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Optoelectronically Innervated Suction Cup Inspired
by the Octopus

Stein van Veggel, Michaël Wiertlewski, Eugeni L. Doubrovski, Adrie Kooijman,
Barbara Mazzolai,* and Rob B.N. Scharff*

1. Introduction

Inspired by octopus arms, researchers have
attempted to integrate suction cups on soft
continuum robot arms to aid whole-arm
manipulation.[1–3] However, compared to
the strategies deployed by the octopus to
control its arms,[4] the strategies deployed
to control their robotic counterparts are
computationally expensive and not nearly
as effective. A major difference is that most
control algorithms for soft continuum robot
arms are based on the presence of accurate
proprioceptive sensors,[5] whereas the octo-
pus is considered to have poor propriocep-
tion. Instead, the octopus heavily relies on
the sensory feedback from (chemo-)tactile
receptors in its suckers[6] to form a represen-
tation of object shape, curvature, and tex-
ture[7] as well as coordinate manipulation
in the absence of vision.[8] This has moti-
vated research on the sensory innervation

of suction cups.[9] However, the resolution of the state-of-the-art
sensory innervated suction cups is insufficient for implementation
of closed-loop schemes capable of ensuring a perpendicular
contact between the suction cup and the object. In addition, the
manufacturing process of existing sensory innervated suction
cups is often tedious and their design is not easily scaled or
otherwise customized to the application needs.

This work presents a bioinspired suction cup design with an
integrated high-resolution tactile sensor calibrated for detecting
the orientation of the suction cup with respect to an object sur-
face. The working principle of the suction cup is based on the
ChromaTouch principle[10–12] and is illustrated in Figure 1.
Two layers of colored markers are integrated in the suction
cup and are captured by a camera. Deformation of the suction
cup results in changes in marker position, perceived marker size,
and perceived marker color. As a result, the captured image con-
tains rich tactile information regarding the forces acting on the
suction cup, as well as the shape and orientation of the object that
the suction cup is in contact with. In this work, a convolutional
neural network (CNN) was trained to estimate the orientation of
the suction cup with respect to the object surface and this esti-
mation was deployed in a closed-loop control scheme to obtain
perpendicular contact between the suction cup and object sur-
face. Hereby, this is the first work to demonstrate orientation
estimation with a sensory innervated suction cup at a resolution
sufficient for ensuring a seal on randomly oriented objects in a
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The suckers on the octopus arm play a pivotal role in the execution of tasks in
unstructured environments by providing a means to grip objects as well as
perceive the environment through (chemo-)tactile receptors in the suckers. This
work presents an octopus-inspired suction cup with high-resolution tactile
sensing capabilities using a camera that captures the displacement of markers
that are integrated in the suction cup. The orientation of the suction cup with
respect to an object surface could be predicted with an average error of 1.97°
for latitude and 9.41° for longitude. In a closed-loop control experiment, the
orientation of the suction cup with respect to the object surface is estimated by
an initial touch and the suction cup is consequently reoriented to approach the
object surface in a perpendicular manner. The passive compliance of the
suction cup is sufficient to compensate for the prediction error and a seal could
be created on all of the objects. In combination with the automated design and
manufacturing process, this is a major step toward the deployment of sensory
innervated suction cups for motion planning and control of soft continuum
robot arms.
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closed-loop control scheme. In combination with the automated
design and manufacturing process, this is a major step toward
the integration of sensory innervated suction cups in soft contin-
uum robot arms for application scenarios as illustrated in Figure 2.

The work is organized as follows. Section 1.1 discusses the state
of the art in sensory innervated suction cups and camera-based tac-
tile sensors. Next, Section 2 describes the bioinspired design, tactile
sensor integration and automated design and manufacturing of the
suction cup. Section 3 describes the machine learning methods
deployed to estimate the orientation of the suction cup with respect
to the substrate based on the tactile images, as well as the experi-
ments that were performed to characterize the performance of the
suction cup. The results of the experiments and a demonstration of
the orientation estimation in a closed control loop are described in
Section 4. Finally, the conclusion is presented in Section 5.

1.1. Related Work

1.1.1. Sensory Innervated Suction Cups

A comprehensive overview of existing works on sensory
innervation of suction cups is provided by van Veggel et al.[9]

Huh et al.[13] measured the differential pressure between four
inner chambers in their suction cup to obtain information about
surface curvature, proximity, and texture. Sareh et al.[14] used a
fiber optic head in the suction cup to measure proximity and
tactile information, for use in motion planning and measuring
substrate stiffnesses. Frey et al.[15] used a micro-light detection
and ranging (LIDAR) optical sensor next to the suction cup to
measure proximity. Giordano et al.[16] integrated mechanochro-
mic materials on a soft suction cup, where three indenters
with embedded optical waveguides on top of the suction cup
were used to trigger and detect the change in color of the material
upon contact between the suction cup and substrate. Lee et al.[17]

spray coated four strain sensors on the suction cup’s outer wall.
They used machine learning algorithms to successfully estimate
the object’s weight and center of gravity from these input
channels. A major limitation of the above-mentioned sensors
is their limited resolution. For the application scenario illustrated
in Figure 2, the orientation estimation error should be lower
than the maximum angle between the suction cup and the
object surface for which the suction cup is able to obtain
a seal by the passive compliance of the suction cup itself.
To address this limitation, Shahabi et al.[18] integrated four

Figure 1. A) Illustration of the working principle of the optoelectronically innervated suction cup. B) Camera and LED ring on the inside of the mount.
C) Tactile image taken by the camera. D) Complete module with the suction cup mounted.

