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ABSTRACT
The seeding heuristic is widely used in many DNA analysis applica-
tions to speed up the analysis time. In many applications, seeding
takes a substantial amount of the total execution time. In this paper,
we present an efficient GPU implementation for computing maxi-
mal exact matching (MEM) seeds in long DNA reads. We applied
various optimizations to reduce the number of GPU global memory
accesses and to avoid redundant computation. Our implementation
also extracts maximum parallelism from the MEM computation
tasks. We tested our implementation using data from the state-of-
the-art third generation Pacbio DNA sequencers, which produces
DNA reads that are tens of kilobases long. Our implementation
is up to 9x faster for computing MEM seeds as compared to the
fastest CPU implementation running on a server-grade machine
with 24 threads. Computing suffix array intervals (first part of MEM
computation) is up to 3x faster whereas calculating the location of
the match (second part) is up to 9x faster. The implementation is
publicly available at https://github.com/nahmedraja/GPUseed
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1 INTRODUCTION
Current DNA analysis programs have to process massive amounts
of data. In many applications this data is in the form of DNA reads.
A DNA string is a single read or an assembly of many reads. It
is made up of only four characters: ’a’, ’c’, ’t’ and ’g’. These four
characters represent the four types of nucleotide bases in the DNA
and are also known as base pairs (bp). Many of the DNA analysis al-
gorithms require to solve an approximate string matching problem.
Therefore if the number of the DNA strings to be matched is large
or the strings are long, the direct application of Smith-Waterman [1]
or similar algorithms is too slow for practical purposes. To over-
come this problem, BLAST [2] pioneered the approach of applying
a seeding heuristic. The reason behind applying the seeding heuris-
tic is the observation that for a good match to be found between
two strings, these strings must share a highly matching substring.
Therefore, to match two strings, first a common substring should
be found. This common substring is known as a seed. An approxi-
mate match between the strings is then found by applying Smith-
Waterman around the seed. This two-step method is known as
seed-and-extend.

Computing a seed refers to finding the pattern of the common
substring as well as its location in the two strings. In a typical DNA
analysis application, millions of independent DNA strings have to
be processed, each of which may contain many seeds. Therefore,

computing seeds is a highly parallel problem, that can be accel-
erated on massively parallel Graphical Processing Units (GPUs)
devices. In this paper, we present the fastest GPU implementation
for computing maximal exact matching (MEM) seeds on GPUs in
state-of-the-art third generation long DNA reads.

This paper is organized as follows. Section 2 discusses back-
ground information. Section 3 describes previous research work.
Section 4 describes our GPU implementation. Section 5 presents
the experimental results. Section 6 concludes the paper.

2 BACKGROUND
As described in the introduction, seeding is used to speed up the
process of finding an approximate match between two DNA strings.
More formally, let one string be called as text T and the other be
called pattern P . In practice, T is one long DNA string assembled
from many DNA reads. To find an approximate match between T
and P , we first need to find substrings of P that are exactly match-
ing at one or more locations in T . A maximal exact match (MEM)
between two strings, T and P , is an exactly matching substring of
T and P that cannot be further extended in either direction without
incurring a mismatch. We call this definition 1 of MEM. The con-
cept of maximal exact matches was first proposed in [3]. If either
T or P is a long string then the number of MEMs could be quite
large. Furthermore, a MEM computed using definition 1 can be a
substring of another MEM causing repetition. Therefore an alter-
native definition (definition 2) avoids the repetition. According to
definition 2, a substring of P is a MEM if it is located at n positions
in T , i.e. matches with n identical substrings of T , and cannot be
further extended in either direction at all n locations. In this paper
we will use definition 2 for a MEM.

2.1 The FM-index
The algorithm for computing the seeds depends upon the under-
lying index. The index is a pre-built data structure that is used to
compute seeds. For example, to find substrings of pattern P that
exactly match in text T , an index of T is built. In DNA analysis
applications, mainly two types of indexes are used: i) Hash tables ii)
Indexes based on suffix/prefix trie. FM-index [4] is a popular index
based on the suffix trie. It is widely used in many DNA analysis
applications due to its speed and small memory footprint. In our
GPU implementation, we have used the seed searching algorithm
based on the FM-index. FM-index is a set of three arrays: i) Count
array C ii) Burrows-Wheeler transform array BWT and iii) Suffix
position array SP . TheC array has only four elements, one for each
DNA base. The BWT array holds the Burrows-Wheeler transform
ofT . The SP holds the starting position of the suffixes ofT . Usually,
to save RAM, SP is stored in compressed form and the starting

https://github.com/nahmedraja/GPUseed


Algorithm 1: Computing Suffix array intervals of all the
MEMs between P and T
Input: Pattern P and minimum required MEM lengthmin_mem_len
Output: ArrayM containing all the MEMs in P

