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Abstract

The spread of fake news has negatively impacted society. Prior efforts in Natural Language Processing

(NLP) have employed machine learning models and Pre-trained Language Models (PLMs) like BERT to

automate fake news detection with promising results. These models excel at text classification tasks, but

their dependence on large context-specific datasets presents a hurdle in the dynamic and ever-evolving

context of fake news. The recent emergence of Large Language Models (LLMs) offers a potentially

transformative innovation. LLMs have demonstrated great promise in NLP tasks with little additional

training data. Compared to PLMs, LLMs have broader knowledge and enhanced reasoning capabilities,

suggesting their suitability for fake news detection. This study proposes an investigation which considers

multiple perspectives to probe the applicability of the effectiveness, opportunities and challenges associated

with leveraging LLMs for automated fake news detection. We leverage multiple state-of-the-art LMMs

by using them at multiple levels of guidance to validate their accuracy and task-specific bias. The main

contribution of this work is a better understanding of the role LLMs can play in automated fake news

detection, the pitfalls that should be avoided when leveraging them, the most effective approaches when

employing them, and the future challenges that need to be addressed.

Our key contributions include a better understanding of how to employ LLMs for fake news detection,

their strengths and weaknesses, and some practical recommendations for deploying them in the real

world. Our work shows that while LLMs hold great potential for advancing automated fake news detection,

thoughtful consideration of their limitations and careful application refinement are essential for their effective

deployment in the fight against fake news.
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1
Introduction

Since the widespread adoption of the internet, social media platforms, and digital news sources, it has

become clear that the dissemination of misinformation/ fake news can pose significant threats. To illustrate

fake news’s effects on people, businesses, and countries, we give the following examples. During the

COVID-19 pandemic, hundreds of Iranians died from drinking neat alcohol because of a fake story that a UK

tabloid paper spread about how people cured themselves with whiskey and neat honey [1]. In the aftermath

of the 2020 US presidential election, fake news was spread about the Smartmatic Voting machines used

in Florida, resulting in serious reputational damage1. In Myanmar fake news spread through Facebook by

influential people and government officials caused 750,000 people to flee the country[2] which was later

determined to be a genocide and crime against humanity by the UN[3].

Fake news often exploits inherent cognitive biases, which are mental shortcuts that people use to

process information quickly but can lead to judgment errors. One such bias is confirmation bias, where

individuals are likelier to believe information that confirms their pre-existing beliefs and disregard information

that contradicts them. This bias is particularly potent in the context of social media, where algorithms are

designed to show users content that aligns with their preferences, reinforcing echo chambers. These echo

chambers can, in turn, amplify the dissemination of fake news, leading to widespread misinformation that

affects large segments of the population.

Historically, before the advent of the internet, the ability to disseminate information to most of society was

predominantly in the hands of large organizations, such as media companies and government institutions.

This gatekeeping role meant that information flow was relatively controlled and centralized. However,

the introduction of the internet and, more specifically, the rise of Social Media Networks (SMNs) has

dramatically democratized access to a large audience. Today, nearly anyone can reach many people with

minimal effort, leading to an unprecedented spread of information and misinformation. Unfortunately, this

newfound accessibility has been exploited by individuals and groups seeking to spread misinformation,

often with harmful consequences.

As fake news proliferates and gains traction, distinguishing between genuine news and misinformation

becomes increasingly challenging. This erosion of trust in news sources complicates the ability to discern

truth from fiction. It can lead to a fragmented reality where a shared understanding of facts is no longer

possible. Such a breakdown in shared reality poses far-reaching indirect consequences, including the

undermining of democratic processes, increased polarization, and social unrest.

To combat this, various organizations have been established to fact-check and mitigate the impact of

fake news. Traditionally, this has been achieved through objective journalism and the work of experts in the

relevant fields, which was effective when only certain parties were in control of the news cycle. However,

this process is labour-intensive and requires significant expertise, making it difficult to scale, especially

since creating fake news is often much easier and faster than debunking it. In response, researchers

have proposed automated fake news detection systems to address this challenge. With advancements

in Natural Language Processing (NLP), automatically analyzing and classifying textual content became

possible, thereby identifying potential fake news. However, these early approaches required vast amounts

of specially curated data to achieve even modest effectiveness.

1https://apnews.com/article/election-2020-joe-biden-donald-trump-technology-electronic-voting-cd68ad2022611a36154ff3f243fcd1d8
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3

Subsequent advancements in AI introduced Pre-trained Language Models (PLMs), such as Google’s

BERT, which are trained on enormous corpora of text and can be fine-tuned for specific tasks like text

classification in fake news detection. These PLMs marked a significant improvement over earlier methods,

as they provided a foundation upon which more accurate and adaptable fake news detection systems

could be built. Nevertheless, these models are not without their challenges. Training and fine-tuning PLMs

are expensive and computationally intensive, necessitating access to vast amounts of data and specialized

hardware.

Current state-of-the-art methods rely on Machine Learning (ML) and Artificial Intelligence (AI) techniques

that leverage PLMs, such as BERT [4], and often combine them with other ML systems that consider

additional factors like the patterns of information spread and the profiles of those disseminating the

information. While these approaches show considerable promise, they are still constrained by the significant

resources they require and need much domain knowledge and expertise in ML technologies.

The rise of Large Language Models (LLMs) introduces new dynamics into this landscape; on the one

hand, LLM-generated fake news can be disseminated on a larger scale and faster, making it even easier

for malicious actors to manipulate public opinion. While tech companies are working to make these models

safer and less prone to misuse, ethical considerations arise. One significant concern is determining who

can decide what constitutes the ”truth.” Another critical issue is where to draw the line between making

AI models safe and avoiding the censorship of free speech. Should AI companies be entrusted with the

power to define truth? Can we trust that these models will not produce false or misleading information,

known as hallucinations? These essential questions must be openly and freely discussed to ensure a safe

and ethical future.

Conversely, LLMs also have the potential to serve as powerful tools for detecting and mitigating the

spread of fake news. Just as these models can generate fake news, they can also be employed to identify

it, providing a valuable resource in the fight against misinformation. However, defining their specific role in

fake news detection is crucial to effectively leverage LLMs in this capacity. This requires ongoing research,

collaboration, and dialogue among technologists, ethicists, policymakers, and the public.

Therefore, this manuscript investigates the role of LLMs in automated fake news detection. Specifically,

our primary objective is to investigate the effectiveness, opportunities, and challenges of employing LLMs

in this domain. To reach this objective, we aim to answer the following main research question: How do

Large Language Models fare when leveraging them for automated fake news detection?. Before we

answer this research question, we will first answer the following sub-questions:

How does performance differ across widely used LLMs and associated prediction generation

strategies?

Research Question 1

How does performance differ between LLMs and earlier automated fake news detection strate-

gies, specifically feature-based and pre-trained language model strategies?

Research Question 2

How do LLMs fare in fake news detection from the different perspectives of the domain, textual

characteristics, psychology, and sustainability?

Research Question 3

To answer these questions, we adopt the following systematic approach. Our investigation begins by

reviewing relevant background literature on the nature of fake news from both a web information perspective

and a communication science perspective. Following this, we delve into the topic of fake news detection.

This includes introducing different strategies used and challenges associated with them to explain and

contextualize the problem we aim to solve. We then describe what LLMs are, how they work, and important

considerations when using them, providing context for our evaluation of the models.
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Next, we examine the most relevant and closely connected research that informs our work, providing

an overview of previous studies, which we later use to contextualize our results. By identifying gaps and

limitations in existing literature, we outline how our work builds on previous science and how it differs from

earlier efforts to detect fake news automatically.

Following this, we present our methodology for evaluating LLMs in the context of fake news detection.

Our evaluation framework incorporates several established datasets containing instances of fake and real

news labelled on their veracity. These curated datasets represent a broad and diverse range of news

articles, reflecting the variety of information consumed and disseminated online. This diversity is paramount

for ensuring that our findings are robust and applicable across multiple domains of news consumption.

Additionally, we discuss our specific experimental setup for our work and the pipeline we developed

using Python to ensure reproducibility. We then discuss ethical considerations, which are important for

research on fake news and can have severe consequences when not considered responsibly and ethically.

To analyze the performance and architecture of LLMs, we select four widely used models developed

by important players in the LLM space, chosen based on their architecture, openness, and popularity.

These models include: Gemma-2b-it, Mistral-0.2-7b-it, Llama-3.1-8b-it, and Gemma-2-9b-it. These

models are then tasked with predicting the veracity of news articles within the datasets using several

distinct detection strategies. By comparing the behaviours and predictions of these LLMs over various

detection strategies, we aim to answer sub-question 2. The detection strategies we employ vary in the

levels of guidance provided to the LLMs for fake news detection. These include:

1. Binary Classification, where the models classify news as real or fake.

2. Discrete Classification offers more categories for classification, leaving a little more room for nuance

in the predictions.

3. Continous Classifications, offering the most granular types of predictions from a scale of 0% to

100% true.

4. Chain of Thought (CoT) Binary Classification, which employs the models to reason about their

classification.

5. Finally, we implement Fine-tuning on our models, specifically for Binary Classification, aiming to

improve the base capabilities of the LLMs for fake news detection (available at huggingface.co2.

We first evaluate the LLMs’ raw performance by calculating the accuracy of the different detection

strategies. We then explore their performance further by investigating their misclassification. We do this by

finding the rate of false positives and false negatives. This tells us where the LLMs make more mistakes

and how they make them. We also evaluate the validity of LLMs prediction labels. Since they are next

token predictors, they can give semantically similar responses to classifying something as fake or real but

are not the expected predictions for automatic parsing and processing. This evaluation of performance

helps us answer question 1.

We then contextualize our findings with comparisons to baseline models introduced in earlier research.

These baseline models help us answer question 2 as we explore whether and how LLMs provide tangible

improvements over traditional methods for fake news detection.

Finally, we broaden our evaluation beyond the predictions’ raw performance by analyzing the classifi-

cations of the different models through various lenses. These perspectives are grounded in earlier works

and give a holistic overview of the challenges and qualities of leveraging LLMs for fake news detection.

By evaluating the LLM predictions through these lenses, we answer question 3. These lenses include:

Textual Characteristics, specifically text length and readability. Psychology, namely sentiment. Domain,

based on the topics of the used news articles and finally Sustainability, measured in time and energy

spent for inference and fine-tuning, to understand the impact on the environment of leveraging LLMs for

fake news detection. All code to reproduce our experiments is available on Gitlab3.

The results show that LLMs can outperform earlier baselines, but employing them presents crucial

challenges. Although our work is thorough and expansive, continued work is needed to ensure the

mitigation of widespread fake news propagation.

2https://github.com/Merlijnmacgillavry/FakeNewsDetectionUsingLLMs
3https://github.com/Merlijnmacgillavry/FakeNewsDetectionUsingLLMs
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The key contributions of this study are outlined as follows. We aim to gain a better understanding

of how to employ LLMs for the task of fake news detection, with practical recommendations. We also

introduce a multi-perspective approach to contextualize and analyze LLMs for fake news detection. Finally,

we discuss and share a better understanding of the trade-offs that need to be considered when using

LLMs for fake news detection.



Part II
Background & Related Work
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2
Literature Background

This chapter describes the research background regarding fake news detection and LLMs. We first give an

overview of the scientific background of fake news, its impact, and the different kinds of fake news. Then,

we discuss different existing automated fake news detection strategies. We start by describing manual

fake news detection, then we discuss different automated techniques, and finally, we give an overview of

the relevant background for LLMs.

2.1. Fake News, Misinformation and Disinformation
According to Lazer et al., fake news is defined as: ”Fabricated information that mimics news media content

in form but not in organizational process or intent” [5]. Fake news is strongly connected to other forms

of false information sharing such misinformation (without the intent to deceive) and disinformation (with

the intent to deceive and mislead people). Finally, there is the last form of information sharing that we

categorize as fake news: Malinformation. Misinformation is true information taken out of context with

the intent to harm. The main difference between fake news and real news is the responsibility taken,

methodology, and objective approach that the sharing of real news follows in contrast to fake news. These

journalistic norms of objectivity, responsibility, and multiple perspectives came to be after the widespread

use of propaganda in World War I and, consequently, the distrust in news organizations because of their

role in spreading it [5].

With the general public’s introduction and widespread adoption of SMNs, fake news has become more

easily accessible and shared. Additionally, SMNs are infected with automated social bots sharing, liking,

and commenting on fake news. According to Facebook, it is a growing problem with Facebook estimating

that as many as 60 million bots had been occupying their platform in a U.S. senate hearing1 and X (formally

Twitter) estimating that between 9% and 15% of active accounts are bots [6]. It is hard to mitigate this

problem of bots and bad actors on SMNs. The vast amounts of news spread over many different news

sources make it hard for the average person to distinguish between real and fake information.

Previous works have tried to identify the leading causes of fake news and how to mitigate it. One

such example is the work of Chen et al. [7], in which they did a systematic literature review on the key

factors contributing to the spread of misinformation through the four components of the SMCR [8] model

introduced by David Berlo in 1960. The SMCR model divides communication into four components: source,

message, channel, and receiver. Chen et al. further divide the different components into smaller ones:

• Message-related factors

– Presentation formats

– Language styles

– Psychological cues

• Source factors

– Credibility

1https://www.judiciary.senate.gov/committee-activity/hearings/extremist-content-and-russian-disinformation-online-working-with-

tech-to-find-solutions

7



2.2. Fake News Detection 8

– Ambiguity

– Popularity

– Similarity

– Self-interest

• Context-related factors

– Normative cues

– Channel attributes

– Social network features

– Debunking activities

• Receiver factors

– Demographics

– Personality

– Worldview

– Cognition

– Motivation

– Emotion

These smaller components can help systematically approach research into fake news and gain a more

holistic understanding of the spread of misinformation.

Not all fake news is created equally; fake news can be mostly unsubstantiated rumors to gain clicks

on websites, political propaganda with the intent to sway elections, or news about science made with the

intent to help and inform people but without the scientific know-how to understand the relevant literature.

These different types of fake news are not all as easy to detect and require different amounts of domain

knowledge, intent, and reputation of the source and knowledge of current events. Because of the variety

in content, presentation, and topics of different forms of fake news touch, accurate detection of fake news

is everything but a simple problem to overcome.

2.2. Fake News Detection
To mitigate fake news, it first needs to be identified. In this section, we describe the background of different

forms of fake news detection.

2.2.1. Manual Fake News Detection
Fake news detection has historically been a manually performed and labour-intensive process. The manual

detection of fake news often involves different roles, such as a domain expert, someone specialized in

domain news, such as an experienced journalist in the field, and multiple reviewers. Different institutions

and organizations have aimed to detect and fact-check fake news. Nonetheless, this is not a profitable or

glamorous endeavour, making the number of organizations small and often underfunded. Spreading fake

news, however, can have clear monetary and reputational incentives [9].

One such organization that fact-checks news is PolitiFact. PolitiFact uses a standardized process

of fact-checking news. This process involves one reporter and 3 editors who discuss the following four

questions2:

1. Is the statement literally true?

2. Is there another way to read the statement? Is the statement open to interpretation

3. Did the speaker provide evidence? Did the speaker prove the statement to be true?

4. How have we handled similar statements in the past? What is PolitiFact’s jurisprudence?

This manual effort is not a sustainable and scalable approach to mitigating fake news, as a vast amount of

2https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/
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fake news is shared and produced online.