Figure 2. Envisioned application scenario of the sensory innervated suction cup. A) Multiple sensory innervated suction cups are mounted on a soft
continuum arm and provide information about the contact through tactile images. B) The tactile images are used to estimate the orientations of the
suction cups with respect to the object surface. C) The actuation of the soft continuum arm is adjusted such that the suction cup approaches the object
surface in a perpendicular manner and D) a strong attachment is achieved.
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microfluidic strain sensors into a silicone suction cup. The
angles, directions, stiffnesses, and inclinations of substrates
could be estimated from the sensor outputs using a machine
learning approach. However, the manufacturing process is
tedious and the resistive sensors show significant drift.

Xie et al.[3] placed six suction cups with integrated strain and
temperature sensors on an octopus-inspired robot arm.[3] This
enabled them to measure contact, attachment and detachment
with respect to an object. The contact information was fed back
to the operator as haptic feedback using a wearable finger glove.
Although this work is promising in the light of integration of the
sensory information for soft robot arm control, every suction cup
only provides a single resistive sensor signal, making it limited in
terms of resolution.

Camera-based tactile sensors are less prone to drift and have a
drastically higher resolution. Therefore, the integration of a
camera-based tactile sensor in a suction cup has the potential
to overcome the existing challenges in sensory innervation of
suction cups.

1.1.2. Camera-Based Tactile Sensors

Camera-based tactile sensors provide a robust and low-cost
approach to capturing high-resolution tactile information. A
camera captures the interior of a medium to collect information
about the mechanical interaction between the exterior of the
medium and the environment. A critical part of camera-based
tactile sensors is the method deployed to convert contact infor-
mation to a measurable change in the captured red, green, and
blue (RGB) image. The Gelsight sensor deploys a red, green, and
blue light-emitting diode (LED) to illuminate the back surface of
the tactile skin from three different directions.[19] The RGB chan-
nels of the camera now provide separate images of the back sur-
face of the tactile skin for each of the lighting directions. Then,
photometric stereo technique is used to estimate the surface nor-
mals. Although this approach allows for accurate reconstruction
of the shape of the object, it requires the addition of markers to
enable the detection of shear forces.[20] The use of colored light
also forms the basis of the principle of the DIGIT sensor[21] and
the tactile sensor by Kappassov et al.[22] A disadvantage of the use
of colored light is the difficulty of applying the principle to non-
flat tactile surfaces. Gomes et al. addressed this issue through
guiding the colored light through a fingertip-shaped elastomer
body.[23]

An alternative way to sensory innervate nonflat tactile surfaces
is through the embedding of markers on the surface. TacTip
deploys a series of geometrically arranged white-tipped pins
on the inside of a hemispherical tactile skin.[24,25] The
GelForce sensor deploys a tactile skin with two layers of differ-
ently colored markers.[26] The lateral deformation of the tactile
skin can be estimated through the tracking of the centroids of
the markers on both layers. In order to prevent overlap between
the markers when a lateral force is applied, the marker density
needs to be kept low. This limits the resolution that can be
obtained with the sensor. The ChromaTouch tactile sensor
addresses this issue through the use of translucent markers
on the inner layer, allowing the markers to overlap.[10]

Subtractive color mixing now encodes the normal deformation

of the membrane, whereas the lateral deformation is obtained
through the tracking of the marker centroids. The Chroma
Touch principle was demonstrated in a flat[10] and hemispherical
tactile skin.[11] However, the manufacturing process comprised
several tedious manual steps that also limited the marker density
and the precision of the marker placement. This problem was
addressed by the adoption of multimaterial additive manufactur-
ing to rapidly manufacture hemispherical ChromaTouch sensors
with precise and dense marker placement.[12]

All of the above mentioned marker-based approaches were
deployed in a hemispherical tactile surface that is in direct con-
tact with the environment. As only a membrane of uniform thick-
ness separates the markers from the environment, the sensitivity
is good and reliable methods exist for reconstructing the
deformed membrane shape based on the measured marker dis-
placements.[27] The integration of marker-based tactile sensors in
more intricate geometries such as suction cups comes with sig-
nificant challenges with respect to finding a marker configura-
tion that ensures good sensitivity, fabrication, calibration, and
reconstruction. This is the first work to integrate a marker-based
tactile sensor in a suction cup. Specifically, this work deploys the
ChromaTouch principle in an actively actuated octopus-inspired
suction cup using an automated design and manufacturing
process.

2. Optoelectronically Innervated Suction Cup

2.1. Bioinspired Design

TheOctopus vulgaris sucker served as inspiration for the design of
the suction cup. A simplified illustration of the octopus sucker is
shown in Figure 3A. The sucker comprises an upper chamber
and a lower chamber connected through an orifice. The lower
chamber, or infundibulum, is soft and compliant in nature,
enabling it to conform to the substrate shape and create a seal.[28]

The upper chamber, or acetabulum, possesses a stiffer structure
and is used to produce the volume change required to decrease
the pressure through the contraction of radial muscles. A similar
morphology was adopted in the bioinspired suction cup
(Figure 3B). The lower chamber of the suction cup is used to
conform to the substrate, whereas fluidic membrane actuation
in the upper chamber of the suction cup replicates the function
of the radial muscles in the acetabulum. For convenience, the
biological terms are also used to refer to the analogous parts
of the suction cup, as indicated in Figure 3. The bioinspired suc-
tion cup is actuated by adjusting the pressure of the chamber
above the acetabular roof, as illustrated in Figure 4. After
approaching an object in a neutral state (Figure 4(1)), the pres-
sure in the chamber is increased to inflate the acetabular roof
(Figure 4(2)). After the infundibulum comes in contact with
the substrate to create a seal (Figure 4(3)), a vacuum is applied
to retract the acetabular roof (Figure 4(4)). This increase in inter-
nal volume creates a pressure drop and thereby ensures adhesion
between the suction cup and the substrate. An advantage of this
adhesionmechanism is that the separation of the inner and outer
fluids by the acetabular roof prevents contamination of the inter-
nal fluidic system, thus making it suitable for both wet and dry
conditions. This separation also allows for multiple suction cups
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Figure 3. Annotated illustration of A) the Octopus vulgaris sucker and B) the bioinspired suction cup design.

