlined in section 2.1.2, and given the initial geometry parameters such as DSW,
DCI, θ, and the material parameters, this work has developed a program in Maple[Appendix A.2] that
can generate a 3D visualization of the structural evolution of HAYs under specified conditions. By
adjusting the number of states to be displayed, the program allows for the selection of a particular
state to showcase the theoretical configuration of HAYs at any given moment. Fig. 3.3 illustrates some
significant states which have been analysed in Theoretical Model part.

Figure 3.3: Maple results represented the theoretical States of HAYs(Fig. 2.1)

3.2. Abaqus Model Result
In this section, the results of the finite element simulations performed in Abaqus are presented. The
simulations illustrate how HAYs respond to tensile deformation, focusing on stress distribution and the
interaction between the core and wrap fibers. The section highlights the observation of the engulfment
effect and its impact on the material’s performance, showcasing how the finite element analysis sup-
ports the theoretical predictions of the contact mechanics and stress concentrations within the fibers.

Fig. 3.4 presents several screenshots from an Abaqus finite element simulation, illustrating the stress
distribution in HAYs undergoing deformation due to applied displacements at one end.

Fig. 3.5 display the contact pressure on stiffer wrap fiber and compliant core fiber, respectively. It is
evident that the maximum compressive stress occurs along the contact line between the two fibers,
shown in Fig. 3.5(a)(b). And Fig. 3.5(c) shows a cross-sectional view of the HAYs. It is observed that
the mesh for compliant core fiber exhibits a noticeable indentation in the contact region, while the stiffer
wrap fiber mesh shows no significant change. This suggests the occurrence of an engulfment effect.
Additionally, the maximum stress concentration is also located at the contact point in the cross-section.
Overall, these results are close to the theoretical model in Fig. 2.9(c).
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Figure 3.4: The finite element model of HAYs: (a)the model before stretching, (b)the cross section of model before stretching,
(c)the model after stretching, (d) the cross section of model after stretching

Figure 3.5: Contact loads distribution: (a)(b) maximum stress along the contact line of stiffer wrap and compliant core fibers,
(c) mesh deformation and stress concentration in the HAYs cross-section, indicating the engulfment effect

3.3. Comparison of Models with Simulation Results
This section compares the predictions of the theoretical contact models with the results obtained from
finite element simulations. The comparison assesses the accuracy and limitations of each model in
representing the real-world behavior of HAYs under different strain conditions. Emphasis is placed on
the differences in contact pressure, strain, and deformation patterns, helping to validate the models
and refine their applicability to auxetic materials.

In Figure 3.6, it shows the comparison between prediction of three contact models(Section 2.2.3) and
the results of Abaqus simulation. And it shows the advantage of model 3 and the following work will
use model 3 as the contact model.

In Low Strain Model 3 Works Better: At low strains, Model 3 tends to perform better than the other
two models, providing a closer approximation to the simulation results. This suggests that Model 3 may
better capture the initial elastic response or early-stage deformation characteristics of the material.

Comparison with Simulation Results:

For most cases (e.g., S25A1, S25B1, etc.), the simulation results show a gradual increase in contact
pressure, eventually peaking, which aligns with the models’ predictions. However, there are variations
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in the exact magnitude of the peak pressure. In some cases, such as S25A4 and S25B4, the simula-
tion results exhibit a more gradual or delayed increase in contact pressure compared to the models,
suggesting that the models might be overestimating the stiffness or the rate of stress increase in these
scenarios.

3.4. Poisson's Ratio predicted with changed parameters
This section examines how changes in key parameters, such as diameter ratios, wrap angles, and
Young’s modulus, affect the Poisson’s ratio of HAYs. By systematically altering these parameters, the
study analyzes their influence on auxetic behavior, identifying trends in how different configurations
enhance or diminish the negative Poisson’s ratio. The results provide valuable insights into the opti-
mal design configurations for maximizing auxetic performance while maintaining stability under various
strain levels.

3.4.1. Geometrical parameters influence on Poisson's Ratio
Fig. 3.7 illustrates the relationship between Poisson’s ratio (PR) and strain of HAYs for different com-
binations of diameter ratios and wrap angles in HAYs. For Poisson’s Ratio of all parameters sets, they
all share a climb at small strain and then start to drop.

Higher Diameter Ratio Leads to Better Auxetic Performance: As observed from the plot, config-
urations with a higher diameter ratio (e.g., Dratio = 6) tend to show better auxetic performance, as
indicated by a more pronounced and sustained negative Poisson’s ratio, with minimum PR and largest
range with NPR.

