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Abstract: In the planning and operation of power systems, actions are taken in different processes and time-horizons. The
purpose of these actions is to secure a high reliability level. Although the three main processes (grid development, asset
management, and system operation) are described in literature, there has been no explicit study on the time-horizons
(long-term, mid-term, and short-term) and actual time-scale (decades, years, months, etc.) that these processes focus
on. This study aims at making a review of the various activities performed by transmission system operators while
reviewing the concept of each time-horizon and methodologies developed in literature. As decisions taken in different

time-horizons can influence each other, the interactions and overlapping are discussed.

1 Introduction

Today’s scenario places tremendous stress on transmission and
distribution (T&D) assets because of:

e Development and increase in electricity demand.

e Structural changes [more interconnections, intermittent renewable
energy sources (RES), flexible AC transmission systems (FACTS),
high voltage direct current (HVDC), and other power
electronics-based devices].

e New operating policies like liberalisation of the energy market,
more intense trading, coupled markets, higher demand-side
participation.

This has led the power system reliability specialists to divide their
activities into three main processes in which sets of decisions are
taken. These activities are usually divided into the processes [1]:

(i) Grid development (long-term).
(i) Asset management (AM) (mid-term).
(iii) System operation (short-term).

However, in reality under each of these three main processes,
various sub-activities are performed on different time-horizons as
illustrated in Fig. 1. The actual time scale of these horizons can
vary between different processes and has never been clearly
mentioned in any published literature, which can lead to confusion
in practice. For example, long-term grid development is performed
on a time scale of decades, while long-term system operation has a
time scale of weeks/months as shown in Fig. 2. It is the primary
scope of this paper to clarify this by bringing together the concept
of different time-horizons in one survey, while embedding the
various literatures as support. Furthermore, recent developments in
the different time-horizons are discussed, as well as the
overlapping between activities.

Discussion on planning and operation brings ‘reliability’ into
picture. Power system reliability has been a subject of interest
since the 1960s when Billinton and Bollinger [2] published the
first article in 1968. Since then, there has been a huge amount of
research introducing various methods and theory to pursue reliable
power system operation. Besides, Billinton and other authors have
made significant bibliographic studies about the probabilistic
models in different periods. Some of these are Schilling et al. for
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the period 1962-1988 in 1990 [3], Billinton in 1972 [4], Allan
et al. for 1987-1991 in 1994 [5], and Billinton et al. for 1996—
1999 in 2001 [6]. Schilling et al. [7] made a comprehensive
bibliographic study of probabilistic security analysis for the period
1968-2008 which included 521 articles in a 40-year range. In the
past three decades, a variety of achievements have been
accomplished on the concepts, models, algorithms, software and
applications of power system reliability [8—10]. Reneses et al.
[11], for the first time, discussed the importance of coordination
among the time-horizons, stating how long-term decisions impact
short-term decisions.

This paper is organised as follows. Section 2 focuses on the
concept of different time-horizons, and lists the different
methodologies developed in various literatures. Section 3 discusses
the overlapping and interactions among the time-horizons, the
possibilities for a combined reliability approach, and the
challenges for the future. This section also concludes the literature
survey.

2 Review of three main processes

In this section, the three main processes and time-horizons are
discussed. Fig. 2 was created to understand the concept of three
processes and horizons. It gives an overview of the activities that
are performed in each process and time-horizon, and shows the
actual time scale of these activities. The next sub-sections describe
each of the processes in detail, supported by methods and tools
published in various literatures.

2.1 Grid development

Grid development aims mainly at transmission system expansion
planning. According to Pereira et al. [12], grid development can
be divided into two parts:

e Determining optimal investments in new system capacity.
e Determining system operating cost and supply reliability
associated with the construction of this new capacity.

In short, developing the transmission infrastructure is one of the
key priorities. An adequate transmission network is responsible for
a safe, reliable, and efficient delivery of electrical energy to the
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Fig. 1 Classification of time-horizons according to literature

consumers. Thus, grid development aims at providing solutions for
future. For an efficient planning, it is important to find the type,
location, and timing of the network upgrades not only at a
minimal cost but also considering socio-economic, environmental,
reliability, legal, and political constraints. Since the fact that it
generally covers the far future, grid development deals with a
large number of uncertainties in various domains.

In practice, grid development is performed on longer and shorter
time-horizons. Long-term grid development has a time scale of
decades and includes the creation of grid expansion plans based
on load/generation scenarios. In mid-term grid development,
investments in the grid infrastructure (new connections,
substations, etc.) are made. In short-term grid development, only
small modifications of the network are made in the time scale of
months. New protection systems, phase shifters, and so on can be
installed in this time-horizon.