Figure 4. Annotation of pressures in locations relevant for the adhesion process. PU: Pressure in the chamber above the acetabular roof, directly con-
nected to the fluidic circuit, PL: Pressure in the acetabular and infundibular chamber. PE: Environmental pressure. The steps of the adhesion process are
shown at the bottom of the figure. 1) Approaching of the substrate with the membrane in a neutral state. All pressures are equal to atmospheric pressure
PE. 2) Activation of the pump to inflate the acetabular roof. PU increases. PL is still equal to PE as no seal has yet been achieved. 3) Pressing the suction cup
against the substrate to form a seal. 4) Activation of the pump to create a vacuum above the acetabular roof (PL< PE). As the acetabular roof retracts, the
volume of the chamber inside the suction cup increases and PU decreases as well (PU< PE).
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to be controlled by a single pump without causing a leakage in
the system when one or more of these suction cups do not obtain
a proper seal. This property is critical for the application of
suction cups along a soft continuum robot arm.

2.2. Tactile Sensor Integration

In addition to its role in the adhesion mechanism, the acetabu-
lum of the bioinspired suction cup plays a critical role in the sen-
sory innervation of the suction cup. As illustrated in Figure 4,
ChromaTouch markers are integrated in the acetabular roof as
well as the acetabular wall of the suction cup. A camera and
LED ring are positioned above the acetabular roof (see
Figure 1A). The markers on the acetabular roof are directly per-
ceptible to the camera, whereas the markers on the acetabular
wall are indirectly perceptible through the transparant acetabular
roof. The marker image captured by the camera when the suction
cup is in its neutral position (Figure 4(1)) which is illustrated in
Figure 1C. The inflation of the acetabular roof (Figure 4(2)) can
be easily detected from the marker image as the markers on the
acetabular roof are pushed away from the camera. Next, contact
between the infundibulum and substrate becomes apparent from
the marker image through the displacement of the markers on
the acetabular roof as well as the markers on the acetabular wall
(Figure 4(3)). Nonperpendicular contact and contact with nonflat
objects result into nonuniform marker response in latitude and
longitude, whereas shear forces result into relative movement
between the markers on the acetabular roof and the markers
on the acetabular wall. Finally, the retraction of the acetabular
roof (Figure 4(3)) pulls the markers on the acetabular wall closer
to the camera by an amount dependent on the quality of the seal,
thereby allowing for the estimation of the adhesive strength
based on the marker image.

Per sampling theory, the higher the marker density, the
smaller the features of the contact that can be detected. At the
same time, the displacement of smaller markers is more difficult
to resolve by the camera and leads to a degraded signal-to-noise

ratio. One of the advantages of the ChromaTouch approach over
counting the number of pixels in black and white markers is that
the color provides a decent signal even if only 16 pixels are
recruited.[10] Therefore, the marker density can be kept high,
ensuring good sensitivity to small features, while keeping the
signal-to-noise ratio at a reasonable level.

2.3. Automated Design & Manufacturing

The design and manufacturing process of the suction cup has
been largely automated to allow for rapid customization of the
suction cup to fit the application needs. The suction cup was
parametrically modeled in Rhino Grasshopper using a total of
32 parameters. The marker-embedded portions of the acetabular
roof and wall were modeled as parts of spherical surfaces to allow
for the use of the Deserno Algorithm[29] to uniformly distribute
markers over the surface. The algorithm is visualized in Figure 5.
It takes an arbitrary number of markers N, sphere midpoint loca-
tion (x, y, z), sphere radius R, and angular domain [θL, θU] as
inputs. It then generates a collection of points on the surface,
while ensuring the average marker area AM is constant and
dθ ≃ dϕ. This ensures a uniform sampling resolution in the tac-
tile images. The generated points form the centers of cones with
their base normal to the spherical surface. For each design varia-
tion, the marker density and resolution in the acetabular roof and
wall are calculated automatically. Themarker densities in the ace-
tabular roof (MDU) and wall (MDL) are expressed as the surface
ratio between marker area and the total membrane area. The
marker resolutions in the acetabular roof (MRU) and wall
(MRL) are expressed as the number of markers per cm2.

Additionally, the theoretical pressure change (ΔP) and
maximum attachment force (FMAX) are calculated for each design
variation. Calculation of these values employs the ideal gas law,
assuming a conservation of P · V under a constant gas tempera-
ture. In the initial stage of the adhesion process (Figure 6A1), the
acetabular roof is in its inflated state, the infundibular surface is
pressed firmly onto the substrate, and the internal pressure is

Figure 5. Adapted Deserno algorithm to generate a collection of points on a spherical surface, to form the basis for marker modeling. A) Inputs of the
algorithm: Number of markers N, sphere midpoint (x, y, z), sphere radius R, and angular domain [θL, θU]. B) Ensuring that the area AM surrounding each
point is equal for all points and dθ ≃ dϕ. C) 3D view of the point collection.
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equal to the atmospheric pressure PA. The initial volume, V1, is
approximated as a circular disk with height ho and radius ro,
giving V1 ¼ π ⋅ r2o ⋅ ho. Activation of the vacuum retracts the ace-
tabular roof upward, increasing the chamber volume between the
substrate and the suction cup by ΔV, which is approximated as a
spherical cap with height ha and sphere radius ra (Figure 6A2).
The volume of this cap is calculated as 1

3 π ⋅ h2að3 ⋅ ra � haÞ. Using
the ideal gas law equation PA ⋅ V1 ¼ P ⋅ ðV1 þ ΔVÞ, we calculate
P as PA ⋅ V1

V1þΔV

� �
. The pressure change is then expressed as

ΔP ¼ P � PA. To calculate the force, the absolute pressure
change is multiplied by the infundibular surface area, consider-

ing it flat with a surface area of Ai ¼ π ⋅ ro þ ri�ro
cosðθiÞ

� �
2
. Assuming

even pressure distribution over the infundibular surface, the
theoretical maximum attachment force then becomes
FMAX ¼ Ai ⋅ jΔPj.