Another approach to manual fake news detection is to employ the users of the SMNs on which the news

is shared by leveraging crowdsourcing. The most famous example of fact-checking through crowdsourcing

is Wikipedia3. Another well-known SMN that does this is X.com (formerly Twitter), using Community

Notes. However, this approach has issues: Crowdsourced fact-checking generally relies on a few users

contributing most of the work. For example, in a study about contributions on Wikipedia [10], Ortega et al.

found that less than 10% of the authors were responsible for over 90% of the contributions. Additionally,

as with normal news creation, there is no guarantee that bad actors do not do the crowd-sourced notes

and fact-checking.

2.2.2. Automated Fake News Detection
Another approach to fake news detection is employing algorithms and AI models. This method is easier

to scale than manual fake news detection and does not need to be investigated in terms of incentives to

counteract bad actors. In short, automated fake news detection strategies use programmed systems that

are trained on a dataset of labelled news and then can automatically classify the veracity of the news based

on the patterns it learned from the training data. In this work, we divide the different kinds of automated

detection into feature-based and PLM detection strategies. Depending on the perspective taken and the

context in which they are discussed, there are many ways to categorize different ML and AI technologies.

Our division into feature-based and PLM comes from a historical and characteristics-based approach.

Feature-based classification strategies have been around longer than PLM-based methods but are often

less effective in NLP.

Feature-Based Feature-based fake news detection models extract various attributes from news articles,

which can then be used to train ML models to classify news as either fake or real. As with all feature-based

AI models, it often takes domain knowledge and understanding of NLP techniques to know which features

are helpful for training the models and which are not. Researchers in fake news detection can ground their

choice of features on the SMCR model. These features can include Textual features such as Linguistic

Inquiry and Word Count (LIWC), Psychological features such as the sentiment of the text. This kind of

feature-based strategy can also be combined with non-message-related factors such as the reputation of

the accounts sharing news on an SMN. Generally, the process of leveraging feature-based models for

fake news detection can be summarized by the following steps:

1. Extract relevant features: Features are extracted from the news article, including linguistic features

(e.g., word frequency, complexity, sentiment), stylistic features, and source-related features (e.g.,

author reputation, social media metadata).

2. Train an ML algorithm: The extracted features are used to train a machine learning algorithm such

as Support Vector Machine (SVM), Naive Bayes, or Random Forest on a labelled dataset of news

articles. The choice of algorithm may depend on the type of features and the amount of data available.

3. Classify New articles: Once the model is trained, it can be used to classify new, unseen articles

based on the same set of features, predicting the veracity of the news.

Provided the features are well chosen, and the dataset these models are trained on is diverse and a

good representation of the task at hand. Their ability to differentiate between fake and real news typically

improves. There are, however, downsides to this approach. Extracting the correct features is not an exact

science. Often, experience in developing these models helps a lot with choosing the right ones. There are

ways to validate extracted features, but there is no guarantee that they will be optimal. Additionally, while

these models perform well in specific contexts, they are not guaranteed to work as well on unseen data or

data that was underrepresented in the training set.

Pre-trained Language Models Another automated fake news detection approach is using PLMs such

as BERT [4]. PLMs differ from feature-based technologies because they do not need manually extracted

features. They use self-supervised learning methods such as a masked language model on a huge text

corpus to “understand” natural language. They are typically based on transformer architectures and are

more challenging to interpret than feature-based models because of the lack of clarity in these models’

3https://en.wikipedia.org/wiki/Wikipedia:About
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internal representation of language. Their language representation could also be described as latent

features that capture nuances of word meaning, sentence structure, and other linguistic patterns. These

PLMs can be easily adapted to downstream tasks such as fake news detection by fine-tuning them to a

specific dataset. They then use their already-learned understanding of natural language and the newly

trained context to adapt to the task. What makes PLMs such as BERT strong is that they can understand

text in the context in which they are situated. Typically, the process for using a Pre-trained Language

Model for fake news detection is to:

1. Pick or Pre-train a Language Model: Start with an existing pre-trained language model or pre-train a

new model from scratch on a large corpus of text. The pre-training allows the model to learn general

language patterns such as grammar, syntax, and semantics.

2. Fine-tune the Pre-trained Model on Labeled Data: Fine-tune, the pre-trained model on a dataset

specifically designed for fake news detection. This dataset is typically labelled with ”ground truth”

(i.e., articles that are clearly identified as fake or real). Fine-tuning allows the model to adjust its

language representations to the task at hand, learning the specific patterns that distinguish fake

news from real news.

3. Classify Fake News: Once fine-tuned, the model can be used to classify new, unseen news articles.

The model can predict whether an article is fake or real by leveraging its pre-trained language

understanding and the patterns it learned during fine-tuning.

PLMs can be great for tasks such as fake news detection because they understand the context.

However, there are also challenges related to using PLMs; one of them is that they lack interpretability

compared to feature-based strategies. Additionally, they also require more computing resources than

feature-based strategies.

2.3. Large Language Models
Recent developments in the realm of AI and Machine Learning have produced a new phenomenon: LLMs.

One way to think of them is as spiritual descendants of the smaller and older PLMs. Although their

architecture is often not the same, LLMs, for example, mostly use decoder strategies, while PLMs can use

encoder-decoder architectures. They also share many similarities regarding how to use and adapt them.

These models are characterized by their enormous training datasets and billions of parameters. Because

of the large datasets and the tremendous amount of computing power needed, most LLMs are made by

large tech companies. How these companies gather their training data and how they specifically train their

LLMs is generally hard to find out. Contrary to what these companies’ names suggest, this information is

not shared openly, and therefore, these models can mostly only be investigated as black boxes without

knowing their inner workings.

Models Choosing the right model for a specific task can be hard and can often only be done by comparing

the outputs generated by these models given the same input. There are, however, some characteristics

that can hint at the LLMs’ performance. One of these characteristics is their parameter size. The parameter

size, typically just referred to as the size of a model, represents the amount of weights that the model uses

to fit complex patterns into the data on which it was trained. Based on the input tokens a model gets as

input, it then predicts a sequence of tokens as output by a computation using the weights of the model that

has the highest probability of coming next and thus predicts which sequence of text is most likely to follow

after the input [11]. Generally, a higher parameter size means a better-performing model. Some of these

companies and organizations choose to fine-tune their models on specific tasks. These models are often

trained with human feedback to provide more fitting and, therefore, better output. Many popular LLMs like

LLama, Gemma, and Mistral have, for example, Instruction Tuned versions that generally perform better

on human instructions.

Prompting Prompting in the context of LLMs is the textual input users give to guide the model’s output

[11]. A new discipline in generative AI is the practice of Prompt Engineering, where different prompting

techniques are compared to better understand how to most effectively guide the LLMs to better output.

Prompt engineering has introduced new techniques such as Chain of Thought (CoT) prompting [12]. CoT

prompting tends to give better results for specific instructions that require some kind of reasoning, such

as basic math, by prompting the LLM to perform the task and sub-tasks that need to reason through
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how they perform their main task. Other prompt engineering techniques include: Tree of Thought (ToT)

prompting to evaluate multiple different solutions and reasoning steps to conclude [13], Self-Consistency

to investigate whether LLMs are consistent in their output by generating multiple solutions to the same

input and checking their similarity [14], Reflection to make LLMs reflect on their own output for correctness

[15], Expert Prompting which simulates multiple experts in the fields pertaining to the prompt which is

then combined to give a correct output [16], Chains for combining the capabilities of multiple LLMs in a

sequential matter to perform difficult tasks [17], Rails to guide and control the output of LLMs by predefined

rule sets and finally Automatic Prompt Engineering using LLMs to generate prompts to use for LLMs for

specific instructions [18]

Decoding strategies LLMs can be guided to higher probability output by choosing the appropriate

decoding strategy. These decoding strategies determine how the LLM “chooses” the next token to

generate. Some popular strategies are Greedy Search, taking the most probable token and discarding the

other options and Beam Search, keeping the N most likely sentences (sequences of tokens) at each step

during decoding, and in the end selects the generated response with the highest probability, the sentences

used in beam search can then also be normalized according to sentence length to mitigate the issue of

beam search preferring shorter sentences. When using LLMs to generate output based on different inputs,

hyperparameters can be chosen to guide the LLM to preferable output. These include parameters like

temperature, a value between 0 and 1.0 that determines the ”creativity” of the output [11]; using higher

temperature models can give diverse output, making it more akin to how humans would answer questions

slightly differently if they were asked the similar question over and over again when the temperature is set

to 0 that is equivalent to greedy search.

Fine-tuning As with PLMs, deployed LLMs can be further trained by providing additional training data to

improve them at downstream tasks. This process of fine-tuning mainly consists of two parts:

1. Instruction tuning: To better specific abilities of LLMs, like following the input instructions for a specific

task.

2. Alignment tuning: To align the models with human preferences and values.

To contextualize the two steps of fine-tuning with our work, you could view instruction tuning as training

the models to give us usable answers such as ”True” and ”False” and alignment-tuning as training the

model to classify the news with the correct label. There exist different forms of fine-tuning. Full fine-tuning,

for example, recalculates all/most of the model parameters for a specific task. This can, however, be very

costly and time-consuming as these models have giant amounts of parameters. To mitigate these issues,

techniques such as Parameter-Efficient Fine-Tuning (PEFT) [19] fine-tuning have been proposed. These

techniques only fine-tune a subset of the parameters of a model for downstream tasks, greatly reducing

the needed computing and time. One of these PEFT techniques is Low-Rank Adaptation (LoRA) [20],

which is based on the insight that instead of updating all weights in a large model, one can represent the

weight changes in a low-rank decomposition. These weight changes can then be used as an adapter for

the original weights to get fine-tuned results.

Sustainability With the amount of models being trained on vast corpora of data and the parallel growing

concerns of climate change, we cannot discuss these LLMs without also discussing their impact on the

environment. The largest models are made by BigTech companies such as OpenAI, Meta, and Google

and often use a vast amount of specialized hardware. How these companies share the amount of impact

on the environment their models have differs per instance. Google, for example, discloses the hardware

architecture it uses and gives an estimate of how many tons of CO2 it produces by training its models [21,

22]. On the contrary, Meta does give some information about the hardware and some insight about the

training time but does not give a useful metric for impact on the environment, but ironically does mention

that the environment has an impact on their model training because of fluctuation in temperature. Generally

speaking, smaller models take less computational resources and less time to train, making them better for

the environment.

Open LLMs The different companies creating LLMs show great variation in the level of “openness” of their

model. Some organizations adopt a fully open approach where model architecture, training data, weights,
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and training techniques are shared publicly [23, 24]. Others may share the model weights and provide a

general overview of the training data. Still, they are less transparent about their training techniques and

the specific datasets they used [25, 26, 27, 22, 21]. Finally, some models are accessible only through

proprietary APIs, with no public disclosure of their underlying components [28].

When selecting an LLM for scientific investigation, particularly in a research setting, it is crucial to

consider the level of openness. On the one hand, using fully open models allows for a more thorough

examination of confounding factors such as data contamination. On the other hand, incorporating more

widely used, albeit less open, models can enhance the real-world applicability of the research findings.



3
Related Work

This section discusses the works most closely related to our investigation. We discuss relevant feature-

based technologies and PLMs used earlier in the context of fake news detection. Then, we discuss some

of the state-of-the-art work that has been done with LLMs for text classification, specifically fake news

detection.

3.1. Feature Based Technologies
As described in the previous chapter, earlier research has used feature-based technologies for automated

fake news detection. These feature-based technologies use varying NLP and AI techniques to detect fake

news. We first describe work done on message-related factors of the SMCR model and then discuss work

done on non-message-related factors.

3.1.1. Message Related Factors
One of the more straightforward methods was introduced by Granik et al. [29], who applied a Naive Bayes

Classifier (NBC) to classify fake news based on the frequency of words in labelled fake and real news

articles. Their NBC achieved an accuracy of 75.4%, which is notable for its simplicity. However, this

result should be interpreted with caution. The dataset used in their study was highly imbalanced, with only

about 5% of the articles being labelled as fake news. This skewed distribution limits the generalizability

of their findings, as the classifier may not perform as well on a more balanced dataset or in real-world

scenarios where the proportion of fake news varies. Therefore, while their work highlights the potential of

feature-based technologies in fake news detection, it is important not to draw definitive conclusions about

the effectiveness of NBC in this context. Instead, their study underscored the need for further exploration

and validation of feature-based methods in diverse and balanced datasets.

Around the same time, Horne and Adali [30] used a similarly skewed dataset, but they employed a

much broader range of textual features for fake news detection. They focused on three types of features:

• Stylistic Features: These include elements such as the frequency of stopwords, punctuation, and

the use of swearwords.

• Complexity Features: These capture the overall complexity of the content, measured by well-known

readability indexes like the Gunning Fog, Dale Chall score, SMOG Grade, and Flesch-Kincaid Grade

Level indexes.

• Psychological Features: These are designed to assess the sentiment of the text.

Their study was mainly focused on investigating whether either the title or the body of an article was a

better predictor for the veracity of a news article. They found that using a Support Vector Machine (SVM)

on the titles of their articles, they got an impressive accuracy of 78% compared to the 71% they got for the

body. This work showed that even basic content-based approaches have potential in terms of accurately

detecting fake news.

To extend this work, Shrestha et al. conducted a reproducibility study [31] that incorporated additional

features and a more comprehensive dataset, including data from PolitiFact and GossipCop. In their study,

they not only examined the Support Vector Machine (SVM) used by Horne and Adalı but also evaluated

13
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a Random Forest (RF) classifier and a Linear Regression classifier. Their findings indicated that for the

BuzzFeed dataset used by Horne and Adalı, the results were consistent with the original study. However,

when applied to the PolitiFact dataset, the RF classifier outperformed the SVM, particularly when analyzing

the body of the news articles rather than the titles, achieving an accuracy of 87%. This reproducibility study

underscores the variability in classifier performance across different datasets, highlighting the importance

of context and data characteristics in the effectiveness of fake news detection models.

Another feature based approach by Dun et al. [32], was to extract entities from a dataset of news

articles to make a Knowledge-aware Attention Network for fake news detection. Dun et al. combined the

general knowledge about entities found in news to detect fake news. Their work provided insight into how

general knowledge about topics can contribute to accurately detecting fake news.

3.1.2. Non Message Related Factors
Another way to use these feature-based technologies is to not only look at the message-related features

but also investigate how fake news is propagated through the network, who/what organization shares the

news, and what kind of people are most likely to believe it. In other words, these techniques investigate

the other parts of the SMCR model.

One such work is done by Cui et al. [33], where they used a Meta-path-based approach to both take

news and how it is propagated through social media networks into account. They made a heterogeneous

graph of news and user nodes to detect fake news and found a promising accuracy of 90% on a dataset

containing around 2000 news articles comprised of the FANG [34] and the FakeHealth [35] dataset.

Although their results are impressive, they use a relatively small dataset, which is not that diverse.

A similar work proposed by Min et al. [36] also used the network propagation information of fake news

to create a model for fake news detection. Their approach used a Divide-and-Conquer strategy to combine

the information of the news content and the post-user, post-post, and user-user graphs. They used a

larger dataset with more than 27000 news events and tested their strategy with in-topic and out-of-topic

split and reached an Area Under Curve (AUC) score of 91% and 64%, respectively. Their research shows

that different topics have different characteristics that deep learning methods can leverage.

3.2. Pretrained Language Models
Other strategies for fake news detection used PLMs trained explicitly on a large corpus of text, which were

then either used as-is or fine-tuned for fake news detection.

One of the works leveraging these PLMs was Wu et al. [37]. They proposed a few-shot fake news de-

tection approach that combined the prompting of BERT [4] and veracity-guided social alignment. overcame

the problem of label scarcity by using the inherent pre-trained knowledge of BERT and aligning that with

social context for fake news classification [37]. The work of Wu et al. shows that PLMs can be leveraged

for fake news detection, especially in combination with source and receiver factors of the SMCR model.