Literature survey, in the last four decades, reveals that
transmission system expansion planning has evolved due to
introduction of various mathematical models and techniques. In
the recent period, Lattore et al. [13] in 2003, Lee et al. [14] in
2006, and Hemmati ef al. [15, 16] in 2013 presented an extensive
list of different models and tools used in transmission expansion
planning. Thereafter, there has been no explicit study on this topic
though Kishore and Singhal [17] did a review of transmission line
planning in 2014. Basically, in grid development, stochastic
studies have so far indicated very helpful in various studies
[18-24]. Hobbs [25], in 1994, enlisted the use of optimisation
methods to tackle planning horizon in electric utility. It can be

deduced that mathematical modelling for grid development is a
challenging task because of the presence of so many constraints
and a high level of uncertainty.

In the last three decades, there have been ample amount of work
done in this context. A brief study about the techniques,
algorithms, and concepts already developed are (though a many
could not be cited due to the scope of this paper) as follows:
maximum principle [26], mixed-integer programming [27-31],
linear and dynamic programming [12, 32-34], disjunctive mixed
integer programming [35], branch and bound algorithm [36],
implicit enumeration [37, 38], Benders decomposition [12, 39, 40],
maximum flow [12], hierarchical decomposition [41], sensitivity
analysis [42, 43], genetic algorithm (GA) [44-49], object-oriented
programming [50], game-theory [51-54], simulated annealing [55,
56], expert systems [57, 58], fuzzy set [49, 59, 60], greedy
randomised adaptive search [61], non-convex optimisation [62],
tabu search [63], ant-colony [64], data-mining [65], particle swarm
optimisation (PSO) [66—69], harmony search [70, 71], artificial
neural network (ANN) [72], game theory [73], and robust
optimisation techniques [74-78].

In addition to the various tools and methods, there is an immense
requirement of tools and knowledge-based schemes for decision
making to integrate RES under market regulations and
uncertainties [79, 80]. This is a challenging task because of
stochastic behaviour, non-linearities, and non-convexities [62] of
RES. At the same time, the electricity market also adds to the
uncertainty [81]. It can be deduced that risk and uncertainties have
evolved due to advancement in technology, and will be evolving
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further. For instance, some of the novel emerging/prominent
approaches for expansion planning are based on least-effort
criterion [82], maximum principle [26], minimising the maximum
regret or maximising benefits [83], uncertainties [84], and security
constraints [85]. Moreover, there are also environmental concerns
when RES are considered. Correa et al. [86] did a comprehensive
study of the impact of transmission expansion planning on
environmental conditions. To cite an example, external factors like
emission constraints [87, 88], efficiency measures, pollution
control, and other environmental policy greatly influence grid
development.

2.2 Asset management

Asset management, termed as mid-term horizon, is defined as the
process of maximising the return on investment of equipment over
its entire life cycle by maximising performance and minimising
costs (both capital expenditure and operational expenditure) at a
given risk level [89]. In the power industry, T&D components are
capital-intensive assets and there is a requirement of utilising them
in the most efficient way. Since the late 1990s, the power industry
has been substantially deregulated, which gave birth to ‘asset
management’.

AM is closely related to grid development and system operation,
hence forms a bridge between the long-term and short-term horizons.
CIGRE WG DI1.17 [90] shows how AM relies on asset data and
information extracted from this data that is used in future planning.
Accurate, timely, and reliable asset information results in better
decisions and in the past, there has been much research on various
aspects of AM [91-94].

As seen in Fig. 1, AM can be classified based on time domain and
activity domain. The time-domain AM is categorised into long-,
mid-, and short-term:

o Long-term AM: The time frame ranges from a year and beyond
and it aims at replacement, refurbishment or up-gradation of
existing assets like phase-shifting transformers, reactive devices,
and existing connections. This involves greater financial risks, and
hence proper planning can avoid the risks involved in time delays,
interest rates, and long-term load diversity.

o Mid-term AM: The time frame ranges a few months and it mainly
involves optimal scheduling of equipment maintenance to extend the
life span of existing facilities and to prevent unplanned outages.
Maintenance costs are the driving factor since it is a function of
outages (both planned and unplanned), and can be greatly reduced
when planned outages are scheduled according to the availability
of resources during seasonal load distributions.

o Short-term AM: Short-term AM is categorised into operational
AM (daily/weekly) and real-time AM. Operational AM aims at
minimising risks involved with assets, both physical and financial,
due to load demand. Real-time AM is also called asset outage
management. Contingency analysis forms a vital part. It helps in
assessing the effect of unexpected outages due to changes in
weather conditions, any sudden breakdown or load fluctuations on
the asset condition and performance. In recent times, due to
technological advancements, real-time monitoring of assets is
possible.