1 FunctionMemSAInterval(P ,min_mem_len) begin
2 InitializeM as an empty array
3 for j ← |P | − 1 down tomin_mem_len − 1 do
4 [l , u] ← [0, |T | − 1]
5 q ← j
6 while q >= 0 do
7 prev_l ← l
8 prev_u ← u
9 l ← C[P [q]] +Occ(P [q], l − 1) + 1

10 u ← C[P [q]] +Occ(P [q], u)
11 if l > u then
12 break

13 q ← q − 1
14 // q = −1
15 if l ≤ u and j − (q + 1) + 1 ≥ min_mem_len then
16 star t ← q + 1
17 end ← j
18 Append ([l , u], star t , end ) toM

19 // otherwise

20 else if j − q + 1 ≥ min_mem_len then
21 star t ← q + 1
22 end ← j
23 Append ([prev_l , prev_u], star t , end ) toM

position of only those suffixes is stored for which SP array index is
a multiple of a certain number, known as compression ratio in this
paper. [4] contains a detailed discussion on FM-index.

2.2 Computing MEM seeds using FM-index
As described before, computing a seed means that we attempt to
find a common substring betweenT and P and find its location inT
and P . Assume P[i : j] is a substring of P . i and j are the starting and
ending positions of P[i : j] in P . |.| denotes the length of a string.
Seed computation using the FM-index is completed in two steps: a)
Computing suffix array intervals of the seed, and b) Locating the
seed in T using suffix array intervals.

2.2.1 Computing suffix array intervals. Suffix array interval [l(P[i :
j]),u(P[i : j])] of P[i : j] is defined as:

l(P[i : j]) = min{k : P[i : j] is the prefix of SA[k]}
u(P[i : j]) = max{k : P[i : j] is the prefix of SA[k]}

where suffix array SA contains the lexicographically sorted suffixes
of the textT . Suffix array interval of P[i : j] can be computed using
FM-index with backward search. In backward search we start with
an empty string. The l andu of the empty string are defined as 0 and
|T | −1, respectively. We then add bases to the empty string from the
end of P[i : j], one base at a time, in the backward direction so that
the string grows as P[j : j] → P[j−1 : j] → P[j−2, j] · · · → P[i : j].
After adding every base the suffix array interval of the new string
is calculated as

l (P [x : j]) = C[P [x ]] +Occ(P [x ], l (P [x + 1 : j]) − 1) + 1 (1)
u(P [x : j]) = C[P [x ]] +Occ(P [x ], u(P [x + 1 : j])) (2)

whereOcc(b,y) is the number of occurrences of base b in the BWT
array from 0 to y. If l(P[x : j]) ≤ u(P[x : j]), then P[x : j] does exist
in T and occurs at u(P[x : j]) − l(P[x : j]) + 1 locations in T .

Algorithm 2: Computing the starting position for a given
suffix array index
Input: suffix array index of the seed sa_idx
Output: starting position of the seed in the text T

1 Function LocateSeed(sa_idx ) begin
2 itr ← 0
3 i ← sa_idx
4 while i%r , 0 do
5 i ← C[BWT [i]] +Occ(BWT [i], i − 1)
6 itr ← itr + 1
7 return SP [i] + itr

Algorithm 1 uses the recurrence Equations 1 and 2 to compute
the suffix array intervals of all the MEMs between P and T . The
algorithm returns an arrayM containing the MEMs in the form of
tuples ([l,u], start, end), where [l,u] is the suffix array interval of
the MEM; start is the starting position of the MEM in P and end is
the ending position of the MEM . MEM computation starts from
the base at index q and builds the MEM string in the backward
direction by adding bases from P until the base at the 0th index of
P is reached.