Lower Wrap Angle Leads to Better Auxetic Performance but Smaller Working Range of Strain:
Configurations with a lower wrap angle (e.g., θ = 25◦) show better auxetic performance at the starting
stages of strain. This is evident from the fact that these configurations have a more obvious negative
Poisson’s ratio compared to those with higher wrap angles.

However, the trade-off is that these configurations tend to have a smaller working range of strain. The
ideal working range of HAYs stops earliest(≈ 10% for θ = 25◦,≈ 15% for θ = 30◦,≈ 20% for θ = 35◦,≈
30% for θ = 40◦). This indicates that while lower wrap angles enhance auxetic behavior, they also limit
the range over which this behavior is effective.

3.4.2. Young's Modulus influence on Poisson's Ratio
Four figures (3.8, 3.9) represent how different combinations of diameter ratios and Young’s Ratios affect
the Poisson’s Ratio at wrap angle at 25◦,30◦,35◦ and 40◦.

Fig. 3.8a illustrates the relationship between Poisson’s Ratio and HAYs’ strain for various Young’s
Ratio configurations under a 25° wrap angle. In this figure, curves of the same color represent different
Young’s Ratios while keeping the geometry parameters constant. A few key observations can be made:

Firstly, all curves within the same color family exhibit similar trends, aligning well with theoretical predic-
tions (Fig. 3.7). This confirms that, under consistent geometry, the overall behavior of PR with respect
to strain remains similar, regardless of the stiffness of the stiffer wrap fiber. Additionally, as the Young’s
Ratio increases (indicating a stiffer wrap fiber), the PR values tend to be higher for the same strain
level. This suggests that higher stiffness in the stiffer wrap fiber diminishes the auxetic effect, resulting
in poorer performance in terms of negative PR. Notably, for diameter ratios of 4 and 6, the configuration
with Eratio = 500 achieves the best performance, despite not having the lowest Young’s Modulus ratio.

Fig. 3.8b illustrates the relationship between PR and HAYs’ strain for the 30° wrap angle configurations.
As with the 25° wrap angle, the most pronounced auxetic performance is achieved with the largest
diameter ratio. However, the auxetic effect is less significant, with PR values reaching around −3.

Fig. 3.9a illustrates the relationship between PR and HAYs’ strain for the 35° wrap angle configurations.
The auxetic behavior is weak only with PR values around −2 but with a large working range with
maximum strain of 25%.
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Figure 3.6: Contact Pressure Comparison between three models and the simulation result
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Figure 3.7: Comparison of Poisson’s Ratio and Strain of HAYs with combinations of Diameter Ratios and Initial Wrap Angle

Fig. 3.9b illustrates the relationship between PR and HAYs’ strain for the 40° wrap angle configurations.
The auxetic behavior is weak only with PR values around −2 but with a large working range with
maximum strain of 25%

Young’s Ratio and Auxetic Performance: Across all wrap angles, a higher Young’s Ratio (indicating
stiffer wrap fiber) always leads to higher PR values, meaning worse auxetic performance. And the
conditions that produce the minimum PR values, and hence the best auxetic performance, are those
with the lower Young’s Ratios. This suggests that reducing the stiffness of the stiffer wrap fiber, relative
to the compliant core fiber, could a key strategy in enhancing the auxetic effect.

Impact of Wrap Angle: Increasing the wrap angle from 25° to 40° appears to generally larger the
PR values across all configurations, indicating weaker auxetic behavior. However, the performance is
still heavily dependent on maintaining a relative low Young’s Ratio.

3.4.3. Comparison with Simulation Results
Four figures (3.10,3.11) represent how different combinations of diameter ratios and Young’s Ratios
affect the Poisson’s Ratio at wrap angle at 25◦,30◦,35◦ and 40◦ in the Abaqus simulation. And the
comparison between the simulation results and the theoretical predicted results has been carried out.

Initial Peak and Decline: Both the simulation and theoretical models predict a sharp initial rise in
Poisson ratio (PR) followed by a decline. However, the peak values and the rate of decline vary, with
the theoretical model generally predicting higher peaks.

Trend Consistency: The overall trends are consistent between the two, validating the theoretical
model’s general applicability. However, discrepancies in exact values and the rate of decline indicate
potential differences in assumptions or simplifications within the theoretical model compared to the
more detailed simulation.

