DELFT UNIVERSITY OF TECHNOLOGY

BSc APPLIED PHYSICS
BACHELOR THESIS

The application of Deep Learning to improving low

count SPECT imaging
Supervisors: Author: Thesis Committee:
Dr. ir. M.C. Goorden C.K. den Ouden (4563913) Dr. ir. M.C. Goorden
ir. M.P. Nguyen Dr. Z. Perk6

Delft
e t University of
Technology

June 16, 2020

Bachelor’s Thesis TU Delft

Abstract

Preclinical SPECT systems such as the U-SPECT have been able to achieve sub-half-millimetre spatial resolution with
the use of cylindrical pinhole collimators. Utilising this type of collimator comes at the cost of a reduction in the total
number of detection events that take place. In order to compensate for this either the activity of the radiopharmaceu-
tical must be increased or the exposure time must be extended. Ideally the dose received by a patient or subject is kept
to a minimum. The goal of this study was therefore to investigate the application of deep learning to SPECT imaging,
specifically to improve low count images to resemble high count images in the projection domain. The projection do-
main was chosen over the image domain as projections are easily generated in large quantities, while reconstructed
images take large amounts of time and computation to generate.

A previous BSc Thesis study constructed a neural network (a Perceptual Loss Network) to this end, and it was con-
cluded that the training set was too small and specific for the neural network to be more generally applicable. In this
study therefore the training set of the neural network was expanded on with different phantom types such as Derenzo
hot rod phantoms, Jaszczak phantoms and uniform phantoms of various shapes and sizes. Phantoms were simu-
lated and measured using the EXIRAD-3D, and projection pairs (low and high count) were generated. Several network
architecture improvements were also explored, such as processing the projection images from different detectors to-
gether using width concatenation or applying downsampling.

Phantom test sets were used in order to determine whether expanding the training set and making adjustments such
as width concatenation or applying downsampling had a positive effect on the neural network’s ability to improve
varying SPECT projections. The projections of these test sets were improved by the neural networks and then re-
constructed to 3D arrays in the image domain. The reconstructions would then be compared against the low count
reconstruction as well as those produced by the original neural network. It became apparent that the neural networks
do not perform well on very low count projections. It is assumed that this is because the projections have too little
information contained within them for the neural networks to determine how to improve them. It may be possible to
improve the neural networks by expanding the training set further with very low count projections.

The quality of the reconstructions was determined quantitatively using the Contrast to Noise Ratio (CNR) for Derenzo-
type phantoms and uniformity for uniform type phantoms. Expanding the training set showed slight improvement in
reconstruction CNR but was not considered significantly better. Applying width concatenation as well as expanding
the training set seemed to improve results further, but the increase in resource requirements and computing time may
not be justified for the marginal increase in CNR. Expanding the training set and applying downsampling proved to
be very promising, increasing the CNR from anywhere between 0.35 to upwards of 0.75 in some cases. It also showed
the most potential when it came to improving physically measured SPECT projections. The uniform phantoms had
varying results. Very low count uniform cylinder phantoms were able to be improved by neural networks, but did
not seem to benefit much from training on the expanded training set. It also seemed that trying to improve higher
count uniform cylinder phantoms was difficult for the neural networks as there seem to be artifacts in the neural
network reconstructions that decrease uniformity. It is recommended to further examine and improve the downsam-
pling technique used in this study. It may also be interesting to combine the individual improvements, expanding the
training set, using width concatenation and applying downsampling simultaneously, to see whether this can offer a
better neural network for improving low count SPECT projections.

ii

Contents

Eé

2 imul: Derenzo Phantom 2| e e e

[4.5 Simulated Uniform Cylinder 1|.

4.6 imulated Uniform INAET 2| . . . o o e e e e e e e e e e e e e e e

47 Measured Uniform Cylinder] 0t

%

5.1 Anoteonimageformatting e e e e e e e

CNCes|

z

A TralnIng Set] e e

A.1 Derenzo Phantom (6 segments)| o i i i i i e e e e
A.2 Jaszczak Phantom| e e e e
A.3 Uniform Cylinder Phantom|. e

A4 Uniform EIIiEsoia Phantom + Background|. o oL
A5 Derenzo Phantom (5 segments) + Background|

[B.5 Simulated Uniform Cylinder1)

B.6 Simulated Uniform Cylinder 2| e

B.7 Measured Uniform Cylinder] e e e
[CJupyter Notebook of PLN Expanded]o vttt ettt e e e

iii

13
13
14
15
16
17
18
19

20
21

22

23

Bachelor’s Thesis TU Delft

1 Introduction

The field of machine learning has seen significant advancements over the past few years, particularly in the area of
deep learning. As faster and more powerful computer components are becoming both more affordable and more
commonplace this opens up the application of deep learning to other fields as well. Biomedical imaging is one of the
early adopters of machine learning, and has been used at least as far back as 1995 [1]. This research will focus on the
application of deep learning, a subsection within the field of machine learning, to Single-Photon Emission Computed
Tomography (SPECT). SPECT systems offer a way of obtaining 3D images by injecting radiopharmaceuticals, and then
measuring the photons emitted by those radiopharmaceuticals with scintillation cameras. While clinical SPECT sys-
tems typically have a resolution of around 12mm to 8mm [2], preclinical SPECT systems have been able to achieve
sub-half-millimetre resolution [3].

As SPECT systems require the injection of radioisotopes it is important to keep the dose the patient or subject re-
ceives to a minimum, a safety concept widely known as ALARA (as low as reasonably achievable). This can generally
be achieved in two ways; either by reducing the activity level of the radiopharmaceutical or by reducing the exposure
time (e.g. by picking a radiopharmaceutical with a short half-life). While this is beneficial to the patient’s or subject’s
health, one major downside is that the images projected by the SPECT system will be low-count, meaning that the
signal-to-noise ratio (SNR) is going to be low as well. As a result the image reconstructed from these projections will
be of a lower spatial resolution. Ideally we would like the SPECT system to produce high-count projections while also
keeping the dose the patient or subject receives to a minimum. This is where deep learning may be able to help.

Deep learning is a machine learning method based around creating Artificial Neural Networks (ANNs). It is some-
times considered to be too much of a black box. There would be no oversight into, or control over, how the neural
network is trained. Yet this is exactly what makes deep learning such a powerful tool. Instead of having to manually
tweak each parameter, each weight, one can allow the network to tweak its own weights with the goal of minimising
some user-defined loss function, a process simply called training. Deep learning has a tremendous number of wildly
varying applications across many fields, from enabling self-driving cars to detect obstacles on the road [4], to improv-
ing virtual assistants for smart environments [5], to performing image super-resolution [6]. The latter of these is an
example of an image-to-image type neural network, a network type well-suited for this study.

This study was performed under the Biomedical Imaging group, a section within the department of Radiation Sci-
ence & Technology in the Applied Sciences faculty of the Delft University of Technology. The Biomedical Imaging
group develops high-resolution preclinical SPECT systems. One of the very high resolution scanners developed by
them is a pinhole-based system called U-SPECT [7}[8], commercially available from MILabs BV [9].

The goal of this study was to investigate how to enhance a previously established Perceptual Loss Network (PLN)
such that it could improve low count SPECT projections to more closely resemble high count SPECT projections in
order to obtain a higher quality reconstructed image. One could choose to train a neural network to improve the re-
constructed images directly, but as image reconstruction is very time-consuming it would be difficult to create a large
training set for the neural network. It was therefore deemed best to try and improve the projection domain instead,
for which it is very easy to generate a large amount of projections relatively quickly.

Both simulated and physically measured SPECT projections were used in this study. The projections were simulated
and measured using the EXIRAD-3D, a preclinical U-SPECT system for micron-resolution ex-vivo imaging. The ex-
periment was conducted using Python 3 [10] with the help of Jupyter Notebooks [11], and the fast.ai library [12] was
used to provide the required neural network architectures. The free cloud GPU rental service Paperspace [13] was also
used to provide access to better GPUs when needed. A previous BSc Thesis study by A.M. Visser (citation currently
unavailable) into the subject was primarily focused on determining what kind of neural network would produce re-
sults closest to the ground truth. This study on the other hand focused on expanding the training data in the hopes of
creating a more generalised model that can produce predictions for many different kinds of projections. The neural
network used here was a Perceptual Loss Network (PLN) [14] using a ResNet-34 model pretrained on ImageNet.

Section 2] will describe the workings of the SPECT system used in this study, both how projections are generated and
how they are reconstructed, as well as the inner workings of a neural network. Section 3|will be used to go into detail
about the exact neural networks used, which training data was used, how they operate and which improvements were
explored. In sectionf4|the results of training the network and reconstructing the image will be shown, which will then
be discussed in section Lastly, conclusions will be drawn in section@]on how the neural networks performed, which
tactics worked and which did not, and where to go from here.

Bachelor’s Thesis TU Delft

2 Theory

The process of improving low-dose SPECT projections is something that spans both Physics and Computer Science,
and thus it is useful to provide some background on and explanation for both fields. The first subsection will explain
SPECT systems in order to provide understanding into what projections are, how they are created and how they are
turned into useful 3D images. The second subsection will go into detail about the theory behind neural networks and
how they operate.

2.1 SPECT System

As mentioned before, the SPECT system used in this study is the EXIRAD-3D developed by MILabs [9]. The EXIRAD-
3D offers a SPECT option that uses U-SPECT-II design: a preclinical Ultra-high-resolution SPECT [7, [8]. Its design is
displayed below in figure[T}

b)

T

Figure 1: A picture of the outside (a) and a schematic drawing of the inside (b) of a U-SPECT system [7,[8].

The design of preclinical SPECT systems such as the U-SPECT differs somewhat from conventional (clinical) SPECT
systems. A U-SPECT system utilises three scintillation detectors in a triangular arrangement. Each detector consists
of a gamma camera with 10% FWHM energy resolution at 140keV and a Nal(T]) scintillation crystal of 497.4mm by
410.6mm [I5]. The collimators that would normally be attached to each of the detector plates have been replaced
with one cylindrical collimator like the one in figure[2h. The collimator used in the EXIRAD-3D is of similar design
to this but has slightly different specifications. The inner radius of the cylinder is 10.5mm, while the outer radius is
18mm. The collimator contains 87 gold pinholes, with their centres at 12.5mm from the central axis of the collimator.
Gold was chosen as pinhole material as it has a high photon-stopping power [16], thus reducing photon penetration
and scattering. The main body of the collimator is made out of an alloy of tungsten (92.5%), nickel (5.25%) and iron
(2.25%). Lead shielding of 15mm thickness was placed around the collimator to prevent photons from leaving the col-
limator anywhere but through the pinholes. This shielding causes the well-defined edges for each pinhole projection
that can be seen in figure[2b. When a photon does fall through a pinhole it ends up on one of the three scintillation
detector plates after which the event is stored as a single "count" together with details like when the event took place,
on which detector plate and which location the event took place and which energy was measured.

Figure 2: An image of the cylindrical collimator of a U-SPECT-II system (a) and a projection from one of the detector
plates imaging a bottle of %™ Tc (b). [7]

Bachelor’s Thesis TU Delft

The cylindrical collimator with its pinholes of only 0.6mm diameter allows for higher resolutions than regular parallel-
hole SPECT systems due to its large magnification factor. There is however a major downside to using a cylindrical
collimator with a very high spatial resolution. Even though the diameter of the collimator is around 21mm, the central
field of view (i.e. the area that can be seen by most or all pinholes) is only around 4mm in diameter. In order to scan
something that is larger than this, the bed position must be changed. The bed is what the object to be scanned is
resting on while in the device and can be moved to different positions such that eventually all parts of the object have
been in the centre field of view at least once.

