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Abstract
Artificial Intelligence (AI)-based auto-delineation technologies rapidly delineate multiple structures of interest like organs-at-
risk and tumors in 3D medical images, reducing personnel load and facilitating time-critical therapies. Despite its accuracy, 
the AI may produce flawed delineations, requiring clinician attention. Quality assessment (QA) of these delineations is 
laborious and demanding. Delineation error detection systems (DEDS) aim to aid QA, yet questions linger about potential 
challenges to their adoption and time-saving potential. To address these queries, we first conducted a user study with two 
clinicians from Holland Proton Therapy Center, a Dutch cancer treatment center. Based on the study’s findings about the 
clinicians’ error detection workflows with and without DEDS assistance, we developed a simulation model of the QA process, 
which we used to assess different error detection workflows on a retrospective cohort of 42 head and neck cancer patients. 
Results suggest possible time savings, provided the per-slice analysis time stays close to the current baseline and trading-off 
delineation quality is acceptable. Our findings encourage the development of user-centric delineation error detection systems 
and provide a new way to model and evaluate these systems’ potential clinical value.

Keywords  Auto-delineation · Quality assessment · Process optimization · Information integration · Radiotherapy center · 
Time pressure

1  Introduction

External beam radiotherapy (EBRT) is a widely used cancer 
treatment that relies on the precise delineation of tumors and 
organs-at-risk (OARs) to optimize radiation dose delivery. 
Manual delineation is laborious and time-consuming, hin-
dering the adoption of time-sensitive therapies like adap-
tive proton therapy (Albertini et al. 2020; Sonke et al. 2019; 
Castadot et al. 2010). AI technologies such as deep learn-
ing-based auto-delineation can swiftly generate delineations 
from CT or MRI scans, reducing clinician workload and 
enhancing consistency (Nikolov et al. 2021; Cardenas et al. 
2019; Sonke et al. 2019). However, AI-generated delinea-
tions often contain inaccuracies requiring quality assessment 
(QA) by clinicians (Vandewinckele et al. 2020).

As Fig. 1 illustrates, the QA process involves clinicians 
navigating auto-delineated image slices to identify and cor-
rect errors, a particularly demanding task for anatomically 
complex regions like the head and neck. Recently, deline-
ation error detection systems (DEDS) have been proposed 
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to streamline QA by highlighting areas likely to contain 
errors (Sander et al. 2020; Zhou et al. 2023; Roberfroid et al. 
2024). While these technologies promise to reduce QA time, 
their clinical implementation and impact on workflow effi-
ciency remain underexplored.

This study aims to advance the clinical applicability 
of DEDS by addressing questions about the suitability of 
the DEDS workflow and its potential to expedite the QA 
process. We employed a mixed methods approach, starting 
with an observational user study involving a radiotherapy 
technologist and a radiation oncologist from Holland Proton 
Therapy Center (HollandPTC) to refine the DEDS workflow 
and validate several information sources for error detection 
and prioritization. This was followed by a simulation study 
that assessed the time-saving potential of various DEDS 
workflows across a diverse patient cohort with varying 
anatomies and error patterns.

The user study revealed a preference among the two clini-
cians for prioritizing errors based on clinical metrics, such 
as dose, over other forms of assistance with which they are 
less familiar. Further, DEDS assistance proved cumber-
some, with the two clinicians expressing fatigue and confu-
sion about the suggested slice orderings. These obstacles 
prompted the radiotherapy technologist to partially revert to 
a sequential slice-by-slice approach when navigating three-
dimensional image volumes. Simulation results indicate that 
DEDS can improve the QA time-quality trade-off, although 
further refinement is needed for integration into clinical 
practice. This work sets a benchmark for DEDS evaluation 

and provides a simulation model that can be used to assess 
different error detection strategies.

2 � Related work

Existing literature on user evaluation of radiotherapy soft-
ware and workflows focuses on treatment planning process 
steps like delineation (Kalpathy-Cramer et al. 2014; Steen-
bakkers et al. 2005, 2006) and dose optimization (Mazur 
et al. 2014, 2013). Particular to the case of delineation, 
research has focused on understanding the delineation work-
flow (Aselmaa et al. 2017); and investigating the effect of 
alternative image modalities (Steenbakkers et al. 2006) and 
delineation uncertainty (Maruccio et al. 2024), and usability 
of semi-automatic editing tools (Aselmaa et al. 2017; Ram-
kumar et al. 2016, 2017). Recently introduced deep neural 
networks (DNNs) generating delineations of hundreds of 
OARs at once (Nikolov et al. 2021; Cardenas et al. 2019) 
prompt clinics to create clinician-centric delineation qual-
ity assessment (QA) processes to identify and rectify DNNs 
inaccuracies (Vandewinckele et al. 2020).

This paper focuses on the delineation error detection QA 
subprocess. Delineation error detection systems (DEDS) can 
identify errors at various levels, from voxels to anatomical 
structures (Altman et al. 2015; Hui et al. 2018; Rhee et al. 
2019; Sandfort et al. 2021; Mody et al. 2022a). DEDS accel-
erate QA by directing attention to errors, reducing unnec-
essary scrutiny of clinically-acceptable delineations. For 

Fig. 1   Overview of the AI-infused delineation workflow. The input is 
a set of 3D image volumes to delineate, a computerized tomography 
(CT) in the example. After generating the initial delineations with the 

AI, the clinician proceeds to perform a quality assessment (QA). The 
process has two tasks that alternate until there are no more errors: 
delineation error detection and editing
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instance, some DEDS employ AIs to predict errors within 
slices based on auto-generated delineations and their uncer-
tainty (Sander et al. 2020). Recent developments even sug-
gest a DEDS module that actively directs clinicians to the 
next slice for review based on predicted error extent (Zhou 
et al. 2023) or predicted dosimetric impact (Roberfroid et al. 
2024). Despite advances in DEDS, their clinical implemen-
tation and associated user experience challenges remain 
largely unaddressed issues.