Another work by Jiang et al. showed that PLMs such as BERT can be combined with prompt learning

to detect fake news. Jiang et al. showed that, given the right prompt structure and the already existing

“general knowledge” in PLMs, they could be used to detect fake news better. This bolsters the capabilities

of PLMs for fake news detection and shows that PLMs can be combined with feature-based technologies

for even better classifications.

Whitehouse et al. [38] used the base understanding of the natural language of PLMs, in combination

with knowledge bases, to improve their fake news detection capabilities. They found that on a dataset on

Covid-19, they reached an incredible accuracy of 94%. There were, however, clear confounding factors

making it much easier for the models to detect fake news. Their models recognized real news by the

“https” string that occurred in 93% of the real news and only in 43% of the fake news. When evaluated on

another dataset, their models reached an accuracy of around 28% . Whitehouse et al. show that PLMs

can be combined with external knowledge sources (context factors of the SMCR model) to further bolster

their ability to classify the veracity of news.

Szczepański et al. [39] investigated different methods on how to best use explainable AI (xAI) techniques

to mitigate the black-box problem that arises when leveraging PLMs for fake news detection. This problem

refers to the fact that even if these language models accurately detect fake news, it is hard to understand



why they did. They found that with a diverse set of techniques, reasonable explanations were found for

PLM-based classifications while minimizing architecture changes. This highlights that even though it is

hard to validate the results of PLM-based fake news detection systems, they can be explained by using

xAi techniques.

The works above show that PLM models can be effectively leveraged for fake news detection with

impressive results. Especially, when combined with other factors of the SMCR model.

3.3. LLMs For Fake News Detection
Even though LLMs are generally used for generating content and predicting the most likely text that would

follow input text. Earlier works have shown that LLMs can also be leveraged for text classification. For

example, Liu et al. [40] used LLMs for binary stance classification in the realm of political science. Sun et

al. [41] found that even with little domain-specific training data, the inherent generalization ability of LLMs

could be leveraged for good text classification results. Even more impressively, Zhang et al. [42] found

that in some cases, LLM-based text classification could even surpass humans in text classification tasks.

These works show that there is a potential for LLMs in the realm of text classification, making it also an

interesting alley to explore when trying to detect fake news automatically.

With the rise of LLMs, new research has emerged and continues to try leveraging this technological

innovation in domains tackled by earlier AI and NLP strategies. As of the writing of this work, similar works

are being proposed and worked on leveraging LLMs for fake news detection.

Liu et al. use an ensemble approach with different LLMs working together with outside information to

determine the veracity of fake news [43]. Liu et al. used the FakeNewsNet datasets [44] and reached

impressive 80%+ results with their approach. This work helps contextualize our work. Although impressive,

it is less comprehensive than our work because we also take a multi-perspective lens approach and dive

deeper into how to leverage LLMs just for content-based classification.

Another interesting work by Hu et al. uses LLM rationales with PLMs to help predict the veracity of

news. They reached results between 70% and 80% using this approach, showing that the rationale and

reasoning capabilities of LLMs can be leveraged to help detect fake news.

In contrast to the works described above, we do not explicitly introduce a new framework or model to

detect fake news. Our work investigates how different LLMs, prompting techniques, and their fine-tuning

differ when approached through several lenses, giving a reproducible and extensible overview of how

LLMs can be leveraged for fake news detection.
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4
Methodology

In this section, we outline the methodology employed to explore the potential role of LLMs in Fake News

Detection. We begin by detailing the datasets utilized for evaluating the LLMs. Next, we describe the various

models selected for our investigation and discuss the prompting techniques reviewed. We then explain

how fine-tuning was used to push the LLMs to their limits. Finally, we present the different perspectives

considered to provide a comprehensive understanding of the role LLMs can play, extending beyond overall

performance metrics.

4.1. Datasets
To evaluate the classifications of the LLMs, it was essential to curate a diverse dataset comprising fake and

real news articles. Acquiring datasets that are both high in quality—meaning fact-checked and sourced from

trusted resources—and large enough for robust statistical analysis is challenging. Therefore, we combined

three previously used datasets in related research to create a comprehensive dataset for evaluating LLMs

in the context of fake news detection.

Our objective was to compile a diverse collection of labelled news articles spanning various topics that

accurately represent real-life news categories commonly affected by fake news. As with many applications

of AI and ML, using reliable and established data to evaluate our models was paramount. As a common

mantra in ML goes: ”Garbage in, Garbage out”. Therefore, our approach was to find data that was used in

relevant literature and had diverse characteristics. These categories include Entertainment and gossip

news, Political news, and Health related news. The combined dataset consists of approximately 32,000

articles, varying in text length and topic. In this section, we will describe the selected datasets and their

key characteristics.

FakeNewsNet In 2018, Shu et al. introduced FakeNewsNet [44], a dataset collected from Politifact and

GossipCop. Politifact is a free fact-checking website primarily focused on political news. It employs a

thorough and transparent methodology to fact-check claims made by or about politicians. The fact-checking

process involves answering the described in Section 2.2.1. By addressing these questions, Politifact

classifies each article into one of six categories, ranging from ”Pants on Fire” (for statements that are

egregiously false) to ”True” (for statements that are accurate). Additionally, Politifact partners with Meta

and TikTok to help curb the spread of misinformation online, further establishing its credibility in the realm

of automated fake news detection.

GossipCop, on the other hand, was a website dedicated to fact-checking celebrity news. It rated articles

on a scale from 0 to 10, with 0 representing completely false information and 10 indicating fully accurate

news. FakeNewsNet comprises approximately 21,000 entries of news stories, each labelled as either fake

or true.

The characteristics of the used FakeNewsNet dataset are detailed in Table 4.1

17



4.1. Datasets 18

Partition Count Real Count Fake Count Real percentage Fake percentage

Total 14,398 10,455 3,943 72.61% 27.29%

PolitiFact 606 311 295 51.32% 48.68%

GossipCop 13,792 10,144 3,648 73.55% 26.45%

Table 4.1: Count and ground truth characteristics of the used FakeNewsNet Dataset

FakeHealth The FakeHealth dataset [35] focuses on health-related misinformation, comprising two

primary components: HealthRelease and HealthStory. HealthRelease includes content published by

institutions, universities, and companies, while HealthStory contains news articles from media outlets such

as Reuters Health. The dataset was reviewed and labelled by the now-defunct HealthNewsReview1, a

platform founded by Gary Schwitzer, a journalist with over four decades of experience in health reporting.

FakeHealth consists of 2,296 news stories, each rated on a scale from 1 to 5, with any rating below 3

classified as fake. In addition to the ratings, FakeHealth provides reasoning and explanations for each

entry’s rating based on 10 selection criteria reviewed by individuals with medical expertise:

• Does the news release adequately discuss the costs of the intervention?

• Does the news release adequately quantify the benefits of the treatment/test/product/procedure?

• Does the news release adequately explain or quantify the harms of the intervention?

• Does the news release seem to grasp the quality of the evidence?

• Does the news release commit disease-mongering?

• Does the news release identify funding sources and disclose conflicts of interest?

• Does the news release compare the new approach with existing alternatives?

• Does the news release establish the availability of the treatment/test/product/procedure?

• Does the news release establish the true novelty of the approach?

• Does the news release include unjustifiable, sensational language, including in the quotes of re-

searchers?

These criteria offer valuable insights into the rationale behind the classification of health-related news

as either fake or real. Similar to the approach taken with the FakeNewsNet dataset, we removed unusable

data from FakeHealth to ensure the dataset’s quality and relevance. The characteristics of the refined

dataset are detailed in Table4.2

Partition Count Real Count Fake Count Real percentage Fake percentage

Total 2155 1,429 726 66.31% 33.70%

HealthRelease 594 308 286 51.85% 48.15%

HealthStory 1561 1,121 440 71.81% 28.19%

Table 4.2: Count and ground truth characteristics of the used HealthStory Dataset

MOCHEG The Multimodal Fact-Checking and Explanation Generation (MOCHEG) dataset [45] is a

multi-modal source collection of claims fact-checked by Snopes and PolitiFact. MOCHEG contains around

16,000 labelled claims with explanations either labelled true or false. MOCHEG was specifically curated for

multimodal fact-checking and, therefore, contained many explanations or fact-checks based on videos and

images. In this sense, MOCHEG differs from FakeNewsNet and FakeHealth because they were mostly

fact-checked based on content. However, we still used this dataset to investigate how LLMs performed

with fake news with little textual context. The characteristics of MOCHEG are displayed in Table 4.3

1https://healthnewsreview.org
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Partition Count Real Count Fake Count Real percentage Fake percentage

MOCHEG 15524 9670 5854 62.29% 27.71%

Table 4.3: Count and ground truth characteristics of the used MOCHEG Dataset

4.2. Models
In our evaluation, we opted for 3 different model architectures. These are feature-based and PLM-based

fake news classifiers and LLMs, of which the first two act as baselines to compare with our main investigation

into LLMs. As LLMs have become increasingly prevalent, numerous organizations and companies have

developed their own versions. To gain a comprehensive understanding of the current LLM landscape, we

selected four “open” models from Google, Meta, and Mistral. This selection represents a broad spectrum

of contemporary LLMs, reflecting the diversity in model authorship and size. All models are available for

download on HuggingFace2. We opted for openly available models rather than proprietary ones to ensure

reproducibility and consistency in our and future evaluations.

4.2.1. Baselines
To contextualize the potential of LLMs in the task of fake news detection, we compare their performance

against earlier automated content-based detection strategies. For this purpose, we have selected two dis-

tinct baseline models. These baselines serve as reference points to evaluate and contrast the effectiveness

of the LLMs in detecting fake news, helping us answer research question 2.

Feature-Based Baseline The first baseline model we selected is based on the reproducibility study by

Spezanno et al. [46], which investigated the claim by Horne and Adali [47]. Horne and Adali proposed

that textual features from the title of an article are a better predictor of its veracity than features from

the content itself. Spezanno et al. confirmed that this claim held true when using linear classifiers but

found the inverse to be true with classifiers such as Random Forest. For our feature-based baseline, we

adopted the methodology and code from Spezanno et al. [46] and applied it to our combined dataset. We

specifically employed their Random Forest classifier, as it demonstrated the best performance in their

study, to compare and contextualize the predictions made by the LLMs.

BERT-Based Baseline The second baseline model employed in our study is a BERT-based PLM

prompting classification strategy, as outlined in the paper Prompt and Align by Wu et al. [37]. This method

utilizes BERT, a smaller pre-trained language model, to classify the veracity of news articles. Specifically,

the approach involves designing prompts to guide BERT’s classification of news content into categories of

true or false. BERT was selected for this baseline due to its well-established effectiveness in understanding

and processing textual information, making it a relevant benchmark for evaluating the performance of

larger language models.

By comparing the results from BERT with those from larger models, we aim to assess whether the

increased capacity of more recent models and their new architectures leads to improved accuracy for

fake news detection. This comparison will help determine if advancements in model size and complexity

contribute significantly to performance improvements in this task.

4.2.2. LLMs
To evaluate the capabilities of large language models (LLMs) in fake news detection, our study includes

a diverse selection of state-of-the-art models from leading organizations and a diverse set of detection

strategies (sometimes also called detection methods) to leverage them.

Architectures

We aim to assess how different model sizes, generations and architectures impact their capabilities for

Fake News Detection and compare newer models against established benchmarks. For all selected

models, we chose the Instruction Tuned versions due to their pre-training on instruction-based tasks, which

simplifies the prediction process. An overview of our selected models with their release date, amount of

2https://huggingface.co/models
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parameters and publisher is diplayed in table 4.4. By comparing and contrasting these various models we

answer 1.

Model Release Date #Parameters Publisher

Gemma-2b April 2024 2 Billion Google

Gemma-2-9B June 2024 9 Billion Google

LLama-3.1-8b July 2024 8 Billion Meta

Mistral-0.2-7B December 2023 7 Billion MistralAi

Table 4.4: Release date, size and publisher of used models

Google Gemma Models In our study, we evaluated two versions from Google’s Gemma family of

LLMs [21]: the 2-billion-parameter model (Gemma-2b) and the 9-billion-parameter model with a revised

architecture (Gemma-2-9b) [21]. The Gemma-2b, as the smallest model in our evaluation, was selected to

determine whether smaller, more accessible models can still effectively perform fake news detection when

deployed on standard computing systems. This model is particularly noteworthy for its cost-effectiveness

and suitability for organizations with limited computational resources. In contrast, the Gemma-2-9b, being

the largest model in our comparison, enables us to explore the impact of larger model sizes and advanced

architectures on performance. By including both models from the same family, we aim to gain insights into

how model size and architectural advancements influence classification accuracy and to assess whether

these improvements translate into better detection of news veracity.

Meta LLama3.1-8B To explore the capabilities of state-of-the-art large language models (LLMs), we

included the latest model from Meta’s LLaMa3 family: the LLaMa3.1-8B [27]. As the newest and reportedly

best-performing model in the LLaMa series, it provides a relevant benchmark for comparison with the

Mistral and Gemma models in our evaluation. The LLama family of models is highly popular in open-source

and self-hosted LLM communities. It is powered by training data from one of the biggest SMNs in the world,

namely Facebook, and is particularly interesting because of its state-of-the-art performance on common

LLM benchmarks [26, 27].

Mistral-0.2-7B The Mistral-0.2-7B model has demonstrated notable performance in various benchmarks,

according to Mistral’s report [25]. This model is reported to surpass both the Gemma and LLaMa2 models

in specific evaluations. Interestingly, Mistral’s technical documentation claims that the Mistral-0.2-7B model

outperforms even the larger LLaMa2 models, including those with 13 billion and 37 billion parameters.

This performance assertion highlights the model’s efficiency and effectiveness despite its relatively smaller

size compared to some of its competitors. By including Mistral-0.2-7B in our study, we aim to assess its

performance in fake news detection and verify Mistral’s claims regarding its competitive edge over larger

models. It is especially interesting because it is the only one of the evaluated LLMs we chose that an earlier

established Big-tech company did not develop. The evaluation of Mistral also determines the possibility of

newer vendors playing a part in the LLM ecosystem for downstream veracity classification tasks.

Detection Strategies

Given the diversity in rating systems used by different fact-checking organizations, as discussed in our

dataset section, and the proven benefits of Chain of Thought (CoT) prompting and fine-tuning in enhancing

LLM performance, we adopted a multi-tiered approach for prompting and investigating the LLMs. This

multi-tier approach emulates different levels of guidance given to the LLMs for the task of fake news

detection. We began by assessing the models in their As-is state, querying them with various output labels.

Next, we applied CoT prompting to stimulate the models’ reasoning abilities. Finally, we fine-tuned the

models specifically for fake news detection to determine if their performance could be further optimized.

As-Is Evaluation: This initial assessment employs the LLMs in their native state, without any specific

training for fake news detection. Before this evaluation, we conducted an exploratory phase to identify

a suitable, effective prompting format. We compared the performance of the LLMs using three different

query output formats:
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Binary Classification The simplest and most directly comparable format to our dataset labels is

binary classification. We instruct the LLM to classify a given article as either “fake” or “real” using the

following prompt:

Instruction:
You are a binary news veracity classifier.
Given an article, classify whether it is real or fake.
Answer with "REAL" if it is real and "FAKE" if it is fake.
Article:
{ARTICLE}
Classification:

Binary Classification should be the easiest NLP task for the LLMs in that it only requires one of two

answers. It most closely mirrors the behaviour we expect from the feature-based baseline, making it an

interesting comparison.