2.2.2 Locating the seed. Locating a seed refers to computing the
start position of seed inT . Algorithm 2 shows how the FM-index is
used to compute the starting position of seeds with a compressed
suffix position array SP having a compression ratio of r . The suffix
array interval of a seed contains u − l + 1 suffix array indexes.
The LOCATESEED function accepts a suffix array index (sa_idx) of
the seed and computes the corresponding seed starting position
in T . Hence, the LOCATESEED function is called for sa_idx = l, l +
1 . . . ,u − 1,u to find all the locations of the seed in T .

2.3 Graphical processing units
In heterogeneous computing era, Graphical Processing Units (GPUs)
are used as accelerators for high performance applications due
to there massively parallel architecture. In the following, we will
briefly describe the architecture and programming of NVIDIA GPUs

In NVIDIA GPUs, there are numerous streaming multiprocessors
(SMs). Each SM has many cores known as streaming processors
(SPs). An SP is the basic computational unit that executes a GPU
thread. GPU also has its own DRAM known as global memory.
GPU threads are grouped into blocks. Each block contains many
GPU threads. The threads in a block are assigned to the same
SM. The number of blocks and the number of GPU threads in
a block are configured by the programmer. All the GPU threads
can communicate with each other via global memory. However,
the threads in a block can also communicate through a fast shared
memory. In a block, there is a set of 32 threads known as a warp that
share the program counter. The threads in a warp can communicate
with the help of shuffle instructions.

The programming language for NVIDIAGPUs is known asCUDA
which is an extension of C/C++. The GPU programmer writes a
kernel which executes on the GPU. The GPU is attached to a host
CPU which initiates all the tasks related to the GPU. The data to
be processed by the kernel is copied from the host memory to the
global memory of the GPU. The CPU then launches the kernel.
Once the kernel is finished the results are copied from the global
memory back into the host CPU memory.



3 PREVIOUS RESEARCHWORK
Maximal exact match seeds are computed in a variety of bioinfor-
matics applications which include: BWA-MEM [5] and CUSHAW2
[6] DNA read mappers; Jabba [7], a DNA sequencing error correc-
tion tool; and MUMmer [3] a whole genome alignment application.
Therefore, optimizing or accelerating the computation of the maxi-
mal exact matches could be beneficial for a large number of DNA
analysis programs. Some seeding algorithms, like slaMEM [8], ex-
tend the FM-index for faster computation of MEMs, while others,
like essaMEM [9], propose other types of indexes to speed up the
computation. CUSHAW2-GPU [10] is the GPU implementation of
the CUSHAW2 read mapper. It computes the MEMs on the GPU.
But it is designed only for short reads with a maximum allowed
read length of only 320 bases. Moreover, it stores the suffix array
intervals of the MEMs in an intermediate file which is subsequently
loaded for locating the MEM seeds on the reference genome. This
makes the computation extremely slow. In [11] the authors present
the computation of exact matches using suffix trees. Suffix trees are
large data structures that consume a huge amount of memory. The
suffix tree used in the paper would take 152 gigabytes of memory
for the human reference genome. Hence, the approach is imprac-
tical for large genomes. GPUmem [12] is a GPU implementation
for computing maximal exact matches between only two very long
DNA sequences, e.g. between chromosome 1 and chromosome 2 of
the human genome.

NVBIO [13] is an open source library developed by NVIDIA. It
contains the functions for computing the maximal exact matching
seeds on GPU using the FM-index. But it can only be used to find
maximal exact matching seeds for short DNA reads. For long DNA
reads, NVBIO terminates due to illegal memory access error. This
may be due to the sizes of some data structures that are not sufficient
for long DNA reads. Moreover, NVBIO uses bidirectional BWT of
[14] which limits the amount of parallelism (See Section 4.3, first
paragraph). This is especially true for long DNA reads since less
number of long DNA reads can be loaded in the GPU memory as
compared to short DNA reads for MEM computation.