2.2 Imaging & Reconstruction

In order to get a sense of how well a SPECT system performs phantoms such
as the one in figure [B| can be utilised. Derenzo hot rod phantoms consist of
several capillary or rod segments of varying diameters which can be filled with
radioisotopes. The rods within each segment have identical diameters and
each rod is separated from edge to edge by that same diameter. This makes
Derenzo phantoms well-suited for determining the spatial resolution of SPECT
systems.

Ideally all projections required for this study would be physically measured, but

as that both brings safety risks with it and would be quite time-consuming all ®
training set projections used will be simulated. The SPECT system will be simu-

lated using Geant4 Application for Emission Tomography (GATE) V8.0, a Monte

Carlo simulation platform [17, 18} [I9]. The system setup will be identical to the Figure 3: A schematic drawing
EXIRAD-3D discussed above. Scatter is not considered in the simulations as the of a transaxial cross section of a
neural network should first be able to improve projections without scatter in- Derenzo hot rod phantom.

cluded. The exact phantoms that were simulated will be detailed in section

and Appendix section[A]

A 3D image detailing the activity density can be obtained by performing a reconstruction on a complete set of projec-
tions. A complete set of projections consists of three projections (one for each detector plate) per bed position. This
means for example that a simulation conducted with nine bed positions requires 3 - 9=27 projections to form a com-
plete projection set. The three detector plate projections belonging to the same bed position are then concatenated
together to form a rectangular image file, resulting in 9 of these files. Figure[d]displays an example concatenated image
file of a Derenzo phantom.

Figure 4: A concatenated image file (grayscale, displayed here with scaled colours) used for reconstruction.

The reconstructions in this study were performed using the SROSEM (Similarity-Regulated Ordered Subsets Expec-
tation Maximisation) algorithm [20]. This algorithm has improved speed over the widely used OSEM algorithm [21]
as it automatically reduces the number of subsets in regions with low estimated activity, while also avoiding artifacts
such as disappearing low activity structures due to a high number of subsets. The reconstruction was performed us-
ing a method developed by E van der Have [22]. The maximum number of subsets used was set to 128, and up to 40
iterations were performed. Once the reconstructions had finished they were run through an automated MATLAB [23]
script that evaluates for every iteration which Gaussian filter results in the highest Contrast-to-Noise Ratio (CNR, see
section[3.4]for details) by cycling through a list of standard deviations that define the filter size. The optimal iteration
and accompanying standard deviation can then give us the best possible reconstruction in the set.

Bachelor’s Thesis TU Delft

2.3 Neural Network

The most important part of the process of improving low-dose SPECT projections is the neural network. A neural net-
work that can perform image-to-image tasks is required and thus a U-Net [24] will be used. A U-Net is a Convolutional
Neural Network (CNN) that was originally designed to specifically perform biomedical image segmentation. A CNN
works by repeatedly applying convolution operations on some data, in this case a projection image, in order to extract
feature maps from it. A simple example of such a convolution can be seen in figure[5|and figure[6]

Input Filter / Kernel Input Feature Map

1 1 1 0ol o 1 1 1 00

0|1 1 1 0 1t 1ol 1 0| 1 1 110 4 | 3| 4

0 | 0 [1x1|1x0|1x1 21413

0| 0 [1xO|1x1|(0x0O|| 2 | 3 | 4

0 1 | 1x1 | 0x0 [0x1

Figure 6: A feature map has been created after con-

Figure 5: An example input image and kernel. [25] volution of the kernel with the input image. [25]

Figure |5| displays some example input data of size 5x5 and an example kernel of size 3x3. Convolving the two will
result in something like figure[6] This convolution takes the sum of the products of where the kernel overlaps with the
input. In this case, the kernel was moved over one space to the right each time step. This means that what we call the
stride of the kernel is 1. Additionally no padding, that is to say a border of zeroes around the input, was applied during
convolution. Together the kernel size, stride and padding determine the dimensions of the feature map. Note that the
size of the feature map is now 3x3, smaller than the original input of 5x5. By varying these parameters multiple feature
maps can be obtained from the same input data, each with slightly different features extracted from it. By repeatedly
applying these convolutions the network can form more and more layers. Figure[7]displays the general shape of such
a CNN.

Conv + Conv + Conv + Conv +
Maxpool Maxpool Maxpool Maxpool

Figure 7: An example of a CNN structure. As the input resolution becomes smaller with each layer, the number of
feature maps grows larger. [25]

Input

It is good to remember that these convolutions often deal with data that is 3D or more. For example, an RGB image of
512x512 is not stored as a 2D array but as a 3D array of size 3x512x512, where the extra dimension is used to store each
colour channel separately. The kernel will in this case also be 3D rather than 2D, and the resulting array of feature
maps will be 4D, i.e. nx3x512x512, where 7 is the number of feature maps.

Bachelor’s Thesis TU Delft

A U-Net consists of two parts: a contracting part and an expanding part. These two parts are what gives the network
its distinct U-shape, as can be seen in ﬁgure

64 64
128 64 64 2
input
image (o[> output :
e J .| segmentation
al & map
of of Jf &
= &l &
X x x
™N| Off @
~| ©
51508
' 128 128
256 128
-
o N off &
¥ 256 256 512 256
'Z g d it = conv 3x3, ReLU
3' a2 S copy and crop
512 512 1024 512
e+l — [-iem § max pool 2:2
“ g Y - a
8 S ¥ o 43 8 4 up-conv 2x2
Nl 2 > I
£ > N > = CONV 1x1
o ™~

Figure 8: The well-known U-Net architecture. The number of feature maps is displayed at the top of the blue boxes.
The dimensions of each feature map is displayed to the bottom left of the blue boxes. The differently coloured arrows
denote the various operations. [24]

The contracting part is in essence a CNN, consisting of several convolutions, Rectified Linear Units (ReLUs) and max
pooling operations. A ReLU ensures that any values that accidentally end up negative after convolution are set to zero
and is defined as

ReLU(x) = max(0, x) (@]

where x is iterated through every value of the array. Meanwhile max pooling operations are somewhat similar to con-
volution operations. In the case of figure [8| max pooling will examine each feature map in 2x2 chunks and take the
maximum value in each chunk as the new value. This causes both the feature map height and width to halve. Max
pooling is mainly done to extract only the sharpest features, while also keeping down the number of computations.
The expanding part of the U-Net is very similar in structure to a regular CNN, except now each convolution decreases
the number of feature maps while increasing the image resolution. Figure [8/also contains a few "copy and crop"
connections that link very distant parts of the network together. These connections are more commonly called skip
connections and form the basis of ResBlocks and ResNets [26] which allow networks to be much deeper, i.e. have
more layers, than was possible before these came about.

The goal of any image-to-image neural network is generally to minimise some predefined loss function. This is
achieved by training the network on a dataset of image pairs. Each image pair consists of a low quality and high
quality version of the same image. The neural network can then try predicting what the high quality version would
look like based on the low quality image. The simplest and most obvious loss function for image-to-image tasks is to
calculate the Mean Squared Error (MSE) between the prediction made by the neural network and the real high quality
image, which is often called the ground truth. Based on this loss the network can tweak the weights stored in its layers
a very small amount (values around 1073 and 10~ are common) to try and minimise the loss for the next image pair.
By training the neural network on a large number of image pairs the network should eventually converge to the global
minimal loss. There is however always a risk of overfitting where a model becomes very good at handling the particu-
lar dataset it was trained on, but performs poorly on similar but new data. This problem will hopefully be avoided in
this study by expanding the training set with a variety of phantoms.

While an MSE loss function is common there are others that may prove more useful for the task at hand. During a
previous BSc Thesis study it was determined that a Perceptual Loss Network (PLN) [14] proved most suited for the de-
sired image-to-image task. An MSE loss function only looks at the final prediction of the neural network and compares
that to the ground truth, while a perceptual loss function compares the outputs of each convolutional layer between
the predicted image and the ground truth. This is why perceptual loss is also sometimes called feature loss.

Bachelor’s Thesis TU Delft

3 Methods

One of the aims of this study is to enhance the previously established PLN by increasing the training dataset. Previous
BSc Thesis research made it apparent that although the PLN is the network most capable of accurately predicting the
high count projections it failed to generalise this to phantoms other than the one it was trained on. The results of the
previous BSc Thesis study are displayed below in figure[9} The figure clearly shows the trained network was able to
improve phantoms identical to those in the training set, but was unable to improve similar phantoms that it was not
trained on. This would suggest the network was overfitted to the training set.

Training Set Simulated Derenzo Phantom Different Simulated Derenzo Phantom

Low Count U-Net GAN Low Count PLN’s Prediction
s 0.17 0.15 .
® g ® 3 "y
als N e’y " «'s - . :
™ . . . » - . - - - - Ll
- . 9 . - 9 . - 9 0.18 & _ %030 A_S
- " - P - PR - -
ate - r o «%é - o b o 0 . " - ° L
. « ! o 5 »” .. . :.. .‘::‘.
. \ - 0.22 0.26
P - . -
. ’ - 4 - "
Max. CNR 2.040 1.559

1.787 2.296

Measured Derenzo Phantom

PLN Gaussian Filter High Count
0.16 0.15 Low Count PLN’s Prediction
o7 » af & +* » ° 0.15 0.16
- ® - . \‘ . 5 ° s . . - . i %
N . L . 'ﬂ b

E ut -\'E < d S:' .-:E 0.14 s .5.0.17. ‘

0.13 ‘ .
Max. CNR |1.988 1.630 3.038 Max. CNR 0.4767

Figure 9: The results of the neural network from the previous BSc Thesis study. The reconstructions of a phantom
identical to that inside the training set for different types of neural network as well as those for low and high count are
displayed on the left together with their CNR. The reconstructions of two phantoms not inside the training set for the
PLN are displayed on the right together with their CNR.

0.12

The idea is that by expanding the training dataset with projections of several diverse phantoms the PLN will be able to
make its feature maps a bit more generalised, thus allowing the network to be more widely applicable. The phantoms
contained within the expanded dataset can be found in table|l} For the exact details on each phantom simulated,
please refer to the training set section in Appendix section[A]

Table 1: A table displaying the phantoms inside the training dataset, together with their activity concentrations and
the number of projections.

Phantom Type Activity conc. (MBq/ml) | Background act. conc. (MBq/ml) | No. of projection pairs
Derenzo (6 segments) | 4506 - 2358
Jaszczak 4506 - 1965
Uniform Cylinder 96 5 2586
Uniform Ellipsoid 243 - 2418
Derenzo (5 segments) | 2463 2 2094

The expanded training set thus consists of 11.421 pairs of low and high count projections (so a total of 22.842 projec-
tion images), each of them at 512x512 resolution at full image size. In contrast the original training set used in the
previous BSc Thesis study only contained 2.358 pairs of low and high count projections (a total of 4.716 projections)
of 512x512 resolution at full image size, and these were all from the exact same phantom too. Now that the training set
has been expanded to contain more and different phantom projections this should hopefully reduce the chance that
the network will become overfitted.

Bachelor’s Thesis TU Delft

As mentioned before all neural network code was written in Python 3 [10], executed using Jupyter Notebooks [11]
and utilised the fast.ai library [12] to provide the neural network architectures. The original PLN constructed during
previous BSc Thesis research trained only on the first phantom in table |1| will from here on be referred to as "PLN
Original". PLN Original will be used to compare the newly created networks against. Three new neural networks were
created and trained: PLN Expanded, PLN Expanded + Width Concatenation and PLN Expanded + Downsampling.
These three networks are each detailed below in their own respective subsections.