Negative PoissonRatio: Both approaches predict that the PR can become negative at higher strains,
but the simulation results show more variability in when this occurs and how pronounced the negative
values are.
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(a) Theoretical results: Comparison of Poisson’s Ratio and Strain of HAYs with 25◦ wrap angle

(b) Theoretical results: Comparison of Poisson’s Ratio and Strain of HAYs with 30◦ wrap angle

Figure 3.8: Theoretical results: Comparison of Poisson’s Ratio and Strain of HAYs with 25◦ and 30◦ wrap angle
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(a) Theoretical results: Comparison of Poisson’s Ratio and Strain of HAYs with 35◦ wrap angle

(b) Theoretical results: Comparison of Poisson’s Ratio and Strain of HAYs with 40◦ wrap angle

Figure 3.9: Theoretical results: Comparison of Poisson’s Ratio and Strain of HAYs with 35◦ and 40◦ wrap angle
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(a) Simulation results: Comparison of Poisson’s Ratio and Strain of HAYs with 25◦ wrap angle

(b) Simulation results: Comparison of Poisson’s Ratio and Strain of HAYs with 30◦ wrap angle

Figure 3.10: Simulation results: Comparison of Poisson’s Ratio and Strain of HAYs with 25◦ and 30◦ wrap angle
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(a) Simulation results: Comparison of Poisson’s Ratio and Strain of HAYs with 35◦ wrap angle

(b) Simulation results: Comparison of Poisson’s Ratio and Strain of HAYs with 40◦ wrap angle

Figure 3.11: Simulation results: Comparison of Poisson’s Ratio and Strain of HAYs with 25◦ and 30◦ wrap angle
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Discussion

Ideal and real case of the maximum strain From section 3, in Fig. 3.7, a trade-off between strain
range and auxetic behavior is observed. This raises the question of what might occur if the HAYs
elongate beyond the maximum strain presented here. According to experimental results from other
researchers, shown in Fig. 4.1 , after the initial phase of deformation—where only the compliant core
fiber undergoes plastic deformation—both fibers eventually enter a state of plastic deformation. Con-
sequently, the Poisson’s ratio value increases as the diameter of the stiffer wrap fiber decreases due
to Poisson’s effect, which mean HAYs will gradually lose auxeticity after the maximum strain this work
discussed.

Figure 4.1: HAYs working data from experiment[14]

Suggestions for improving the auxeticity of HAYs The results presented in Section 3 demonstrate
that increasing the diameter ratio in the design of HAYs leads to greater lateral expansion when the
material is axially stretched. This effect enhances the auxetic behavior, making it an effective strategy
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for achieving more robust auxetic properties.

However, optimizing the auxetic performance is not solely dependent on the diameter ratio. To mit-
igate the engulfment effect and further enhance auxetic behavior, it is crucial to focus on reducing
the Young’s Ratio. This approach consistently results in lower Poisson’s ratio values across different
configurations. Additionally, while decreasing the wrap angle can amplify auxetic behavior, the most
significant improvements are observed when this adjustment is paired with a low Young’s Ratio. These
insights suggest a clear direction for the design and optimization of auxetic materials, particularly in
contexts where auxetic behavior is critical.

Furthermore, both the predictive models and simulation results consistently indicate an initial rise in
PR at the beginning of the loading process. To address this issue, one viable approach might be to
pre-stretch the HAYs prior to use, effectively bypassing this initial phase of deformation. By doing so,
the material could enter its operational phase more quickly, with the auxetic behavior fully engaged
from the start. Other methods, such as conditioning the material through cyclic loading or employing a
tailored loading protocol, could also be explored to minimize the impact of this initial climb and optimize
the performance of HAYs in practical applications.

Performance of Model 3 at Low and High Strains: The results indicate that Model 3 outperforms
Models 1 and 2 at low strain levels, providing a closer approximation to the observed behavior. This
is likely due to the fact that, at low strains, the deformation remains small and within the elastic range,
where the simplified assumptions of Model 3—such as a basic contact model—are sufficient to capture
the material’s response. However, as the strain increases and the material undergoes larger deforma-
tions, the limitations of Model 3 becomemore apparent. The simple contact model used in Model 3 fails
to account for more complex interactions and non-linearities that arise under higher strains, leading to
a divergence from the actual behavior observed in the simulations.

Limitations of Model 3 in Representing HAYs: Despite its initial accuracy at low strains, Model
3 still exhibits significant limitations in accurately representing the behavior of real HAYs. One key
assumption in Model 3 is that the two fibers lie in parallel planes, which simplifies the contact mechanics.
However, in reality, the stiffer wrap fiber is twisted around the compliant core fiber, creating a more
complex geometry that involves torque and curvature along the contact length. This twisting introduces
additional forces and interactions that are not captured by the parallel plane assumption in Model 3. To
better model the true behavior of HAYs, it may be necessary to incorporate these factors, such as the
effect of twisting on torque and the impact of curvature on contact mechanics, into the model. This
would likely improve the accuracy of predictions across a wider range of strain levels.