Discrete Classification To mirror the rating system used by PolitiFact, we implemented a prompting

strategy with their specific labels. The LLM is instructed to classify the article into one of six categories:

Pants on Fire, False, Mostly False, Half True, Mostly True, or True. The prompt used is:

Instruction:
You are a discrete news veracity classifier.
Given an article, classify whether it is real or fake
by choosing one of the following options (from Fake to Real):
["Pants on Fire", "False", "Mostly False", "Half True", "Mostly True", "True"].
Article:
{ARTICLE}
Classification:

Discrete classification is the detection strategy that most closely mirrors how political journalists would

label their manual classification. We would also expect good results from this if the LLMs are trained on

the PolitiFact dataset. However, we cannot know for certain as the exact data on which these models are

trained is not publicly available. This detection strategy also gives more room for nuance in the model’s

classification than the Binary Classification strategy.

Continuous Classification As a complementary approach, we asked the LLM to act as a percentage-

based news classifier. Given that LLMs are statistical models, it is hypothesized that they might struggle

more with percentage-based classifications, making this an interesting area to investigate:

Instruction:
You are a percentage-based news veracity classifier.
Given an article, classify whether it is real or fake
by assigning a value between 0% and 100%,
where 100% means definitely fake and 0% means definitely real. Article:
{ARTICLE}
Classification Percentage Fake:

Percentage-based classification gives the most room for nuance in the predictions of LLMs. In combi-

nation with the detection strategies above, this can give insight into whether these LLMs can give more

nuanced responses than the baselines.

CoT Prompting: The second tier of guidance leverages the Chain of Thought (CoT) prompting strategy

[12], which extends beyond simple classification tasks. Instead of merely requesting a classification, this

approach prompts the LLM to explicitly reason about the claim or article before providing an answer. This

reasoning process has been shown to enhance performance for text classification in prior studies [48].

The methodology aligns with the strategies employed by fact-checkers in FakeHealth and FakeNewsNet.

In our implementation, we adopt three of the four criteria used by PolitiFact (discussed in 2, focusing

on the message component of the SMCR model [49]. Due to not having information regarding PolitiFact’s
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jurisprudence, we were unable to include the fourth criterion related to the source’s reputation. The three

criteria we apply are:

1. Literal Truth: Does the claim align with verifiable facts?

2. Alternative Interpretations: Can the statement be understood in different ways?

3. Supporting Evidence: Is there evidence provided by the source to substantiate the claim?

The LLM is prompted to evaluate these criteria sequentially, simulating the reasoning process of

human fact-checkers. After completing this analysis, the LLM delivers its classification in a binary format,

consistent with the As-is Binarcy Classification approach. The prompt we used is the following:

Instruction:
You are a binary news veracity classifier.
Given an article you classify whether it is real or fake
answer with "REAL" if it is real and "FAKE" if it is fake.
Before classifying first reason about the 3 following questions regarding the article
and take that reasoning into account when deciding on your classification
Questions:
1. Does the claim align with verifiable facts?
2. Can the statement be understood in different ways?
3. Is there evidence provided by the source to substantiate the claim?
Article:
{ARTICLE}
Classification:

Fine-Tuning The final stage of our approach involves fine-tuning the LLMs on the previously mentioned

datasets, providing the highest level of guidance [50]. Fine-tuning allows the model’s internal parameters to

be tailored for optimal performance on the target task, often resulting in substantial improvements. Due to

hardware constraints and a desire to reduce our environmental impact, we employ PEFT [19], specifically

LoRa fine-tuning, as outlined in prior works. As a comprehensive exploration of the fine-tuning process

can warrant its own manuscript, we do not focus on fully optimizing the fine-tuning pipeline here. Instead,

we aim to explore the potential of fine-tuning rather than developing the highest-performing model. The

prompting format we use for the fine-tuned models is, again, the binary classification method. This is

because the ground-truth labels of our combined dataset are binary labels. Therefore, we cannot fine-tune

discrete, continuous or CoT prompting techniques.

4.3. Lenses of Exploration
Inspired by research question 3, this study investigates the LLMs from different contexts and perspectives.

To give a more complete and contextualized exploration of the role that LLMs can play, we take not just

raw performance into account when evaluating the models but also investigate other lenses inspired by

earlier works and the SMCR model.

4.3.1. Performance Lens
The first lens we explore is raw performance, which assesses how effectively the models detect or classify

fake news. The primary objective of this evaluation is to measure the efficacy of LLMs in distinguishing

between real and fake news using robust metrics that capture different aspects of performance:

• Validity of labels: As LLMs work as next-token predictors, it could be the case that we ask the

models to answer only from a subset of options, and they still respond with another token. This

makes their prediction unusable. For this, we introduce the metric of Validity. It is measured by the

number of valid predictions divided by the total number of predictions.

• Accuracy: This crucial metric quantifies the proportion of correct classifications the LLM makes.

• False Positive Rate (FPR): This metric measures the frequency at which the LLM incorrectly flags

real news as fake. A high FPR can undermine user trust and suppress legitimate news.

• False Negative Rate (FNR): Conversely, the FNR reflects the rate at which the LLM fails to detect

fake news, potentially allowing misinformation to spread.
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These metrics offer a clear understanding of the overall performance of the models across various

detection strategies, making it easy to compare them with baseline models. We assess all model predictions

using different detection methods, providing a comprehensive way to evaluate differences not only between

models but also between different model types i.e. the LLMs and baselines. This approach also yields

results that can be easily compared in future research.

4.3.2. Textual Characteristics Lens
The Textual Characteristics lens is inspired by the message related factor of presentation factors described

in Chapter 2 and the work of Horne et al. [47], where they use different readability features to train their

ML classifiers. Specifically, this lens investigates how article length and the readability of the text impact

the models’ classifications. We measured the text length of each article to determine if and how this

factor influences the LLM’s ability to detect fake news. Additionally, we used the Dale Chall score to

measure the readability of the news content to get a picture of the influence of textual characteristics on

the LLM’s classification of Fake News. One possible hypothesis could be that fake news is often short and

without much explanation, whereas longer text could be more substantiated and professionally edited. We

calculate a variety of widely used readability tests for each article and their text length. We then put these

features in different bins and investigate where models behave well, where they make many mistakes

and how their predictions align with ground truth and the underlying characteristics of the datasets. This

analysis helps to uncover potential limitations related to the text complexity or verbosity of news content.

4.3.3. Psychological Lens
Another lens worthy of investigation is the psychological lens. The message-related factor of psychological

factors mainly inspires this lens. More concretely, we analyse whether the sentiment of an article impacts

the behaviour and predictions of the LLMs. This gives us insight into the propensity of the models to give

less or more sentimental text more often a certain classification. We first classify each article as having

a certain sentiment by using the well-established sentiment analysis library Valance Aware Dictionary

and sEntiment Reasoner (Vader) [51]. Vader is a lexicon and rule-based sentiment analysis tool initially

created for analysis on SMNs. We follow the work of Shrestha et al. [31], where they used it for their RF

classifier. We first labelled each entry in the dataset as being either Positive, Negative or Neutral. We

then evaluated the predictions from the models with different detection strategies. First, we investigate

whether there was a notable difference in behaviour on these labels and whether there was a difference

in the models’ performance on either sentimental or neutral text. Sentimental is defined as text that is

either positive or negative. A logical hypothesis would be that more objective news is more often true and

that positive or negative news is more often fake with the intent to play on the reader’s emotions. We

split the predictions into different sentiment labels and investigated how the models behaved correctly

and incorrectly and where there was no notable difference. This analysis gives us an overview of how

psychological cues can impact the LLMs’ predictions.

4.3.4. Domain Lens
As described in Chapter 1 and 2, different domains and topics of articles can have different impacts on

the parties mentioned and involved. For celebrities, fake news might harm their reputation or get them

ostracized in the public eye. Fake news about vaccines can stop people from getting their vaccinations and

possibly impact the herd immunity of a country or community, and misinformation presented as political

news can sway elections. Just as the impact on entities affected can differ between context and topic,

LLM predictions could be affected by topics. One could hypothesize that tech companies aligned with a

certain ideology would train their LLMs to more vigilantly disagree with fake news against that ideology.

With the domain lens, we want to investigate possible differences in the behaviour of the models over

different contexts and understand the possible impact they could have on automated fake news detection.

We split the predictions into different topics and analysed their characteristics from this perspective. We

categorized articles by their source: Entertainment for GossipCop, Political for PolitiFact, and Health for

FakeHealth and HealthRelease. Because the MOCHEG dataset did not show a clear domain for their

articles, we labelled them as the Undefined domain. We also do some basic entity analysis to see whether

we can find certain topics or words where models behave differently.
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4.3.5. Sustainability Lens
Finally, we consider the sustainability perspective, acknowledging that AI and ML models can have

significant environmental impacts. We compare the amount of energy consumed for the different models

and contextualize this with earlier models to gain insights into the possible cost for the environment of

employing. We assessed the carbon emissions and energy consumption associated with different models

and detection strategies. We do this by recording the energy used for model inference (querying the

models for predictions) and fine-tuning the models. By evaluating the energy consumed compared to

the model size, detection strategy applied and fine-tuning, we can gain insights into how to sustainably

leverage LLMs for fake news detections. This analysis provides insight into how performance differences

translate into environmental costs, offering a critical view of the broader implications of deploying LLMs for

fake news detection.



5
Setup

This section describes the concrete process we used to run our experiments and data analysis of our

combined dataset labelled fake and real News.

5.1. Process
The process we used for our experiments is closely related to our main methodology described in Chapter 4

but elaborates more on the concrete steps taken, depicted in figure 5.1. We first started with data gathering.

We downloaded the FakeNewsNet [44] dataset by following their .Readme file in their Github repository1.

Upon manual examination, we discovered that since the initial creation of FakeNewsNet, some articles

were no longer accessible or had been replaced by spam content and advertisements. Through manual

investigation, we found that this unusable content was generally repetitive. Therefore, we removed all

duplicate and irrelevant articles from the dataset, resulting in a total of 14,398 unique labelled articles. The

script provided by Shu et al. had already normalized the ground truth labels to either fake or real, resolving

the discrepancies between GossipCop’s and PolitiFact’s rating systems.

Figure 5.1: Our experiment pipeline

Next, we collected the FakeHealth [35] from their Github repository2. As their rating system for the

veracity of the articles was on a scale from 1 to 5, we opted to convert these ratings to true when they

had a rating of 3 or above. Finally, we downloaded the articles from the MOCHEG [45] dataset from their

Github repository3. Because MOCHEG also used articles from PolitiFact, we removed all articles from

1https://github.com/KaiDMML/FakeNewsNet
2https://github.com/EnyanDai/FakeHealth/tree/master
3https://github.com/VT-NLP/Mocheg
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MOCHEG that were already occurring in FakeNewsNet to remove duplicate articles. We then added topics

for every dataset: content from PolitiFact was assigned the Political label, content from GossipCop got the

Entertainment label, FakeHealth was labelled as Health and finally since the MOCHEG dataset lacked a

clear categorization, we labeled it as Undefined.

In the next step, we merged the earlier datasets into one and calculated the length of the articles for

each entry. Subsequently, we calculated the sentiment by using the Python Vader sentiment library [51] to

mark the articles as either Negative, Positive or Neutral; for this, we took a similar approach as Shrestha

et al. [31] used for feature extraction mentioned in Chapter 3. We also followed the implementation of

Shrestha et al. to compute multiple readability scores using the Python readcalc library.

We then adjusted the code shared by Shrestha et al., accompanied by their paper [31], to set up and

train the RF classifier. Following that, we took inspiration from the work of Wu et al. [37]. In which they

leveraged a BERT classifier for their prompting step to set up their own BERT-based model. To train these

models for fake news detection, we performed a 60/20/20 split on the dataset from above into a training,

validation and test set, respectively. To keep the distribution of characteristics the same as the initial

dataset, we performed a stratified split, which is further discussed in the next section. These baselines

were then ready to leverage for classification.

Next, we leveraged the six models in combination with the detection strategies described in chapter 4

to classify each news article from the merged dataset mentioned earlier. All LLMs we used were sourced

from Huggingface.co4 and are publicly available to use. Specifically, this means that for each LLM and

each detection method, we queried them for their predictions. For the baselines, we only used the binary

classification strategy as earlier works for this task mostly use binary classification.

To fine-tune the models, we combined the Binary classification prompt described in chapter 4 with the

ground-truth label and used LoRa finetuning. We uploaded our fine-tuned models to huggingface to ease

future reproducibility studies and contribute to open science.

Finally, we analyzed the results through multiple lenses with standardized scripts. These results are

discussed further in Chapter 6.

5.2. Ethical considerations
In this work we set out to do good scientific research. This means that our work should be able to be

validated, reproduced and easily adaptable for future works. Fake news and fact-checking is a topic that

has a great impact on people, businesses and society as a whole. Therefore it is especially important that

the scientific work done around this, is ethically responsible. In this section, we describe how we direct our

efforts to accomplish this.

In terms of data management, we made sure that our combined, training, validation and test sets are

all available and stored at a TU Delft-managed drive. Which can be requested by contacting TU Delft.

Additionally, we shared our full code on GitLab5, with a complementary .ReadMe file to explain how to use

the pipeline. We also added instructions on how to use and extend our code for future research. Where

other researchers can add and extend datasets and models. Lastly, we shared our fine-tuned models on

huggingface.co6.

As mentioned before, fake news can have a serious impact on many parties. Therefore we want to

make clear that any results and insights found from our results are generated from our specific methodology,

dataset and models used. Insights and conclusions should not be generalized about fake news as a whole

but only as an informed starting point for future research. When using LLMs in real life for fake news

detection, one should consider that when done wrong, can have serious consequences and can lead to

people’s suffering.

5.3. Data characteristics
To contextualize the results of our experiments, we describe some of the characteristics of our final dataset

and compare it with our test split dataset, which was used to evaluate the fine-tuned models and baselines.

4https://huggingface.co
5https://github.com/Merlijnmacgillavry/FakeNewsDetectionUsingLLMs
6https://huggingface.co/collections/Lord-Papillon/finetuned-fake-news-detection-datasets-66f47b75e799ce793f800d3f
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Slice #Real #Fake %Real %Fake #Total %Total

Total 21554 10523 67.19% 32.81% 32077 100.0%

Domains

Health 1429 726 66.31% 33.69% 2155 6.72%

Entertainment 10144 3648 73.55% 26.45% 13792 43.0%

Politics 311 295 51.32% 48.68% 606 1.89%

Undefined 9670 5854 62.29% 37.71% 15524 48.4%

Sentiments

Positive 12322 4885 71.61% 28.39% 17207 53.64%

Negative 5352 3254 62.19% 37.81% 8606 26.83%

Neutral 3880 2384 61.94% 38.06% 6264 19.53%

Table 5.1: Veracity characteristics of the final dataset with different domain and sentiment splits.

Table 5.1, shows the characteristics of our final dataset. We denote the number of news articles

labelled as either real or fake and their proportions. Furthermore, we divide the dataset into slices of

domains to contextualize the domain lens and sentiments to contextualize the psychological lens. The

complete dataset has around two times more real articles than fake ones. Although skewed, this is either

a comparable distribution or a more balanced distribution than the earlier works on automated fake news

detection discussed in 3.