3.1 PLN Expanded

The first new neural network that was made is PLN Expanded. The full code of PLN Expanded can be found in Ap-
pendix section|[C] PLN Expanded is very similar in architecture to the PLN Original with some minor tweaks here and
there to file formatting and training parameters (such as batch size and learning rate). The main difference here of
course is that PLN Expanded was trained on the fully expanded dataset detailed above. PLN Expanded is a neural
network that uses a U-Net learner. The encoder for the U-Net was chosen to be a ResNet34 model pretrained on Im-
ageNet [27] as it strikes a good balance between model depth/complexity and GPU memory requirement. The loss
function was defined as Feature Loss using a VGG19 network with batch normalisation [28], also pretrained on Ima-
geNet. The projections are loaded in as 512x512 grayscale images of 16-bit depth, which then get repeated twice to
form a 3-channel image. For a detailed explanation of the image formatting please see section[5.1} PLN Expanded was
run locally on an RTX 2070 SUPER with 8GB of GPU memory. Because of the large image resolution at full image size
(512x512) the batch size was set to 8, as anything higher would require too much GPU memory. This is quite a small
batch size, but this may actually be beneficial for training deep neural networks as suggested in [29]. The network is
also put into half precision mode (FP16) during training as detailed in [30]. This means that values inside the neural
network are stored as 16-bit wherever possible. The end result is that calculations can be sped up by 200% or more,
and the available GPU memory is effectively doubled.

Like PLN Original, the neural network is initially frozen and first trained on projections downscaled to 256x256 at
batch size 16 for 10 cycles, unfrozen, and trained for another 10 cycles. Frozen in this case means that the weights for
all layers deeper than the final layer are static. Only the final fully-connected layer of the network is trained. This is
called transfer learning and prevents the pretrained weights from changing. The pretrained initial layers extract only
low-level features such as lines, curves, etc. and thus do not need training initially. Once unfrozen the weights of the
deeper layers can also be adjusted. After this initial training the network is frozen again, then trained at full resolution
at batch size 8 for 10 cycles, unfrozen, and trained for two further consecutive runs, each of 10 cycles. The learning
rate starts of at 10~3 for the first 10 cycles and is then decreased gradually for the later cycles, a method called adaptive
learning rate utilised in this case by the Adam optimiser [31]. This allows the network to take relatively large leaps
towards the global minimum loss at first and then to steadily converge further. Once training is finished the network
displays an input-prediction-target pair to show the general progress of the network after training (see figure[10).

Prediction

Input Target

Figure 10: The progress of the neural network is displayed as an input-prediction-image pair after it is done training.

Bachelor’s Thesis TU Delft

3.2 PLN Expanded + Concatenation

The second investigated method of improvement is concatenation. As is hopefully now clear PLN Expanded trains on
the individual projections, which are 512x512 in size. These are split up by both detector plate (A, B, C) and by bed
position (1, 2, ...). One of the strengths of deep learning is the ability for a neural network to pick up on details that
are seemingly insignificant or not very noticeable to human beings and to use that information to produce a better
prediction. Even though all these individual projections look similar to us in a general sense does not mean that
they are all similar. After all, some projections were produced by detector plate A at bed position 3, and others were
produced by detector plate C at bed position 9. At the same time of course the projections for detector plate B and C
at bed position 3 were also produced, and likewise for the second example. The three projections created by detector
plates A, B and C at the same bed position are related to one another. They are projections of the same object, in the
same place, but "observed" if you will at different angles. Perhaps then there is some obscure information hidden
inside those three matching projections that a neural network can extract useful information out of, but only if it can
treat and train on all three projections together. This is not currently how PLN Expanded operates. PLN Expanded
loads in all 22.842 projections, both low and high count, pairs them up and shuffles them randomly. The order in
which the neural network sees the images is thus completely random, and it would not be able to extract any possible
information from the matching detector plate projections. That is why two additional networks were constructed
where the three matching detector plate projections are concatenated together into one image. This was done in two
ways: through width concatenation and through channel concatenation.

3.2.1 Width Concatenation

The expanded dataset was pre-processed for both of these new networks with the help of some Python code. For the
network that utilised width concatenation the three individual matching projections of size 512x512 were put side by
side and stitched together into one big, rectangular image of size 1536x512 (width x height). The projections produced
by detector plate A were placed in width position 1 through 512, those produced by detector plate B in width position
513 through 1024 and those produced by C in width position 1025 through 1536. An example low count high count
pair with this type of concatenation is displayed in figure[11]

Figure 11: A low count high count pair of the width concatenation network. As one may assume the low count is
displayed on the left and the high count is displayed on the right.

These large concatenated images are still grayscale, so in order to train on them they must be replicated twice to form
a 3-channel 1536x512 image of 16-bit depth. This width concatenated dataset still takes up the exact same size on disk.
This is because although the images now each have three times as many pixels, the number of total projections has
been reduced down to a third. This dataset therefore has 7614 projections in it, or 3807 pairs. The network however
is going to need some adjustments in order to be able to deal with these images. This is because although the total
size on disk of these images is the same as the unconcatenated dataset, the input to the network is now three times as
large. This means that each subsequent layer in the neural network is also going to have to be wider. It is in this case
not the training dataset that is a strain on the GPU memory, but the network itself.

The RTX 2070 SUPER with its 8GB of GPU memory is not good enough to be able to run this network, and so the
aforementioned cloud-based GPU rental service Paperspace [13] will be used. The service allows you to rent a strong
GPU for free for a limited amount time. In this case an NVIDIA Quadro P5000 with 16GB of GPU memory was rented
for 6 hours at a time, which is the maximum allowed time for non-paying users by the service. The width concatenated
dataset and Jupyter notebook were uploaded to the cloud storage also provided by Paperspace and run for as long as
the 6 hour time window allowed. The network was first trained on downsized projections of 768x256 at batch size 4
for 10 cycles, unfrozen, and trained for another 10 cycles. The resolution was then upped to the full 1536x512, the
batch size was reduced down to 2 and the network was frozen again. The network was trained for 6 cycles, unfrozen
again, and trained again for two consecutive runs of 5 cycles each. This is less cycles than the regular PLN Expanded
was trained for in total, but the increased neural network size also brings with it additional required computing time.
As the GPU was only available for 6 hours at a time, 6 or 5 cycles was the maximum number that was possible in that
time window.

Bachelor’s Thesis TU Delft

3.2.2 Channel Concatenation

For the network that utilised channel concatenation the three matching projections were put into their own separate
channel to create a 3x512x512 image. The projections produced by detector plate A were placed on the first channel,
those produced by detector plate B on the second channel and those produced by C on the third channel. An example
low count high count pair with this type of concatenation is displayed in figure As can clearly be seen from the
figure the fast.ai library has chosen to display the image as if it were an RGB image. This is not representative of the
actual colours of this image as it is in essence just a three high stack of 1-channel images, but is useful for showing
these separate channels in a way that still makes them distinguishable from one another.

Figure 12: A low count high count pair of the channel concatenation network. The low count (left) and high count
(right) clearly display how the three detector projections are placed on each colour channel.

As the input and output to the neural network are identical between this dataset of channel concatenated images and
the other dataset no adjustments to the PLN Expanded were needed. A copy of the network was made and trained
(locally) on this concatenated dataset using the exact same parameters. Once the network had been fully trained for
a total of 50 cycles a test was performed to see if there were any issues with this approach to combining the three
detector plates. Unfortunately it was then discovered that training the network with the three projections placed on
different channels caused the network to leave imprints of each layer on each other layer. When these projections are
then pried back apart it leaves a lot of pixel intensity in the image where there is not supposed to be any. Because of
this it was decided that rather than continuing with this channel concatenation setup it would be best to only have
width concatenation instead.

Bachelor’s Thesis TU Delft

3.3 PLN Expanded + Downsampling

A third and final method of improvement was explored: downsampling. Or rather multisampling directly followed by
downsampling. This method of improvement was a late addition to the study and heavily inspired by a similar method
applied in the video games industry. Supersampling Anti-Aliasing (or SSAA for short) is a technique to counteract
aliasing (pixelated edges). The technique works by rendering the image at a higher resolution than the desired final
output and then downsampling it again to obtain an image with smoother edges than the regular image would have
had. SSAA is very much a brute-force method of obtaining an image with smoother edges as the entire image is
rendered at a higher resolution, requiring much more GPU memory as well as memory bandwidth. Because of this
MSAA (Multisampling Anti-Aliasing) is favoured nowadays over SSAA as it only supersamples around edges. However
SSAA will do just fine for this study as supersampling only needs to be performed on a small number of images. The
process of downsampling is detailed below in figure[13]

PLN Expanded
Prediction On to reconstruction
512x512 512x512
Low-Count High-Count

PLN Expanded + Downsampling

On to reconstruction

Prediction Resize

512x512 1024x1024 512x512
Low-Count High-Count High-Count

Figure 13: The prediction process as it is performed by PLN Expanded normally (top) and as it is performed using
downsampling (bottom).

The 512x512 low count projections of the test sets are normally directly predicted to 512x512 high count projections.
Now however, the 512x512 low count projections will first be improved to 1024x1024 high count projections, which
will then be resized back down to size 512x512. The end result is a predicted high count projection that has much
smoother edges, as well as seemingly reduced noise. The trained PLN Expanded network was used for producing
predictions directly. No new network was trained to perform this task.

10

Bachelor’s Thesis TU Delft

3.4 Evaluation

The performance of the neural networks is evaluated with the use of seven test sets. These test sets were chosen to
have varying structures, sizes and levels of activity in order to determine which neural networks perform better on
different kinds of projections. The exact details for each test set can be found in Appendix section[B}

The first four test sets used were of Derenzo-like phantoms.

Simulated Derenzo phantom 1 is identical to the projections inside both the original and the expanded train-
ing set. The high count projections (100%) were simulated at 3600 MBq/ml, the low count projections (10%) were
simulated at 360 MBq/ml, and the phantom was simulated for 3 hours. The low count projections were used for im-
provement by the neural networks.

Simulated Derenzo phantom 2 is not in either of the training sets. The high count projections (100%) were
simulated at 212 MBq/ml, the low count projections (10%) were simulated at 21.2 MBq/ml, and the phantom was
simulated for 3 hours. The low count projections were used for improvement by the neural networks.

Simulated Derenzo phantom 3 is identical to simulated Derenzo phantom 2, but the high count (100%) projec-
tions were used for improvement by the neural networks. This test set is also not in either of the training sets.

The measured Derenzo phantom was, as the name suggests, physically measured as opposed to simulated and
is not in either of the training sets. The high count projections (100%) were measured at 4510 MBq/ml, the low count
projections (10%) were measured at 451 MBq/ml, and the phantom was measured for 3 hours. The low count projec-
tions were used for improvement by the neural networks.

Three uniform cylinder phantoms were also added as test sets.

Simulated uniform cylinder 1 is not in either of the training sets. Specific activity concentrations were not known
for this phantom. The high count projections are at 100% count, the low count projections are at 10% counts. The low
count projections were used for improvement by the neural networks.

Simulated uniform cylinder 2 is identical to simulated uniform cylinder 1, but the high count (100%) projections
were used for improvement by the neural networks. This test set is therefore also not in either of the training sets.