Suggestion for experimental validation for future work Despite the theoretical advancements
and valuable conclusions drawn from comparing the theoretical predictions with simulation results in
this work, there remains a significant gap due to the absence of experimental validation. While the
theoretical models and simulations have provided insights and confirmed some innovative concepts,
the lack of physical experiments prevents a complete validation of the findings. Conducting experiments
with actual HAYs materials would close the loop between theory, simulation, and real-world behavior,
providing a more comprehensive understanding and ensuring that the theoretical innovations can be
reliably applied in practical applications. Future work should prioritize experimental studies to fully
validate and refine the models presented here.

Overall, the work underscore the importance of carefully considering multiple factors in the design of
HAYs. By balancing diameter ratio, Young’s Ratio, and wrap angle, it is possible to optimize auxetic
performance while minimizing unwanted effects such as engulfment. The insights gained from this work
provide a valuable foundation for the continued development and refinement of auxetic meta-material.



5
Conclusion

The analysis presented in this work confirms that optimizing the diameter ratio and wrap angle is crucial
for tailoring the auxetic properties of HAYs. A higher diameter ratio enhances the auxetic effect, making
the material more responsive to axial strain with sustained lateral expansion. Conversely, a lower
wrap angle improves the initial auxetic response but limits the range of strain over which this response
is maintained. These insights are critical for designing materials with desired mechanical properties,
particularly in applications requiring specific auxetic behavior within a defined range of strain.

Model 3, introduced in this work, generally provides a reasonable approximation of the contact pressure
behavior as a function of axial strain, especially at low strains. However, as strain increases, the
limitations of Model 3 become apparent due to its simplified assumptions. The discrepancies observed
between the theoretical models and simulation results suggest that further refinement or calibration
might be needed to improve their accuracy, particularly in predicting the exact magnitude of contact
pressure under different loading conditions.

Overall, this work contributes valuable insights into the design of auxetic materials, offering guidelines
for optimizing HAYs’ performance while minimizing adverse effects like engulfment. Future work should
include experimental validation to fully bridge the gap between theory, simulation, and real-world appli-
cation, ensuring that the theoretical advancements can be reliably applied in practice.
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A
Reference Code

A.1. Matlab code
1 """
2 Take initial wrap angle 30° for example, the code show how to calculate all geometry

parameters along every state. Also, could be used to carried out plots.
3 """
4

5 theta_initial_degrees = 30;
6 theta_initial = deg2rad(theta_initial_degrees);
7

8 colors = lines(16);
9

10 % Pre-allocate storage for results
11 all_strain_axial = [];
12 all_PR_HAYs = [];
13 all_PR_ideals = [];
14 legends = {};
15

16 labels = ["A", "B", "C", "D"];
17 lineStyles = {'-', '--', ':', '-.'};
18 markerStyles = {'x', '<', '*','o'};
19

20 % Loop through all combinations of Dsw, Esw, and polynomial coefficients
21 figure(1); hold on;
22 for k = 1:length(p30_values)
23 p = p30_values(k, :);
24 set_number = mod(k-1, length(D_ratios)) + 1;
25 label_number = 1 + floor((k-1) / length(D_ratios));
26 D_ratio = D_ratios(set_number); % Cycles through D_ratios
27 Youngs_ratio = Youngs_ratios(label_number); % Cycles through Youngs_ratios
28 Dsw = Dc_initial / D_ratio;
29 Esw = Ec * Youngs_ratio;
30

31 % Initial State
32 dis_SW_initial = Dsw / 2 + Dc_initial / 2;
33 Lsw = 2 * pi * dis_SW_initial / sin(theta_initial);
34 Lc_initial = Lsw * cos(theta_initial);
35 LS_inital = Lc_initial;
36

37 % Final State
38 LS_final = Lsw;
39 epsilon_max = (LS_final - LS_inital) / LS_inital;
40

41 number_points = 20;
42 step_strain = epsilon_max / (number_points - 1);
43 strain_axial = 0:step_strain:epsilon_max;
44

45 theta_t = acos((1 + strain_axial) .* cos(theta_initial));
46 theta_t_degree = rad2deg(theta_t);