Figure 5.2: News distributions of veracity over text length bins of complete dataset

In terms of domains, the entertainment and undefined news articles are the most common, with them

combined, representing half of the dataset. Political news, on the other hand, is the least common type

evaluated. However, the true proportion of this topic is likely bigger, as the MOCHEG dataset, which we

labelled as undefined, includes news from both PolitiFact and Snopes, both of which fact-check political

news. Despite this, accurately assigning the correct domain would require a thorough analysis, which

is beyond the scope of this work and could serve as the focus of a separate study. The proportion of
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real and fake news articles for the different domain slices is comparable to that of the total set, with the

entertainment domain having more real articles and the politics dataset having a more equal distribution.

The proportions for the different sentiments are also imbalanced. A little bit more than half are positive,

a quarter are negative, and the neutral articles represent around a fifth of the total news articles. For the

positive articles most of them are real with a proportion of 70% and around 30% fake. For both negative

and neutral the veracity labels are more balanced, with around 60% labelled as real and 40% fake.

We also investigated the distribution of real and fake news over the text length of the articles. We

did this compare with results from our textual characteristics lens. Figure 5.2 depicts the twenty 5% bins

distribution of the articles in terms of text length and veracity proportions. We can see that there is a small

tendency for the news to be more often real as the text length increases.

(a) Proportion of domains on the complete dataset. (b) Proportion of domains on test dataset.

(c) Proportion of sentiments on the complete dataset. (d) Proportion of sentiments on test dataset.

Figure 5.3: Distributions of sentiments and domains for complete and test dataset.

As described in the previous section we applied a stratified split on the complete dataset to create

training, validation, and test sets for fine-tuning and training of the models. Because we want to ensure

that our test dataset on which the fine-tuned models are evaluated has the same characteristics as our

complete dataset, we compared the domain and sentiment distributions for both models in Figure 5.3. As

shown both datasets have almost identical distributions. This equal distribution should lead to the models

reaching similar results if the models are consistent in their classification. If we see big differences in

performance, we can deduce that the models are, in fact, not classifying news articles consistently.
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6
Results

In this chapter, we report the results of our experiments. We discuss the models’ results and behaviours

through 5 different lenses. With these lenses we aim to give a more holistic view of the results. We start

with Overall Performance, followed by the Textual Characteristics lens, Psychological lens, Domain lens

and finally the sustainability lens.

6.1. Overall Performance
The overall performance is shown in Table 6.1. Each row denotes a model with a certain detection strategy.

TheModel column describes the model and the detection strategy we use for evaluation. The Size denotes

the number of parameters; Gemma-2b-it, for example, has a parameter size of around 2 billion.

The table also describes the number of rows that models predicted for each entry. The number of

rows (articles evaluated on) is 32077 or 6416, referring to the combined dataset and the test set split,

respectively. Because the baselines and fine-tuned models must be trained and validated, we can only

evaluate them on the test set. Otherwise, we evaluate them based on data on which they have already

been trained. There is only one detection strategy for the baseline models: binary classification. Because

the different LLMs are trained on next-token prediction, they are not guaranteed to respond with the labels

that we expect. For example, we ask the LLMs to only respond with real or fake in binary classification.

When they do not, we label their prediction as invalid. The Valid column denotes the fraction of valid

predictions generated by the models. We also keep track of the accuracy and accuracy of valid predictions

as Acc. and Acc. V respectively.

We also denote the fraction of false positives and false negatives for each row to investigate how the

models misclassify news articles. Finally, to compare the distribution of the predictions of the various

models, we also denote the fraction of predictions the model makes as either fake or real.

Each row shows a model combined with a detection strategy. Some detection strategies, namely

percentage and discrete prompting, are converted to binary classification labels to calculate their accuracy.

Therefore, we take different cut-off values. We use two cut-off values for the discrete detection method:

Includes True and Above Mostly True. Includes true means that whenever a classification includes the

word ”true”, we label the prediction as real. Above mostly true means that the prediction must be either

“mostly true” or “true” to be labelled as real. As with the discrete detection strategy, we also have two

cut-off values for the continuous detection strategy: Above 50 and Above 75, marking every prediction as

fake when above the corresponding percentage.

In general, the baselines perform relatively well compared to the LLMs. With a perfect fraction of valid

labels and an accuracy higher than many LLMs.
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Model Size #Rows Valid Acc. Acc. V FP FN %Fake %Real

Baselines

BERT N/A 6416 1 0.77 0.77 0.11 0.33 0.33 0.67

RF N/A 6416 1 0.71 0.71 0.04 0.25 0.11 0.89

LLMS

Gemma-2b-it

Binary 2b 32077 0.99 0.55 0.56 0.33 0.12 0.54 0.46

Binary 2b 6416 0.99 0.57 0.58 0.29 0.13 0.49 0.51

Fine-tuned 2b 6416 0.97 0.65 0.67 0.18 0.15 0.36 0.64

CoT 2b 32077 0.95 0.44 0.46 0.47 0.06 0.74 0.26

Discrete Mostly True 2b 32077 1.0 0.47 0.47 0.46 0.08 0.32 0.68

Discrete True 2b 32077 1.0 0.63 0.63 0.17 0.2 0.3 0.7

Percentage 50 2b 6416 1.0 0.51 0.51 0.3 0.19 0.44 0.56

Percentage 75 2b 6416 1.0 0.52 0.52 0.3 0.18 0.44 0.56

Mistral-0.2-7b-it

Binary 7b 32077 0.99 0.72 0.72 0.07 0.2 0.2 0.8

Binary 7b 6416 0.99 0.72 0.72 0.07 0.21 0.19 0.81

Fine-tuned 7b 6416 1.0 0.81 0.81 0.06 0.13 0.26 0.74

CoT 7b 32077 0.84 0.63 0.75 0.03 0.23 0.1 0.9

Discrete Mostly True 7b 32077 1.0 0.54 0.54 0.38 0.08 0.26 0.74

Discrete True 7b 32077 1.0 0.61 0.61 0.3 0.09 0.63 0.37

Percentage 50 7b 32077 1.0 0.28 0.28 0.54 0.18 0.87 0.13

Percentage 75 7b 32077 1.0 0.28 0.28 0.53 0.19 0.86 0.14

Llama-3.1-8b-it

Binary 8b 32077 1.0 0.7 0.7 0.01 0.29 0.04 0.95

Binary 8b 6416 0.99 0.7 0.7 0.01 0.29 0.04 0.95

Fine-tuned 8b 6416 0.93 0.7 0.75 0.02 0.23 0.07 0.91

CoT 8b 6416 0.98 0.67 0.68 0.0 0.32 0.01 0.99

Discrete Mostly True 8b 32077 1.0 0.55 0.55 0.37 0.08 0.56 0.44

Discrete True 8b 32077 1.0 0.66 0.66 0.2 0.14 0.39 0.61

Percentage 50 8b 32077 1.0 0.46 0.46 0.29 0.24 0.38 0.62

Percentage 75 8b 32077 1.0 0.47 0.47 0.29 0.25 0.37 0.63

Gemma-2-9b-it

Binary 9b 32077 0.74 0.48 0.64 0.29 0.06 0.58 0.42

Binary 9b 6416 0.82 0.54 0.66 0.27 0.07 0.53 0.47

Fine-tuned 9b 6416 0.99 0.8 0.81 0.04 0.15 0.21 0.79

CoT 9b 6416 0.94 0.6 0.63 0.27 0.1 0.5 0.5

Discrete Mostly True 9b 32077 1.0 0.39 0.39 0.59 0.02 0.7 0.2

Discrete True 9b 32077 1.0 0.45 0.45 0.51 0.04 0.8 0.2

Percentage 50 9b 32077 1.0 0.6 0.6 0.3 0.1 0.46 0.54

Percentage 75 9b 32077 1.0 0.61 0.61 0.23 0.16 0.33 0.67

Table 6.1: Overall Performance of LLMs for Fake News Detection
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Validity Of Labels The validity of labels is an important characteristic when evaluating models’ per-

formance. A higher validity means that a model more often gives a classification that can be easily

programmatically extracted. Depicted in Figure 6.1, it is evident that not all LLMs yield the same number

of valid predictions over different detection methods. For instance, the Gemma-2b model generates a

high proportion of valid labels, with the fraction of valid predictions exceeding 97% for all predictions.

Interestingly, the fine-tuned version of the Gemma-2b model has a lower fraction of valid classifications

than the base model despite being specifically trained to provide usable answers. This phenomenon

occurs with Gemma-2b and Llama-3.1, whereas the other LLMs typically show increased usability when

fine-tuned. Mistral only has a relatively low fraction of valid labels for the CoT detection strategy.

Compared to its older and smaller counterpart in the same family, Gemma-2-9b demonstrates signifi-

cantly lower usability in the binary classification method, achieving the lowest number of valid labels in the

entire table at 74%. Among all LLMs, the Mistral model exhibits the highest fraction of valid predictions

across all detection methods, with no strategy falling below 99% except for the CoT strategy.

(a) Gemma-2b. (b) Mistral-7b.

(c) Llama-3.1-8b. (d) Gemma-2-9b.

Figure 6.1: Fraction of valid labels for LLMs models over all detection methods, compared to baselines.

Accuracy Visualized in Figure 6.3, the baselines demonstrate relatively good performance in terms of

raw accuracy. The RF baseline, with an accuracy of 71% and the BERT baseline even higher with 77%,

outperforms some LLMs in the binary detection strategy and also exceeds their performance when using

discrete and percentage-based methods. In the case of Gemma-2b, the CoT detection method produces

the least accurate predictions. However, the discrete method with a ”includes true” cut-off outperforms

all other detection methods except for the fine-tuned model. The percentage-based detection methods

achieve an accuracy of around 50%, which is not particularly impressive.

When examining Mistral, we find that different detection methods yield better results. For example,

the binary detection methods outperform both the discrete and percentage-based strategies. Notably, the

percentage-based detection methods produce the lowest accuracy predictions in the entire table, with only

28% being correct. Among all the LLMs, Mistral scores highest in terms of accuracy for both the base

model in binary classification and its fine-tuned version.

When looking at the box-plots of avarage accuracy of all the detection methods (depicted in Figure 6.2a,

we see that fine-tuned binary classification performs best and the percentage based detection methods

perform worst. CoT can in some instances be higher but not with a great margin and the discrete models
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seem to perform the most average. If we look at the box-plots of the models (Figure 6.2b), we see that

different models have greater spread in their accuracy. Mistral, the best performing model also has the

greatest spread, whereas the Gemma models have smaller spread but seem to have lower accuracy on

average.

(a) Average accuracy of detection methods.

(b) Average accuracy of LLMs.

Figure 6.2: Average accuracy of models and detection methods.

In contrast, Llama-3.1 performs at an average level, showing no significant outliers compared to the

other LLMs. However, Gemma-2-9b exhibits poor binary and discrete classification accuracy with the

base model. The smallest and oldest model, Gemma-2b, clearly has the lowest accuracy compared to the

other models. Additionally, the base binary classification of Gemma-2-9b is relatively low compared to the

Mistral and Llama models.
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(a) Gemma-2b. (b) Mistral-7b.

(c) Llama-3.1-8b. (d) Gemma-2-9b.

Figure 6.3: Accuracy of LLM models over all detection methods, compared to baselines.

False Positives and False Negatives Accuracy tells us a lot about how the different models and

detection strategies classify news articles correctly. But to understand how the different models fail to

classify news correctly, we need to investigate their false positives and false negatives. In our study, a false

negative is an article incorrectly classified as true news, and a false positive is a news article incorrectly

classified as fake.

(a) FP/FN of Gemma-2b. (b) FP/FN of Mistral-7b.

(c) FP/FN of Llama-3.1-8b. (d) FP/FN of Gemma-2-9b.

Figure 6.4: FP/FN of LLM models.
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As Depicted in Figure 6.5, the way different models misclassify news varies. LLama-3.1, for instance,

demonstrates very few false positives for both the binary and CoT detection strategies. However, when

examining the distribution of predictions between fake and real articles, we observe a tendency toward

classifying articles as real. For the discrete and percentage-based techniques, the proportion of articles

classified as fake and real is more balanced, though this comes with a notable increase in false positives.

The baselines show lower rates of false positives compared to most LLMs but exhibit higher false negatives.

The best-performing models Mistral-7b fine-tuned and Gemma-2-9b fine-tuned—achieve very low false

positive and false negative rates, while maintaining a more balanced distribution of veracity predictions.

Overall, it appears that some models are more prone to false negatives, while others are more susceptible

to false positives. Mistral and LLama models tend to favor false negatives, whereas the Gemma models

are more likely to produce false positives.

(a) Gemma-2b. (b) Mistral-7b.

(c) Llama-3.1-8b. (d) Gemma-2-9b.

Figure 6.5: Misclassifications of LLM models.

Figure 6.6 illustrates the fraction of false positives and false negatives for each detection method across

all models. The results show that the CoT and binary detection methods perform worse in detecting fake

news as true, whereas the discrete detection methods face more difficulty in identifying true news as fake.

When comparing the false positive and false negative rates of the binary detection method between the

baseline models and the fine-tuned models, we observe that the most prominent type of false classification

is reduced.
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(a) Binary detection method. (b) CoT detection method.

(c) Discrete detection method with includes true cut-off. (d) Discrete detection method with above mostly true cut-off.

(e) Continious detection method with above 50% cut-off. (f) Continious detection method with above 75% cut-off.

(g) Binary detection method with fine-tuned models.

Figure 6.6: Misclassification of detection methods.
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6.2. Textual Characteristics
The second lens we investigate is the Textual Characteristics. We do this by analysing two characteristics:

text length and readability. Specifically, we want to investigate whether the length of the text and its

readability impact the accuracy and false positive/negative rate of the predictions.

(a) Binary detection method. (b) Discrete detections methods. (c) CoT detection method.

(d) Continous detection methods. (e) Binary detection method with

fine-tuned models.

Figure 6.7: Accuracy of detection strategies along text length portions of 5%.

Text length To evaluate the models’ predictions regarding text length, we split the datasets into bins

of their percentage ranges. Figure 6.7 and 6.8 show the average valid accuracy and misclassification,

respectively, of the different models using different detection strategies based on text length. The x-axis

denotes the different percentage ranges of text length. For example, the first bin describes the articles

with the 5% lowest text length, and the last bin describes the articles which are longer than 95% of the

other articles. The y-axis shows the average valid accuracy or misclassifications for each model. This way,

we can compare all the different models and find trends and interesting insights.

First, we look at the accuracy of the different detection strategies regarding text length in Figure 6.7.

The binary detection method shows an almost horizontal line with a small gain in accuracy between the

50% and 70% text length mark. After this, it slowly decreases again, with a small uptick for the longest text

lengths. We see a similar pattern for the CoT detection method. With the discrete detection methods, we

see a small decline till the 45% mark and, afterwards, a rising accuracy. The continuous detection method

exhibits a small increase in accuracy till the 40% mark and slowly declines. Interestingly, these patterns

seem to flatten for the fine-tuned models. For the different models, regarding average accuracy and text

length, we find no notable difference in accuracy with different text lengths.

When we look at the average fractions of misclassifications of the different detection strategies, depicted

in Figure 6.8, we see something interesting. For the binary, CoT and discrete strategies, the false positives

are higher before the 50% text length mark and lower after, with an obvious drop at the 50% mark. We see

the inverse happening after the halfway point for the continuous detection methods. The accuracy slowly

increases from the smaller length bins until the 50% mark; it then increases with a jump and then keeps

steadily increasing. As with the accuracy, the false positives of the fine-tuned models flatten over the text

length. The opposite happens for the false negatives regarding text length compared to the false positives.

For most detection methods, we see the false negatives slowly decreasing until the halfway mark, then

stepping to a higher fraction and slowly increasing. As with the false positives, the continuous detection

method behaves differently and keeps slowly decreasing regarding text length. As with the false positives,

the fine-tuned models are again flattened. When investiging the average accuracy of all the models we

see similar results as the various for the detection strategies.
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(a) False positives of binary detection method. (b) False negatives of binary detection method.