A measured uniform cylinder was added as a test set too. The measured uniform cylinder is not in either of
the training sets. The high count projections (100%) were measured at 38.6 MBq/ml, the low count projections (10%)
were measured at 3.86 MBq/ml, and the phantom was measured for 3 hours. The low count projections were used for
improvement by the neural networks.

The quality of the reconstructions will be examined both quantitatively as well as qualitatively. The results of the

Derenzo-type phantoms will be made quantitative using the Contrast-to-Noise Ratio (CNR), defined as it was in
[32,[15]. The CNR of each rod sector is defined as Cg/ N;s. C; is the contrast of each rod sector and is defined as

Cs=——, 2)

where I is the mean intensity over the activity regions of sector s, and B; is the mean intensity over the background
regions of sector s. N is the noise of each rod sector and is defined as

A /Ulsypz + UBs,pz

Ny=4+—nr——, 3)
1B,

where o 13,,,2 and o sz are the standard deviations over I; and B; respectively calculated over all sectors s and all
planes p, and where IB; is the mean intensity over all regions of interest (ROIs) in sector s. All of these calculations
have been automated with a MATLAB script written by M.P. Nguyen, so that the CNR for various phantoms can now
easily be plotted.

11

Bachelor’s Thesis TU Delft

A low count reconstruction of simulated Derenzo phantom 1 was passed through the script and the CNR was calcu-
lated for each iteration, for each rod sector. The results have been plotted in figure below.

2t //,

O [
z
6 /
A+
2+
—0.17mm
—0.16mm
3k 0.15mm
—0.14mm
—0.13mm
0.12mm
4 | | | |
0 5 10 15 20

Iteration
Figure 14: The CNRs for each rod sector have been plotted together versus the iteration number in one figure.

This graph alone clearly shows that the rod sectors of 0.17mm, 0.16mm and 0.15mm are going to be of comparable
quality, while the rod sectors of the smaller rods are going to be progressively worse. Ideally of course a plot like this
would be made for each test set, each reconstruction type and each rod size. As that would result in 20 figures though
the results have been condensed down somewhat. In the sections below you will find tables detailing the maximum
CNR value for each combination of reconstruction type and rod size, as well as figures with a more qualitative eval-
uation showing the best overall reconstructions together with their CNR. It is worth noting that the values displayed
in the tables are the maximum CNRs for each rod sector size across all iterations. The CNR values do therefore not
necessarily belong to the same iteration.

The quality of the uniform phantoms was made quantitative by calculating the uniformity (sometimes known as the
coefficient of variation) of each reconstruction. The uniformity is a measure calculated from the standard deviation
and mean across (in this case) 5 ROIs in the reconstruction [32]. Specifically, the equation to calculate the uniformity
is
. . Oy
Uniformity = 100- —, (4)
u

where u represents the average value from the 5 ROIs, and o, is the standard deviation between the 5 ROI means.
Uniformity is expressed as a percentage, where lower values mean more uniform phantoms.

12

Bachelor’s Thesis TU Delft

4 Results

4.1 Simulated Derenzo Phantom 1

Simulated Derenzo phantom 1 is identical to the Derenzo phantom projections contained within both the original
and the expanded training set. It is therefore expected that all neural networks should be able to produce CNR values
higher than those of the low count reconstruction. Table 2] displays the quantitative results of each reconstruction
for each rod sector. As was expected the neural networks outperform the low count reconstruction on all rod sectors.
PLN Expanded + Downsampling is the clear victor here, producing a CNR that is on average 87.0% better than the
low count reconstruction. The other three networks produced similar results to one another: PLN Expanded + Width
Concatenation achieved 59.7% better CNR on average, PLN Expanded achieved 53.1% better CNR on average and PLN
Original achieved 54.5% better CNR on average; all significantly lower than PLN Expanded + Downsampling.

Table 2: The CNR for each reconstruction type for each rod sector size of simulated Derenzo phantom 1.

Reconstruction 0.17mm | 0.16mm | 0.15mm | 0.14mm | 0.13mm | 0.12Zmm
Low Count 2.355 2.319 2.387 1.691 1.104 0.357
High Count 5.379 5.595 3.612 3.156 1.391 0.422
PLN Original 2.633 3.441 3.279 2.182 2.050 0.767
PLN Expanded 2.825 3.912 3.476 2.265 1.537 0.754
PLN Expanded + Width Concat. | 2.944 3.955 3.328 2.161 1.892 0.800
PLN Expanded + Downsampling | 3.152 3.762 4.506 2.611 2.349 0.963

Moving on the the more qualitative analysis of the reconstructions figure [I5]shows that the PLN Expanded + Down-
sampling manages to produce the highest CNR here too. Out of the four neural network reconstructions PLN Original
seems to have performed the worst as can be concluded by both the average CNR and visual examination, since ar-
tifacts can be seen sprouting out of the what are supposed to be circular dots. The three networks trained on the
expanded dataset all seem similar in quality for the larger rod sectors, but if only considering the smaller rod sectors
it becomes clear that PLN Expanded + Downsampling is the nicer reconstruction.

1.572 3.038 2.219
. . .
* . L ‘. e,
- - - - e

> 4 P 9
g4 P> 4 >

2.254 2.329 2.680

Figure 15: The best reconstructions with the highest CNR for each neural network are lined up besides one another
together with the low and high count reconstruction for comparison. The average CNR value for each reconstruction
is displayed below it.

13

Bachelor’s Thesis TU Delft

4.2 Simulated Derenzo Phantom 2

The projections of simulated Derenzo phantom 2 were not inside the training set, making it well-suited as a test to see
how generalised the networks are. TableE]displays the quantitative results of each reconstruction for each rod sector.
Against expectation the neural networks that were trained on the expanded dataset performed significantly worse
than PLN Original and even the low count reconstruction in some cases. Possible suggestions as to why this is the case
will be laid out in section[5} PLN Original produced a reconstruction somewhat better than the low count at a 30.1%
higher average CNR. PLN Expanded, PLN Expanded + Width Concatenation and PLN Expanded + Downsampling all
performed worse than the low count at a 15.2%, 10.8% and 0.6% lower average CNR across the best CNR values of all
iterations.

Table 3: The CNR for each reconstruction type for each rod size of simulated Derenzo phantom 2.

Reconstruction 0.30mm | 0.26mm | 0.22mm | 0.19mm | 0.17mm | 0.15mm
Low Count 6.762 3.600 2.272 1.149 0.254 0.299
High Count 11.713 6.775 8.167 3.039 1.911 0.735
PLN Original 7.361 3.753 2.954 1.306 0.621 0.238
PLN Expanded 4.279 2.626 1.723 0.874 0.318 0.286
PLN Expanded + Width Concat. | 3.540 2.570 2.000 0.959 0.339 0.318
PLN Expanded + Downsampling | 5.046 2.899 1.969 1.091 0.447 0.250

Looking at the reconstructions in figure[I6] the extent of the decrease in quality can be seen. The networks trained
on the expanded dataset performed much worse than the PLN Original. The PLN Original was only able to achieve
a marginally better average CNR, and even then one could argue that the low count reconstruction is qualitatively
better than the one produced by PLN Original.

1.388 1.279 1.426

Figure 16: The best reconstructions with the highest CNR for each neural network are lined up besides one another
together with the low and high count reconstruction for comparison. The average CNR value for each reconstruction
is displayed below it.

14

Bachelor’s Thesis TU Delft

4.3 Simulated Derenzo Phantom 3

Simulated Derenzo phantom 3 is identical to simulated Derenzo phantom 2, but the high count projections of simu-
lated Derenzo phantom 2 were taken as the "low count" input of the neural network. As the projections are already at
100% counts there is no "high count" reconstruction available for this test set. Just like simulated Derenzo phantom
2, this test set was not inside any of the training sets. Table[4]displays the quantitative results of each reconstruction
for each rod sector. The low count reconstruction has a high CNR per rod sector size. This time around the neural
networks performed much better and were able to improve the reconstruction by quite a bit. PLN Original produced
a reconstruction with 9.8% higher average CNR, PLN Expanded one with 18.1% higher average CNR, PLN Expanded
+ Width Concatenation one with 21.6% higher average CNR and PLN Expanded + Downsampling produced a recon-
struction with 32.8% higher average CNR.

Table 4: The CNR for each reconstruction type for each rod size of simulated Derenzo phantom 3.

Reconstruction 0.30mm | 0.26mm | 0.22mm | 0.19mm | 0.17mm | 0.15mm
Low Count 11.713 6.775 8.167 3.039 1.911 0.735
PLN Original 12.482 9.604 5.834 3.150 2.317 0.841
PLN Expanded 11.968 11.679 6.297 3.593 2.297 0.872
PLN Expanded + Width Concat. 12.071 10.248 6.615 4.033 2.057 1.131
PLN Expanded + Downsampling | 12.958 11.047 7.843 3.878 2.866 1.101

Looking at figure[I7] the reconstructions appear to be quite nice this time. Some of the smaller rod sectors can even
be made out this time. PLN Original is showing the most artifacts out of all four neural network reconstructions.
Visually the other three neural network reconstructions look very similar, so resorting to the average CNR value for
each reconstruction tells us that PLN Expanded + Downsampling has produced the best reconstruction here.

. r, 5 e 5 > 5
-~ ’ . i ~
: ap &£ 4 E£»
. - . » . #
e " .0 :.‘ » .Q :,. > .. :,. > .. :.. » ..
S el - - M - - ML - - s ®" - - ™. - -
. . - - . - . - . -
LB A BTN A B B BTV R B Y
"t L Tt S0 " e "t e _» .t e
" » LR . " L . "
5.019 5.194 5.360 5.430 5.922

Figure 17: The best reconstructions with the highest CNR for each neural network are lined up besides one another to-
gether with the low count reconstruction for comparison. The average CNR value for each reconstruction is displayed
below it.

15

Bachelor’s Thesis TU Delft

4.4 Measured Derenzo Phantom

The measured Derenzo phantom is similar to the simulated Derenzo phantom 1 in that it has rod sector sizes ranging
from 0.17mm to 0.12mm. It is however mirrored and has some imperfections due to the fact that it was measured.
The projections from this test set were not in any of the training sets. Table[5]displays the quantitative results of each
reconstruction for each rod sector. The measured phantom is difficult to improve for all four networks as it seems,
but PLN Expanded + Downsampling seems to be performing the best based on this table. Compared to the low count
reconstruction PLN Original has an average CNR that is 11.2% lower. PLN Expanded has an average CNR that is
3.0% higher. PLN Expanded + Width Concatenation performs a little better at 25.8% higher average CNR. The largest
improvement comes from PLN Expanded + Downsampling. It achieved an 85.3% higher average CNR.

Table 5: The CNR for each reconstruction type for each rod size of the measured Derenzo phantom.

Reconstruction 0.17mm | 0.16mm | 0.15mm | 0.14mm | 0.13mm | 0.12Zmm
Low Count 1.875 1.369 0.563 0.433 0.115 0.373
High Count 2.890 2.814 1.003 1.134 1.033 1.013
PLN Original 2.142 0.853 0.155 0.041 0.245 0.396
PLN Expanded 1.865 1.195 0.302 -0.117 0.345 0.391
PLN Expanded + Width Concat. 2.419 1.439 0.587 0.183 0.310 0.390
PLN Expanded + Downsampling | 2.559 1.598 1.199 0.431 0.513 0.373

The reconstructions in figure[18|too seem to indicate that PLN Expanded + Downsampling produced by far the best
reconstructions out of all four neural networks. Interestingly enough it also appears to have significantly reduced
background activity surrounding the phantom when compared to the other neural networks.