35
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47

48 LS_t = (1 + strain_axial) .* LS_inital;
49 dis_SW_t = Lsw .* sin(theta_t) / (2 * pi);
50

51 % Initial guess
52 x0 = [Lc_initial, Dc_initial];
53

54 % Options
55 options = optimoptions('fsolve', 'Display', 'none', 'Algorithm', 'trust-region');
56

57 % Call fsolve
58 [x, fval, exitflag] = fsolve(@(x) equations(x, LS_final, Dsw, Dc_initial, Lc_initial,

nu_c), x0, options);
59

60 % Parse solution
61 Lc_final = x(1);
62 Dc_final = x(2);
63

64 % Final State
65 alpha_final = acos(LS_final / Lc_final);
66

67 dis_c_t = zeros(size(strain_axial));
68 Dc_t = zeros(size(strain_axial));
69 strain_c_t = zeros(size(strain_axial));
70

71 for m = 1:length(strain_axial)
72 x0 = [0, Dc_initial, 0];
73 options = optimoptions('fsolve', 'Display', 'none', 'Algorithm', 'trust-region-dogleg

');
74 [x, fval, exitflag, output] = fsolve(@(x) myEquations(x, Dsw, Lsw, theta_t(m),

Dc_initial, nu_c, Lc_initial, LS_t(m)), x0, options);
75 dis_c_t(m) = x(1);
76 Dc_t(m) = x(2);
77 strain_c_t(m) = x(3);
78 end
79

80 LswArray = ones(1, length(LS_t)) * Lsw;
81 DswArray = ones(1, length(LS_t)) * Dsw;
82 Lc_t = (1 + strain_c_t) .* Lc_initial;
83 alpha_t = acos(LS_t ./ Lc_t);
84 alpha_t_degree = rad2deg(alpha_t);
85

86 a_sw = ones(1, length(theta_t)) * Dsw / 2;
87 b_sw = Dsw ./ (2 * cos(theta_t));
88 a_cc = Dc_t / 2;
89 b_cc = Dc_t ./ (2 * cos(alpha_t));
90

91 beta_t = alpha_t + theta_t;
92 beta_t_degree = rad2deg(beta_t);
93

94 delta_l = DswArray .* sin(theta_t);
95

96 R_cur_sw = b_sw .^ 2 ./ a_sw;
97 R_cur_cc = b_cc .^ 2 ./ a_cc;
98 cur_sw = 1 ./ R_cur_sw;
99 cur_cc = 1 ./ R_cur_cc;
100

101 R_eff = 1 ./ (cur_cc + cur_sw);
102 E_eff = 1 / ((1 - nu_c ^ 2) / Ec + (1 - nu_sw ^ 2) / Esw);
103

104 cur_engulfment = dis_SW_t ./ (dis_SW_t .^ 2 + (LS_t ./ (2 * pi)) .^ 2);
105

106 T_set = polyval(p, strain_axial);
107

108 T_set_sw = T_set .* cos(theta_t);
109 N_Abaqus = T_set_sw .* cur_engulfment;
110

111 delta_depth_M1 = real(1.5 * N_Abaqus ./ E_eff);
112 a_1 = sqrt(R_eff .* delta_depth_M1);
113 P1 = N_Abaqus ./ (2 * a_1);
114
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115 delta_depth_M2 = real(4 / pi * N_Abaqus ./ E_eff);
116 a_2 = sqrt(R_eff .* delta_depth_M2);
117 P2 = N_Abaqus ./ (2 * a_2);
118

119 gaussian_radii = zeros(1, 20);
120 for m = 1:number_points
121 gaussian_radii(m) = real(ContactModel(R_cur_cc(m), R_cur_sw(m), beta_t(m)));
122 end
123

124 delta_depth_M3 = real((3 / 4 * N_Abaqus .* delta_l ./ (E_eff .* gaussian_radii .^ 0.5))
.^ (2 / 3));

125 a_3 = sqrt(R_eff .* delta_depth_M3);
126 P3 = N_Abaqus ./ (2 * a_3);
127

128 dis_c_t = Dsw / 2 + Dc_t / 2 - dis_SW_t;
129 D1 = 2 * (Dsw / 2 + dis_SW_t);
130 D2 = 2 * (dis_c_t + Dc_final / 2);
131 D = max(D1, D2);
132

133 D1_d = 2 * (Dsw / 2 + dis_SW_t - 2 * delta_depth_M3);
134 D2_d = 2 * (dis_c_t + Dc_final / 2 - 2 * delta_depth_M3);
135 D_d = max(D1_d, D2_d);
136 D_initial = Dc_initial + 2 * Dsw;
137