In adaptive radiotherapy, clinicians prioritize areas based 
on dose distribution and patient malignancies (Chaves-de-
Plaza et al. 2022). Various studies explore the dosimetric 
impact of delineation errors (Guo et al. 2021; Mövik et al. 
2023; van Rooij et al. 2019). Recent work introduces a 
DEDS that utilizes deformations of auto-generated delinea-
tions and dose prediction technologies to identify dosimetri-
cally relevant areas for inspection (Roberfroid et al. 2024). 
We incorporate dose as a clinically relevant priority measure 
and discuss alternatives with the two clinicians in the study 
when dose information is unavailable.

3 � Materials and methods

We used imaging data associated with a retrospective cohort 
of 42 head and neck cancer patients treated at Holland Pro-
ton Therapy Center (HollandPTC) between 2018 and 2020. 
The study from which the patient data was taken received 
IRB approval from Holland Proton Therapy Center (Hol-
landPTC), and all patients provided informed consent. Data 
from three patients were employed for the user study and the 
complete cohort for the simulation study.

Figure 2 presents an overview of the different types of 
three-dimensional images available per patient plus the 
additional ones we derived, like AI delineations and their 
uncertainty. In the remainder of this paper, we distinguish 
three-dimensional images, or image volumes, using a mon-
ospace font. Unless stated otherwise, operations on pairs 
of volumes are applied voxel-wise, yielding a new volume 
(i.e., ���� = ���� + ���� ). We use subscripts on the vol-
ume to index slices or voxels, which we specify in the text. 
For instance, ���s in the figure refers to the sth 2D axial slice 
of vol.

3.1 � Imaging data

The top section of Fig. 2 displays slices of the patient’s CT 
scan (image) and organ-at-risk (OAR) delineations ( ���∗ ) 
used for the original treatment planning. We define ���∗ as 
delineation ground truth in our studies. In the user study, par-
ticipants did not have access to ���∗ while performing the 
error detection tasks. ���∗(���) represents the delineation of 
a specific OAR, which is a binary image with ones where the 

OAR lies and zeros otherwise. image and ���∗ have width, 
height and slice dimensions of sizes 512 × 512 × 195 voxels 
and spacing of 0.98 × 0.98 × 2 mm.

Each patient file also included the treatment dose distri-
bution volume, representing radiation deposition in space. In 
Fig. 2, brighter yellow and darker purple colors mean higher 
and lower dose values, respectively. We resampled the dose 
to match the dimension sizes of image and ���∗ . We include 
the dose in our studies because the participants have an 
adaptive radiotherapy background, where the dose is used 
as a heuristic to determine which slices need more attention 
(Roberfroid et al. 2024). In certain situations, metrics such as 
the distance to the target volumes may be more appropriate 
than the dose. Deciding to prioritize one over the other would 
necessitate rearranging the slices and consequently altering the 
workflow, which constitutes the primary focus of our paper.

For preprocessing, we cropped all three volumes using 
a bounding box centered at the brain stem with dimensions 
240 × 240 × 80 voxel and spacing of 0.8 × 0.8 × 2.5 mm. 
Linear interpolation was applied to image and dose, while 
nearest-neighbor interpolation was used for ���∗ . These 
preprocessing steps aligned the data with the input format 
expected by the AI.

3.2 � AI delineations, uncertainty and error

We fed the patient’s image in the HollandPTC dataset to a 
pre-trained state-of-the-art Bayesian deep neural network (the 
AI in this work), to generate ten candidate delineations for each 
input image. For this, we used the FlipOut model described 
in Mody et al. (2022b), which is based on the FocusNet archi-
tecture, employing a modified cross-entropy loss. The model 
generates delineation candidates by running ten times, each 
with a different set of weights sampled from a learned distribu-
tion. The network was trained on a subset of 33 patients of the 
MICCAI2015 head and neck dataset (Raudaschl et al. 2017). 
For each patient, there are delineations for nine OARs of which 
we used six: BrainStem, Mandible, parotid glands (Parotid_L 
and Parotid_R), and submandibular glands (Submand_L and 
Submand_R). We refer the reader to the original publication 
for more details about the network architecture and training.

Each AI-generated candidate ����i with i ∈ {1,… , 10} is 
a label map volume, with each voxel having the ID of the 
OAR it belongs to (or zero if background). To aggregate the 
candidates into the predicted delineation ��� , we computed 
the voxel-wise median label:

where � denotes the voxel-wise median function. ��� is also 
a label map with the same dimensions and spacing as ����� . 
To obtain an OAR’s predicted segmentation ���(���) , it 
suffices to set voxels matching match a given OAR ID to 

(1)��� = �(����1,… , ����10),
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one and the rest to zero. Note that the median operation can 
be thought of as performing a voxel-wise majority vote on 
the OAR IDs.

From the candidate delineations, we also calculated the AI’s 
uncertainty unc per OAR as the voxel-wise standard deviation 
of the OAR’s candidates:

(2)���(���) =

�∑10

i=1
(����(���)i − 𝜇̄(���))2

9
,

where ����(���)i represents the binary image of the OAR’s 
ith delineation candidate and 𝜇̄(���) the mean delineation for 
a specific OAR.

As the sample unc slice in Fig. 2 illustrates, the com-
puted uncertainty exhibits higher values (brighter spots) in 
image regions with challenging delineation, such as those 
lacking inter-tissue contrast. We prefer AI uncertainty over 
previous hand-engineered feature-based methods because 
it is readily available from the Bayesian network, requir-
ing less domain-specific knowledge, and is correlated with 

Fig. 2   Example of the information sources used in this paper for one 
of the patients in the HollandPTC dataset. The top row depicts a slice 
of the image and dose of the Parotid_R. We used a Bayesian Deep 

Neural Network to obtain ten delineation candidates based on the 
image. The bottom row depicts the information sources we derived 
based on these candidates



Cognition, Technology & Work	

delineation errors (Sander et al. 2020; Mody et al. 2022b). 
Therefore, in our studies we adopt unc as a proxy for 
delineation errors’ location and extent.