Computing MEM seeds is a highly parallel process. The seeds
for all the DNA reads can be computed in parallel. Even for a single
read the iterations of the for loop in Algorithm 1 are independent.
Moreover, each MEM occurs at l − u + 1 places in T and all these
locations can be calculated in parallel using Algorithm 2. Hence,
the computation of maximal exact matching seeds is well suited
for parallel processing. Maximal exact matching seeds are widely
used for DNA analysis but in the past, there were limited efforts
to parallelize their computation. State of the art third generation
sequencing platforms producing long DNA reads with lengths up
to hundreds of kilobases. Therefore, in this paper, we present a high
performance GPU implementation for computing maximal exact
matching seeds in long DNA reads. The contributions of the paper
are as follows:

• We present the fastest GPU implementation for computing
the maximal exact matches for state-of-the-art third genera-
tion long sequencing reads for DNA analysis.
• We present a unique optimization of early detection of re-
dundant MEMs by using CUDA warp shuffle instruction

• Experiments show that our implementation provides 7-9x
speedup over the fastest CPU implementation for third gen-
eration Pacbio DNA reads

4 GPU IMPLEMENTATION
Our GPU implementation exploits the massive parallelism in seed
computation. In many situations, there is a large number of patterns
that need to be matched with the text T . Moreover, several seeds
for each pattern P need to be computed. Therefore, in total, a large
number of seeds can be computed in parallel. The GPU implemen-
tation contains several stages for computing MEM seeds. Figure 1
shows the different computational stages of the implementation.
The array shown after each stage is the output of the stage. Each
stage launches one or more GPU kernels.

4.1 The index
To compute the seeds, a pre-built index is loaded in the GPU mem-
ory. The index consists of BWT array, count array C , compressed
suffix array SP and a pre-calculated suffix interval array. The use of
a pre-calculated suffix interval array is described in Section 4.3. As
described in Section 2.2, the seed search algorithm using FM-index
needs to compute Occ(b,y), which is the number of occurrences of
base b in the BWT array from 0 to y. In the case of a large BWT
array counting the number of occurrences become very slow. There-
fore, in practice, the BWT array is divided into bins. A checkpoint
exists between two consecutive bins that contain the number of
occurrences of all the four types of bases till that checkpoint. To
find Occ(b,y), first the bin containing the index y is found. Then
the bases of type ’b’ in the bin till index ’y’ are counted and the
count is added to the preceding checkpoint value of the base b. The
checkpoints occur after a fixed number of BWT bases. This number
is known as bin_size . In the implementation, each BWT array entry
is a 32-bit integer. Since each base is encoded in 2 bits, the bin_size
must be a multiple of 16. We found that bin_size = 64 is the most
suitable choice as it allows to load the checkpoint and the bin using
only 2 uint4 CUDA vector load instructions. CUDA popcount in-
structions are used to count the number of bases in a bin. We also
tested other bin sizes. Smaller bin sizes help to decrease the number
of popcount instructions but cannot decrease the number of load
instructions as the minimum bin size is 16. Moreover, smaller bin
sizes can increase the number of memory accesses as described in
the first optimization of Section 4.3.

4.2 Stage-0: Pre-processing
GPU accepts input data from the CPU and returns the results. The
input data is the concatenated patterns for which the seeds are to
be computed on the GPU along with the length of each pattern. The
user also passes the pointer to the pre-built FM-index arrays. The
index is constructed using the index command in BWA version
0.5.9 [15]. The index is copied to the GPU global memory. In the rest
of the paper, we will assume that a pre-built FM-index exists in the
GPU global memory. The implementation preprocesses the input to
generate 4 arrays. All the arrays are computed on the GPU: 1) a 32-
bit integer array which contains packed patterns. The bases of the
input patterns are converted from ASCII to 4-bit representation. 4-
bit representation is required to accommodate the fifth type of base
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’n’, known as an ambiguous base. 4 bits instead of 3 bits are chosen
for the ease of post-processing. 3-bit representation allows to pack
10 bases in an integer instead of 8 and hence provide a significant
advantage over 4-bit representation. The packing is performed on
the GPU using the same method as described in [16]. 2) an integer
array containing the starting index of the patterns in the input. 3)
an integer array that assigns a pattern to a thread. Each GPU thread
computes the suffix array interval for one MEM 4) an integer array
which assigns a MEM within a pattern to a thread. There is a large
variation in the length of the long DNA reads produced by the
third generation DNA sequencers. Therefore, the computation of
the 3rd and 4th array is essential for the efficient utilization of the
GPU resources. Since all the output arrays of the pre-processing
stage are computed on GPU, the overhead of the pre-processing is
negligible. We found that the total time spent in prepossessing is
less than 1% of the total execution time in all the experiments.

