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A B S T R A C T

Turbulent flows past rough surfaces can create substantial energy losses in engineering equipment. During the
last decades, developing accurate correlations to predict the thermal and hydrodynamic behavior of rough
surfaces has proven to be a difficult challenge. In this work, we investigate the applicability of convolutional
neural networks to perform a direct image-to-image translation between the height map of a rough surface and
its detailed local skin friction factors and Nusselt numbers. Additionally, we propose the usage of separable
convolutional modules to reduce the total number of trainable parameters, and PReLU activation functions to
increase the expressivity of the neural networks created. Our final predictions are improved by a new filtering
methodology, which is able to combine the results of multiple neural networks while discarding non-physical
oscillations likely caused by over-fitting. The main study is based on a new DNS database formed by 80 flow
cases at a friction Reynolds number of 𝑅𝑒𝜏 = 180 obtained by applying random shifts to the Fourier spectrum of
the grit-blasted surface originally scanned by Busse et al. (2015). The results show that machine learning can
accurately predict the skin friction values and Nusselt numbers for a rough surface. A detailed comparison with
existing correlations in the literature revealed that the maximum errors generated by deep learning were only
8.1% for the global skin friction factors 𝐶𝑓 and 2.9% for the Nusselt numbers 𝑁𝑢, whereas the best classical
correlations identified reached errors of 24.9% and 13.5% for 𝐶𝑓 and 𝑁𝑢 respectively. The deep learning
results also proved stable with respect to rough surfaces with abrupt changes in their roughness elements, and
only presented a minor sensitivity with respect to variations in the dataset size.
. Introduction

Turbulent flows past rough surfaces can be found in a large va-
iety of engineering applications. Irregular surfaces are often caused
y external processes, such as bio-fouling, abrasion, machining, or
orrosion. In most engineering applications, the presence of rough
urfaces can substantially increase the drag resistance of transportation
ystems, and lower the efficiency of thermodynamic cycles. Despite
hese drawbacks, some rough surfaces under specific flow conditions
an yield positive contributions. For example, certain rough surfaces
an enhance heat transfer significantly, while having only a relatively
mall increase in pressure losses (Dipprey and Sabersky, 1963; Nilpueng
nd Wongwises, 2015; Ventola et al., 2014). Other surfaces were
hown to reduce the total drag resistance of a turbulent flow (Golovin
t al., 2016; Gong et al., 2021). One of the main challenges while
orking with rough surfaces is to predict the impact of a given sur-

ace topography on the drag resistance and heat transfer rates. Most
orrelations available in the literature predict the global skin friction
actor 𝐶𝑓 or the Stanton number 𝑆𝑡 of a rough surface based on

∗ Corresponding author.
E-mail address: R.G.DiezSanhueza-1@tudelft.nl (R.D. Sanhueza).

standard surface metrics, such as the root-mean-squared height vari-
ations, skewness, kurtosis, effective slope, forward-facing angles, or
different auto-correlation functions (Napoli et al., 2008; Schultz and
Flack, 2009; Thakkar et al., 2017; Jouybari et al., 2021). In this work,
the operator (...) refers to the average across the whole surface. While
traditional surface metrics offer a simplified framework to describe
the geometry of rough surfaces, it has been shown in the literature
that obtaining accurate predictions for the drag resistance of a generic
rough surface remains an open challenge (Flack, 2018; Chung et al.,
2021). The correlations found in the literature tend to be valid only
for specific datasets, and the trends observed cannot be extrapolated to
rough surfaces with widely varying characteristics. Moreover, several
surface metrics, such as the skewness or the kurtosis, present mixed
results across different studies (Flack and Schultz, 2010; Jouybari et al.,
2021; De Marchis et al., 2019). As a result, a small group of surface
features that produces a universal collapse of all known measurements
for 𝐶𝑓 or 𝑆𝑡 with a low degree of dispersion has not been identified.
One important reason behind the previous difficulties is that both
vailable online 7 August 2023
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Fig. 1. Example of two rough surfaces with identical roughness elements and averaged
local quantities, such as their skewness or their kurtosis, but different hydrodynamic
behavior (Forooghi et al., 2018).

the unique shape of roughness elements and their spatial organization
affect turbulent flow fields differently (De Marchis et al., 2019; Yuan
and Piomelli, 2014; Forooghi et al., 2018). The previous factors cannot
be accounted for using traditional surface metrics, such as the skewness
or the kurtosis, since these metrics do not encode information regarding
the spatial organization of the roughness elements. An example of this
issue can be found in Fig. 1, where two irregular surfaces with identical
roughness elements located at different positions are presented; both
rough surfaces will have identical skewness or effective slope, but they
will have a substantially different hydrodynamic behavior due to the
alignment of the roughness elements (Forooghi et al., 2018).