(c) False positives of discrete detections

methods.

(d) False negatives of discrete detections

methods.

(e) False positives of continous detection

methods.

(f) False negatives of continous detection

methods.

(g) False positives of CoT detection method. (h) False negatives of CoT detection method.

(i) False positives of binary detection method

with fine-tuned models.

(j) False negatives of binary detection method

with fine-tuned models.

Figure 6.8: Misclassifications of detection methods along text length portions of 5%.
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Readability Readability is a characteristic of text that measures how easy it is to understand a given

text. Many metrics calculate readability in various ways and with various scores. For many of them, their

score can translate to a grade of the U.S.A. grade system. These include readability scores such as:

Flesch-Kincaid grade level, SMOG index, Gunning fog index and Dale-Chall score. To calculate the

readability scores, we used the Python readcalc library. In our evaluation we use the Dale-Chall score

to measure readability. A Dale-Chall score for readability is measured between 4 and 10. A score of 4

means that the text is easily understandable by an average 4th-grade student or lower (ages 9 or 10), and

a score of 10 means that the text is understandable by an average college student. A higher Dale-Chall

score means a text is generally harder to understand. As with the text lengths, we divided the dataset

into bins, but now, each bin represents a Dale-Chall score. This way, we can compare the accuracy and

misclassifications of the different detection strategies and models to their readability.

Figure 6.9 depicts the accuracy compared to the readability for the different detection methods. For

most models, there exists little difference in accuracy compared to different readability scores. It seems the

accuracy using the binary, CoT, discrete methods are slightly decreasing when the readability increases.

With the continuous detection methods, we see a small decrease in accuracy around the 5-6 score mark.

Overall, no visible trends or patterns stand out when comparing readability with readability.

(a) Binary detection method. (b) CoT detection method. (c) Discrete detection methods.

(d) Continious detection methods. (e) Binary detection method for

fine-tuned models.

Figure 6.9: Accuracy of various detection methods along readability scores measured with Dale-Chall

score.

As with the investigation in text length, there are visible patterns when investigating the average

misclassifications for different detection strategies dependent on readability, depicted in Figure 6.10. For

the binary, CoT, and discrete strategies, the average false positives decrease until a readability score

of 7, after which they increase. With the continuous detection methods, we see that the false positives

increase till the 6 mark and then drop off as the score increases. For the fine-tuned models, see a small

increase of false positives until a score of 8 and then see it decrease again. For the false negatives of

the different detection methods, we see that they slightly increase to a score of 6 for the binary, CoT and

Discrete detection methods. In contrast, the false negatives of the continuous detection methods increase

from a score of 8 onwards. We see the inverse pattern of the false positives for the false negatives of the

fine-tuned models.
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(a) False positives of binary detection method. (b) False negatives of binary detection method.

(c) False positives of discrete detections

methods.

(d) False negatives of discrete detections

methods.

(e) False positives of continous detection

methods.

(f) False negatives of continous detection

methods.

(g) False positives of CoT detection method. (h) False negatives of CoT detection method.

(i) False positives of binary detection method

with fine-tuned models over text length.

(j) False negatives of binary detection method

with fine-tuned models over text length.

Figure 6.10: Misclassifications of various detection methods along readability scores measured with

Dale-Chall score.
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6.3. Psychology
In this section, we present the results of our analysis through the psychological lens, focusing on the effect

of news sentiment on classification by our models. As described in the methodology, the sentiment of the

articles was categorized into three main groups: neutral, negative, and positive. We first examine the

classification performance for neutral versus sentimental articles (either positive and negative combined),

and then we separately investigate the effects of positive and negative sentiment on classification outcomes.

Neutral Vs Sentimental We first examine how the various detection strategies performedwhen classifying

either sentimental or neutral text (depicted in Figure 6.11). The results indicate that with the binary, CoT,

and discrete detection strategies the models encountered greater difficulty in accurately classifying neutral

news compared to sentimental text.

On the other hand, the continuous detection strategies present a more complex pattern depending

on the cut-off values used. For the cut-off value set above 50%, there is no visible difference in accurate

classifications between neutral and sentimental text, indicating that the model maintains consistent accuracy

despite sentiment. However, when we apply a cut-off value above 75% we observe that neutral text, is

on average, classified better than sentimental text. The fine-tuned models show no visible difference in

accurate classification between the two groups but show an improvement in average accuracy.

(a) Binary detection. (b) Discrete detection with includes true

cut-off.

(c) Continious detection with above 50%

cut-off.

(d) Cot detection. (e) Discrete detection with above mostly

true cut-off.

(f) Continious detection with above 75%

cut-off.

(g) Binary detection with fine-tuned

models.

Figure 6.11: Average accuracy on sentimental or neutral texts per detection method for all models.
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(a) Binary detection. (b) Discrete detection with includes true

cut-off.

(c) Continious detection with above 50%

cut-off.

(d) Cot detection. (e) Discrete detection with above mostly

true cut-off.

(f) Continious detection with above 75%

cut-off.

(g) Binary detection with fine-tuned

models.

Figure 6.12: Average misclassifications on sentimental or neutral texts per detection method for all

models.

Figure 6.12 illustrates the proportions of false negatives and positives across the different detection

methods on sentimental and neutral texts. The results reveal that the binary and CoT detection methods

exhibit a slightly higher proportion of false negatives for neutral articles. In contrast, both discrete detection

methods show relatively balanced proportions of false negatives and false positives across neutral and

sentimental texts. For the continuous detection methods, we notice relatively more false negatives for

sentimental articles and more false positives for neutral articles. Finally, the fine-tuned models display a

more balanced behaviour, with equal proportions of misclassifications for both neutral and sentimental

texts.

A few key trends emerge when examining the average performance of the different models in classifying

sentimental versus neutral text (depicted in Figure 6.13). Both the BERT and RF baselines show higher

accuracy for sentimental text than neutral text. For the LLMs, although we observe some differences in the

placement of the medians, there is generally more overlap between the boxplots, indicating less differences

in accuracy between sentimental and neutral text. However, a notable observation is the difference in

spread across all models when comparing neutral and sentimental text. Sentimental text typically exhibits

a wider spread in accuracy, indicating greater variability in model performance. In contrast, neutral text

tends to have a smaller spread, suggesting more consistent classification accuracy across the models.

There are no visible differences in the proportions of the models’ average false negatives and positives.
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(a) BERT. (b) RF. (c) Gemma-2b.

(d) Mistral-7b. (e) Llama-3.1-8b. (f) Gemma-2-9b.

Figure 6.13: Average accuracy on either sentimental or neutral articles for all models.

Negative Vs Positive Vs Neutral To further investigate the effects of sentiment, we subdivided the

sentimental articles into positive and negative categories. Here, the results reveal more nuanced patterns

regarding text sentiment.

When we investigate the impact of the different sentiments on the models’ accuracy (shown in Figure

6.15), we observe different patterns for each model. The BERT baseline performs relatively well in

classifying positive sentiment, achieving higher accuracy compared to negative sentiment. However,

it performs the worst when classifying neutral texts. Similarly, for the Random Forest (RF) classifier,

the pattern mirrors that of BERT, with higher accuracy for positive sentiment. However, the model’s

performance on negative sentiment is slightly lower than BERT’s, with worse accuracy on negative texts.

(a) BERT. (b) RF. (c) Gemma-2b.

(d) Mistral-7b. (e) Llama-3.1-8b. (f) Gemma-2-9b.

Figure 6.14: Average accuracy on either negative, neutral, or positive articles for all models.

The Gemma model shows a different pattern, with the smallest spread in the boxplot for negative

sentiment, indicating more consistent performance when classifying negative texts. The model shows

a slightly larger spread for neutral texts and the largest spread for positive texts, suggesting greater
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variability in performance, especially with positive sentiment articles. For the larger LLMs LLama-3.1,

Mistral, and Gemma-2-9b, the medians for accuracy across all sentiments are close to one another,

indicating relatively balanced performance across sentiment types. However, both LLaMA and Gemma

exhibit smaller spreads in their accuracy distributions than Mistral, indicating more consistent predictions

across detection strategies.

For the BERT baseline we see that it is relatively good in classifying the positive sentiment correct in

comparison to negative with it being the worst in classifying neutral texts. For the RF classifier we see a

similar story but the negative accuracy is a little bit lower. For the Gemma-2b model, we see the smallest

spread of the boxplot for the negative text with a slightly bigger spread for the neutral text and the biggest

spread for the positive texts. For the bigger LLMs we see the medians being close to eachother but the

LLama and Gemma models have smaller spreads.

As with the misclassification for the sentimental neutral split above. No notable results were discovered

when investigating the models.

Figure 6.15 depicts the average accuracies across the three sentiment categories for each detection

strategy. The binary, CoT, and discrete detection methods all demonstrate higher average accuracy when

classifying articles with positive sentiment. In contrast, the continuous detection methods exhibit lower

classification accuracy for articles with positive sentiment. This indicates that these models may have

more difficulty with positive language. These results suggest that the handling of positive sentiment varies

particularly between different detection methods used.

(a) Binary detection. (b) Discrete detection with includes true

cut-off.

(c) Continious detection with above 50%

cut-off.

(d) Cot detection. (e) Discrete detection with above mostly

true cut-off.

(f) Continious detection with above 75%

cut-off.

(g) Binary detection with fine-tuned

models.

Figure 6.15: Average accuracy on positive, neutral or negative texts per detection method for all models.
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Figure 6.16 illustrates the proportions of misclassifications—specifically false positives and false

negatives—across the three sentiment categories for the various detection methods. The results show

that for the binary, CoT, and discrete detection strategies, the proportion of false positives is lower for

positive sentiments, which helps explain the higher accuracy observed for these models when classifying

positive sentiment articles. This reduction in false positives suggests that these models can more effectively

distinguish between positive sentiment and other categories, likely due to the more explicit or distinguishable

features associated with positive sentiment.

In contrast, for the continuous detection methods, there is an increase in false positives when classi-

fying positive sentiment articles. This increase explains the lower accuracy for positive sentiment in the

continuous models, as the models appear to misclassify neutral or negative sentiment texts as positive

more frequently. For the fine-tuned models, there is not much variation in misclassifications across the

different sentiment categories, once again indicating that these models maintain a balanced performance

across all sentiment types. This consistency suggests that the fine-tuned models are better at generalizing

across various sentiment patterns, reducing the impact of sentiment on their classification accuracy.

(a) Binary detection. (b) Discrete detection with includes true

cut-off.

(c) Continious detection with above 50%

cut-off.

(d) Cot detection. (e) Discrete detection with above mostly

true cut-off.

(f) Continious detection with above 75%

cut-off.

(g) Binary detection with fine-tuned

models.

Figure 6.16: Average misclassifications on negative, neutral or positive texts per detection method for all

models.
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6.4. Domain
To investigate the LLMs’ behaviour through the domain lens, we looked at the different contexts of the

news articles. The different datasets we combined have all been labelled with one of the following topics:

Health from the FakeHealth dataset, Politics from the FakeNewsNet PolitiFact split, Entertainment from

the PolitiFact GossipCop split and finally Undefined from the MOCHEG dataset. Because the MOCHEG

dataset was intended for a multi-modal Fake News Detection approach and the base dataset also included

pictures and videos used to fact-check the claims, we also combined the non Undefined contexts into

a Defined context to see if there was a difference between how the LLMs behave on articles that are

fact-checked just on the content in comparison to multi-modal fact-checked articles.

(a) Binary detection. (b) Discrete detection with includes true

cut-off.

(c) Continious detection with above 50%

cut-off.

(d) Cot detection. (e) Discrete detection with above mostly

true cut-off.

(f) Continious detection with above 75%

cut-off.

(g) Binary detection with fine-tuned

models.

Figure 6.17: Average accuracy of models for different domains per detection method for all models.

We observe the following characteristics when examining the average accuracy of the models per

detection method across different domains, as depicted in Figure 6.17.

The binary detection method performs best in the entertainment domain, achieving the highest accuracy.

This is followed closely by the politics and health domains, which have similar accuracy levels. Additionally,

the binary detection method displays very small spreads in accuracy for both the entertainment and health

domains, indicating a high level of consistency in these areas across models. The classifications for the

undefined domain show average accuracy that is comparable to the domain of politics, although the domain

of politics has a slightly bigger spread, indicating a wider range of variability in accuracy.

The CoT detection method follows a similar pattern to that of the binary strategy. It has the highest

accuracy in the entertainment domain, followed by the politics and health domains. However, the CoT

model shows much lower accuracy for articles in the undefined domain. For the discrete detection method,

the pattern is again similar to that of the binary model, but the entertainment domain displays slightly lower

accuracy compared to the other models. In contrast, the continuous detection method presents a different
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pattern: the accuracy for defined domains is lower than that of the other detection methods, whereas the

accuracy of the undefined domain is higher. Finally, the health domain shows the lowest accuracy for

the fine-tuned model, indicating that health-related articles are the most difficult for this model to classify

correctly.

(a) Binary detection. (b) Discrete detection with includes true

cut-off.

(c) Continious detection with above 50%

cut-off.

(d) Cot detection. (e) Discrete detection with above mostly

true cut-off.

(f) Continious detection with above 75%

cut-off.

(g) Binary detection with fine-tuned

models.

Figure 6.18: Average accuracy of models for different domains per detection method for all models.

When we examine the average misclassifications across the different domains for the various detection

strategies (as depicted in Figure 6.18), we see the following trends:

For the binary detection strategy, the health domain exhibits the smallest fraction of false positives

relative to false negatives. Across all defined domains (entertainment, politics, health), the binary clas-

sification strategy tends to produce more false negatives than false positives on average. However, for

articles in the undefined domain, the ratio between false positives and false negatives is more balanced,

with no clear dominance of one over the other. The CoT detection method follows a similar pattern to the

binary strategy, with a higher proportion of false negatives in defined domains. However, it shows a slightly

higher proportion of false positives for articles in the undefined domain.

We see a general trend of more false positives for the discrete detection methods, especially in the

undefined domain, which has the highest fraction of false positives among all domains. In the case of the

continuous detection method, all defined domains (entertainment, politics, health) have a higher proportion

of false positives than false negatives, with the exception of the politics domain, where the distribution

of false positives and false negatives is almost even. Notably, the continuous detection strategy has a

smaller fraction of false positives overall compared to other detection strategies. For the fine-tuned models,

the undefined domain has a lower fraction of false positives than the binary and CoT detection strategies,

whereas the distribution of misclassifications of the articles with the defined domain is much more similar.
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6.5. Sustainability
To investigate the sustainability lens we keep track of how much energy is consumed during our work. We

mainly looked at energy consumption and duration, which were tracked using the CodeCarbon1 Python

library. Duration is measured in seconds and energy consumed in kWh. We first discuss the training and

fine-tuning processes and then the evaluation, also denoted as inference, of the different models using the

various detection strategies. For consistency between results all our experiments were done on the same

hardware setup consisting of the following characteristics:

• CPU: Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz

• GPU: 2x NVIDIA A10

• Location: The Netherlands

• OS: Linux-5.05.0-119-generic-x86-64-with-glibc2.35

Figure 6.19: Parameter size of LLMs compared to the energy consumption of fine-tuning LLMs.