138 PR_ideals = -real(((D - D_initial) / D_initial) ./ strain_axial);
139

140 if k == 11 || k == 12
141 PR_HAYs = -real(((D - D_initial) / D_initial) ./ strain_axial);
142 else
143 PR_HAYs = -real(((D_d - D_initial) / D_initial) ./ strain_axial);
144 end
145 PR_HAYs(1) = 0;
146 engulfment_percentage = real(delta_depth_M3 ./ DswArray * 100);
147 error = (D - D_d) ./ D .* 100;
148

149 % Store results for plotting
150 all_strain_axial = [all_strain_axial; strain_axial];
151 all_PR_HAYs = [all_PR_HAYs; PR_HAYs];
152 all_PR_ideals = [all_PR_ideals; PR_ideals];
153 legends{end + 1} = sprintf('D_{ratio}=%d,␣E_{ratio}=%d', D_ratio, Youngs_ratio);
154

155 Set_name = sprintf('S30%s%d', labels{label_number}, set_number);
156 ideal_name = sprintf('D_{ratio}=%d,␣E_{ratio}=%d,␣without␣engulfment␣effect', D_ratio,

Youngs_ratio);
157

158 % Plot results for each combination on the same figure
159 %theoretical model
160 % plot(strain_axial, PR_HAYs, ...
161 % 'LineStyle',lineStyles(label_number), ...
162 % 'LineWidth', 1.5, ...
163 % 'DisplayName',legends{end}, ...
164 % 'Color', colors(set_number+4, :));
165 %simulation results
166 plot(data.(Set_name).strain, data.(Set_name).PR, ...
167 'LineStyle',lineStyles(label_number), ...
168 'LineWidth', 1, ...
169 'DisplayName',Set_name, ...
170 'Color', colors(set_number+4, :));
171

172 % hold on;
173 % plot(data.(Set_name).strain, data.(Set_name).PR, 'LineStyle', lineStyles{subset_number

}, 'LineWidth', 1, 'DisplayName', Set_name, 'Color', colors(label_number, :));
174 % plot(strain_axial, PR_ideals, 'LineStyle', ":", 'LineWidth', 1, 'DisplayName',

ideal_name, 'Color', colors(label_number, :));
175 % plot(strain_axial, PR_ideals, 'LineStyle', ":", 'LineWidth', 1.5, 'DisplayName',

ideal_name, 'Color', colors(label_number, :));
176

177 end
178 yline(0, ':', 'Color', [0 0 0], 'LineWidth', 2,'DisplayName','Zero␣PR');
179 text(0.02, 0, 'Zero␣PR', 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', '

FontSize', 14, 'Color', [0 0 0]);
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180

181 xlabel('Axial␣Strain␣\epsilon','FontSize',15);
182 ylabel('Poisson␣Ratio␣(HAYs)','FontSize',15);
183 % title('Comparison␣of␣Poisson␣Ratio␣and␣Axial␣Strain␣with␣30°␣wrap␣angle','FontSize',16);
184 legend('show', 'Location', 'northoutside', 'Orientation', 'horizontal', 'NumColumns', 9);
185

186 grid on;
187 hold off;
188

189 %%
190 '''
191 More plots codes for generating theoretical illustration figures.
192 '''
193 close all;
194 figure;
195 plot(strain_axial, theta_t_degree, 'b-',strain_axial, alpha_t_degree, 'r--');
196 title('Comparison␣of␣theta␣and␣alpha');
197 xlabel('Axial␣Strain');
198 ylabel('Angle␣value');
199 legend('Theta␣degree', 'Alpha␣degree');
200 grid on;
201

202 figure;
203 plot(strain_c_t,Dc_t);
204 title('Comparison␣of␣Diameter(Compliant␣Core)␣and␣Strain(Compliant␣Core)');
205 xlabel('Strain␣of␣Compliant␣Core');
206 ylabel('Diameter␣of␣Compliant␣Core');
207 grid on;
208

209 figure;
210 plot(strain_axial,strain_c_t);
211 title('Comparison␣of␣Strain(Compliant␣Core)␣and␣Axial␣Strain');
212 xlabel('Axial␣strain');
213 ylabel('Strain␣of␣Compliant␣Core');
214 grid on;
215

216

217 figure;
218 plot(strain_axial, LswArray, 'b-',strain_axial, Lc_t, 'r--');
219 title('The␣Length␣of␣the␣fibers');
220 xlabel('Axial␣Strain');
221 ylabel('Length');
222 legend('Stiffer␣Wrap', 'Compliant␣Core');
223 grid on;
224