0.4579 0.7219 0.9444

Figure 18: The best reconstructions with the highest CNR for each neural network are lined up besides one another
together with the low and high count reconstruction for comparison. The average CNR value for each reconstruction
is displayed below it.

16

Bachelor’s Thesis TU Delft

4.5 Simulated Uniform Cylinder 1

The expanded training set does contain uniform cylinder projections, and so having some test sets that are of uniform
cylinders seemed interesting. The projections from this test set specifically were not in any of the training sets. This
uniform cylinder phantom was simulated with a length of 1.5mm and 6mm in diameter. The axial and coronal cross
section for each reconstruction have been displayed in figure[I9|together with the corresponding uniformity. All neu-
ral networks seem to decrease the uniformity when compared to the low count reconstruction (recall that lower values
are better). PLN Expanded + Downsampling appears to be the best performing neural network in this case, reaching
a uniformity of 1.929%. Remarkably, PLN Original is quite close behind with 2.147% while PLN Expanded and PLN
Expanded + Width Concatenation only achieve marginal improvement over the low count uniformity of 3.171%. This
result appears to be somewhat in line with what was observed in subsection [4.2} where the neural networks trained
on the expanded training set largely failed to improve on the low count phantom because of the very low count nature
of the projections.

3.171% 0.843% 2.147% 2.821% 2.707% 1.929%

Figure 19: An axial cross section (top) and coronal cross section (bottom) are lined up besides one another together
with the low and high count reconstruction for comparison. The uniformity value for each reconstruction is displayed
below it.

17

Bachelor’s Thesis TU Delft

4.6 Simulated Uniform Cylinder 2

A second uniform cylinder test set was simulated to see how the neural networks would handle more high count pro-
jections of uniform cylinders. Simulated uniform cylinder 2 is identical to simulated uniform cylinder 1, but the high
count projections of simulated uniform cylinder 1 were taken as the "low count” input of the neural network. As the
projections are already at 100% counts there is no "high count" reconstruction available for this test set. The projec-
tions from this test set were not in any of the training sets. The axial and coronal cross section for each reconstruction
have been displayed in figure[20|together with the corresponding uniformity. Looking at the figure it seems the neural
networks have all made the uniformity of the reconstructed phantoms worse. This is visible qualitatively in the axial
and coronal cross sections as well. The neural network reconstructions all seem to be less dense in the centre of the
cylinders compared to the edges. This is an interesting result. The three PLN Expanded networks have all been trained
on uniform cylinder projections, so the fact that these networks seem to lead to uniformities even worse than that of
PLN Original is somewhat against expectations.

0.843% 1.204% 2.294% 2.072% 3.093%

Figure 20: An axial cross section (top) and coronal cross section (bottom) are lined up besides one another together
with the low count reconstruction for comparison. The uniformity value for each reconstruction is displayed below it.

Bachelor’s Thesis TU Delft

4.7 Measured Uniform Cylinder

A measured uniform cylinder test set was also made to see if the results achieved on the simulated uniform cylinders
can be applied to measured uniform cylinder as well. The projections from this test set were not in any of the training
sets. The axial and coronal cross section for each reconstruction have been displayed in figure [21| together with the
corresponding uniformity. Looking at the uniformity values it seems the neural networks were all unable to improve
the projections properly. The uniformities are all much higher than that of the low count. By far the worst neural
network reconstruction is that of PLN Expanded at a uniformity of 8.267%. This uniformity is 5x higher than the low
count uniformity of 1.652%. The likely reason for this massive decrease in quality can be seen visually in the figure. All
neural network reconstructions contain artifacts in the centres of the phantom. These artifacts, areas of lower activity
density, are especially present in the reconstructions of PLN Expanded and PLN Expanded + Width Concatenation.
The other two neural networks, PLN Original and PLN Expanded + Downsampling, also show these artifacts but they
are not quite as obvious, and this is in agreement with their lower uniformity values of 4.688% and 4.031% respectively.
Though even these uniformities are still much worse than the normal low count reconstruction.

1.652% 4.688% 8.267% 6.312% 4.031%

Figure 21: An axial cross section (top) and coronal cross section (bottom) are lined up besides one another together
with the low count reconstruction for comparison. The uniformity value for each reconstruction is displayed below it.

Bachelor’s Thesis TU Delft

5 Discussion

After examining the reconstructions produced for the various phantoms by the neural networks it became clear that
expanding the dataset on which the neural networks are trained on is beneficial to some projections, but not nearly
to all projections. One constraint for the neural networks seems to be the level of activity at which the projections are
made.Very low activity projections like simulated Derenzo phantom 2 and simulated uniform cylinder 1 seem to be
difficult to improve for the networks. Out of all four networks only the PLN Original seemed able to improve simulated
Derenzo phantom 2. One possible explanation for this could be that because of the low activity (and thus low counts)
the neural networks are having difficulties figuring out how to improve these projections. Especially the three neural
networks that were trained on the expanded training set seem to be having issues. This would fit with the proposed
reason for the decrease in quality. The three networks trained on the expanded dataset have seen many more struc-
tures than the PLN Original. This might make it more difficult for those networks to figure out whether the projection
at hand is a Derenzo-like phantom or perhaps a more uniform phantom. Meanwhile the PLN Original was only ever
trained on Derenzo-like phantom projections, and would thus have no reason to improve the projections as if they
were anything else. A future improvement might therefore be to expand the dataset even further with very low count
projections.

This leads to an important point on neural networks. Neural networks like these are always trained to take some
input and transform it into a desired target output. Once training is done and it is time for the network to produce
prediction images with no desired target present, there can be no guarantee that what the neural networks produce
is actually going to be representative of the ground truth. People should therefore always keep this fact in mind when
working with projections and reconstructions produced by neural networks. Just because a neural network can greatly
improve a projection in one particular situation does not mean it will always be able to do this, especially when ap-
plied to situations the network is unfamiliar with.

The PLN Expanded network does not benefit much from the additional training data when it comes to Derenzo-like
phantoms it seems, the CNR only being 0.1-0.2 higher than the PLN Original at best. Training on the projections when
they are width concatenated seems to improve the neural network’s ability to predict Derenzo-like phantoms very
slightly, but again the CNR is only increased by at most 0.3 when compared to the PLN Original. The largest improve-
ment came from the late addition to the study: downsampling. PLN Expanded + Downsampling was surprisingly
effective at improving Derenzo-like phantoms. Its CNR when compared to the PLN Original was consistently much
higher (leaving simulated Derenzo phantom 2 out of the comparison). The largest increase was seen for simulated
Derenzo Phantom 3, which went from a CNR of 5.194 from the PLN Original to a CNR of 5.922 with the downsampling
network. The measured Derenzo phantom too saw a large increase in CNR from the downsampling network. Now
that this neural network seems able to improve Derenzo phantoms reasonably well, it would be interesting to in the
future include scatter in the simulations to see whether the network can be applied effectively there as well.

As the PLN Expanded + Downsampling was a late addition to the study it was not properly explored as well as it
could have. The already trained model from the regular PLN Expanded network was used to create the predictions
in 1024x1024, which were then downsampled back to 512x512. The only tweak as it were was made in the post-
processing of the projections during the prediction process, not in the neural network itself. It is therefore recom-
mended to construct a neural network specifically designed and trained to increase the projection quality from low to
high count and at the same time increase the quality from low to high resolution.

One way this could be done is to create a separate dataset with only the low count projections, but downsized to for
example 96x96. The first few cycles of training could then be focused on for example improving these low count 96x96
projections scaled up to 128x128 towards the target projections, which would be the high count projections scaled
down to 128x128. Once the neural network has been trained sufficiently one could move on to a larger resolution. The
96x96 low count projections are scaled up to 256x256 and trained towards the target, which would then be the 512x512
high count projections scaled down to 256x256. Moving on to the final step, the low count 96x96 projections would
be scaled up to 512x512 and trained towards the target, which would be the high count 512x512 projections as is. This
way the neural network should learn to both increase image quality in the sense of low to high resolution as well as
image quality in the sense of low to high count.

20

Bachelor’s Thesis TU Delft

Another improvement to this could be using PLN Expanded + Width Concatenation as a base rather than the regular
PLN Expanded, as it showed slight improvement in CNR. Finally, the upscaling in this study was performed from
512x512 to 1024x1024. Perhaps it would be interesting to see whether a larger upscaling step would be more or less
beneficial, say 2048x2048. Ideally these recommendations would be combined and applied together. However the
resource requirements for a network that applies both width concatenation and upscales to 1024x1024 or 2048x2048
would be considerable. It is therefore up to future research to find out whether this is feasible or not.

5.1 Anoteonimage formatting

Upon closer examination of the PLN Original code there appeared to be an issue with the way that the projection files
were being loaded in for training. All projection files are grayscale 512x512 images with a 16-bit depth stored in Tiff
format. Ideally you would then like a neural network that loads these Tiff files in that exact way and trains on them as
such, however this was not currently the case. The Tiff files were opened and loaded using default fast.ai functions,
which interpreted the images as 3-channel images of 8-bit depth. The Python module Pillow [33] was initially used to
load the images in as 1-channel images of 16-bit depth. Both the U-Net learner and the Feature loss network needed
manual adjustments as well to allow for an input and output that was not 3-channel but 1-channel. After training and
reconstruction it was concluded that the quality of the reconstruction produced was quite a lot worse than the ones
produced by PLN Original. The projections also seemed to be of lower quality and contained checkerboard artifacts.
It was suggested online by people having similar issues with grayscale training that this may be because the networks
were pretrained on RGB images (ImageNet) and thus are unfit for training on grayscale images, though there is no
clear consensus or definitive explanation for why this happens.

3-channel images with 16-bit depth seemed required for the neural network to produce proper predictions. As Pil-
low does not currently support multi-channel images of 16-bit depth, the Python module Tifffile [34] was installed
and used to properly load in the projections. Custom functions and classes were written and adapted from the fast.ai
library to allow the use of this new module. This however created yet another problem. Fast.ai networks require the
pixel values to be normalised to lie between 0 to 1. For a regular 8-bit image this means that every pixel value is divided
by 255, the highest value possible at 8 bits (2 — 1). Applying this same tactic to a 16-bit system however didn’t seem
to work. Pixel values were divided by 65535 (2'® — 1) and the network was trained. The resulting predicted projections
were unusable. For low count projections with pixel values that stayed under 255 the predicted projections were cov-
ered in checkerboard artifacts and no longer representative of either the low count or high count projections. For low
count projections with pixel values that exceeded 255 the predicted projections blew up, resulting in an image that
was almost uniformly high in pixel values. At this point the format inconsistency was given up on and considered a
limitation of fast.ai. Tiff files are now opened as 1-channel 16-bit depth images, normalised by dividing by 255, and
repeated twice to result in a 3-channel image. As all projections in the training dataset as well as in the test sets stay
well below 255 pixel value this is not a problem for this current study, but should this research be continued in the
future then users should be aware that projections with pixel values above 255 will cause issues with the current code.

21

Bachelor’s Thesis TU Delft

6 Conclusion

The goal of this study was to investigate how to enhance a previously established Perceptual Loss Network such that it
could improve low count SPECT projections to high count SPECT projections more accurately. This was done in part
by expanding the training set on which the neural networks were trained on, and in part by making adjustments to
the neural networks such as switching over to width concatenated projections or supersampling and downsampling
the projections during the prediction process.