Training And Fine-tuning Table 6.2 shows the environmental impact characteristics of the training and

fine-tuning of the different models. To contextualize the results of the LLMs, we also show the results of

training the RF classifier and fine-tuning the BERT model. Compared to the LLMs, the baselines take

less training time and consume less energy. The fine-tuned LLMs are trained by using PEFT, specifically

LoRa fine-tuning. For the LLMs, a higher parameter size does not necessarily mean a longer duration

of fine-tuning. Fine-tuning Mistral, for example, consumes a bit more energy and time than Llama, even

though Llama has more parameters. As expected, the smallest model, Gemma-2b, takes the least time to

fine-tune and consumes the least energy, whereas the largest model, Gemma-2-9b, consumes the most

energy and time. One thing to note is that the results do not show a linear relation between parameter size

and energy consumption for the larger models: Gemma-2-9b has 12.5% more parameters than Llama

and 29% more parameters than Mistral, but the increase of energy consumption to these models is 37%

and 30% respectively. If we then plot the parameter size of the models against the energy consumed for

fine-tuning them (Figure 6.19), we see that for Gemma-2b, Gemma-2-9b and Mistral, there does seem to

be a linear relation depicted with the dark blue line. When we take LLama-3.1-8b into account (cyan line),

we see that this is less strong; this could be explained by LLama being an outlier in terms of architecture.

1https://pypi.org/project/codecarbon/
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Model #Parameters Duration (s) Energy Consumed (kWh)

Baselines

BERT 110m 3243.648 0.306

RF N/A 14.999 0.001

LLMS

Gemma-2b-it 2b 21104.06 2.37

Mistral-7b-it 7b 56961.48 6.34

Llama-3.1-8b-it 8b 54992.46 6.02

Gemma-2-9b-it 9b 73879.34 8.26

Table 6.2: Environmental impact characteristics of Fine-tuning various models.

Inference Table 6.3 depicts the environmental impact characteristics of inference on the evaluated

models. The duration is again measured in seconds, and the energy consumed is in kWh. Because we

use the test dataset for some detection strategies and we want to compare them equally, we show the

time and energy consumed per 10,000 news articles. As with fine-tuning the models, the baselines take

less time and energy for inference, with the RF classifier consuming a negligent amount.

The lowest amount of energy and time consumed for inference for the LLMs is mainly for the binary, dis-

crete and fine-tuned detection strategies. Mistral shows that the percentage-based inference is comparable

to that of the binary, discrete and fine-tuned models, whereas, for the other models, the percentage-based

detection strategy consumes more energy and time. The CoT detection strategy consumes the most

energy for all models compared to the other detection strategies, almost a magnitude higher in three

models. It is also evident that a higher impact on the environment does not necessarily mean a higher

accuracy, as for all the models, the fine-tuned strategy outperforms CoT, while CoT consumes much more

energy and time.
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Model Accuracy Size Dataset Duration (s) Energy Consumed (kWh)

Baselines

BERT 0.77 6416 150.80 0.01

RF 0.71 6416 0.70 0.00

LLMS

Gemma-2b-it

Binary 0.55 32077 1828.82 0.20

Binary 0.57 6416 1546.79 0.17

Fine-tuned 0.65 6416 2342.11 0.26

CoT 0.44 32077 16831.19 1.83

Discrete Mostly True 0.47 32077 1613.50 0.18

Discrete True 0.63 32077 1613.50 0.18

Percentage 50 0.51 32077 2162.28 0.25

Percentage 75 0.52 32077 2162.28 0.25

Mistral-0.2-7b-it

Binary 0.72 32077 4281.33 0.52

Binary 0.72 6416 4282.37 0.51

Fine-tuned 0.81 6416 4801.13 0.56

CoT 0.63 32077 38712.11 4.94

Discrete Mostly True 0.54 32077 4325.58 0.52

Discrete True 0.61 32077 4325.58 0.52

Percentage 50 0.28 32077 4324.71 0.52

Percentage 75 0.28 32077 4324.71 0.52

LLama-3.1-8b

Binary 0.7 32077 3944.28 0.49

Binary 0.7 6416 4239.83 0.53

Fine-tuned 0.7 6416 4884.07 0.57

CoT 0.67 6416 37154.66 4.63

Discrete Mostly True 0.55 32077 3964.28 0.49

Discrete True 0.66 32077 3964.28 0.49

Percentage 50 0.46 32077 7231.28 0.90

Percentage 75 0.47 32077 7231.28 0.90

Gemma-2-9b-it

Binary 0.48 32077 4822.21 0.54

Binary 0.54 6416 4896.66 0.56

Fine-tuned 0.8 6416 6143.15 0.67

CoT 0.6 6416 65222.71 3.80

Discrete Mostly True 0.39 32118 4390.84 0.50

Discrete True 0.45 32118 4390.84 0.50

Percentage 50 0.6 32118 6978.81 0.79

Percentage 75 0.61 32118 6978.81 0.79

Table 6.3: Environmental impact characteristics of inference on various models. Note: duration and

energy consumed are per 10,000 articles
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Discussion

In this chapter, we describe our findings and contextualize them with earlier research. We discuss our

results through various lenses and discuss the limitations of our work.

7.1. Discussion through the different lenses
This section describes the findings from the different lenses we investigated, which we use to answer

research question 3. We aim to give analysis, possible explanations and implications of the results

described in chapter 6. It is, however, hard to give particular answers about why the LLMs behave in the

ways they do because of our lack of information about architecture, training data and the inner workings of

the LLMs. Nevertheless, we have gained some interesting insights.

Performance In our evaluation, we analyzed the performance of the models across the following metrics:

valid label predictions, accuracy, and the occurrence of false negatives/positives. Each of these metrics

plays a distinct role in assessing how effective and practical a model is for automated fake news detection.

The fraction of valid label predictions is important for determining how easily a model can be integrated

into a large-scale fake news detection system. As discussed earlier, this metric refers to whether the models’

predictions align with the expected output format, such as “fake” or “real”. While a binary classification

model might produce labels like “This news is mostly true”, these kinds of predictions could be problematic

if the system is designed to parse only binary classifications. Therefore, even if these classifications are

correct individually, they may not be usable in a system that expects specific labels. Hence, models that

generate a high fraction of valid labels are more easily adjustable for automated systems.

Simultaneously, accuracy, along with the types of misclassification, is crucial for evaluating the model’s

actual performance in detecting fake news. Even if a model produces a valid label, if it is incorrect, the

system becomes ineffective for real-world applications. A model that produces only valid labels but has

low accuracy and many false positives and negatives would still result in a poor system for automated fake

news detection. False positives can undermine the credibility of a system, whereas false negatives can

result in the continued spread of fake news.

The base models achieved a perfect fraction of valid label predictions, with 100% of their predictions

being valid. This is understandable, given that they were specifically designed to give only one of two

binary classifications. In contrast, the LLMs do not always produce valid labels. For all models, the binary

classification methods (binary standard, CoT and fine-tuned) show instances where the fraction of valid

label predictions was imperfect and, in some cases, even fell below 80%. This can be attributed to the

difference in how different models respond to different prompts.

In our preliminary testing, before finalizing the prompts used in our evaluation, we already noticed vari-

ations in how well the models responded to certain prompts. This variation suggests that the effectiveness

of prompting is highly model-dependent. Some LLMs may struggle to consistently output valid labels,

especially when trained to give nuanced answers.

These findings highlight the importance of carefully designing prompts, both for the specific task at

hand and the model that is leveraged. This customization is critical for ensuring the LLMs can be reliably

used in automated systems.
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Compared to the baselines, the base versions of the LLMs do not achieve the same level of accuracy.

This is explainable by the fact that both baselines are specifically trained for the task of fake news detection,

allowing them to optimize for this particular classification task. In contrast, the base versions of the LLMs

are more general models and have not been fine-tuned for this task, which explains their lower accuracy.

However, when fine-tuned, some of the models outperform the baselines, although this improvement is

not guaranteed. In our evaluation, only the Mistral and Gemma-2-9b models managed to achieve a higher

accuracy than BERT’s 77%, reaching 81% accuracy. This indicated that while fine-tuning can greatly

improve performance, not all models benefit equally from it.

A notable pattern that emerged during our evaluation is that, on average, the continuous detection

methods exhibit the lowest accuracy. This can be explained by the nature of the LLMs. They are trained

on vast amounts of natural language to find patterns to predict the next words. Finding patterns about

which number comes after a given task is a much harder problem than just predicting the next word. When

discrete detection methods are employed, we observe a slight improvement in accuracy, though it still

remains lower compared to other detection strategies. This improvement over the continuous detection

strategy can be explained by the fact that discrete methods provide natural language options instead of

numerical outputs. As a result, the discrete detection method aligns more with the LLMs’ innate patterns.

The false positives were generally much higher with the discrete detection method than with the other

detection strategies. This is quite an interesting phenomenon because, in the prompt, there are as many

options to classify something as fake as there are to classify it as real. Something that could explain why

more of the predictions of the models using the discrete detection method predict the fake half of the

discrete options could be that the LLMs somehow give more importance to the earlier options described in

the discrete prompt. Another interesting phenomenon of the discrete detection method is that it generally

has the highest amount of valid answers compared to the other strategies. This could be because the

base models are trained with data that includes possible responses in arrays.

The next best-performing detection strategies are the binary classification methods. The basic binary

and CoT binary classification methods achieve similar accuracy levels on average. However, we observe

that CoT prompting can occasionally result in higher accuracy, though in some cases, it also leads to lower

accuracy. This variability can come from differences in the reasoning capabilities of the models. Some

models are better equipped to handle the reasoning processes required by CoT prompting, while others

may struggle with more complex reasoning chains, leading to inconsistent performance when averaged

over the different models. Another factor contributing to these variations is that different models perform

better with specific types of CoT prompting. While we explore various prompting strategies in our study,

the models’ effectiveness depends heavily on how they were prompted. Given the diversity in model

behaviour, investigating optimal CoT strategies for each model could form the basis of a separate study.

The fine-tuned models performed best for the bulk of the LLMs. This can be attributed to the fact that

only they are specifically trained for fake news detection. Interestingly, for some models, such as LLama

and Mistral, the fine-tuning does not increase but decreases the number of valid labels predicted. For all

models, valid accuracy is higher when fine-tuned.

Looking at the different models, we also see some interesting results. For one, a bigger model does

not necessarily mean it is more accurate or valid. For example the biggest model: Gemma-2-9b has the

lowest validity of all models using binary classification and even the valid accuracy was lower than that

of the 7b parameters Mistral and 8b parameters LLama model. As expected, the oldest and smallest

model, Gemma-2b, performed worst on validity and accuracy. This can mostly be attributed to its high

number of false positive predictions, which, in turn, can be attributed to its relatively small parameter size.

There is also no clear relation between model release date and performance: Mistral is the oldest model in

our evaluation and still outperforms most other models on most detection strategies. If we try to find the

best model for fake news detection while keeping in mind their size and age, it seems that Mistral wins,

especially when fine-tuned, which is impressive given that it is the only one not coming from a giant tech

behemoth such as Google and Meta.

Textual Characteristics We investigated the impact that textual characteristics of news content can

have on leveraging LLMs by looking at two characteristics. These characteristics are text length and

readability. Text length of the news articles can not only impact the classifications of these models by

the amount of sources and context that is given in an article, but it can also be that LLMs have a more
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challenging time “remembering” what was discussed earlier in the article when settling on its classification.

Readability is an important metric because complicated language can be interpreted as more thorough

and valid reasoning. We measure readability by using the Dale-Chall score, with a higher score indicating

that the text is harder to interpret.

When investigating the impact of text length on the different detection strategies we do not see a notable

difference in accuracy along different lengths. However, when evaluating the two types of misclassification,

we see a notable pattern in the binary, CoT, and discrete detection methods. We see a shift around the

50% text length mark for both types of misclassification. With the number of false positives first increasing

and then decreasing and the number of false negatives first decreasing and then increasing. This is

especially interesting when contextualising this with the data analysis done in Section 5.3. Here, we see

that, in general, the fraction of real news increases with text length, which would expect us to see fewer

instead of more false negatives for text length, assuming that the models are not impacted by text length.

This discrepancy could indicate that the LLMs are prone to label longer texts as real, even when their

content is not. Bad actors could exploit this trend to fill their news with additional content to make it longer

and get around the ability of LLMs to detect it.

For the continuous detection method, it can be observed that as text length grows, the number of false

positives increases, and the number of false negatives decreases. This aligns more with the dataset’s

innate characteristics. Finally, the fine-tuned models depict no notable differences in terms of classification

regarding text length. This indicates that fine-tuning helps mitigate the innate trends of misclassification

based on the text length that the models exhibit.

As with the results for the different detection strategies, the evaluation of the various models does not

show any notable differences in terms of accuracy regarding different text lengths, while they follow the

same patterns regarding misclassifications.

When evaluating the impact of readability on the different detection strategies, we did not observe

patterns as notable as those seen with text length. There are small differences in accuracy across the

various detection methods but no significant trends. For the binary, CoT, and discrete detection strategies,

there appears to be a slight increase in accuracy around a readability score between 6 and 7. This suggests

that the models perform slightly better when dealing with texts that are neither simple nor too complex.

Interestingly, some sources1 suggest that the reading level of the average United States citizen is around

7th and 8th grade, corresponding with a Dale-Chall score between 6 and 7. Given this context, it can

be theorized that because LLMs are trained to understand the average person’s input, they are better at

understanding language at the average person’s literacy level. Making them also better at detecting fake

news on this level. The results of misclassifications regarding readability correspond with those of the

accuracy.

Psychology Prior research in communication theory and fake news suggests that the psychological

features of text play an important part. This can be better understood by investigating the predictions of

the models through this lens. We first evaluate the models’ classifications by comparing sentimental texts

(positive and negative combined) with neutral texts, assessing how the models handle emotionally charged

content versus more objective texts. Following this, we compare model performance across the more

specific sentiment categories: positive, neutral, and negative.

Evaluating the different detection strategies when comparing neutral vs. sentimental texts, the results

imply that neutral text is harder to classify for the binary, CoT, and discrete detection methods. This can be

explained by the higher accuracy of these detection strategies when classifying positive news. This higher

accuracy stems from a lower amount of false positives for positive text compared to the other sentiments.

This could imply that the base LLMs have developed a more substantial alignment with positive texts.

Contrastingly, for the continuous detection strategy, results show a relatively higher accuracy for neutral

text stemming from a higher misclassification rate on positive text. It is not clear why the different detection

methods differ so much in their ability to accurately classify text with positive sentiment. It does mean

that the ability for these models to correctly classify text of different sentiments is substantially impacted

by the detection strategy employed. When fine-tuned, the predictions of the LLM differ less between the

sentiments.

1https://web.archive.org/web/20170309032834/http://literacyprojectfoundation.org/community/statistics/
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When evaluating the different models through different sentiments we do not see much difference in

average accuracy or misclassification rates, but there can be a difference in spread observed. This is likely

due to the difference in accuracy for the various detection strategies described above.

Domain The impact of the domain of news to correctly classify the veracity of news is important because,

depending on the domain, the impact spread of fake news can vary greatly. This lens is evaluated by inves-

tigating the predictions of the different models on five domains. Defined (including health, entertainment

and politics) and undefined, of which the domain was unknown.

Investigating the different detection methods, the results show for the binary, CoT and discrete strategies

that undefined news is more likely to be misclassified. Specifically, a higher fraction of false positives is

found. This is likely due to the nature of the MOCHEG dataset of which all data is labelled as undefined.

The MOCHEG part of the data was the only part that was initially fact-checked with accompanying videos

and pictures. Because these media aspects of the articles are not used for the evaluation of the models,

this can lead to incomplete information for the LLMs to take into account.