Figure 6B highlights seven key parameters for the attachment
and sensing performance of the suction cup. The number of
markers on the upper and lower membrane (NU and NL) and
the marker diameter (dm) are the three parameters with the larg-
est influence on MDU, MDL, MRU, and MRL. The infundibulum
angle (θi), acetabulum angle (θa), infundibulum radius (ri), and
acetabulum height (ha) are the four design parameters with the
largest influence onΔP and FMAX. To illustrate how each of these
seven key design parameters affects the overall design, six
designs generated through arbitrarily varying the seven key

parameters are highlighted in Figure 6C along with the calcu-
lated MDU, MDL, MRU, MRL, ΔP, and FMAX. The suction cup
that was used for the experiments presented in this study is
shown on the rightmost side. Although the parametric design
tool facilitates design optimization by allowing the user to easily
modify the suction cup design, there are trade-offs between dif-
ferent sensor and attachment performance objectives. As a
result, the optimal design strongly depends on the application
needs. This study focuses on presenting a general approach to
sensory innervation that can be applied to the parametric family
of suction cup designs. Design optimization for specific applica-
tions is beyond the scope of this work.

The manufacturing process of the suction cup is illustrated in
Figure 7. The top and bottom parts of the suction cup were man-
ufactured by Polyjet additive manufacturing with the Stratasys
J735 (Figure 7A1). This enabled the embedding of the colored
markers in both membranes without requiring additional fabri-
cation steps. It also enabled the inclusion of a rigid flange,
required for mounting the suction cup during the experiment.
The colors of the markers were chosen from the translucent
VeroVivid family. For the outer markers, VeroCyan-V was used.
The inner marker layers were fabricated in the more opaque
VeroMagenta-V. The deformable parts were all fabricated using
Agilus30Clear, whereas the rigid flange was fabricated using
VeroPureWhite. The SUP705 support material was used to
support the overhanging features.

Figure 6. A) The simplified geometrical models used for the theoretical force and pressure calculations. A1) Volume of internal chamber before applica-
tion of the vacuum and A2) after application of the vacuum. B) Visualization where the parameters are located. C) Six suction cup configurations obtained
through varying seven geometrical parameters in Rhino Grasshopper. The bottom of the table displays the influence of the parameters on output
variables related to sensing (MD=marker density as the surface ratio of total marker area to membrane area, MR=marker resolution in markers/
cm2). The rightmost configuration was selected for the experiments presented in this study.
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After the printing process, a Plasti Dip white rubber spray
coating was sprayed onto the parts highlighted in Figure 7A2.
To preserve the transparency of the acetabular roof ’s circular
edge, this part was masked during the spraying process.
The purpose of the coating is to block external light from
interfering with the tactile images and to enhance the
distribution of light throughout the chamber above the ace-
tabular roof. Fused deposition modeling was deployed
to fabricate a mount using polylactic acid (Figure 7A3).
This mount facilitates the mounting of the suction cup
to the UR5 robotic arm (Figure 8) and houses the electronic
components.

3. Experimental Section

3.1. Experimental Setup

The experimental setup is illustrated in Figure 8. The electronic
components inside the mount included an Adafruit Neopixel 8-bit
LED ring for the internal lighting, a wide-lens Raspberry Pi
Camera Module V3 for capturing the tactile images, and a
BMP280 barometric pressure sensor for recording the internal
pressure. The mount had a pneumatic inlet as well as an inlet
for the wiring of the barometric sensor, camera, and LED ring.
The distance between the end of the mount and the upper part of

Figure 7. A)Manufacturing steps. A1) Fabrication of top and bottom parts by Polyjet additive manufacturing with the Stratasys J35, A2) Spraying Plasti Dip
rubber onto the highlighted parts. A3) Bonding the top and bottom and attaching them to a polylactic acid (PLA) 3D-printed mount. B) Pictures in
different stages of the process. B1) Top and bottom parts before application of Plasti Dip and B2) after application of Plasti Dip. B3) Assembled module
consisting of a top part, a bottom part, and a PLA mount.

Figure 8. A) Annotated schematic view of the experimental setup. B) Annotated picture of the experimental setup.
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the suction cup was 50mm, which was found to be the minimal
focus distance of the camera module. The TinkerMinds program-
mable air device was attached to the pneumatic inlet of the
mount. This device consisted of an Arduino Nano, two pumps,
and three valves. The resulting pneumatic circuit was able to
apply both vacuum and compression on several power levels.
The camera module and the barometric pressure sensor were
connected to a Raspberry Pi 3 equipped with the lastest version
of the Raspbian environment. In order to control all hardware
components from the Raspberry Pi environment, a serial connec-
tion was set up between the Arduino and the Raspberry Pi 3 by
plugging the Arduino USB Cable into the Raspberry Pi 3. This
enabled the Raspberry Pi 3 to send serial commands to the
Arduino. Finally, the mount was attached to a UR5 robotic
arm. For force measurements, an acrylic plate of dimensions
100� 100mm, serving as the substrate, was attached to the
Wittenstein HEX 32 6-Axis force/torque Sensor kit.