225 % figure;
226 % plot(strain_axial,T_axial_t);
227 % title('Comparison␣of␣Axial␣tension␣and␣Axial␣Strain');
228 % xlabel('Axial␣strain');
229 % ylabel('Axial␣tension');
230 % grid on;
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A.2. Maple code
Input parameters:

SW_diameter := 6
1000 ;

CC_diameter_initial := 12
1000 ;

theta_initial := 30·2·Pi
360 ;

nu_CC := 0.45;
n_turns := 1;
with (LinearAlgebra) :
with (plots) :
with (plottools) :
with (ColorTools) :
plotsetup (default) :

Initial State:

distance_SW_initial := SW_diameter
2 + CC_diameter_initial

2 :
distance_CC_initial := 0:

length_SW := simplify
(

2·π·distance_SW_initial
sin(theta_initial)

)
;

length_CC_initial := simplify (length_SW · cos (theta_initial)) ;
length_HAYs_initial := length_CC_initial :
length_HAYs_final := length_SW :

Random State:

get_strain := (l, l0) → (l−l0)
l0

;

poisson_strain_y := (εx, ν) → −
(
1− (1 + εx)

−ν
)
;

strainmax := get_strain (length_HAYs_final , length_HAYs_initial) ;
number_points := 100;

step_strain := (strainmax−0)
number_points−1 :

strain_HAYs_list := [seq (i · step_strain, i = 0.. (number_points − 1))] :
length_HAYs := length_HAYs_initial · (1 + εx) :
length_HAYs_list := map (s → subs (εx = s, length_HAYs) , strain_HAYs_list) :

The following strain expressions are for the elastic Compliant Core in transverse and axial directions.

CC_radial_strain := get_strain (dCC ,CC_diameter_initial) ;
CC_axial_strain := get_strain (length_CC , length_CC_initial)
: CC_strain := CC_radial_strain = poisson_strain_y (CC_axial_strain, nu_CC ) :
CC_diameter := solve (CC_strain, dCC ) :

θt := arccos ((1 + εx) · cos (theta_initial)) ;
theta_t_list := evalf (map (s → subs (εx = s, θt) , strain_HAYs_list)) :
theta_final := theta_t_list [−1] :

distance_SW := length_SW ·sin(θ)
2·π :

distance_SW_list := evalf (map (s → subs (θ = s, distance_SW ) , theta_t_list)) :
distance_SW_final := distance_SW_list [−1] :

distance_ContactLine := dist_SW − SW_diameter
2 :

distance_ContactLine_list := evalf (map (s → subs (dist_SW = s, distance_ContactLine) , distance_SW_list)) :

eq1 := CC_dia_final = ( len_CC_final
length_CC_initial )

−nu_CC · CC_diameter_initial :
eq2 := len_CC_final = sqrt((2·π·(SW_diameter

2 +CC_dia_final
2 −distance_SW_final))2+(length_HAYs_final2)) :

symbolic_solution := solve({eq1 , eq2}, {CC_dia_final, len_CC_final}) :
numeric_solutions := map(u → rhs(u), symbolic_solution) :
CC_diameter_final := numeric_solutions[1] :
length_CC_final := numeric_solutions[2] :

distance_CC_final := distance_CC_list [−1] ;
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distance_ContactLine_initial := distance_ContactLine_list [1] ;
distance_ContactLine_final := distance_ContactLine_list [−1] ;

First, define the equation for a helix in Cartesian (x,y,z) coordinates, parameterized by (t,u). The
parameter t ranges from 0 to 2πn, where n is the number of total turns. u ranges from 0 to 2π. Plot an
example of a single-turn helix with major radius rM , minor radius rm, and pitch p.

helix := (t, u, θ, rM , rm, p) →
[rM · cos (t+ θ)− rm · cos (t+ θ) · cos (u) + p·rm·sin(t+θ)·sin(u)

2·π·sqrt
(
r2M+( p

2·π )
2
) ,

rM · sin (t+ θ)− rm · sin (t+ θ) · cos (u)− p·rm·cos(t+θ)·sin(u)
2·π·sqrt

(
r2M+( p

2·π )
2
) ,

1
2·πp · t+

rM ·rm·sin(u)
sqrt

(
r2M+( p

2·π )
2
) ];

Final State:

SW_plot_final := plot3d(helix (t, u, 0, distance_SW_final, SW_diameter
2 , length_HAYs_final),

t = 0..2 · n_turns · π, u = 0..2 · π, scaling = constrained , transparency = 0 .2 ) :