Reconstructions have shown that there are limitations to the applicability of neural networks. Particularly, very low
activity projections are difficult for neural networks to improve. The networks may not be able to extrapolate what
kind of structures are meant to be seen in the projections, thus making it very challenging to accurately improve the
SPECT projections. It is therefore recommended to expand the training set even further with different very low count
projections.

Expanding the training set alone showed very slight improvement in reconstruction CNR, but was in no way world-
changing. Applying width concatenation on top of this seemed to improve results a bit more, but it is questionable
whether the increase in resource requirements and computing time is worth the marginal increase in CNR. Applying
supersampling and downsampling proved to be very promising, increasing the CNR from anywhere between 0.35 to
upwards of 0.75 in some cases. It also showed the most potential out of all neural networks examined to improve actual
measured SPECT projections. The uniform phantoms had varying results. Very low count uniform cylinder phantoms
were able to be improved by neural networks, but did not seem to benefit much from training on the expanded train-
ing set. It also seemed that trying to improve higher count uniform cylinder phantoms was difficult for the neural
networks as there seem to be artifacts in the neural network reconstructions that decrease uniformity. Taking the re-
sults for the uniform cylinder phantoms into account as well one would again come to the conclusion that expanding
the training set combined with applying downsampling seems to be the most promising method. Recommendations
to further examine and improve this downsampling technique have been provided. It may be interesting for further
research to combine the individual improvements performed in this study to see whether they may together offer a
better neural network for improving SPECT projections.

22

Bachelor’s Thesis TU Delft

References

(1]

[4]

(6]

91
(10]
(11]

(12]
(13]

(14]

(15]

(16]

(17]

S. B. Lo, S. A. Lou, Jyh-Shyan Lin, M. T. Freedman, M. V. Chien, and S. K. Mun, “Artificial convolution neural
network techniques and applications for lung nodule detection,” IEEE Transactions on Medical Imaging, vol. 14,
no. 4, pp. 711-718, 1995.

M. Khalil, J. Tremoleda, T. Bayomy, and W. Gsell, “Molecular spect imaging: an overview,” International journal
of molecular imaging, vol. 2011, p. 796025, 04 2011.

O. Ivashchenko, E van der Have, J. L. Villena, H. C. Groen, R. M. Ramakers, H. H. Weinans, and E J. Beekman,
“Quarter-millimeter-resolution molecular mouse imaging with u-spect+,” Molecular Imaging, vol. 14, no. 1, p.
7290.2014.00053, 2015, pMID: 25429783. [Online]. Available: https://doi.org/10.2310/7290.2014.00053

S. Ramos, S. Gehrig, P. Pinggera, U. Franke, and C. Rother, “Detecting unexpected obstacles for self-driving cars:
Fusing deep learning and geometric modeling,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 1025-
1032.

G. Iannizzotto, L. L. Bello, A. Nucita, and G. M. Grasso, “A vision and speech enabled, customizable, virtual assis-
tant for smart environments,” in 2018 11th International Conference on Human System Interaction (HSI), 2018,
pp- 50-56.

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-resolution,” in
Computer Vision— ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International
Publishing, 2014, pp. 184-199.

E J. Beekman, E van der Have, B. Vastenhouw, A. J. van der Linden, P. P. van Rijk, J. P. H. Burbach, and M. P. Smidt,
“U-spect-i: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice,” Jour-
nal of Nuclear Medicine, vol. 46, no. 7, pp. 1194-1200, 2005.

E Van Der Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, C. Ji, S. G. Staelens, and E]J.
Beekman, “U-spect-ii: an ultra-high-resolution device for molecular small-animal imaging,” Journal of Nuclear
Medicine, vol. 50, no. 4, pp. 599-605, 2009.

“Spect, pet, ct, & optical imaging,” May 2020. [Online]. Available: https://www.milabs.com/
G. Van Rossum and E L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009.

T. Kluyver, B. Ragan-Kelley, E Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay,
P. Ivanov, D. Avila, S. Abdalla, and C. Willing, “Jupyter notebooks — a publishing format for reproducible compu-
tational workflows,” in Positioning and Power in Academic Publishing: Players, Agents and Agendas, E Loizides
and B. Schmidt, Eds. 10S Press, 2016, pp. 87 —90.

J. Howard et al., “fastai,” https://github.com/fastai/fastai, 2020.

“Paperspace: Cloud machine learning, ai, and effortless gpu rental.” [Online]. Available: https://www.
paperspace.com/

J. Johnson, A. Alahi, and E Li, “Perceptual losses for real-time style transfer and super-resolution,” CoRR, vol.
abs/1603.08155, 2016. [Online]. Available: http://arxiv.org/abs/1603.08155

M. P. Nguyen, M. C. Goorden, C. Kamphuis, and E J. Beekman, “Evaluation of pinhole collimator materials for
micron-resolution ex vivo SPECT,” Physics in Medicine & Biology, vol. 64, no. 10, p. 105017, may 2019. [Online].
Available: https://doi.org/10.1088%2F1361-6560%2Fab1618

E van der Have and E J. Beekman, “Photon penetration and scatter in micro-pinhole imaging: a monte carlo
investigation,” Physics in Medicine and Biology, vol. 49, no. 8, pp. 1369-1386, mar 2004. [Online]. Available:
https://doi.org/10.1088%2F0031-9155%2F49%2F8%2F001

S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardies, P M. Bloomfield,
D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. E Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix,
L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P-E Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole,
M. Krieguer, D. J. van der Laan, E Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, E Mayet,
E Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, E R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein,
L. Simon, T. Y. Song, J.-M. Vieira, D. Visvikis, R. V. de Walle, E. Wieérs, and C. Morel, “GATE: a simulation toolkit
for PET and SPECT,” Physics in Medicine and Biology, vol. 49, no. 19, pp. 4543-4561, sep 2004. [Online]. Available:
https://doi.org/10.1088%2F0031-9155%2F49%2F19%2F007

23

https://doi.org/10.2310/7290.2014.00053
https://www.milabs.com/
https://github.com/fastai/fastai
https://www.paperspace.com/
https://www.paperspace.com/
http://arxiv.org/abs/1603.08155
https://doi.org/10.1088%2F1361-6560%2Fab1618
https://doi.org/10.1088%2F0031-9155%2F49%2F8%2F001
https://doi.org/10.1088%2F0031-9155%2F49%2F19%2F007

Bachelor’s Thesis TU Delft

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

S. Jan, D. Benoit, E. Becheva, T. Carlier, E Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne,
C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D. R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, and
I. Buvat, “GATE v6: a major enhancement of the GATE simulation platform enabling modelling of CT and
radiotherapy,” Physics in Medicine and Biology, vol. 56, no. 4, pp. 881-901, jan 2011. [Online]. Available:
https://doi.org/10.1088%2F0031-9155%2F56%2F4%2F001

C.-L. Chen, Y. Wang, J. J. S. Lee, and B. M. W. Tsui, “Integration of simset photon history generator in gate for
efficient monte carlo simulations of pinhole spect,” Medical Physics, vol. 35, no. 7Partl, pp. 3278-3284, 2008.
[Online]. Available: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.2940159

P E. B. Vaissier, E J. Beekman, and M. C. Goorden, “Similarity-regulation of OS-EM for accelerated SPECT
reconstruction,” Physics in Medicine and Biology, vol. 61, no. 11, pp. 4300-4315, may 2016. [Online]. Available:
https://doi.org/10.1088%2F0031-9155%2F61%2F11%2F4300

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of projection data,” IEEE
Transactions on Medical Imaging, vol. 13, no. 4, pp. 601-609, 1994.

E van der Have, B. Vastenhouw, M. Rentmeester, and E J. Beekman, “System calibration and statistical image
reconstruction for ultra-high resolution stationary pinhole spect,” IEEE Transactions on Medical Imaging, vol. 27,
no. 7, pp. 960-971, 2008.

MATLAB, 9.7.0.1190202 (R2019b). Natick, Massachusetts: The MathWorks Inc., 2018.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in
International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp.
234-241.

A. Dertat, “Applied deep learning - part 4: Convolutional neural networks,” Nov 2017. [Online]. Available: https:
/[towardsdatascience.com/applied-deep-learning- part-4-convolutional-neural-networks-584bc134cle2#8efa

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770-778.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,”
in CVPRO09, 2009.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv
preprint arXiv:1409.1556, 2014.

D. Masters and C. Luschi, “Revisiting small batch training for deep neural networks,” arXiv preprint
arXiv:1804.07612, 2018.

“Training with mixed precision,” Apr 2020. [Online]. Available: https://docs.nvidia.com/deeplearning/
performance/pdf/Training- Mixed- Precision- User- Guide.pdf

D. P Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

M. D. Walker, M. C. Goorden, K. Dinelle, R. M. Ramakers, S. Blinder, M. Shirmohammad, E van der Have, F J.
Beekman, and V. Sossi, “Performance assessment of a preclinical pet scanner with pinhole collimation by com-
parison to a coincidence-based small-animal pet scanner,” Journal of Nuclear Medicine, vol. 55, no. 8, pp. 1368—
1374, 2014.

A. Clark, “Pillow (pil fork) documentation,” 2015. [Online]. Available: https://buildmedia.readthedocs.org/
media/pdf/pillow/latest/pillow.pdf

C. Gohlke, “tifffile.” [Online]. Available: https://pypi.org/project/tiftfile/

24

https://doi.org/10.1088%2F0031-9155%2F56%2F4%2F001
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.2940159
https://doi.org/10.1088%2F0031-9155%2F61%2F11%2F4300
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2#8efa
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2#8efa
https://docs.nvidia.com/deeplearning/performance/pdf/Training-Mixed-Precision-User-Guide.pdf
https://docs.nvidia.com/deeplearning/performance/pdf/Training-Mixed-Precision-User-Guide.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://pypi.org/project/tifffile/

Bachelor’s Thesis TU Delft

Appendix

A Training set
The training set consists of 11.421 projection pairs from five different simulated phantoms and each of which will be
detailed below. All of the training set phantoms were simulated with 9" Tc as radioisotope. The high count projections
were generated by taking a random selection of 200/250th of all detection events during the simulation (what will be
referred to as 100%), while the low count projections were generated at 20/250th of all detection events (what will be
referred to as 10%).

A.1 Derenzo Phantom (6 segments)

This is the part of the training set that PLN Original was trained on. It consists of a Derenzo hot rod phantom with six
segments without background activity. The segments have rod sizes of 0.17mm, 0.16mm, 0.15mm, 0.14mm, 0.13mm
and 0.12mm in diameter and all rods are 1.5mm in length. The centres of the segments are placed at a distance of
0.9mm from the centre axis of the collimator. The activity concentration was set to 4506 MBq/ml during simulation
and simulated for 3 hours. This means the high count (100%) projections effectively have an activity concentration
of 3600 MBq/ml and the low count (10%) projections 360 MBq/ml. The phantom was simulated without background
activity. The set consists of 2358 projection pairs. See figure[22]below.

Phantom Schematic Low Count High Count

Figure 22: A schematic drawing (left), low count projection (middle) and high count projection (right) of the simulated
Derenzo phantom with 6 segments.

A.2 Jaszczak Phantom

A Jaszczak phantom is a type of phantom that does not utilise rods, but instead contains hollow spheres that can
be filled with radiopharmaceuticals. The Jaszczak phantom that was simulated has eight spheres placed on a circle
2.4mm in diameter centred at the central axis of the collimator. The diameter of each sphere was 0.64mm, 0.56mm,
0.48mm, 0.42mm, 0.36mm, 0.30mm, 0.24mm and 0.18mm. The activity concentration was set to 4506 MBq/ml during
simulation and simulated for 3 hours. This means the high count (100%) projections effectively have an activity con-
centration of 3600 MBq/ml and the low count (10%) projections 360 MBq/ml. The phantom was simulated without
background activity. The set consists of 1965 projection pairs. See figure[23|below.