3.2. Experiment I: Basic Functionality

The first experiment focused on the evaluation of the suction
cup’s basic functionalities. This assessment included two pull-
off experiments to evaluate performance under normal and shear
forces on a flat surface, as well as pickup experiments involving
three different objects. During all experiments, tactile images
were captured at every step, which were assessed on their
suitability for control-related purposes.

3.2.1. Normal Pull-Off Strength

The objective of the normal pull-off experiments was to deter-
mine the indentation and preload that corresponded to the high-
est normal pull-off force. As normal pull-off force is a commonly
used metric for the evaluation of artificial suction cups,[9] mea-
suring it will facilitate an objective performance comparison to
other state-of-the-art designs. The preload and pull-off force was
measured at six different indentation levels, ranging from 1.0 to
3.5mm in steps of 0.5mm. An indentation of 0mm is defined as
the point at which the suction cup exactly touches the acrylic plate
but no deformation has yet taken place. The experimental proce-
dure used the setup depicted in Figure 8 and was executed in line
with the adhesion process described in Figure 4. During every
stage, force and pressure data was collected at 100 Hz and tactile
images were obtained at 30 fps. The full process consisted of the
following steps. 1) The pump was activated at positive pressure,
causing inflation of the acetabular roof. 2) By translating the end-
effector of the robot arm in the negative z-direction, the suction
cup was moved downward until it reached the determined inden-
tation. This produced a preload force on the substrate. 3) The
pump was activated to generate a negative pressure, resulting
in retraction of the acetabular roof. The volume increase of
the sealed chamber between the suction cup and the substrate
generated a pressure drop and led to an attachment force.
4) The robot arm was translated in the positive z-direction at
an acceleration of 0.01m s�2 until the maximum velocity of
0.01m s�1 was reached, resulting in the suction cup being pulled
off the substrate.

Data postprocessing required time-synchronizing the force—
with the pressure—and image data, as they were collected on dif-
ferent devices. This synchronization was based on the moment
of indentation, which corresponded to the minimal (negative)
force in the z-direction on the substrate and the maximum (pos-
itive) pressure in the chamber above the acetabular roof. This is
because the indentation caused a slight upward movement of
the acetabular roof, resulting in a small pressure peak. The nor-
mal pull-off force was then defined as the maximum of the
z-component in the force data sequence, while the preload force
was defined as the minimum. The execution of the normal
pull-off experiment can be observed in Video S1, Supporting
Information.

3.2.2. Shear Pull-Off Strength

To proceed with the shear pull-off experiment, the indentation
corresponding to the highest normal pull-off force was selected.
This experiment followed a similar procedure to the normal pull-
off experiment, with one key distinction. Instead of translating
the robot arm in the z-direction after activation of the vacuum,
the arm was now translated in the x-direction, generating a shear
pull-off force. The execution of the shear pull-off experiment can
be observed in Video S2, Supporting Information.

3.2.3. Object Pickup Experiments

The pickup experiments also followed the same steps as the nor-
mal pull-off experiment, with one distinction. Instead of using
the velocity and acceleration of 0.01 and 0.01m s�2 in step 4,
these values were now increased by a factor 5 to speed up the
pickup of the object. Three objects were used. First, an alumi-
num block weighing 12.0 g and dimensions 55� 40� 20mm
(length�width� height) was used. This object was lifted with
the center of gravity aligned with the central axis of the suction
cup. Second, an elongated aluminum profile weighing 33.0 g and
dimensions 150� 40� 20mm was used. This object was lifted
with its center of gravity 50mm from the suction cup central axis.
Finally, to assess the adaptability to curved objects, an aluminum
cylinder weighing 17.5 g with a 16mm radius and length of
75mm was picked up. During all pickup experiments, pressure
data was gathered at 100Hz. The execution of the three pickup
experiments can be observed in Video S3, Supporting
Information.

3.3. Experiment II: Orientation Estimation

The second experiment addressed the ability to estimate the
orientation of the suction cup with respect to the substrate.
Differences in orientation between the suction cup and substrate
were obtained by deploying the robot arm to position the suction
cup in a random orientation before indenting it on the flat
substrate. Upon indentation, a tactile image is taken. A CNN,
implemented using the Tensorflow v2.16.1 library, was trained
to learn the relationship between these images and the orienta-
tion of the suction cup relative to the substrate.
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3.3.1. Data Collection Method

The first phase of this experiment involved the collection of
orientation-labeled tactile images. A quasistatic approach was
adopted, leaving a sufficient amount of time between capturing
each image. This ensured that damping and other dynamic
effects of the viscoelastic Agilus30Clear did not introduce
unwanted variations in the tactile images. To eliminate variation
introduced by camera focus, the lens distance was set to the min-
imal value of 50mm and autofocus was disabled. The resolution
of the captured images was 1170� 1170 pixels. Figure 9A
explains how the orientations were defined. A spherical coordi-
nate system was adopted where the center of rotation was located
at the intersection of the suction cup’s central axis and the cir-
cular area defining the edge of the infundibulum (Figure 9A1).
After setting a random target orientation (Figure 9A2) in a lati-
tude domain between 0° and 20°, and a longitude domain
between 180° and �180° (Figure 9A3), the suction cup was
rotated into the target orientation (Figure 9A4). With the goal
of making the CNN able to generalize its predictions over varying
indentation levels, a randomized indentation between 3.0 and

4.0mm, with steps of 0.2 mm in between, was generated.
Figure 9B1 shows that the zero level was defined as the
outer edge of the infundibulum slightly touching the substrate.
The suction cup was then translated in the negative z-direction
of the world coordinate system until the desired indenta-
tion was reached (Figure 9B2). The execution of the data
collection process can be observed in Video S4, Supporting
Information.