On the basis of activity aspect, Smit et al. [93] categorise AM into
technical-, economical-, and societal-AM. Technical AM deals with
ageing, insulation, and other physical conditions of assets.
Socio-economic aspect is broken down to individual aspects,
which deal with how AM would be influenced by financial
constraints and eventually its impact on society.

As seen from the above classification, maintenance forms the
crucial part of AM. Literature survey shows there have been
explicit studies on maintenance of various power system
components, like power transformers, overhead lines, cables, and
protection devices [95-103]. With the integration of RES, wind
farms have been extensively studied from AM point of view in
[96, 97, 104-107]. Suwanasri et al. [108] studied a zero-profit
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method for up-gradation of high-voltage equipment in a
substation, i.e. power transformers, current transformers, voltage
transformers, high-voltage circuit breakers, switches, and surge
arresters. In general, the power transformer represents ~60% of the
overall costs of the network, and is ranked as one of the most
important and expensive components [109]. Study reveals about
substantial research on power transformers in various literature
about health monitoring, ageing, and oil indicators [110-115].
Similarly, studies have been carried out for overhead lines [115—
118], underground cables [115, 119, 120], and circuit breakers
[115, 121-124]. Yoon and Teo [125] presented a real-life case
study on AM in Singapore though it focused on underground
grids. With the advent of computational tools, information
technology (IT), and human-machine interface in the last decade,
Kostic [126, 127] made studies on the application of IT in AM
while focusing on energy management services.

Various computational models and optimisation techniques have
been developed for maintenance, refurbishment, ageing, and
monitoring techniques in AM, like state diagram [128], fuzzy
technique [105, 113, 129], ANN [109], PSO [106], linear
programming [118, 130], branch and bound technique [131], and
other optimisation techniques [132, 133].

2.3 System operation

System operation encompasses real-time operation and operational
planning, which deals with activities ahead of real time. The
duration of this time-horizon ranges from minutes/hours to several
days ahead, though this can vary between different transmission
system operators. Reliability is of primary concern and it is very
important to maintain both security and adequacy levels at the
acceptable levels with minimum socio-economic cost. System
security level refers to the ability of the system to response to
failures [8, 10]. This ensures that the dynamics induced from any
contingency or any operating conditions remain within acceptable
level. System adequacy indicates whether there are enough means
in the system to fulfil its function, also during contingencies. A
detailed analysis of the two sub-levels is performed:

e Operational planning: Operational planning happens at several
instances prior to the establishment of the system operating
conditions. It constitutes the preparatory phases before real-time
operation. Also, operational planning ensures that right decisions
are taken in advance such that reliability management is
achievable within a prolonged future period of time, called the
operational planning horizon. The horizon consists of a sequence
of target real-time intervals. The operational planning time-horizon
does not have a specific point in time, it can be week-ahead
(W-1), two days (D-2) or one day (D-1) in advance as well as
several (n) hours (H-n) before real time. Due to the unspecific
points in time, operational planning brings few uncertainties into
consideration.

e Real-time operation: Real-time operation encompasses system
operation for time intervals ranging 15-60 min. During this time
interval, it is assumed that the system operating conditions
(scheduled generation, demand, inter-area exchange, and network
configuration) are highly predictable. Fig. 3 shows the
inter-dependency of real-time operation and operational planning.
Real-time operation is a series of activities, which are planned in a
sequential manner. It starts with the preventive control, with a
horizon of 1-2h, and aims operation at optimal cost under
security constraints. Preventive action is always planned and
covers failures or unexpected reactions from the system point of
view. Taking preventive decisions such as switching equipment,
rescheduling loads, is also part of the sequence. Furthermore, it
oversees contingencies, and prepares or adjusts the system to take
control decisions. Preventive control may be followed by two
other control strategies, namely corrective control and emergency
control. Corrective control is the first step taken following
preventive control. The horizon is 0-15min, and aims at
maintaining the system intact. Emergency action is the control
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Fig. 3 Actions taken during short-term operational planning

scheme of real-time operation. Both preventive as well as corrective
action may end up in emergency action in the worst-case scenario.
Emergency action is taken during any unplanned contingency or
failure when the effect of a contingency is not sufficiently covered
by means of preventive and corrective actions.

Literature study reveals comprehensive methodologies for
preventive and corrective actions. Load shedding, considered as
corrective action, is verified in various literatures [134—138]. Other
various mathematical modelling and optimisation techniques
include: PSO [139], decision trees [140-145], model predictive
control [146], ant colony system [147-149], GA and ANN [150],
differential evolution [151, 152], and various other optimisation
techniques [153, 154].