Phantom Schematic Low Count High Count

Figure 23: A schematic drawing (left), low count projection (middle) and high count projection (right) of the simulated
Jaszczak phantom with 8 spheres.

25

Bachelor’s Thesis TU Delft

A.3 Uniform Cylinder Phantom

A uniform cylinder phantom is a type of phantom that just contains one activity volume in the shape of a cylinder.
The phantom that was simulated was a cylinder with diameter of 6mm and a length of 1.5mm centred at the central
axis of the collimator. The activity concentration was set to 96 MBq/ml during simulation and simulated for 3 hours.
This is quite a bit lower than the previous phantoms, but this is compensated for by the large volume of the phantom.
This means the high count (100%) projections effectively have an activity concentration of 77 MBq/ml and the low
count (10%) projections 7.7 MBq/ml. The phantom was simulated without background activity. The set consists of
2586 projection pairs. See figure[24]below.

Phantom Schematic Low Count High Count

Figure 24: A schematic drawing (left), low count projection (middle) and high count projection (right) of the simulated
uniform cylinder phantom.

A.4 Uniform Ellipsoid Phantom + Background

A uniform ellipsoid phantom is a type of phantom similar to the one above, but now the activity volume has the shape
of an ellipsoid. The phantom that was simulated is 4mm wide, 2mm high and 4mm long in the direction of the colli-
mator central axis. The ellipsoid was placed in the centre of the collimator. The activity concentration was set to 243
MBq/ml during simulation and simulated for 3 hours. This means the high count (100%) projections effectively have
an activity concentration of 194 MBq/ml and the low count (10%) projections 19.4 MBq/ml. The phantom was sim-
ulated with background activity. The background activity was simulated by creating a volume around the ellipsoid of
10mm diameter, 11mm length, and filling it with 2 MBq/ml activity concentration. The set consists of 2418 projection
pairs. See figure[25|below.

Phantom Schematic Low Count High Count

Figure 25: A schematic drawing (left), low count projection (middle) and high count projection (right) of the simulated
uniform ellipsoid phantom with background activity.

26

Bachelor’s Thesis TU Delft

A.5 Derenzo Phantom (5 segments) + Background

Another Derenzo hot rod phantom was also simulated, this time with 5 segments and with background activity. The
segments have rod sizes of 0.28mm, 0.24mm, 0.20mm, 0.18mm and 0.16mm in diameter and all rods are 1.5mm in
length. The centres of the segments are placed at a distance of 1.2mm from the centre axis of the collimator. The ac-
tivity concentration was set to 2463 MBq/ml during simulation and simulated for 3 hours. This means the high count
(100%) projections effectively have an activity concentration of 1970 MBq/ml and the low count (10%) projections
197 MBq/ml. The phantom was simulated with background activity. The background activity was simulated by cre-
ating a volume around the Derenzo phantom of 10mm diameter, 11mm length, and filling it with 5 MBq/ml activity
concentration. The set consists of 2094 projection pairs. See figure[26]below.

Phantom Schematic Low Count High Count

Figure 26: A schematic drawing (left), low count projection (middle) and high count projection (right) of the simulated
Derenzo phantom with 5 segments and background activity.

27

Bachelor’s Thesis TU Delft

B Testsets
In order to measure the performance of the neural networks several test sets were used. These test sets are both
simulated as well as measured and all of the test set phantoms were simulated or measured with 9 Tc as radioisotope.

B.1 Simulated Derenzo Phantom 1

Simulated Derenzo phantom 1 is identical to the projections in subsection[A.I]and serves as a control test to see how
well the neural networks can improve low count projections that is was directly trained on. The activity concentration
of the high count (100%) projections is 3600 MBq/ml and that of the low count (10%) projections is 360 MBq/ml. The
phantom was simulated for 3 hours. The set consists of 27 (=39 bed positions) projections. See figure[27]below.

Phantom Schematic Low Count High Count

Figure 27: A schematic drawing (left), low count projection (middle) and high count projection (right) of simulated
test Derenzo phantom 1.

B.2 Simulated Derenzo Phantom 2

Simulated Derenzo phantom 2 was chosen as a test to see whether the neural networks are able to improve very
low activity Derenzo phantom projections that are not directly in the training set. It consists of a Derenzo hot rod
phantom with six segments without background activity and was simulated for 3 hours. The segments have rod sizes
of 0.30mm, 0.26mm, 0.22mm, 0.19mm, 0.17mm and 0.15mm in diameter and all rods are 1.5mm in length. The
activity concentration of the high count (100%) projections is 212 MBq/ml and that of the low count (10%) projections
is 21.2 MBq/ml. The phantom was simulated for 3 hours. The set consists of 27 (=3 - 9 bed positions) projections. See

figure[28|below.

Phantom Schematic Low Count High Count

L] °
[] []
o_o e_o
..:. 0:..
[]] .
.. .
®_©
e_o [] []
e _©°
.. o . .
° o ©
o _o ©o o
L4 (]
LA

Figure 28: A schematic drawing (left), low count projection (middle) and high count projection (right) of simulated
test Derenzo phantom 2.

28

Bachelor’s Thesis TU Delft

B.3 Simulated Derenzo Phantom 3

Simulated Derenzo phantom 3 is identical to Simulated Derenzo phantom 2. This time however it is the high count
projections that are to be improved instead of the low count projections. That is to say the low count projections of
simulated Derenzo phantom 3 are the high count projections of simulated Derenzo phantom 2. This also means that
there will be no high count projections for this test set to compare against. The activity concentration of the low count
is thus 212 MBq/ml. The phantom was simulated for 3 hours. The set consists of 27 (=3 - 9 bed positions) projections.
See figure[29] below.

Phantom Schematic Low Count

Figure 29: A schematic drawing (left) and low count projection (right) of simulated test Derenzo phantom 3.

B.4 Measured Derenzo Phantom

The measured Derenzo phantom was added as a test set to see whether the neural networks can improve SPECT
projections that are physically measured as opposed to simulated. This was considered an interesting test since real
phantoms are often a bit messy. The radiopharmaceutical fluid is often difficult to clean off of areas where there is
supposed to be none, so there is usually some residual fluid left on the edges of the phantom also emitting radiation
that is picked up by the detector plates. Additionally, the effects of scatter are also included in these projections
because this phantom was physically measured. It consists of a Derenzo hot rod phantom with six segments. The
segments have rod sizes of 0.17mm, 0.16mm, 0.15mm, 0.14mm, 0.13mm and 0.12mm in diameter and all rods are
1.5mm in length. The activity concentration of the high count (100%) projections is 4510 MBq/ml and that of the low
count (10%) projections is 451 MBq/ml. The phantom was measured for 3 hours. The set consists of 27 (=3-9 bed
positions) projections. See figure 30]below.

Phantom Schematic Low Count High Count

Figure 30: A schematic drawing (left), low count projection (middle) and high count projection (right) of the measured
test Derenzo phantom.

29

Bachelor’s Thesis TU Delft

B.5 Simulated Uniform Cylinder 1

A simulated uniform phantom was added as a test set specifically to see whether the neural networks had benefited
from training on additional types of phantoms when trying to improve non-Derenzo phantoms. No details were spec-
ified for this phantom (such as activity concentration or simulation time). Its only purpose is to see whether the neural
networks can improve the projections. The phantom was simulated without background activity. The set consists of
135 (=345 bed positions) projections. See figure[31]below.

Phantom Schematic Low Count High Count

Figure 31: A schematic drawing (left), low count projection (middle) and high count projection (right) of simulated
uniform cylinder phantom 1.

B.6 Simulated Uniform Cylinder 2

Simulated uniform phantom 2 is identical to simulated Derenzo phantom 1. This time however it is the high count
projections that are to be improved instead of the low count projections. That is to say the low count projections of
simulated uniform phantom 2 are the high count projections of simulated uniform phantom 1. This also means that
there will be no high count projections for this test set to compare against. Once again no details were specified for
this phantom (such as activity concentration or simulation time). The phantom was simulated without background
activity. The set consists of 135 (=3 - 45 bed positions) projections. See figure[32below.

Phantom Schematic Low Count

Figure 32: A schematic drawing (left) and low count projection (right) of simulated uniform cylinder phantom 2.

30

Bachelor’s Thesis TU Delft

B.7 Measured Uniform Cylinder

As the simulated uniform phantom was quite low activity a measured uniform cylinder phantom was also added to the
dataset with a higher activity. The measured phantom was a cylinder with diameter of 8.5mm and a length of 9.5mm
centred at the central axis of the collimator. The high count projections were unfortunately unavailable, so high count
reconstructions are left out of the results as well. The activity concentration of the high count (100%) projections is
38.6 MBq/ml and that of the low count (10%) projections is 3.86 MBq/ml. The phantom was measured for 3 hours.
The set consists of 384 (=3 - 128 bed positions) projections. See figure[33|below.

Phantom Schematic Low Count

Figure 33: A schematic drawing (left) and low count projection (right) of the measured uniform cylinder phantom.

31

Bachelor’s Thesis TU Delft

C Jupyter Notebook of PLN Expanded

Initialisation

%matplotlib inline

from fastai.basics import *

from fastai.vision import *

import fastai

from fastai.callbacks import *

from fastai.vision.gan import *

from fastai.vision.learner import cnn_config
import torch.nn as nn

import random

import os

import torchvision

from torchvision.models import vggl9_bn
import tifffile

Establish paths

pathroot = Path('D:/BEP/proj_20_200"')
path = pathroot/'data’

path_tests = pathroot/'tests'

path_models = pathroot/'models'
path_predictions = pathroot/'predictions'

Clean the training dataset
Any projections that do mot form a low-high pair will be removed from the dataset
data_paths = os.listdir(path/'high_count')
for data_path in data_paths:
high_images = get_image_files(path/'high_count'/data_path)
low_images = get_image_files(path/'low_count'/data_path)

high_str = [0]*len(high_images)
for i in range(0,len(high_images)):

high_str[i] = os.path.basename(high_images[i]);
low_str = [0]*len(low_images)
for i in range(0,len(low_images)):

low_str[i] = os.path.basename(low_images[i]);
common_str = [x for x in low_str if x in high_str]

for i in range(0,len(high_images)):
if os.path.basename(high_images[i]) not in common_str:
os.remove (high_images[il])
for i in range(0,len(low_images)):
if os.path.basename(low_images[i]) not in common_str:
os.remove(low_images[i])

high_images = get_image_files(path/'high_count'/data_path)
low_images = get_image_files(path/'low_count'/data_path)

print('Length of high count projections in ' + data_path + ' is:', len(high_images))

print('Length of low count projections in ' + data_path + ' is:', len(low_images))

Create custom classes for Tiff handling

Creates a custom open function based on the open_timage() function provided by fast.at.