Having adopted the system in Figure 9 to define the orienta-
tion and indentations, the following steps were executed for the
data collection process (Figure 10): 1) The robot arm started from
a neutral position, with the lowest part of the suction cup posi-
tioned 30mm above the substrate (Figure 10A). 2) The pump was
activated at positive pressure, causing inflation of the acetabular
roof (Figure 10B). 3) After introducing a waiting period of 2.0 s to
allow for damping of vibrations in the membrane, the first image
was captured (Figure 10C). 4) The robot arm rotated the suction
cup until it reached the desired orientation (Figure 10D). 5) The
robot arm translated into the negative z-direction until it reached
the desired indentation (Figure 10E). 6) After another waiting
period of 2.0 s, the second image was captured (Figure 10F).

Figure 9. A) Definition of orientation in a spherical coordinate system. A1) The center of rotation is defined as the intersection of the suction cup’s central axis
and the circular area defining the infundibulum edge. A2,A3) A random target orientation is generated in a latitude domain between 0° and 20° and a longitude
domain between 180° and�180°. A4) The suction cup is rotated in the target orientation. B) Definition of the tilted indentation on the substrate. B1) Achieving
initial contact with the infundibulum edge. B2) Moving the suction cup in the world negative z-direction until the desired indentation is reached.

Figure 10. Data collection procedure. A) Neutral position with the lowest part of the suction cup located 30mmabove the substrate. B) Inflation of the acetabular
roof. C) After a waiting period of 2.0 s, the “before” image was captured. D) The robot arm rotated the suction cup until it reached the desired orientation. E) The
robot arm moved in the negative z-direction until the desired indentation was reached. F) After a waiting period of 2.0 s, the “after” image was captured.
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3.3.2. Image Postprocessing

The second phase of the experiment involved postprocessing the
tactile images before feeding them to a CNN as training data. To
ensure solely capturing relevant deformations introduced by the
angled indentation and eliminate unnecessary background infor-
mation, the two images were processed as a single difference
image. Python OpenCV’s subtract algorithm[30] was employed
for this operation. It is important to note that the OpenCV sub-
tract algorithm preserves negative pixel outputs, resulting in a
lossless difference calculation. The total sequence of post-
processing operations is displayed in Figure 11. After saving
the difference (Figure 11A), the circle containing only the marker
image was cropped out and the image was downsampled to
100� 100 pixels to decrease the network training time
(Figure 11B). Finally, the downsampled difference image was
saved and labeled with the corresponding orientation and inden-
tation values (Figure 11C). In total, 5528 labeled difference
images were collected. The execution of the data collection
and postprocessing operations can be observed in Video S5,
Supporting Information.

3.3.3. Network Architecture & Training

The third phase of the experiment required defining the
architecture of the CNN. The network architecture is illustrated
in Figure 12. The input dimension of the network was set to
100� 100� 4, corresponding to the red, green, blue, and alpha
(RGBA) values of the tactile images, normalized between 0 and 1.
Then, three sequences of convolution with ReLu activation,

followed by a 2� 2 max pooling layer, were used. The number
and dimensions of the kernels deployed at each step are shown at
the bottom of Figure 12. The kernels are small 3D matrices used
to perform element-wise multiplication followed by a summation
as they slide over the input data. The values of the kernels were
learnt during the training process such that each kernel extracted
a specific feature from the input. The output was flattened and
fed into three output nodes. The three output nodes corre-
sponded to the prediction of the latitude value, normalized
between zero and one (θ̃) and the sine and cosine of the longitude
value (sin(ϕ) and cos(ϕ)). This deconstruction of the longitude
value was deployed to eliminate large prediction errors close
to a full revolution. The images were randomly divided into train-
ing, validation, and test data with a ratio of 0.7, 0.15, and 0.15
respectively. The network was trained in 30 epochs with a batch
size of 32, the ADAM optimizer, and the mean square error
(MSE) loss function.

4. Results

4.1. Experiment I: Basic Functionality

4.1.1. Normal Pull-Off Strength

The results of the pull-off experiment are shown in Figure 13A.
On the left, the normal force and the pressure in the chamber
above the acetabular roof throughout the adhesion process are
plotted. A maximum pull-off force of 9.35 N was achieved at
an indentation of 2.0 mm and with a corresponding preload of
22.2 N. This was achieved by activating the fluidic circuit with

Figure 11. Image of the postprocessing procedure. A) Subtraction of the RGB pixel values of the ‘after’ from the ‘before’ image, leaving only the
difference. B) Cropping out of the circle containing the markers and downsampling of the image to 100� 100 pixels. C) Saving of the image with
the corresponding latitude (θ), longitude (ϕ), and indentation (I) labels.
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a positive input pressure of 15.28 kPa, followed by a negative
pressure of �15.77 kPa. Although this is in line with the
state-of-the-art suction cups,[9] it should be noted that this is well
below the theoretical maximum force of 100.2 N. When the suc-
tion cup is firmly attached to a substrate, there no longer is a gap
between most of the infundibular surface and the substrate.
Hence, the seal may form near the orifice circumference instead
of near the infundibulum circumference. As a result, no negative
pressure is applied to most of the infundibular area and that area
no longer contributes to generating the attachment force. If it is
instead assumed that the pressure is only applied to the orifical
area that remains connected to the acetabular area in which the
negative pressure is generated, the theoretical maximum force
would be 18 N, which is much closer to the obtained results.
Other discrepancies could be explained by errors in geometrical
assumptions of the calculation and surface roughness of the
printed parts and coating resulting in an imperfect seal.