Machine learning (ML) may provide a robust alternative to tra-
ditional modeling for the hydrodynamic behavior of rough surfaces.
Machine learning for fluid mechanics has already proven useful in
other applications, such as correcting existing RANS turbulence mod-
els (Parish and Duraisamy, 2016) or predicting the Reynolds stress
tensor (Sandberg and Zhao, 2022; Ling et al., 2016; Weatheritt and
Sandberg, 2016). In the context of rough surface modeling, Jouybari
et al. (2021) investigated the possibility to utilizing neural networks
and Gaussian process regression to predict the equivalent Nikuradse
sand-grain height 𝑘𝑠 of rough surfaces based on traditional surfaces

etrics. The parameter 𝑘𝑠 corresponds to a length-scale that describes
he hydrodynamic behavior of rough surfaces, and it can be used in
ombination with other correlations to predict the skin friction factor of
pipeline or channel flow (Moody, 1944; Nikuradse, 1933). However,

orrelations based on 𝑘𝑠 can only predict the global behavior of a rough
urface (𝐶𝑓 or 𝑁𝑢), and thus they do not provide information regarding

the local behavior of turbulence.
In this work, we investigate the applicability of machine learning

systems based on convolutional neural networks to predict the local be-
havior of turbulent flows past irregular surfaces. These systems present
several advantages over traditional correlations, such as being able to
process the input height map H(x,z) of a rough surface directly, and
to perform predictions without requiring traditional surface metrics.
Deep learning systems can perform predictions taking into account both
the detailed shape of every roughness element, as well as their spatial
distribution. Furthermore, deep learning systems can be modified to not
only predict global quantities, such as 𝐶𝑓 or 𝑆𝑡, but also distributed lo-
cal quantities. Additionally, ML systems can perform direct predictions
for the thermal behavior of rough surfaces, without requiring previous
estimations for 𝐶𝑓 that could lead to additional uncertainty.

This paper is organized as follows. In Section 2, the details of the
DNS database are presented, including the methodology used to gener-
ate rough surfaces, the formulation of the CFD solver and all relevant
physical parameters. Section 2.5 describes the numerical routine used
to interpolate the wall forces and heat fluxes generated by a DNS solver
using staggered grids and the immersed boundary method in CFD.
In Section 3, the details of the machine learning systems developed
are presented, as well as techniques used to improve the baseline
architecture identified. In Section 4, the final results of the machine
learning study are described, together with a comparison between the
current results and traditional correlations found in the literature. In
Section 5, the conclusions of the study are presented, along with future
recommendations.
2

2. DNS database

2.1. Methodology for the DNS simulations

The methodology used to simulate turbulent flows past rough sur-
faces is based on the DNS framework described by Peeters and Sandham
(2019). This formulation starts by considering a simple planar channel
flow geometry to study the hydrodynamic behavior of rough surfaces.
A schematic representation of the planar channel geometry with rough
walls is shown in Fig. 2. Here, the (𝑥, 𝑦, 𝑧) coordinates correspond to
he streamwise, wall-normal and spanwise directions respectively. Only
ne half of the computational domain is presented, since the upper
ection of the channel corresponds to a reflection of the bottom part
ith respect to the symmetry plane located at the channel half-height
= 𝛿. The height function 𝐻(𝑥, 𝑧) shown in Fig. 2 is defined such

hat ∫𝑥,𝑧 𝐻(𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 = 0 across the entire domain. Periodic boundary
onditions are considered in the 𝑥 − 𝑧 directions in order to close the
omputational domain. The incompressible Navier–Stokes equations
nd the energy equation for fluids are solved in dimensionless form,

⋅ 𝐮 = 0, (1)

𝑡𝐮 + 𝐮 ⋅ ∇𝐮 = −∇𝑝 + 𝑅𝑒−1𝜏 ∇2𝐮 + 𝑆𝑓 , (2)

𝑡𝑇 + 𝐮 ⋅ ∇𝑇 = 𝑃𝑒−1𝜏 ∇2𝑇 + 𝑆𝑞 . (3)

n Eqs. (1)–(3), the variables 𝐮, 𝑝, 𝑇 correspond to the dimensionless
elocity, the pressure and the temperature fields respectively. The
arameter 𝑅𝑒𝜏 = 𝑢𝜏𝛿∕𝜈 found in the momentum equations is the
riction Reynolds number, which is defined using the average friction
elocity 𝑢𝜏 at the rough walls, the channel half-height 𝛿 and the
inematic viscosity 𝜈. The scaling factor 𝑃𝑒𝜏 = 𝑅𝑒𝜏𝑃𝑟 corresponds to
he friction Peclet number, where 𝑃𝑟 is the molecular Prandtl number.
he parameter 𝑆𝑓 found in Eq. (2) is a constant pressure-gradient term
o force fluid motion, whereas 𝑆𝑞 in Eq. (3) is a constant volumetric
eat source term to induce thermal gradients in the fluids. The usage
f constant source terms in turbulent channel flows, such as 𝑆𝑓 or 𝑆𝑞 ,
as been extensively validated during the last decades (Peeters and
andham, 2019; Busse et al., 2015; Thakkar et al., 2017; Orlandi and
eonardi, 2006; Kim et al., 1987). In order to account for the presence
f rough surfaces 𝐻(𝑥, 𝑧) inside the computational domain, the DNS
olver uses an implementation of the immersed boundary method based
n the direct-forcing approach proposed by Fadlun et al. (2000). In
he first grid point inside the fluid domain, the velocity 𝐮 and the
emperature 𝑇 are enforced by quadratic interpolation in the wall-
ormal direction. A detailed validation of this numerical method can
e found in Peeters and Sandham (2019). While the DNS simulations
re solved using dimensionless variables, it is important to note that
he velocity and temperature fields are originally scaled by the friction
elocity 𝑢𝜏 =