Allows for proper loading in of the 16-bit 5122512 grayscale tiff images.
Returns an Image object created from the image at fn.

def open_tiff_image(fn:PathOrStr, div:bool=True, cls:type=Image, after_open:Callable=None)->Image:

x = tifffile.imread(str(fn), key=0)
if after_open: x = after_open(x)

x = pil2tensor(x,np.float32)

if div: x.div_(255)

x = np.repeat(x, 3, axis=0)

return cls(x)

32

Bachelor’s Thesis TU Delft

Creates a custom TiffImagelist class based on the Imagelist class provided by fast.at.
This s identical to Imagelist apart from the open() function,
which now uses the open_tiff_image() function defined above.

image_extensions = set(k for k,v in mimetypes.types_map.items() if v.startswith('image/'))
class TiffImagelList(ItemList):

_bunch,_square_show,_square_show_res = ImageDataBunch,True,True
def __init__(self, *args, convert_mode='RGB', after_open:Callable=None, **kwargs):
super () .__init__(*args, **kwargs)
self.convert_mode,self.after_open = convert_mode,after_open
self.copy_new += ['convert_mode', 'after_open']
self.c,self.sizes = 3,{}

def open(self, fn):
return open_tiff_image(fn, after_open=self.after_open)

def get(self, i):
fn = super().get (i)
res = self.open(fn)
self.sizes[i] = res.size
return res

Qclassmethod

def from_folder(cls, path:PathOrStr='.', extensions:Collection[str]=None, **kwargs)->ItemList:
extensions = ifnone(extensions, image_extensions)
return super().from_folder(path=path, extensions=extensions, **kwargs)

Qclassmethod
def from_df(cls, df:DataFrame, path:PathOrStr, cols:IntsOrStrs=0, folder:PathOrStr=None,
suffix:str=""', *xkwargs)->'ItemList':
suffix = suffix or "'
res = super().from_df (df, path=path, cols=cols, **kwargs)
pref = f'{res.path}{os.path.sep}'
if folder is not None: pref += f'{folder}{os.path.sep}'
res.items = np.char.add(np.char.add(pref, res.items.astype(str)), suffix)
return res

Qclassmethod
def from_csv(cls, path:PathOrStr, csv_name:str, header:str='infer', delimiter:str=None,
*xxkwargs) ->'ItemList':
path = Path(path)
df = pd.read_csv(path/csv_name, header=header, delimiter=delimiter)
return cls.from_df(df, path=path, **kwargs)

def reconstruct(self, t:Tensor): return Image(t.float().clamp(min=0,max=1))

def show_xys(self, xs, ys, imgsize:int=4, figsize:Optional[Tuple[int,int]]=None, **kwargs):
rows = int(np.ceil(math.sqrt(len(xs))))
axs = subplots(rows, rows, imgsize=imgsize, figsize=figsize)
for x,y,ax in zip(xs, ys, axs.flatten()): x.show(ax=ax, y=y, **kwargs)
for ax in axs.flatten() [len(xs):]: ax.axis('off')
plt.tight_layout ()

def show_xyzs(self, xs, ys, zs, imgsize:int=4, figsize:Optional[Tuplel[int,int]]=None, *xkwargs):
if self._square_show_res:
title = 'Ground truth\nPredictions'
rows = int(np.ceil(math.sqrt(len(xs))))
axs = subplots(rows, rows, imgsize=imgsize, figsize=figsize, title=title, weight='bold', size=12)
for x,y,z,ax in zip(xs,ys,zs,axs.flatten()): x.show(ax=ax, title=f'{str(y)}\n{str(z)}', **kwargs)
for ax in axs.flatten() [len(xs):]: ax.axis('off')
else:
title = 'Ground truth/Predictions'
axs = subplots(len(xs), 2, imgsize=imgsize, figsize=figsize, title=title, weight='bold', size=14)
for i,(x,y,z) in enumerate(zip(xs,ys,zs)):
x.show(ax=axs[i,0], y=y, **kwargs)
x.show(ax=axs[i,1], y=z, **kwargs)

33

Bachelor’s Thesis TU Delft

Creates a custom TiffImageImagelist class based on the ImagelmagelList class provided by fast.ai.
This is tdentical to Imagelmagelist, but <t now depends on TiffImagelist instead of Imagelist.
class TiffImageImageList(TiffImagelList):

_label_cls,_square_show,_square_show_res = TiffImageList,False,False

def show_xys(self, xs, ys, imgsize:int=4, figsize:Optional[Tuplel[int,int]]=None, **kwargs):
axs = subplots(len(xs), 2, imgsize=imgsize, figsize=figsize)
for i, (x,y) in enumerate(zip(xs,ys)):
x.show(ax=axs[i,0], **kwargs)
y.show(ax=axs[i,1], **kwargs)
plt.tight_layout()

def show_xyzs(self, xs, ys, zs, imgsize:int=4, figsize:0Optional[Tuplel[int,int]]=None, **kwargs):
title = 'Input / Prediction / Target'
axs = subplots(len(xs), 3, imgsize=imgsize, figsize=figsize, title=title, weight='bold', size=14)
for i,(x,y,z) in enumerate(zip(xs,ys,zs)):
x.show(ax=axs[i,0], **kwargs)
y.show(ax=axs[i,2], **kwargs)
z.show(ax=axs[i,1], **kwargs)

Create the Databunch

Initialises the batch size, image size, U-Net encoder (arch) and the dataset

Image size is decreased to 256z256 at first to allow the learner tot learn general/larger structures
bs,size=8,512

bs,size=bs*2,size//2

arch = models.resnet34

src = TiffImageImageList.from_folder(path/'low_count', convert_mode='I;16').split_by_rand_pct(0.1, seed=42)

Initialises functions necessary to create the databunch properly.
The correct_path() function is dependent on the user's individual setup.
def correct_path(path_in):

y = str(path_in).split('\\")

y[4] = 'high_count'

y = '"\\'.join(y)

return Path(y)

def get_data(bs,size):
data = (src.label_from_func(lambda x: correct_path(x), convert_mode='I;16")
.transform(get_transforms(max_zoom=2.,max_rotate=15), size=size, tfm_y=True)
.databunch(bs=bs, num_workers=0))
data.c = 3
return data

Creates the databunch with the desired batch size and image size
data = get_data(bs,size)

34

Bachelor’s Thesis TU Delft

Set up Feature Loss

def gram_matrix(x):
n,c,h,w = x.size()
x = x.view(n, c, -1)
return (x @ x.transpose(1,2))/(cxh*w)

loss_m = vggl9_bn(True).features.cuda().eval()

requires_grad(loss_m, False)

blocks = [i-1 for i,o in enumerate(children(loss_m)) if isinstance(o,nn.MaxPool2d)]
base_loss = F.1l1_loss

class FeatureLoss(nn.Module):
def __init__(self, m_feat, layer_ids, layer_wgts):
super () .__init__()
self.m_feat = m_feat
self.loss_features = [self.m_feat[i] for i in layer_ids]
self .hooks = hook_outputs(self.loss_features, detach=False)
self .wgts = layer_wgts
self .metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
] + [f'gram_{i}' for i in range(len(layer_ids))]

def make_features(self, x, clone=False):
self.m_feat (x)
return [(o.clone() if clone else o) for o in self.hooks.stored]

def forward(self, input, target):

out_feat = self.make_features(target, clone=True)

in_feat = self.make_features(input)

self.feat_losses = [base_loss(input,target)]

self.feat_losses += [base_loss(f_in, f_out)*w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]

self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]

self .metrics = dict(zip(self.metric_names, self.feat_losses))

return sum(self.feat_losses)

def __del__(self): self.hooks.remove()

feat_loss = FeatureLoss(loss_m, blocks[2:5], [5,15,2]).cuda()

Train the network

Initialise the U-Net learner, set learner to use half precision and send learner to the GPU.

wd = le-3

learn = unet_learner(data, arch, wd=wd, loss_func=feat_loss, callback_fns=LossMetrics,
blur=True, self_attention=True, norm_type=NormType.Weight)

learn.to_fp16();

learn.model.cuda();

Prints a summary of the learner
learn.summary ()

Plots the loss as a function of the learn rate
learn.lr_£find()
learn.recorder.plot ()

Define do_fit() function used to train the learner

1r = le-4

def do_fit(save_name, no_of_cycles, lrs=slice(lr), pct_start=0.9):
learn.fit_one_cycle(no_of_cycles, lrs, pct_start=pct_start)
learn.save(save_name)
learn.show_results(rows=1, imgsize=5)

do_fit('PLN_Expanded_la', 10, slice(lrx*10))

learn.unfreeze()
do_fit('PLN_Expanded_1b', 10, slice(le-5,1r))

35

Bachelor’s Thesis TU Delft

Increase image size to 512x512, decrease batch size to keep GPU memory usage doun
data = get_data(bs//2,size*2)

learn.data = data;

learn.to_fp16();

learn.freeze();

do_fit('PLN_Expanded_2a', 10)

learn.unfreeze()
do_fit('PLN_Expanded_2b', 10, slice(le-6,1e-4), pct_start=0.3)

do_fit('PLN_Expanded_2c', 10, slice(le-6,1le-4), pct_start=0.3)

Perform predictions on test sets

Load trained model to produce predictions
learn.load(path_models/'PLN_Expanded_2c');
learn.data = data;

learn.to_£fp32Q);

Create folder to store predictions

name_gen = 'PLN_Expanded_test_same_phantom_prediction'
path_gen = path_predictions/name_gen

path_gen.mkdir (exist_ok=True)

Define function to produce predictions
Uses spectial save function that saves predictions as 16-bit 512z512 grayscale images.
def save_preds(dl):
def uint16_save(self, fn:PathOrStr):
x = image2np(self.data*255).astype(np.uinti6)
tifffile.imsave(fn, x)

i=0
names = dl.dataset.items
for b in dl:

preds = learn.pred_batch(batch=b, reconstruct=True)
for o in preds:

uint16_save(o, path_gen/names[i].name)

i+=1

Define function to produce predictions
Uses special save function that saves predictions as 16-bit 512z512 grayscale images.
def save_preds(dl):
def uint16_save(self, fn:PathOrStr):
x = image2np(self.data*255) .astype(np.uinti6)
tifffile.imsave(fn, x)

i=0
names = dl.dataset.items
for b in dl:

preds = learn.pred_batch(batch=b, reconstruct=True)
for o in preds:

uint16_save(o, path_gen/names[i].name)

i+=1

Load in test projections, create databunch and produce predictions

src_test = TiffImageImageList.from_folder(path_tests/'test_same_phantom', convert_mode='I;16').split_none()

data_test = src_test.label_from_func(lambda x: path_tests/'test_same_phantom'/x.name, convert_mode='I;16"')
.databunch(bs=bs, num_workers=0)

save_preds(data_test.fix_dl)

36

	Abstract
	Introduction
	Theory
	SPECT System
	Imaging & Reconstruction
	Neural Network

	Methods
	PLN Expanded
	PLN Expanded + Concatenation
	Width Concatenation
	Channel Concatenation

	PLN Expanded + Downsampling
	Evaluation

	Results
	Simulated Derenzo Phantom 1
	Simulated Derenzo Phantom 2
	Simulated Derenzo Phantom 3
	Measured Derenzo Phantom
	Simulated Uniform Cylinder 1
	Simulated Uniform Cylinder 2
	Measured Uniform Cylinder

	Discussion
	A note on image formatting

	Conclusion
	References
	Appendix
	Training set
	Derenzo Phantom (6 segments)
	Jaszczak Phantom
	Uniform Cylinder Phantom
	Uniform Ellipsoid Phantom + Background
	Derenzo Phantom (5 segments) + Background

	Test sets
	Simulated Derenzo Phantom 1
	Simulated Derenzo Phantom 2
	Simulated Derenzo Phantom 3
	Measured Derenzo Phantom
	Simulated Uniform Cylinder 1
	Simulated Uniform Cylinder 2
	Measured Uniform Cylinder

	Jupyter Notebook of PLN Expanded