CC_plot_final := plot3d(helix (t, u, π, distance_CC_final, CC_diameter_final
2 , length_HAYs_final),

t = 0..2 · n_turns · π, u = 0..2 · π, scaling = constrained , transparency = 0 .6 ) :

Contactline_plot_final := plot3d(helix (t, u, 0,ContactLine_final , 0, length_HAYs_final),
t = 0..2 · n_turns · π, u = 0..2 · π, scaling = constrained , color = “red”, thickness = 2, style = line :

Animation generation

plots_list :=[seq((display([
plot3d (helix (t, u, 0, distance_SW_list [k] ,SW_diameter/2, length_HAYs_list [k]) , ...
t = 0..2 ∗ n_turns ∗ Pi, u = 0..2 ∗ Pi, scaling = constrained , transparency = 0.2),
plot3d (helix (t, u, π, distance_CC_list [k] ,CC_diameter_list [k] /2, length_HAYs_list [k]) , ...
t = 0..2 ∗ n_turns ∗ Pi, u = 0..2 ∗ Pi, scaling = constrained , transparency = 0.6),
plot3d (helix (t, u, 0, distance_ContactLine_list [k] , 0, length_HAYs_list [k]) , t = 0..2 ∗ n_turns ∗ Pi, ...
u = 0..2∗Pi, scaling = constrained , color = “red”, thickness = 2, style = line, linestyle = 3)],scaling=constrained)
,k=1..number_points] ) :
animation := display(plots_list , insequence = true) :



B
Simulation Experiments Settings

Table B.1: Parameter Settings of HAYs Simulation

Model Y oung′sRatio ESW [MPa] ECC [MPa] DCC [mm] DSW [mm]
Wrap Angle = 25°

S25A1 100 10000 100 12 6
S25A2 100 10000 100 12 4
S25A3 100 10000 100 12 3
S25A4 100 10000 100 12 2
S25B1 200 20000 100 12 6
S25B2 200 20000 100 12 4
S25B3 200 20000 100 12 3
S25B4 200 20000 100 12 2
S25C1 500 50000 100 12 6
S25C2 500 50000 100 12 4
S25C3 500 50000 100 12 3
S25C4 500 50000 100 12 2
S25D1 1000 100000 100 12 6
S25D2 1000 100000 100 12 4
S25D3 1000 100000 100 12 3
S25D4 1000 100000 100 12 2

Wrap Angle = 30°
S30A1 100 10000 100 12 6
S30A2 100 10000 100 12 4
S30A3 100 10000 100 12 3
S30A4 100 10000 100 12 2
S30B1 200 20000 100 12 6
S30B2 200 20000 100 12 4
S30B3 200 20000 100 12 3
S30B4 200 20000 100 12 2
S30C1 500 50000 100 12 6
S30C2 500 50000 100 12 4
S30C3 500 50000 100 12 3
S30C4 500 50000 100 12 2
S30D1 1000 100000 100 12 6
S30D2 1000 100000 100 12 4
S30D3 1000 100000 100 12 3
S30D4 1000 100000 100 12 2

Continued on next page

41
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Table B.1 – Continued from previous page
Model Y oung′sRatio ESW [MPa] ECC [MPa] DCC [mm] DSW [mm]

Wrap Angle = 35°
S35A1 100 10000 100 12 6
S35A2 100 10000 100 12 4
S35A3 100 10000 100 12 3
S35A4 100 10000 100 12 2
S35B1 200 20000 100 12 6
S35B2 200 20000 100 12 4
S35B3 200 20000 100 12 3
S35B4 200 20000 100 12 2
S35C1 500 50000 100 12 6
S35C2 500 50000 100 12 4
S35C3 500 50000 100 12 3
S35C4 500 50000 100 12 2
S35D1 1000 100000 100 12 6
S35D2 1000 100000 100 12 4
S35D3 1000 100000 100 12 3
S35D4 1000 100000 100 12 2

Wrap Angle = 40°
S40A1 100 10000 100 12 6
S40A2 100 10000 100 12 4
S40A3 100 10000 100 12 3
S40A4 100 10000 100 12 2
S40B1 200 20000 100 12 6
S40B2 200 20000 100 12 4
S40B3 200 20000 100 12 3
S40B4 200 20000 100 12 2
S40C1 500 50000 100 12 6
S40C2 500 50000 100 12 4
S40C3 500 50000 100 12 3
S40C4 500 50000 100 12 2
S40D1 1000 100000 100 12 6
S40D2 1000 100000 100 12 4
S40D3 1000 100000 100 12 3
S40D4 1000 100000 100 12 2
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