4.3 Stage-1: Finding suffix array intervals
The software optimized algorithms for computing MEMs are differ-
ent from the one shown inAlgorithm 1. For example, the bidirectional-
BWT proposed in [14] allows adding bases both in the forward and
backward direction. Also in [17] and in BWA-MEM [5] a bidirec-
tional FM-index (called the FMD-index) is implemented. In such

algorithms, the MEMs covering an index v of pattern P are com-
puted by first adding the bases in the forward direction and after
adding every base the corresponding suffix array interval is stored.
Hence, the stored suffix array intervals are for the strings: P[v],
P[v]P[v + 1], P[v]P[v + 1]P[v + 2], . . . . Then each of these strings
is extended in the backward direction to compute all the MEMs
covering base at index v . The bases added in the forward direction
are common to all the MEMs and hence added only once. This
reduces the accesses to the FM-index. One disadvantage of such an
approach is that the forward addition of bases has to be sequential
and cannot be parallelized. Therefore, in our GPU implementation,
we will use Algorithm 1 as it allows all the MEMs in pattern to be
computed in parallel exploiting the massive parallelism of GPUs.

The main GPU kernel in this stage is used to compute the suffix
array intervals of MEMs. One MEM is assigned to a GPU thread.
Figure 2 shows an example of the GPU thread assignment. THx
are the threads, where x is the thread number. Each GPU thread
starts from a different base of the pattern as shown in Figure 2 and
then extends it in the backward direction. The kernel is similar to
Algorithm 1, but each iteration of the for loop is computed by a
separate GPU thread. We further applied two optimizations which
are explained below:

4.3.1 First optimization: pre-calculated suffix array intervals. As
a part of the index building, we pre-calculate the suffix array in-
tervals of all the possible 4PRE_CALC_LEN sequences of length
PRE_CALC_LEN . Therefore, the suffix array interval of the last
PRE_CALC_LEN bases of the MEM is already known. The GPU
thread first loads the pre-calculated suffix array intervals of the last
PRE_CALC_LEN and then extend the MEM in the backward direc-
tion. Using pre-calculated suffix array intervals has two advantages

(1) The pre-calculated suffix intervals reduce the number of
backward search steps required for the computation of the
suffix array interval of a MEM.

(2) As shown in Algorithm 1 the calculation of a suffix array
interval [l,u] requires two accesses to the BWT array to



compute the Occ . At the start of the backward search, these
accesses are in different bins of the BWT array, but as the
backward search proceeds the difference between l and u
decreases [18] and at some point may become less than the
bin size. From here only one BWT array access is required to
compute the suffix array interval. Using the pre-calculated
suffix array intervals may allow us to skip that initial phase
of two BWT array accesses.

We found that PRE_CALC_LEN = 13, requiring 512 megabytes
of GPU memory, provides a good speed-memory tradeoff. In case
the minimum required MEM length is less than 13, the value of
PRE_CALC_LEN is reduced.

As described previously, the MEM finding algorithm optimized
for CPUs use the bidirectional index and the algorithm is different
for the one used in our GPU implementation (Algorithm 1). The
downside of using such an index is that the optimization of pre-
calculated suffix array intervals cannot be applied. Hence, this
optimization is unique in the sense that the MEM finding algorithm
of our GPU implementation allows to pre-calculated suffix array
intervals to speed up the MEM computation.

4.3.2 Second optimization: Early detection of redundant MEMs.
Two overlapping MEMs may have the same suffix intervals and
hence, the smaller one is redundant. For example in Figure 2, TH1
and TH2 may have the same suffix intervals at the same index of
Pattern 0 and will be backward extended till the same base of the
pattern. In this case, the MEM found by TH2 is redundant. The
kernel for finding the suffix array intervals of the MEMs tries to
detect such redundant MEMs. A GPU thread keeps record of the
previously computed suffix array interval sizes (u − l + 1) in the
prev_intv_size array during the backward search. A MEM com-
puted by a GPU thread is redundant if a value in its prev_intv_size
array is same as the current interval size of a thread with lesser
thread ID, which is in the same warp and is also working on the
same pattern. If the MEM assigned to GPU is found to be redun-
dant by the early detection mechanism, the thread exits. To access
the values of the current interval size of the other threads, we use
CUDA warp shuffle instruction, which allows the rapid exchange
of variables between threads in the same warp without involving
shared memory.