The final information source we consider is the delinea-
tion error error, calculated as

where | ⋅ | is the voxel-wise absolute value function. 
�����(���) highlights areas where AI predictions and Hol-
landPTC’s delineations disagree. Note we do not differenti-
ate between under and over-segmentation errors. Being an 
error proxy, unc can suffer from false positives and nega-
tives. In the studies, we use error to provide an upper 
bound to the performance gains, assuming an optimal error 
detector. Finally, in the user study, we use error as an 
additional information source to elicit discussion, allowing 
participants to contrast it with unc.

3.3 � Per‑slice scores

To enable priority sorting in the DEDS-assisted workflow, 
for an OAR we compute per-slice scores based on the unc, 
dose, and error. Computing the priority scores p(���) of 
an OAR’s slices entails applying an aggregation function to 
each slice of the OAR and collecting the values in an array:

where agg(⋅) takes as input a set of voxels (in this case 
those in an axial slice s) and outputs a number. For 
instance, to obtain the mean uncertainty score, we set 
���(���) = ���(���) and agg = mean . We only consider 
voxels within ���∗(���) ’s bounding box to avoid assigning 
scores to unrelated parts of the volume, like slices above 
and below the OAR. The assumption of correct bounding 
boxes before QA is not unreasonable, as inspecting and rec-
tifying OARs’ bounding boxes is an easy task that could be 
performed beforehand. In the user study, we considered the 
minimum (min), maximum (max), mean, and sum aggrega-
tion functions to enable discussion. In the simulation study, 
we focused on the most relevant ones from the user study.

4 � User study: workflow comparison

We conducted a two-part user study to investigate clinicians’ 
current (part 1) and DEDS-assisted (part 2) workflows. In 
the following, we describe the study setup and then present 
and discuss the main findings, which inform the simulation 
study in the next section.

(3)�����(���) = |���∗(OAR) − ���(���)|,

(4)
p(���) = {agg(���(���)s=1)agg(���(���)s=2),… ,

agg(���(���)s=S)},

4.1 � Study setup

4.1.1 � Participants

A radiation oncologist (RO) and a radiotherapy technologist 
(RTT) from Holland Proton Therapy Center (HollandPTC), 
specialized in the head-and-neck area participated in our 
study. Both participants have several years of experience 
and perform delineation tasks routinely. TU Delft’s IRB 
approved this research, and each clinician provided informed 
consent to be part of the study.

4.1.2 � Apparatus

The clinicians utilized the DEDS depicted in Fig. 3. We 
developed the custom DEDS software based on several ses-
sions with two clinicians from Leiden University Medical 
Center and University Medical Center Utrecht. The design 
process is detailed in Appendix A. The DEDS incorporates 
functionality from standard delineation software like the 
list of OAR to review and a slice-based image viewer that 
allows inspecting the image volumes with interactions such 
as navigation, zooming, and panning. This functionality ena-
bles traditional error detection workflows. Additionally, as 
detailed next, the DEDS software implements functionality 
that permits clinicians to define and execute priority-based 
workflows.

A more detailed slice-level OAR explorer (slice explorer) 
allowed participants to inspect OARs’ slices and sort them 
based on a priority score

defined as weighted combination of unc, dose, and error 
scores. wi represents weights, normalized to sum to one, and 
aggi denotes aggregation functions. Participants selected 
their preferred aggregation functions and assigned them 
weights before starting part 2 of the study using the form in 
the score definition area of the DEDS’ GUI in Fig. 3a. We 
allowed participants to define the priority score to elicit dis-
cussion about the relevance of different information sources 
and aggregation functions.

Although unc can be used as an error proxy, it is not 
the only option. For instance, the approach of Sander et al. 
(2020) directly flags errors at the patch level. To facilitate 
richer discussions, we decided to permit participants to use 
the error and told them it was computed by an automatic 
method to prevent overreliance. Participants could overlay 
the volumes used for the score computation on the image 
viewer for closer inspection. A panel to the right of the 
image viewer (contextual information) provided details 

(5)
wp(���)s =w1agg1(���(���)s) + w2agg2(����(���)s)

+ w3agg3(�����(���)s),
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about the current slice, its score, and its location within the 
image. Figure 3b presents an example of the different infor-
mation sources for slice s = 11 of OAR=Parotid_R.

4.1.3 � Procedure

The RTT and RO participated in a three-stage, 60-min 
session. In the first stage, we presented the study’s goal, 
introduced the clinicians to the DEDS, explained how to 
define priority scores based on weights and aggregation 
functions to sort OARs’ slices, and let them interact with 
the DEDS to gain familiarity. In the second stage, the 
participants detected delineation errors without (part 1) 
and with (part 2) DEDS assistance. In part 1, participants 
performed their usual sequential error-finding workflow, 
permitting them to gain further familiarity with the tool 
before introducing assistance. For part 2, participants were 
instructed to use DEDS guidance by defining a priority 
score (as defined in Eq. 4) and using it to guide the order 
in which they visit OARs’ slices. In both parts, the partici-
pants were instructed to consider OARs’ priorities when 
deciding which to address within a 5-min time window, 
chosen to induce the need to prioritize delineation errors. 
Furthermore, OARs were shown in the same order in the 
graphical user interface, and participants had to complete 
an OAR before moving on to the next. Finally, the par-
ticipants were allowed to move back and forth between 

adjacent slices if needed for sense-making. Because rec-
tifying errors is time-consuming and not within the scope 
of this study, we asked clinicians to instead indicate per 
slice if they would edit it via a keyboard shortcut. After 
finishing each task, we used a 5-min time slot to discuss 
the clinicians’ experience using specific slices they marked 
as requiring editing, and, in part 1, to define the priority 
score. In the last 20-min stage, we had a semi-structured 
discussion about participants’ workflows, their choice of 
information sources for prioritization, and their experi-
ences and challenges for DEDS adoption.