The CoT detection strategy performs worse on the Politics domain. This is particularly interesting

because the CoT prompting technique is guided to use the same reasoning structure that PolitiFact uses

for manual fact-checking in the context of political news. When we look at the False positives for the

CoT detection strategy for predictions in the domain of politics, we see that compared to the other binary

classification strategies, there are more False negative predictions, meaning that the CoT prompting

technique more often labels political news as true when it is actually fake.

For the defined domain, the results show that the health domain is the hardest to classify accurately for

binary, discrete and CoT detection strategies. Investigating the types of misclassification for the health

domain, there is an overrepresentation of false negatives. This could stem from the fact that to effectively

detect fake news in the health domain, a broad amount of specific knowledge is required. This inability to

detect fake health-related news is especially worrying because of the negative implications it can have

on society. Sadly, even with fine-tuning, the LLMs still perform worse on classifying health-related news.

The continuous detection strategy is better for classifying the veracity of news in the undefined and health

domain.

Sustainability The results of the LLMs, as investigated through the sustainability lens, imply the following

findings. First, larger parameter sized models are not necessarily worth in terms of accuracy gain compared

to the amount of energy they consume and therefore the amount of emissions they produce. For example,

the Gemma-2b model consumes about a third of the amount of energy that the Gemma-2-9b model does

but when looking at their raw accuracy (not valid accuracy) we see that Gemma-2b still outperforms its

larger and newer variant.

We also see that even though leveraging a CoT detection strategy does generally improve accuracy it

also consumes substantially more energy. Another practical implication we found is that as long as data

is split uniformly over different domains, sentiments, and text lengths, the models behave the same for

smaller as for bigger datasets. That is to say, the models are consistent enough in their predictions that

when doing this kind of investigation, researchers will not need a complete dataset to produce reliable

results. Research and industry can reduce their emissions by testing and analyzing their strategies for a

small dataset.

7.2. General Discussion
In this work, we evaluate LLMs from various lenses and use several detection methods to better un-

derstand how to leverage them for fake news detection. Now that we have discussed the results and

various lenses, we answer the research questions, highlight the main takeaways, and give some practical

recommendations.

We find many similarities and differences with our diverse set of LLMs evaluated. One such similarity

is that, more often than not, fine-tuning improves their capability to classify and detect fake news. These

fine-tuned models also have some of the highest scores, even compared to the baselines. This shows

that there is real potential for LLMs to detect fake news effectively. We also find that, in general, there is

not much difference between different cut-off values for the discrete and continuous detection methods.
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This points towards the idea that although they can give predictions that seem nuanced, they might not be.

If there is a bigger difference between different cut-off values, for example, that would indicate that the

models are more capable of giving nuanced predictions. We have not seen any evidence of this happening.

Another interesting trend we see is that CoT prompting does not necessarily make the model more

accurate, but it does make them consume much more energy and time. We have seen a difference in

performance between the smallest LLM, Gemma-2b, and the larger models in terms of accuracy, with the

larger LLMs scoring higher. However, we do not see a big difference between the size of the vendor of the

LLMs and their performance. Google and Meta are two tech giants, whereas Mistral is relatively small but

still the best-performing LLM in our work. We also do not see a big difference in accuracy based on the

release date between the LLMs. Even though Mistral is also the oldest model, it was also the one with the

highest accuracy.

The main takeaway we find when trying to answer research question 1 is that performance differs

greatly based on which LLMs are employed and which detection strategies are used. Regarding the size

of the LLMs, the number of parameters matters up until a certain point. The best-performant LLM through

all lenses was Mistral when fine-tuned, which was substantially bigger than the Gemma-2b (the smallest

model) but smaller than the other two LLMs evaluated. CoT prompting can help, but it needs to be tailored

correctly for the specific model when used for fake news detection. Additionally, fine-tuning LLMs makes

them more performant while costing less energy than CoT prompting.

The RF classifier and BERT baseline show better performance than most models with most detection

methods. This is especially interesting because they are much easier to deploy in terms of hardware

requirements, quicker to train and faster to run. Compared to the base models, the RF classifier only has

less accuracy than the Mistral base model. Additionally, the BERT baseline is only beaten in performance

by the fine-tuned versions of Mistral and Gemma-2-9b. Fine-tuning does, however, not always improve the

fraction of valid predictions of the output. This makes it harder to leverage LLMs consistently for fake news

detection, a problem from which the baselines do not suffer. It is important to note that for the baselines,

we use two models that are already specifically trained on the data, whereas the base LLMs are trained to

follow natural language instructions; they are possibly not trained on fake news detection specifically. In

the end, LLMs can outperform earlier PLM and feature-based models, but they need to be leveraged in

the right way.

Answering research question 2, we find that compared to base LLMs, more straightforward automated

fake news detection strategies seem to be better. Both feature-based strategies and pre-trained language

models perform better than base LLMs and cost substantially less energy to train and use for inference.

However, if the goal is to focus solely on the performance of fake news detection and disregard the impact

on the environment, then fine-tuning LLMs is the better choice.

The results and insights gained make it clear that LLMs fare differently from the different perspectives

discussed. LLMs are slightly impacted by text length, misclassifying longer articles more often as true,

which can be exploited by bad actors. In terms of readability, there is no big difference between readability

and how LLMs classify articles, but there is a small tendency to better classify articles with readability

corresponding to that of a U.S. citizen in grade 7 or 8. This could imply that LLMs can also be suitable for

fact-checking social media posts, where there are possibly more people writing with an average reading

level than in the news. LLMs are generally better at classifying sentimental news which is a good sign

given that fake news often plays on the emotions of their readers. A worrying trend we see is that in the

context of health news, the LLMs perform worst. After a worldwide pandemic and with more and more

people adopting LLMs as an alternative to web search, this can lead to even bigger problems for society

relating to fake health news.

Finally, compared to earlier models, the LLMs are way less sustainable and the impact on the envi-

ronment is much higher, even without taking into account the initial training to develop the base models.

When not the highest amount of accuracy is needed for fake news detection, the earlier methods, such

as using feature-based classifiers of PLMs, are the better choice. There are, however, ways to reduce

the environmental impact when using LLMs for fake news detection, especially when doing research and

testing. When evaluating or training a LLM for fake news detection, one can first reduce the dataset to a

smaller version, given that the characteristics stay the same. We did this by applying a stratified split to

our final dataset of around 32.000 news articles, giving us our test set, and saw no notable differences

regarding average accuracy over all detection strategies between evaluation on the different dataset sizes.



Then this dataset can be fine-tuned in a sustainable manner such as PEFT, in our case we used LoRa,

and then finally evaluate and test the models.

7.3. Limitations
In this section, we describe the limitations of our work. From data-related to model-related and limitations

inherent to fake news detection itself.

Data There has been much work done in collecting and verifying labelled datasets for fake news detection,

and it is remarkable that by combining earlier research, we have a total dataset of more than 30.000

labelled news articles to evaluate the various models. There is, however, still a sparsity in fake news

datasets in the domain of Politics, which is arguably much more important to mitigate than that of, for

example, Entertainment news. This sparsity could have led to less generalizable results in our evaluation.

The datasets are also relatively old from an information technology perspective. It could well be that some

of the articles then labelled fake are now real and vice-versa, which would make our results less reliable

because of mislabeled ground-truth values.

Another possible limitation of our work is the fact that we do not know what exact training data the

models evaluated are trained on. This opens up the risk for possible data contamination in the sense that

the models already “know” that some news is fake a priori. We tend to think that if there were a lot of data

contamination, the LLMs would perform much better than they do now (in the 90% range instead of a

maximum of 80% now).

Also, as described in the section above, the MOCHEG dataset was initially composed for multi-modal

fake news detection, whereas we only use a content-based detection strategy. Earlier tests of us when

experimenting with the pipeline did indicate that the base and fine-tuned models performed better on just

the FakeHealth and FakeNewsNet datasets. Finally, the deeper underlying question still needs to be

asked: What makes News true or false and what is true and false? Although it seems that this question

might be impossible to answer, it does matter a great deal about how much we can truly trust the base

datasets.

Openness The problem of Openness of LLMs is still an important limitation in our work. We can sadly only

theorize about why the models behave like they do. Without precise descriptions about their architecture

and training data we cannot know for certain why LLMs generate the predictions that they do. As the field

of LLMs evolves and grows, this issue will become more and more problematic as long as there are no

significant efforts made in explainable AI.

Prompting Because of our limited hardware resources, we were forced to make some concessions in

how we leveraged the LLMs for fake news detection. For one, we had to load the models in as 16-bit

floats instead of the standard 32-bit floats. This means that we have been working only with half-precision

potentially significantly decreasing performance over all metrics. This was done to decrease computation

time and memory usage, which are both heavily reduced when using lower-precision floats. Additionally,

to reduce memory usage, we also had to cut off the longer types of articles to a smaller text length when

prompting to not get an out-of-memory error. This could again impact the prediction results of the models.

These limitations do, however, not invalidate our research because even with half-precision, the models

performed comparable to and, in some cases, even outperformed our baselines.

Fine-tuning For fine-tuning, we had to make similar concessions as with prompting in the sense that we

needed to cut off some of the lengthy articles, and we loaded our models for training in 8-bit precision (even

lower than those used for prompting) because of hardware limitations. Another limitation of our fine-tuning

was that we did little work in optimizing the hyperparameters and training settings. We did some preliminary

testing and made sure that we had a correct data split for training, testing and validation. However, we did

not extensively optimize the fine-tuning. This was mainly because we were more interested in the general

gain of fine-tuning over different models and is intended to be used for future research. These limitations

mainly imply that there is probably still a lot of optimization to be gained and put our results on the more

conservative side of the potential of LLMs for fake News detection.
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8
Future work

In this manuscript we set an informed precedent for how to leverage LLMs for fake news detection. From

this work future research can expand on the insights gained here and push the domain of automated fake

news detection forward.

As new LLMs are being developed and introduced to the LLM ecosystem these new models can be

evaluated and fine-tuned using our framework and methodology. Additionally, larger models should be

investigated. We evaluated the smaller range of models between 2b and 9b parameters, although bigger

versions already exist at the time of writing this work. For example, Google’s Gemma has a version of 7B

parameters, Gemma-2 has a version of 27b parameters, Mistral has a new model with 22b parameters,

and Meta has a Llama-3.1 model with 405B parameters.

As our work suggests that there does seem to be an improvement of models with larger parameter size.

With these larger models, there could also be a deeper evaluation be performed on loading the models in

the different float types. We were hindered by hard ware limitations and had to make concessions in this

regard, but with enough compute power these would be interesting experiments.

Additionally, more investigation could be done specifically for CoT and Binary classification prompting

which reached the highest accuracy of valid predictions in our evaluation. We did apply general known

guidelines to our prompt engineering, but we have not done an in depth optimization. This would have

required us to find for each model the optimal prompt and would making comparisons much harder and

generalizable.

Our fine-tuning work could be expanded upon in future work. We used a very generic LoRa fine-tuning

method mostly because of hardware limitations, but full-fledged fine-tuning should also be explored. As we

did not seek to introduce new models, our emphasis on fine-tuning should be more seen as a conceptual

grounding of the positive effect that fine-tuning can have on LLMs for fake news detection. Future work

could do an in-depth analysis on how to best fine-tune LLMs for fake news detection.

For our evaluation we used a diverse and large dataset although relatively old in terms of news content.

High quality datasets are hard to collect and evaluate, but future work could introduce new datasets that

could be used for future evaluations using our frame work and methodology.

As earlier works also focused on other parts of the SMCR model, such as the sender, receiver and

context, future work could combine strategies based on these factors with our work to improve automated

fake news detection. One example, could be to combine social network information on how fake news

information is disseminated on social media platforms with an LLM based content prediction technique as

ours akin to the work done by Wu et al. [37].

To further analyze the effect that domains of articles have on LLM predictions, more work could be done

to investigate entities most prevalent in articles for both types of misclassification predictions. Specifically,

in certain domains such as Politics and Health, work could be done to find potential biases against certain

political ideologies or certain medical practices. For example, an investigation could be performed on

whether models are maybe misclassifying news about vaccinations more than about antibiotics.

Other psychological features could be explored to increase understanding of how the psychological

features of text affect the veracity classifications of LLMs. One such feature could be the emotions exhibited

in news articles, such as joy, anger, and sadness.
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Finally, new techniques such as Retrieval Augmented Generation (RAG) could be used to do in-depth

domain specific fact-checking. This technique could fact-check statements with up-to-date information

from reputable sources. This could potentially greatly improve the fake news detection capabilities of LLMs

by not only using their general knowledge and reasoning capabilities, but also ground them in sources

and truth. An added benefit of such an approach would also be the ability for the users of the fake news

detection systems to validate and further research predictions of the LLMs. Which is currently very hard to

do.



9
Conclusion

This manuscript explored the effectiveness, opportunities, and challenges of employing LLMs for the

automated detection of fake news, a critical task in the ongoing effort to mitigate the societal impact

of disinformation. Through a systematic evaluation, we addressed three key questions regarding the

performance of LLMs in comparison to traditional methods, differences between LLM architectures, and

the results observed through multiple lenses. With this, we contributed a holistic evaluation of LLMs for

fake news detection and set a precedent for reproducible and reliable future work in this realm.

Our findings demonstrate that LLMs offer promising advancements in fake news detection, outper-

forming two traditional approaches (feature-based classification and PLM-based fake news detection)

when fine-tuned. However, the performance of LLMs varies greatly depending on the model used, which

generation strategy is employed and the level of guidance given. Although some of the fine-tuned models

perform well, others do not. Certain models give only valid predictions, whereas others do not, making them

harder to use in combination with automatic systems parsing their classification. The baselines provide a

good contextualization for the evaluation of the LLMs by showing that earlier techniques are still viable

and have a much smaller impact on the environment. Applying multiple lenses to evaluate these models

helps reveal how LLMs’ strengths and weaknesses manifest across different perspectives, such as textual

characteristics, psychology, domains and sustainability. We find trends in the LLM predictions that can be

exploited by bad actors such as a propensity to classify longer texts more often as real. LLMs also have

a harder time accurately classifying neutral texts, which could potentially be exploited. Further, we also

found a clear weakness of the LLMs, one of which is that our results show that LLMs more often than not

classify health-related news as true, which can further the spread of conspiracy theories about vaccinations

and medicine and reduce trust in medical professionals. It is clear that in terms of sustainability the LLMs

are a worse option compared to earlier methods that use exceptionally less energy when leveraged. How

the models are leveraged can also have a massive impact on their carbon footprint. CoT prompting was

shown to be the worst in terms of time needed and energy spent, and a more cost-effective option is to

use PEFT followed by the use of simple binary detection with the newly fine-tuned model.

Despite these promising results and takeaways, our work still has limitations. Issues such as a lack

of computing power, the availability of diverse datasets, and the openness of LLMs present ongoing

challenges. Although we produce the first work using these multiple lenses to get a holistic understanding,

there is still much work to be done and many perspectives to be explored.

Our key contributions include a better understanding of how to employ LLMs for fake news detection,

their strengths and weaknesses, and some practical recommendations for deploying them in the real world.

Additionally, we provide a systematic approach that describes not only how to evaluate LLMs but also past

and future fake news detection systems using a multiperspective methodology. Finally, we also share our

code, where other models and datasets can be easily incorporated for future analysis and evaluation.

In conclusion, while LLMs hold great potential for advancing automated fake news detection, thoughtful

consideration of their limitations and careful refinement of their application are essential for their effective

deployment in the fight against fake news. As millions are being invested in LLM applications, fake news

detection is not an area where we can take shortcuts and apply them without thought and consideration.

By building upon these insights, researchers and industry practitioners can contribute to more accurate

and reliable methods for safeguarding the integrity of information in the digital age and, with that, ensuring

a safe and trustworthy shared reality for us all.
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