Six moments corresponding to six key stages of the adhesion
process are highlighted in the plots and an image of the suction
cup at each moment is shown on the right of Figure 13A. A red

dashed line is added to each image to indicate the configuration
of the acetabular roof at eachmoment. The tactile images taken at
each moment are shown directly below, with additional differ-
ence images between the tactile images highlighting the change
in tactile image when moving from one stage to the next. It can
be seen that especially the changes in membrane configuration
upon inflation, suction, and release result in large changes in
tactile image (difference image 2–1, 3–2, and 6–5 respectively),
whereas differences in load magnitude upon indentation and
pull-off result in relative smaller changes (difference image
3–2 and 5�4 respectively).

4.1.2. Shear Pull-Off Strength

The results for the shear pull-off experiments are shown in
Figure 13B. When using this same indentation of 2.0 mm for
the shear pull-off experiment, the suction cup achieved a shear
pull-off force of 5.28 N. The difference image 5–4 demonstrates
that the application of shear forces results in a clear difference in
tactile image. Moreover, whereas the difference image 5–4 for

Figure 12. Visualization of the CNN’s Architecture. A) The RGBA input image is fed into the first convolutional layer. B) A max pooling operation is
performed on the output of convolution. C–F) The network feeds the image into two more sequences of convolution and pooling G,H) The output of the
final pooling layer is flattened. I) The flattened vector is fed into three output nodes corresponding to the sine and the cosine of the longitude (sin(ϕ) and
cos(ϕ)) and the normalized latitude value (θ̃).
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the normal pull-off experiment shows a rotationally symmetric
response, the difference image 5–4 for the shear pull-off experi-
ment shows a clear asymmetry corresponding to the direction of
the applied shear force.

4.1.3. Object Pickup Experiments

Finally, the results of the pickup experiments are shown in
Figure 14. The pressures in the chamber above the acetabular
roof throughout the pickup experiments are plotted on the left,
with the five stages of the pickup process shown on the right
along with the tactile images at each stage and the difference
images between successive tactile images. Despite differences
in object shape, weight, and alignment of the center of gravity
with the central axis of the suction cup, the suction cup was capa-
ble of picking up all objects successfully, highlighting the suction
cup’s ability to conform to different objects in order to create a
seal. Moreover, it was found that different object shapes resulted
in clear differences in corresponding tactile images. During the
neutral stage and inflation stage, the suction cup is not in contact
with the object, and the tactile images for the three different
object look similar (Figure 14A–C). Upon indentation, the tactile
image taken during the cylindrical object pickup experiment
(Figure 14C) shows clear differences from those taken during
the flat object pickup experiments (Figure 14A,B), which become
most apparent from observing the difference image 3–2 for the
three objects. Notably, difference image 3-2 obtained from the

tactile images taken during the cylindrical object pickup experi-
ments (Figure 14C) is nonuniform, with small differences where
the suction cup is in contact with the top of the cylinder and
increasing differences away from this line resulting from the
increased deformation of the suction cup conforming to the
curved surface. The response for the flat objects with the aligned
(Figure 14A) and unaligned (Figure 14B) center of mass is still
similar at the indentation and suction stage. However, during the
pickup stage, the object with the unaligned center of mass is
rotating, resulting in large and nonuniform differences in the
tactile image (see difference image 5–4). In contrast, the object
with the center of mass aligned with the central axis of the suc-
tion cup only shows small and uniform differences between the
suction and pickup stage. These changes are caused by the
change from a compressive force to a tensile (gravitational) force
acting on the suction cup when moving from the suction to the
pickup stage.

4.2. Experiment II: Orientation Estimation

4.2.1. Training Results

For the second experiment, the CNN was trained in ≈7min
(14 s per epoch for 30 epochs). This resulted in a training
MSE of 0.044 and a validation MSE of 0.042.

Feeding the test set of images to the network resulted in an
average absolute latitude (θ) error of 1.97° (9.8%) and an absolute
longitude (ϕ) error of 9.41° (2.6%). Figure 15 displays the error

Figure 13. Force and pressure plots for the A) normal pull-off experiment and B) shear pull-off experiment. For both experiments, the tactile images at the
1) neutral, 2) inflation, 3) indentation, 4) suction, 5) pull-off, and 6) release stage are shown, as well as the difference images that highlight the differences
between successive tactile images.
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bars for both variables against the real latitude values. Next, the
generalization behavior over the indentations was evaluated.
Figure 16 displays the error bars representing the prediction
error per indentation.

Analyzing the latitude error plot (Figure 15A), a slight decreas-
ing trend is observed as the latitude value increases, passing
through zero error at around 12°. This may be attributed to
the fact that this experiment involved indirect deformations of
the marker membranes, which occur through the transfer of
deformation from the suction cup infundibulum. This indirect
mechanical filtering effect could result in lower prediction errors

for certain “preferred” latitude values, where the chosen architec-
ture exhibits better transfer behavior.

Figure 15B indicates that the prediction errors for longitude
display higher variance for a latitude value of zero degrees com-
pared to other values. The cause for this would be that a latitude
of zero automatically eliminates the longitude value, as no
rotation takes place at all. As latitude increases, more markers
undergo displacement, resulting in a higher signal-to-noise ratio
and less variation, leading to shorter error bars.

Interestingly, the network’s prediction performance did
not show a discernible trend based on the magnitude of the

Figure 14. Pressure plots for the pickup experiments of A) an aluminum block with aligned center of gravity, B) a beam with unaligned center of gravity,
and C) a cylinder, along with tactile images and difference images at the 1) neutral, 2) inflation, 3) indentation, 4) suction, and 5) pickup stage.