We used a subset (N = 3) of HollandPTC’s patients’ data 
(D1, D2 and D3). D1 was used in the familiarization stage. 
The RO saw data from D2 and D3 in part 1 and part 2. The 
RTT observed D2 twice. This was unintentional and was not 
noticed until the data analysis phase. Therefore, we treated 
these sessions as independent observations, but we acknowl-
edge this duplication as a limitation and have taken it into 
account when interpreting the results. Table 1 summarizes 
the structures considered in the user study analysis for D2 
and D3. We do not include the mandible because clinicians 
tend to skip it due to its low clinical significance (Jensen 
et al. 2020) and the clinicians’ high confidence in AI auto-
delineations for bony structures. Also note that the parotid 
glands demand the most effort, with their bounding boxes 
spanning more slices and containing more voxels per slice 
than the BrainStem and submandibular glands.

Fig. 3   Custom DEDS software used in the study. a Shows the graphi-
cal user interface. The main areas are the slice explorer and the image 
viewer. Using the score definition box, clinicians can define a slice 
ordering per OAR based on uncertainty, dose, and error information 

sources. b Shows the available information sources for the currently 
displayed OAR (slice 11 of Parotid_R). It also presents the per-slice 
value obtained with the user-defined aggregation functions
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4.1.4 � Data analysis

We recorded the screen and the participant’s spoken remarks 
in the sessions. From these, we transcribed clinicians’ 
remarks and timestamped OAR changes, slice changes, 
and slices marked as “required editing”. We recorded slice 
changes, yielding information about the order in which clini-
cians inspect the delineations in each condition. These inter-
action logs allowed us to reconstruct clinicians’ workflows.

4.2 � Part 1: Non‑assisted workflow

The RTT and RO conducted the error-finding task as in clin-
ical practice. Figure 4 shows the sequence of slices followed 
by the RTT and RO for the BrainStem (a) and Parotid_L 
(b). Figure 4a.1 and b.1 display the clinicians’ and optimal 
slice change sequences using the per-slice sum of errors as 
the priority score. The y-axis is trimmed to slices within the 
bounding box of ���∗(OAR) and sorts the slices based on 
their 3D position within the image volume. Despite opposing 
starting directions, both clinicians share similar navigation 
behavior, following a sequential approach (unlike the opti-
mal sequence’s “jumpy” behavior), with the RTT moving 
from bottom to top and the RO mostly in reverse. They fre-
quently revisited adjacent slices to verify multi-slice errors, 
particularly in the slice range [14, 19] of the BrainStem.

To compare the slice sequences of different workflows, 
we calculated the number of slice change interactions 
required to review slices suggested by a DEDS. A subset 
S of an OAR’s slices consists of the |S| slices exceeding 
the threshold. We evaluated the interactions needed for 
slice subsets of increasing size as the threshold decreased, 
including clinician workflows with redundant interactions 
removed and hypothetical scenarios: an optimal sequence 
ordered by decreasing erroneous voxels per slice, a worst-
case sequence reversing the optimal, and five random per-
mutations of the optimal sequence, with the mean and 95% 
confidence interval.

Figure 4a.2 and b.2 show slice change interactions as a 
function of suggested slice subset size for clinicians’ work-
flows and hypothetical scenarios. The optimal workflow 
forms a diagonal line with a unit slope, indicating slice 
changes match the subset size. The worst-case scenario 
appears as a horizontal line since the highest error slice 
is reviewed last. Random samples lie between the optimal 
and worst-case scenarios, approaching the latter as the sub-
set size grows, reflecting higher chances of critical slices 
appearing later. Clinicians’ workflows generally deviate 
from the optimal path and often exceed the worst-case due to 
redundant interactions. Removing redundancy improves the 
RO’s performance, aligning closer to or surpassing random 
workflows but still falling short of the optimal. The RTT’s 
workflows remain near the worst-case, often missing critical 
slices early. The RO’s workflows are faster than the RTT’s, 
indicating shorter per-slice analysis times.

Table 2 compares the performance of different workflows 
for inspected OARs. Performance is quantified by the area 
under the curve relative to the optimal sequence, normalized 
per OAR. Scores closer to zero indicate near-optimal perfor-
mance, while scores closer to one approach the worst-case 
scenario. Values above one reflect redundant interactions. 
Removing redundant visits (RTT’ and RO’) significantly 
improves scores. Trimmed RO workflows (RO’) perform 
best, outperforming RTT and random sequences, but still 
deviate from the optimal, especially for the BrainStem and 
parotid glands, suggesting DEDS guidance could further 
reduce interactions and save time.

4.3 � Part 2: DEDS‑assisted workflows

In part 2, the RTT and RO were offered and instructed to 
use DEDS assistance to find slices that required attention. 
They started by defining a priority metric as a weighted 
combination of unc, dose, and error to sort the slices 
in priority order. Table 3 shows the combinations of infor-
mation sources clinicians defined for different OARs. Both 
expressed reservations about the redundancy of uncertainty 

Table 1   Overview of the 
organs-at-risk (OARs) 
considered for analysis

The table lists, for each OAR of each dataset, the number of slices and amount of voxels per slice its 
bounding box spans. It also lists the volume in mm3 of the OAR’s delineation ground truth ���∗ . Bold 
entries indicate the OAR with the largest volume within each dataset

Dataset 2 (D2) Dataset 3 (D3)

OAR Number 
of slices

Voxels per slice Volume (mm3) Number 
of slices

Voxels per slice Volume (mm3)

BrainStem 25 1666 29,963 25 1872 36,037
Parotid_L 25 2688 35,736 26 4104 36,875
Parotid_R 26 2912 36,646 24 4292 39,267
Submand_L 18 1209 12,498 16 1015 10,410
Submand_R 17 1394 10,970 17 928 9970
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and error and their reliability in time-sensitive scenarios. 
This might be why clinicians emphasized dose-based risk 
measures, assigning lower weights to unc and error. 
Information sources, aggregation functions, and weights 
remained generally consistent across OARs. The sole excep-
tion was the aggregation function for dose-based slice scores 
for the parotid glands, where the RO adjusted it to the mean.