Finally, each thread writes the suffix array interval and start
and end position of the MEMs in the output array as shown in
Figure 1. Each entry in the output array of Stage-1 contains two
values. The top value is the suffix array interval and the bottom
value is start → end , where start and end are the starting and
ending positions of the MEM in the pattern, respectively. Some
entries will be NULL. Note that the values in the output array are
in the ascending order with respect to the start . In Figure 1, the
output of Stage-1 shows example values of suffix array intervals
and start → end .

4.4 Stage-2: Filtering redundant MEMs
A warp contains only 32 threads and a warp shuffle instruction
only exchange variable within a warp. Therefore, the output of
Stage-1 still contains some redundant MEMs. The GPU kernel of
Stage-2 is used for this purpose. First the NULL entries in the output
array of Stage-1 are eliminated. We used the DeviceSelect kernel

from CUB GPU library [19] to eliminate these NULL entries and
compact the output array of Stage-1. After compaction the ith
threads is assigned the ith entry of the output array of Stage-1. The
thread applies a test to know whether start[i] == start[i − 1] and
u[i] − l[i] + 1 == u[i − 1] − l[i − 1] + 1. If both are true, the MEM
corresponding ith entry is marked as redundant. Since each thread
has to work on only one entry, the filtering stage is very fast. The
output of this filtering kernel is once again compacted to remove the
redundant MEMs using CUB DeviceSelect kernel. An example of
the output of the filtering stage (Stage-2) after compaction is shown
in Figure 1. It has the same format as Stage-1. Note that the third
value in the output array of Stage-1 is filtered out.

4.5 Stage-3: Splitting suffix array intervals
This GPU kernel splits up the suffix interval to its constituent suffix
array indexes. The splitting is done so that each GPU thread in
the locate kernel (Section 4.6) computes only one position in the
DNA text T corresponding to the suffix array index assigned to
it. In the case of two overlapping MEMs with the same starting
position, the suffix interval of the longer MEM is the subset of the
shorter MEM. Therefore, the splitting up performed by this stage
makes sure that a suffix array index does not appear twice and,
hence two GPU threads in the locate kernel are never assigned the
same suffix array index. This will reduce the number of locations
to be computed by the locate kernel. The splitting process is very
fast as each GPU thread is assigned only one suffix interval to split.
This stage takes less than 1% of the total execution time in all the
experiments. The output after this stage is shown in Figure 1. Each
entry has two values. The top value is the suffix array index, while
the bottom value is start → end . Note that the suffix array index
5673 is present in both the first and second entries of the output of
Stage-2, but it is not repeated in the output of Stage-3

4.6 Stage-4: Locating MEMs in text
This is the final stage and generates the locations of the MEM
seeds in the DNA text T . Each GPU thread has to compute only
one location using Algorithm 2. Figure 1 shows the example values
of the seed locations in the text T .

5 EXPERIMENTAL RESULTS
For comparison purposes we considered the problem of computing
MEMs between a set of DNA reads and human reference genome,
UCSC hg19 (GRCh37 Genome Reference Consortium Human Ref-
erence 37 (GCA_000001405.1)). Hence, in this case the text T is the
reference genome. MEMs on both the forward and reverse genome
are computed. We used long DNA reads generated by state-of-
the-art third generation whole genome sequencing Pacbio reads
downloaded from [20]. The total number of reads are 25249 with the
average read length of 7 kilobases and longest read is 35 kilobases.

Our GPU implementation is executed on NVIDIA Tesla K40c
installed in a 2-socket Intel Xeon E5-2620 v3 CPU with two way
hyper-threading (12 physical cores, 24 logical cores) and 32 giga-
bytes of RAM. The CPU implementation is executed on the same
machine using 24 threads. We tried different block sizes i.e. the
number of GPU threads per block. We found a block size of 128 to
be a suitable choice.



The index is the same as described in Section 4.1 consisting
of a BWT array (1.6 gigabytes) with bin_size = 64, count array
(20 bytes), compressed suffix position array (1.8 gigabytes) with
compression ratio of 7 and a pre-calculated suffix intervals array
with PRE_CALC_LEN = 13 (512 megabytes). PRE_CALC_LEN =
12 for minimum MEM length of 12. Hence the total FM-index size
is around 4 gigabytes. For the CPU implementation, the FM-index
size is 4.8 gigabytes.