Figure 15. Error bars for A) latitude (θ) and B) longitude (ϕ) prediction errors, Plotted against real latitude values.
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indentations (Figure 16). Higher indentations were initially
expected to yield a better performance due to increased marker
displacement and improved signal-to-noise ratio. The explana-
tion for this might be that the presence of higher indentation
introduces more slip between the substrate and the suction
cup, contributing to increased variation in the tactile images,
which may cancel out the effect of having a stronger signal.

4.2.2. Closed-Loop Control

To verify whether the prediction errors of the CNN were low
enough to obtain a seal in real-case scenarios, the trained
neural network was deployed in a closed-loop control scheme
(Figure 17). The suction cup was first used to estimate the
relative orientation of the suction cup with respect to the object

Figure 16. Error bars displaying the A) latitude (θ) and B) longitude (ϕ) prediction errors over each indentation.

Figure 17. Performance of CNN when using it for live correction of orientation. For A) a latitude (θ) of 5° and a longitude (ϕ) of 0°, B) a latitude (θ) of 10°
and a longitude (ϕ) of 45°, C) a latitude (θ) of 15° and a longitude (ϕ) of 90°, D) a latitude (θ) of 20° and a longitude (ϕ) of 135°. The left portion of each
subfigure shows the obtained difference image and predicted values. The right portion shows the front view and tactile images in the 1) “indented” stage,
2) “corrected” stage, 3) “sealed” stage, and 4) “picked up” stage.
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surface. Then, the suction cup was reoriented such that it
approaches the object surface in a perpendicular manner accord-
ing to the estimated orientation. Both actions are performed with
a maximum indentation of 3.5 mm. It was experimentally deter-
mined that the maximum angle between the suction cup and the
object for which the suction cup is able to obtain a seal due to its
passive compliance is 11° at this indentation. This maximum
angle can be considered the error tolerance of the system.
Objects were placed in four different orientations. The latitude
(θ) started at 5° (Figure 17A) and was incremented with 5°
(Figure 17B–D) for each successive object. The longitude (ϕ)
started at 0° (Figure 17A) and was incremented with 45° for each
successive object (Figure 17B–D). The difference images were
obtained as explained in Figure 10. The original TensorFlow
CNN was first converted to a Tensorflow Lite (TFLite) version
to ensure compatibility with the Raspberry Pi. The CNN took
0.66 s to output a predicted orientation from an input image.
The suction cup was able to create a seal on, and consequently
pick up each of the four objects, demonstrating that the predic-
tion error of the CNN can be overcome by the compliance of the
suction cup. The execution of the closed-loop control experiment
can be observed in Video S6, Supporting Information.

5. Conclusion

Drawing inspiration from the architecture and sensing abilities
of octopus suckers, this work presents an automated design and
manufacturing process for a suction cup with high-resolution
tactile sensing capabilities. The suction cup exhibited a normal
pull-off force of 9.35 N and a shear pull-off force of 5.28 N. It also
showed the ability to successfully pick up a flat object, curved
object, and a beam with a misaligned center of gravity.
Moreover, each of the aforementioned manipulation tasks
resulted in distinct tactile images throughout the adhesion pro-
cess, highlighting the potential for utilizing the obtained tactile
information for the design of more sophisticated control strate-
gies. This potential was demonstrated in an orientation estima-
tion experiment. A CNN was able to predict the orientation of the
suction cup with respect to an object surface using a 100�
100 pixel difference image taken during tilted contact with an
average error of 1.97° for latitude (θ) and 9.41° for longitude
(ϕ). In a closed-loop control experiment, the unknown orienta-
tion of object surfaces was estimated by an initial touch and
the suction cup was consequently reoriented to approach the
object in a perpendicular manner. It was demonstrated that
the compliance of the suction cup was sufficient to compensate
for the prediction error and a seal could be created on each of the
objects.

In this work, a discrete closed loop control approach was
implemented. Upon touching the substrate, a single orientation
estimation was made to execute the correction. Future work will
focus on implementing continuous closed-loop control, where
the suction cup maintains contact with the substrate during
reorientation and the estimated orientation is continuously
updated to execute the correction. This is expected to enhance
performance in dynamic environments as well as on nonflat
objects. Moreover, whereas this work demonstrated that contact
with objects of different shapes results in distinct tactile images

(see Figure 14), the results have focused on demonstrating ori-
entation estimation on flat objects. Future work will focus on cal-
ibrating the sensor for estimating object shape, normal force, and
shear force as well. This will require a much larger and more
varied training dataset. Finally, the design of the suction cup
and camera system can be further optimized. Future work will
focus on tuning the existing design parameters to optimize for
various applications with different requirements regarding size,
attachment force, and tactile sensor signal-to-noise ratio.
Although the multimaterial additive manufacturing approach
also allows for tuning of the material stiffness throughout the
suction cup, the current parametric design model does not facil-
itate the design of suction cups with a nonuniform distribution
of material stiffness. Incorporating this functionality in our
parametric design model would allow for mimicking the
mechanical properties of the octopus sucker to enhance the suc-
tion cup attachment performance.[28] The measured normal pull-
off forces indicate that the current suction cup is slightly leaking
and the negative pressure is not applied across the entire infun-
dibular surface. The octopus sucker contains microdenticles and
radial grooves to improve the sealing performance as well as
increase the infundibular area to which the negative pressure
is applied.[9] Future work will focus on integrating similar
features in the parametric suction cup design model.
Additionally, the overall size of the system is currently limited
by the size and focal length of the camera, hindering integration
of the suction cups in soft continuum arms. Hence, future work
will focus on miniaturization of the camera system.
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