The RTT and RO found following the priority order 
to be cumbersome and fatiguing, echoing the RO’s view 
that “jumping between slices is not logical” and disrupts 
the 3D perception. Figure 5 illustrates this sentiment in 
the Parotid_R’s workflow data. The RO (a) struggled 
with the initial sorting order provided by DEDS, leading 
to a reverse inspection (following ascending rather than 
descending priority score order), which led to a mirrored 

Fig. 4   Unassisted workflows for BrainStem (a) and Parotid_L (b) for 
the RTT and RO. a.1 and b.1 Depict slice changes as the session pro-
gresses, and (a.2) and (b.2) show the interactions needed to complete 
a DEDS-suggested workflow, encompassing subsets of OAR’s slices 
of increasing cardinality corresponding to decreasing threshold val-

ues for the prioritization scores. We compare the observed workflows 
with versions in which redundant interactions have been trimmed and 
with several hypothetical scenarios. The purple shaded area corre-
sponds to the 95% confidence interval of the random scenario

Table 2   Performance of various error detection workflows

For a given workflow, its score corresponds to the difference between 
the areas under the workflow’s and the optimal workflow’s curves. 
The scores are normalized per OAR to provide comparable scores. 
The optimal and worst-case sequences have scores of zero and 
one, respectively. Clinicians’ workflows with redundant slice visits 
removed are indicated by the apostrophe. Bold values highlight the 
smallest difference per OAR

OAR RTT​ RTT’ RO RO’ Random

BrainStem 1.50 1.00 1.32 0.71 0.81
Parotid_L 1.98 0.93 1.10 0.52 0.86
Parotid_R – – 1.11 0.69 0.84
Submand_L – – 0.30 0.18 0.80
Submand_R – – 0.21 0.21 0.75
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slice sequence as shown in (a.1). The RTT (b) intermit-
tently followed the DEDS suggestions but often reverted 
to traditional navigation, as depicted in (b.1). Figure 5a.2 
and b.2 show that deviations from the suggested sequence 

led to suboptimal performance. A similar pattern is evi-
dent in the BrainStem and parotid glands, as presented 
in Table 4. The trimmed RTT workflows (RTT’) tend to 
perform better, as the RTT intermittently followed DEDS 

Table 3   Settings the RTT and 
RO used to define the priority 
score for sorting the slices of 
the different OARs in part 2 of 
the user study

agg denotes the aggregation functions and w the weights clinicians applied per information source and 
OAR

Source BrainStem Parotid_L Parotid_R

RTT​ RO RTT​ RO RTT​ RO

agg w agg w agg w agg w agg w agg w

unc Mean 0.50 Mean 0.25 Mean 0.50 Mean 0.25 Mean 0.50 Mean 0.25
dose Max 0.50 Max 0.65 Max 0.50 Max 0.65 Max 0.50 Mean 0.65
error Sum 0 Sum 0.10 Sum 0 Sum 0.10 Sum 0 Sum 0.10

Fig. 5   Assisted workflows of the RO (a) and RTT (b) for Parotid_R. 
a.1 and b.1 depict slice changes as the session progresses, and a.2 
and b.2 show the interactions needed to complete a DEDS-suggested 
workflow, encompassing subsets of OAR’s slices of increasing car-
dinality corresponding to decreasing threshold values for the prior-

itization scores. We compare the observed workflows with versions 
in which redundant interactions have been trimmed and with several 
hypothetical scenarios. The purple shaded area corresponds to the 
95% confidence interval of the random scenario
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pointers, avoiding unnecessary slice visits, especially for 
the parotid glands.

4.4 � Discussion

Part 1 investigated clinicians’ error detection workflows. 
Both the RO and RTT followed a sequential strategy, 
inspecting adjacent slices. They favored such workflow 
because it helps them to orientate spatially, leveraging their 
mental representations of the OARs. Nevertheless, the 
comparison of clinicians’ workflows with other scenarios 
revealed that redundant and suboptimal sequences decrease 
their performance. Part 2 focused on investigating clini-
cians’ use of DEDS systems. The RTT and RO had prob-
lems accepting this approach, complaining about fatigue, 
losing their spatial orientation, and, in the case of the RTT, 
repeatedly falling back to the sequential workflow. These 
issues need to be solved in the future since the workflow 
comparison again convincingly demonstrates that DEDS can 
reduce the number of needed interactions, which can also 
impact overall spent time.

Concerning the three information sources considered, 
both clinicians expressed their doubts regarding the intel-
ligibility and trustworthiness of the uncertainty and error 
information sources. The dose was less problematic as an 
information source, likely due to participants’ experience 
in adaptive radiotherapy where heuristics like stimating the 

delineation error’s proximity to the tumor are employed. 
They mentioned that the maximum dose could provide a 
guiding signal because false positives and negatives are 
problematic in slices with a max dose higher than the OAR-
specific limit. We leverage this observation in the next 
section to develop a computational model of the DEDS 
workflow.

The main limitation of the user study is the very small 
sample size. To test the insights from the user study on a 
larger dataset, we performed a quantitative evaluation of the 
DEDS-assisted QA workflow using a simulation approach. 
To this end, we introduce a computational model of the com-
plete QA workflow, including analysis and editing, which we 
use to investigate the viability of DEDS workflows. Specifi-
cally, we analyze the impact of varying per-slice analysis 
times on overall QA performance for the complete Hol-
landPTC dataset.

5 � Simulation study: assessing 
DEDS‑induced time gains

5.1 � Simulation setup

To examine the potential time savings achievable with 
DEDS, we compare DEDS workflows with the current unas-
sisted clinical workflow. Figure 6 depicts a computational 
model of the quality assessment process (QA). In our simu-
lation, we consider three variations of this process that arise 
when using different slice sequences.