In system operation, decisions are taken within a limited time.
Probabilistic risk analysis is already often used in grid
development, but the application in system operation is relatively
new. IEEE and CIGRE have developed task forces working on
risk analysis and probabilistic techniques for planning and
operation [155, 156]. Recently, various domains in risk-based
planning have been studied, like power transfer limit [157],
weather conditions [158], stability [159], and reserve generation
[160]. Preece and Milanovic [159] combined probabilistic and
fuzzy inference systems to categorise different degrees of risk,

which facilitates the understanding of the planner. The paper
focuses on stability issues and the methodology was applied to a
multi-area network, but the concept can also be applied to
reliability problems. Ciapessoni e al. [161] studied the advantages
of integrating probabilistic and deterministic tools for enhancing
security during short-term horizon.

3 Conclusions

This paper reviewed the concept of different main processes and
time-horizons in the planning and operation of power systems.
The authors have tried their best to encompass adequate theory
with supporting literature for the different time-horizons. Not
only in terms of time scale but also the tasks involved in each
of the time-horizons make them different from each other. In
some cases, short-term planning may work out efficiently, but it
may not be adequate in identifying the long term needs of the
system. For example, in the short term, a lower voltage and
less expensive line addition may be adequate but may require an
expensive upgrade within a decade. In contrast, an initially more
expensive and higher capacity line might be less expensive in
the long term.

There is always an overlap among the different processes, as
illustrated in Fig. 4. Without discussing this overlap, the work
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P> Operatl‘onal Development Planning
Development & Planning
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Fig. 4 Interactions among the three processes
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Table 1 Future (possible) challenges due to interaction of different
time-horizons

Challenge Description

uncertainty
modelling

modelling the variability of RES, market
uncertainties, variable demand,
high-impact-low-probability events, operating
conditions, contingency modelling
data handling large amounts of data, collecting suitable

management failure statistics of network components
tools develop complex methods in academia for easy
understanding and use in the real life. Risk analysis
of large-scale systems with large amount of
uncertainties within a reasonable computing time
result presentation of the results of probabilistic reliability

interpretation analysis in clear, understandable and actionable

indices

would be incomplete. Small modifications of the network can be
required because of grid development or because of AM
(area-4a in Fig. 4) and planned maintenance might be cancelled
during system operation because of a contingency (area-5a). In
the past, the three processes consisted of more or less separate
activities. This is illustrated as a sequential approach in Fig. 4.
For example, the Dutch 380 kV ring was developed considering
n—2 (n—1 during maintenance) redundancy (area-la). As a
result, this gave enough room to plan maintenance in AM
(area-2a), and enough room for operational activities (area-3a).
In the future, the overlap and interaction between the three main
processes is expected to increase, because of the developments
as mentioned initially in this work (also refer Fig. 4 for
interacted approach). Earlier studies showed that offshore
network redundancy is mostly uneconomical [162]. Onshore
spinning generation reserve can serve as redundancy for the
offshore network to maintain a high level of reliability of supply
(area-6b in Fig. 4). If redundancy is not created in the offshore
network (long-term activity), this has consequences for activities
in other time-horizons.

Several (possible) challenges can be expected for future as
enlisted in Table 1. Uncertainty modelling is one of the primary
challenges followed by big data. The management of large amount
of data poses a second challenge. Furthermore, the development of
new risk tools and clear interpretation of results are of importance,
as risk analysis is useless if the results cannot be translated into
actions. Various projects on pan-European electric power system
are working towards improving reliability or developing a new
reliability criterion. Vefsnmo ef al. [163] in AFTER project (http
J/www.after-project.eu) are developing risk assessment tool to be
used in short-term horizon. GARPUR project (http:/www.garpur-
project.eu) aims at developing new reliability criteria taking into
consideration the three time-horizons (http:/www.garpur-project.
eu/deliverables). As transmission system planners face numerous
challenges originated in load growth, economic forces of
deregulation, and development and integration of new
technologies, this paper presents recent literatures to keep up with
the advancement.

In the end, the authors would like to state that large number of
articles could not be cited in this paper since citing all would be
out of scope of this paper. For a clear picture of recent
developments, a table of publication listing in the last four decades
is shown in Table 2. From the table, it can be noted that the work
has focused on literatures published in the last 10 years, thus
presenting the recent state-of-art methodologies.

Table 2 Publication listing

Time frame Number of publications
2006-2015 (present) 103
1996-2005 40
before-1995 20
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