Figure 3 shows the time spent in different stages for computing
MEMs in our GPU implementation with different minimum re-
quired MEM lengths. The "find intv" is Stage-1, which computes the
suffix array intervals as described in Section 4.3. Stage-2 is shown in
the figure as "filter". Stage-3 for splitting suffix array intervals and
Stage-4 for locating the MEMs in the text T is shown as "locate" in
the figure. The time spent in Stage-3 (splitting) is negligible as com-
pared to Stage-4 (locating the MEMs) in the text T . "cudamemcpy"
represents the time spend in transferring data from CPU to GPU
and vice versa. We have not included the time to copy the FM-index
and pre-calculated suffix array intervals to the GPU as it is done
only once at the beginning of the program. The "cudamemcpy"
time is mainly due to copying the final output array containing
the positions of the MEMs in the text T and pattern from GPU
to CPU. Time spend in copying the pattern (reads) sequences and
their lengths and offsets take negligible time. The figure shows that
the time for Stage-1 (finding intervals) remains constant (around 6
seconds) irrespective of the minimum MEM length. Stage-2 (filter-
ing of the intervals) takes negligible time for all minimum lengths
and is around 1% of the total execution time. The "locate" (Stage-3
and Stage-4) time is small for longer minimum MEM lengths but
becomes dominant for smaller values of minimum MEM lengths.
For a minimum MEM length of 12 "locate" is nearly 6 times higher
than "find intv". This happens because of the number of MEMs
increase with decreasing minimum lengths. For the same reason,
time spent in memory transfers between CPU and GPU is small for
longer minimum lengths but becomes significant for shorter values
of minimum MEM lengths.

Figure 4 shows the comparison of time spent in different stages
of the MEM computation in the CPU implementation and our GPU
implementation. The CPU implementation actually has only two
stages: finding the MEM suffix array intervals ("find intv") and

Figure 3: Time spent in different stages for computingMEMs
on GPU for Pacbio reads

locating the MEMs on the text T ("locate"). There is no separate
filtering stage as it is performed during interval computation. The
"cudamemcpy" in CPU implementation is zero. The figure shows
that the main reason for the speedup of GPU over CPU is due to a
much faster "locate" stage on GPU as compared to CPU. The "locate"
on GPU is 7x-9x faster than CPU. The "find intv" stage of the GPU
implementation is around 6 seconds for a minimum MEM length of
14-20. For a minimum MEM length of 12, it slightly increases and
becomes 7 seconds. This happens because the PRE_CALC_LEN is
decreased from 13 to 12. Overall, "find intv" is around 2-3x faster
on GPU.

Figure 5 shows a comparison of our total GPU execution time
to CPU time. Since 24 threads are used to execute the CPU imple-
mentation, the time spent in "find intv" and "locate" stage of the
CPU implementation shown in Figure 4 is computed by taking the
average across the stage time for all threads. Therefore, the sum of
the time spent in the CPU stages do not add up to the total CPU ex-
ecution time. For MEMs, the speedup of GPU over CPU varies from
7x-9x. The maximum speedup is achieved around the minimum
MEM lengths of 16-18.

Figure 4: Comparison of time spent in different stages to
computeMEMs on CPU and GPU for Pacbio reads. The CPU
implementation is executed with 24 threads.

Figure 5: Comparison of total execution time to compute
MEMs on CPU and GPU for Pacbio reads. The CPU imple-
mentation is executed with 24 threads.



6 CONCLUSIONS
In this paper, we presented a GPU acceleration of computing MEM
seeds on GPU for state-of-the-art long DNA reads. The implemen-
tation computes the MEM seeds using the FM-index. Optimiza-
tions were applied to reduce the GPU memory accesses and to
reduce redundant computation. We also extract maximum paral-
lelism from the MEM computation task. Our GPU implementation
is the fastest as compared to other available tools for computing
MEMs in long DNA reads. Experiments were performed using the
latest Pacbio DNA sequencing data containing up to 35 kilobases
long reads. Different minimum match lengths were selected. The
results showed that our GPU acceleration is up to 9x faster for com-
puting MEM compared to the fastest CPU implementation running
on a server-grade machine with 24 threads. Computing suffix array
intervals is up to 3x faster, whereas calculating the location of the
match is up to 9x faster. The implementation is publicly available
at: https://github.com/nahmedraja/GPUseed
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