In the first variation (baseline), the simulated clinician 
begins either at the cranial or caudal slice with an equal 
probability ( Pr = 0.5 ) and progresses towards the oppo-
site end (next slice step), analyzing all slices. In the sec-
ond (error) and third (dose) variations, the clinician visits 
the slices in order of their decreasing error extent and max 
dose, respectively. In these DEDS-assisted workflows, the 
simulated clinician evaluates a slice only if it has an error 
(error threshold equals zero) or its max dose exceeds a pre-
set limit l(OAR) , respectively. l(OAR) is an OAR-specific 
limit based on constraints proposed by Jensen et al. (2020). 

Table 4   Performance of various error detection workflows

For a given workflow, its score corresponds to the difference between 
the areas under the workflow’s and the optimal workflow’s curves. 
The scores are normalized per OAR to provide comparable scores. 
The optimal and worst-case sequences have scores of zero and 
one, respectively. Clinicians’ workflows with redundant slice visits 
removed are indicated by the apostrophe. Bold values highlight the 
smallest difference per OAR

OAR RTT​ RTT’ RO RO’ Random

BrainStem 0.92 0.92 0.95 0.95 0.42
Parotid_L 0.57 0.39 1.08 1.00 0.40
Parotid_R 1.39 0.34 0.94 0.94 0.42

Fig. 6   Scheme of the delineation quality assessment (QA) process for 
an OAR. The analyze slice and edit slice rectangles have an associ-
ated time cost. The workflow variations we implement differ in the 

implementation of the go to next slice and analyze slice steps, which 
have a thicker border
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In the error variations, we use delineation error instead of 
AI uncertainty because AI uncertainty serves as a proxy for 
delineation errors. By using the actual error, we simulate a 
best-case scenario where AI uncertainty perfectly identifies 
delineation errors.

For this study, the same OARs and bounding boxes per 
OAR as described in Sect. 3 were used. We preprocessed 
the error following the protocol proposed by Sander et al. 
(2020) to remove tolerated errors. This filtering process 
excludes slices with errors that can be attributed to interob-
server variation. An OAR’s erroneous voxel is considered a 
tolerated error if it is within 2 pixels from the border of ���∗
(OAR), not part of a region of erroneous voxels of at least 
ten voxels in size, and not outside the top and bottom deline-
ation limits. The slice metric we use for the error workflow 
is the sum of the non-tolerated erroneous voxels.

We use the dose as a proxy of the clinical significance of 
potential delineation errors for the patient’s treatment. We 
selected the maximum as the aggregation function for the 
per-slice dose metric. Jensen et al. (2020) consider the mean 
dose, but we opted for the max based on the results of the 
user study. max(����(OAR)s ) is a more stringent constraint, 
representing a worst-case scenario for dosimetric deviations 
caused by erroneously delineated voxels in slice s. The max 
of the dose per slice indicates a lower risk in areas where the 
dose is consistently lower than the OAR’s dosimetric con-
straint. The first three columns of Table 5 display the OARs, 
their max-dose constraints, and average slice numbers across 
patients for the baseline.

We simulate clinician behavior, relying on existing lit-
erature to estimate time costs for different steps. Based 
on Aselmaa et al. (2017), we model the time for analyz-
ing a slice s in the baseline condition as ta(s) ∼ N(4.2, 3.2) 
seconds. For the error and dose conditions, we model the 
analysis time as t�

a
(s) ∼ N(4.2 + �, 3.2) seconds. Here, � rep-

resents the additional time required for analyzing DEDS sug-
gestions, which are often not contiguous, resulting in jumps 
between non-sequential slices. In the simulation, we con-
sider � ∈ {0, 4} seconds, which allows us to assess the mag-
nitude of the effect introduced by increasing analysis times. 
Finally, we assume a two-dimensional brush of size bs = 10 
pixels for editing and model the time for editing a group of 
bs pixels as tepix ∼ N(1, 0.1) seconds. The time for editing a 
faulty slice is computed as ted(s) = (tepix ⋅

∑
vox �����s)∕bs . 

Note that the editing time modeling may vary depending on 
the editing tools used. In this case, we assume manual pixel 
brushing for simplicity. The total time per workflow execu-
tion is calculated as

(6)Ttot = Ta + Ted =
∑

s∈S

ta(s) + ted(s),

Ta
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where S is the set of slices to review and Ta and Ted represent 
the total analysis and editing time, respectively. To assess 
workflow quality, we calculated the percentage of attended 
errors for each workflow by dividing the sum of errors in 
the visited slices by the total amount of errors within the 
OAR’s volume.

We conducted one hundred workflow runs for each 
combination of patient, OAR, and experimental condition 
(workflow variation).1 In the results, we aggregate numerical 
quantities like slice numbers and times across the workflow 
runs within each OAR of each patient to obtain a statistical 
overview of the differences between conditions.

5.2 � Results and discussion

Table 5 aggregates slice numbers, percentages of attended 
errors, and total elapsed QA times across patients. The last 
row of the table indicates that, on average, the baseline 
workflow takes longer than dose-based workflows and the 
optimistic error-based one. In the baseline workflow, which 
takes 1034s, the simulated clinician spends an average of 
7.4 s per slice. In the error and dose workflows, the time per 
slice is 8.72 and 6.86 s for the optimistic scenario ( � = 0 ) 
and 12.58 and 10.73 s for the pessimistic one ( � = 4 ). Even 
if the time per slice is higher in the DEDS workflows, the 
total elapsed time generally turns out lower because cli-
nicians do not need to check all slices. Regardless of the 
scenario, we observe a two-second difference in per-slice 
times between the dose-based and error-based workflows. 
These differences translate to total time savings of around 
two hundred seconds for both scenarios. However, these 
time gains come at the cost of quality. The table shows that 
while the baseline and error-based workflows addressed all 
errors, the dose-based ones only attended to 69% of them. 
A similar speed/quality tradeoff is expected if a higher 
threshold is used in the error-based workflows to limit the 
subset of slices for review. Focusing on individual OARs, 
we observe similar trends. Noteworthy are the BrainStem 
and the Mandible for which dose-based DEDS workflows 
obtain significant speedups. The dose-based workflows had 
the lowest percentage of addressed errors for the Mandible 
and BrainStem, indicating that many slices were skipped 
because they did not exceed the dosimetric constraints. This 
prioritization strategy, along with the larger size of these 
structures, accounts for the observed time savings. Skipping 
more slices, especially those with significant errors, reduces 
analysis and editing times but compromises delineation qual-
ity (Chaves-de-Plaza et al. 2022).

Focusing on the difference between scenarios, it is pos-
sible to observe how increasing the difficulty of the slice 
analysis task, and consequently, the time it takes leads to 
longer Ttot . Although the pessimistic dose scenario is com-
petitive with the baseline, the error one significantly exceeds 
it. At the OAR level, we note that larger structures like the 
BrainStem and the Mandible, although closer to the baseline, 
still outperform it in most cases. This shows that, even with 
increased analysis times, DEDS can be particularly time-
saving when used to review large anatomical structures, at 
the expense of confusing clinicians as seen in the user study.

To understand the contributions of the analysis ( Ta ) and 
editing ( Ted ) times to the total QA time, in Fig. 7 we visual-
ize the total analysis (a) and editing (b) times per OAR per 
patient averaged across simulation runs. Each column of 
gray horizontal lines within an OAR’s area corresponds to 
a simulated condition, denoted by the color of the diamond 
on the column. Each line corresponds to the average time per 
patient and the diamond presents the average across patients. 
In general, we observe that in the optimistic scenarios, the 
analysis times are consistently below the baseline. In the 
pessimistic scenario, DEDS analysis times are less favora-
ble but stay close to the baseline for larger structures like 
the BrainStem and the Mandible, a similar trend to the one 
we observed for Ttot before. Except for the BrainStem, the 
dose-driven workflow consistently requires more time than 
the error-driven one for � = 0 and � = 4 . This indicates that 
the max(dose) criteria designate more slices as high-risk 
compared to error-free slices.

Concerning editing times, the figure indicates that the 
baseline and the error-based DEDS workflows perform 
similarly because, without a priority metric or error toler-
ance, the simulated clinician has to amend all the delineation 
errors in the error-based workflows. In contrast, the dose-
based DEDS workflows are faster because they focus solely 
on slices with a high max dose, which are not necessarily 
the ones with the errors that take the longest to edit. In line 
with the results in Table 5, the improved performance of 
dose-based workflows is notable for the BrainStem and the 
Mandible, which are the largest structures and, therefore, 
tend to have more extensive erroneous regions. Finally, note 
that the times between scenarios do not change because we 
assumed the editing mechanism remains the same and is 
unaffected by the slice sequence.

In summary, the results of the simulation study suggest 
that DEDS workflows can reduce QA times. As the results 
for the dose-based workflows show, more significant time 
gains can be achieved by using more stringent thresholds to 
select the subset of slices to review at the cost of decreased 
delineation quality. This reduction in quality might be 
acceptable if it can be established that the bypassed errors 
are not clinically relevant. Our findings show diminishing 
DEDS advantages over the baseline workflow for smaller 

1  The simulation and analysis codes are available at https://​graph​ics.​
tudel​ft.​nl/​study-​deds.

https://graphics.tudelft.nl/study-deds
https://graphics.tudelft.nl/study-deds
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Fig. 7   Mean total analysis (a) and editing (b) times per OAR per 
patient in the cohort for the five simulated conditions. Each column 
within an OAR’s area corresponds to the condition indicated by the 
color of the diamond. Gray horizontal lines within each column cor-
respond to the patient’s times, averaged across simulation runs. The 

colored diamond indicates the mean time per condition. The y-axis 
uses a logarithmic scale to enhance comparability and reduce empty 
space in the plot. Note that the y-axes of the two subplots have differ-
ent ranges
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structures and when 𝜖 > 0 . Therefore, it is essential to reduce 
analysis time to justify the practical use of DEDS.

6 � Discussion

In this paper, we evaluated the clinical suitability of deline-
ation error detection systems (DEDS). In particular, can 
DEDS speed up the Quality Assessment process without 
losing quality? To this end, we co-designed a DEDS with 
two experienced head and neck radiation oncologists from 
Utrecht University Medical Center and Leiden University 
Medical Center. The system was then used by two clinicians 
from HollandPTC to perform the assisted and unassisted 
DEDS workflows based on slice-wise statistics of the uncer-
tainty, dose, and error. Based on insights from the user study, 
we addressed the question of whether DEDS can contribute 
to speeding up the clinical QA workflow using a simula-
tion approach. A contribution of this work is a computa-
tional model of the QA process, which we used to simulate 
and compare several workflows. Researchers can use and 
extend this model to benchmark novel and existing DEDS 
proposals.

In the user study, we identified two key challenges to 
DEDS adoption. First, the information sources require 
refinement. Clinicians appreciated using dose information 
for its clarity, as it helped filter out clinically insignificant 
slices, but found the uncertainty and error metrics confusing, 
unnecessary, and potentially unreliable. This issue might be 
addressed by allowing more time for familiarization, intro-
ducing clearer indicators of uncertainty, and enhancing 
system-user compatibility in clinical settings (Bansal et al. 
2019; McCrindle 2021; Bansal et al. 2019). Second, DEDS 
workflows often require navigating between non-contiguous 
slices, which clinicians found cumbersome and fatiguing. 
This navigation mode led clinicians to revert to conven-
tional, sequential slice inspection, increasing the number of 
interactions. The challenge of maintaining a mental frame 
when jumping between slices could explain this behavior 
(Aselmaa et al. 2017). Providing less intrusive guidance or 
better tools to update clinicians’ mental models could allevi-
ate these issues (Musleh et al. 2023).

The simulation study showed that DEDS can improve 
QA times over the current baseline, especially for large ana-
tomical structures where only a subset of slices is relevant 
according to a predefined metric. Nevertheless, considering 
smaller subsets of potentially non-adjacent slices poses two 
challenges. First, analysis times increase because clinicians 
cannot inspect slices sequentially. A mitigation strategy 
could be to offer clinicians chunks of contiguous slices to 
allow more effective sense-making. Second, and perhaps 
more critical for the adoption of DEDS-based workflows, 
it should be possible to be certain that bypassed errors are 

not clinically relevant-a non-trivial challenge that requires 
improving AI uncertainty estimates and developing clini-
cally relevant metrics (Roberfroid et al. 2024). For instance, 
DEDS could leverage clinical measurements or heuristics 
like distance to target volumes as a priority metric when the 
error or dose are unavailable. The proposed framework can 
directly accommodate new metrics by defining a per-slice 
aggregation and a weight, allowing for combination with 
other metrics if needed.

Finally, there are several future work avenues. First, the 
present study applies to OARs, but other high-priority struc-
tures like target volumes and elective lymph nodes could 
also be considered. Target volumes likely face challenges 
to adoption because clinicians are less willing to forego 
reviewing all slices due to the high risk they represent to 
the patient. For example, missing errors in target volumes 
could directly impact treatment outcomes, making clinicians 
cautious about skipping slices. Lymph node fields are more 
promising because of their large extent (which makes them 
cumbersome to delineate), high priority, and relative stabil-
ity across the population, facilitating the recent development 
of auto-delineation technologies (Cardenas et al. 2021). Sec-
ond, the user and simulation studies could be extended to 
include other auto-delineation AIs and anatomical regions, 
which might have different error modes. Finally, the compu-
tational model of the QA process can be enriched, such as 
by using skewed distributions for modeling reaction times, 
which can be more appropriate but need substantial empiri-
cal data to estimate their parameters (Wolfe et al. 2010).

7 � Conclusion

This study evaluated delineation error detection systems 
(DEDS) for improving the Quality Assessment (QA) pro-
cess in clinical settings. A user study identified two main 
challenges that must be addressed to increase DEDS’ adop-
tion. First, clinicians preferred dose-based prioritization for 
error detection, finding it more intuitive than other metrics 
like uncertainty and error, which were seen as confusing and 
less reliable. Second, the non-sequential navigation required 
by DEDS disrupted clinicians’ natural workflow, making it 
harder to make sense of the DEDS’ suggestions. A compu-
tational model was introduced to benchmark different DEDS 
workflows. Simulations showed that DEDS could signifi-
cantly reduce QA times, particularly for large structures, but 
this speed-up comes at the cost of delineation quality. There-
fore, improving the accuracy of error proxies, such as AI 
uncertainty estimates, and developing metrics to assess the 
clinical significance of errors are crucial. Researchers can 
use and extend the computational model to further evaluate 
and refine DEDS.
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Appendix A ADEDS development

In this section, we outline the development of our Delinea-
tion Error Detection System (DEDS) used in the workflow 
comparison user study (Sect. 5). We engaged in a co-devel-
opment process with RO1 (RO from Utrecht UMC) and RO2 
(RO from Leiden University Medical Center), involving 
multiple sessions where they used the tool for error detec-
tion and participated in structured discussions regarding tool 
usability and information source suitability. Our analysis 
involved logging clinicians’ interactions and transcribing 
discussions, with relevant excerpts provided below.

A.1 Clinical delineation software

Figure 3’s top panel displays a standard open-source deline-
ation software’s graphical user interface (GUI), consisting 
of two primary sections: the slice explorer (light blue rec-
tangle) listing anatomical structures for delineation and the 
slice viewer (orange rectangle) for navigating 3D images 
via scrolling or navigation keys, supporting zooming and 
panning, and enabling pixel editing using tools like brushes 
or polygon pens. Our custom implementation, based on 
this GUI, was developed to support the slice-based error 
detection task. While we initially considered using exist-
ing delineation software, their closed source code or com-
plexity hindered our envisioned extensions. Therefore, we 
re-implemented essential functionalities, excluding editing 
features, and instead used key presses to indicate editing 
intentions, as described in the subsequent section on extend-
ing the prototype.

A.2 Error detection and prioritization via per‑slice 
scores

The bottom panel of Fig. 3 shows the GUI of the DEDS pro-
totype. Similar to delineation software it has a slice explorer 
and viewer. Nevertheless, we extended the slice explorer 
with two features that permit slice-driven error detection. 
First, the list offers a higher slice-level granularity level. 
Traditional software only allows browsing a list of OARS. 
The DEDS slice explorer permits drilling down the OAR 
into the slices that it spans. Furthermore, it permits sorting 
each OAR’s slices based on user-defined scores as defined in 
Sect. 3.3. The bottom left area of the slice explorer in Fig. 3 
shows the score definition widget.

A.3 Clinicians’ feedback

The DEDS prototype underwent significant changes based 
on feedback from RO1 and RO2, including the addition of 

contextual information and image overlay features, customi-
zation of color maps, and simplification of score displays. 
Clinicians’ feedback influenced workflow improvements, 
such as grouping slices by structure in the slice explorer for 
a less overwhelming experience. Initial impressions of unc 
and error were mixed, with clinicians finding them limited 
and potentially misleading, leading to reduced trust in the 
system. To address this, explanations were provided dur-
ing the workflow comparison study. In contrast, clinicians 
reacted positively to dose information, suggesting prede-
fined settings per organ, with an emphasis on maximum dose 
and gradient magnitude (grad_dose) as valuable addi-
tions to the information sources. These enhancements aimed 
to enhance DEDS usability and effectiveness.
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