√

𝜏𝑤∕𝜌 and the friction temperature 𝑇𝜏 = 𝑞𝑤∕(𝜌𝑐𝑝𝑢𝜏 ).
Here, the properties 𝜌 and 𝑐𝑝 refer to the fluid density and the specific
heat capacity respectively, while the variables 𝜏𝑤 and 𝑞𝑤 are the
equivalent shear stresses and heat fluxes with respect to a smooth wall
configuration.

During all DNS simulations, it is assumed that the reference vari-
ables 𝑃𝑟, 𝑆𝑓 and 𝑆𝑞 are equal to unity. Due to global momentum
and energy conservation, this further implies that the equivalent shear
stresses 𝜏𝑤 and heat fluxes 𝑞𝑤 also have unitary values: 𝜏𝑤 = 𝑞𝑤 = 1.
Therefore, the present DNS simulations have well-defined momentum
and energy balances. The goals of the DNS simulations are to quan-
tify the variations in the bulk flow properties of turbulent flows, the
changes in their boundary layer parameters, and the distribution of
their local skin friction factors 𝐶 (𝑥, 𝑧) and Nusselt numbers 𝑁𝑢(𝑥, 𝑧)
𝑓
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Fig. 2. Schematic representation of the planar channel flow geometry considered for
the DNS simulations. The variable 𝐻(𝑥, 𝑧) corresponds to the height function of the
ough surfaces, which is defined based on the average plane at 𝑦 = 0. The parameter
𝛿 is the half-channel height: 𝛿 = 𝐿𝑦∕2.

cross the rough surfaces. The formulas used to compute the values of
𝑓 (𝑥, 𝑧) and 𝑁𝑢(𝑥, 𝑧) in Table 1 are the following,

𝑓 (𝑥, 𝑧) =
𝑓𝑥(𝑥, 𝑧)
1
2 𝜌𝑈2

𝑏

, (4)

𝑁𝑢(𝑥, 𝑧) =
𝑞(𝑥, 𝑧)

𝜆 (𝑇𝑏 − 𝑇𝑤)∕𝐿𝑦
. (5)

In Eqs. (4)–(5), the variables 𝑈𝑏 and 𝑇𝑏 correspond to the bulk velocity
of the fluid and its bulk temperature respectively. The bulk Reynolds
number is defined as 𝑅𝑒𝑏 = 𝑈𝑏𝐿𝑦∕𝜈, where 𝐿𝑦 corresponds to the
channel size and 𝜈 = 1∕𝑅𝑒𝜏 is the kinematic viscosity considered for
all DNS simulations. The parameters 𝜆 = 1∕(𝑅𝑒𝜏 𝑃𝑟) and 𝑇𝑤 = 0 are
the thermal conductivity for each fluid and the Dirichlet temperature
boundary condition imposed at the rough walls respectively. The vari-
ables 𝑓𝑥(𝑥, 𝑧) and 𝑞(𝑥, 𝑧) are the local forces and heat fluxes per unit of
area distributed across the rough surfaces.

As a reference, the local Stanton numbers 𝑆𝑡(𝑥, 𝑦) distributed across
the rough surfaces are defined as,

𝑆𝑡(𝑥, 𝑧) =
𝑁𝑢(𝑥, 𝑧)
𝑅𝑒𝑏 𝑃𝑟

. (6)

In principle, it is possible to reconstruct the thermal behavior of turbu-
lent flows past rough surfaces by considering either the local Nusselt
numbers 𝑁𝑢(𝑥, 𝑧) or Stanton numbers 𝑆𝑡(𝑥, 𝑧). However, deep learning
systems designed to reconstruct the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧)
can predict the bulk temperature of a fluid 𝑇𝑏 directly if the average
heat flux 𝑞 acting over the boundaries is known. This marks a large
ontrast with respect to deep learning systems designed to predict
he local Stanton numbers 𝑆𝑡(𝑥, 𝑧), since these systems require explicit

information regarding the bulk velocity of a fluid 𝑈𝑏 before predicting
its bulk temperature 𝑇𝑏. Therefore, predictions for 𝑇𝑏 can only be
obtained after coupling deep learning systems trained to reconstruct the
local Stanton numbers 𝑆𝑡(𝑥, 𝑧) with an additional ML system to estimate
𝑈𝑏, which increases the uncertainty of the final predictions. Due to the
previous reason, the current study focuses on predicting the local skin
friction factors 𝐶𝑓 (𝑥, 𝑧) and Nusselt numbers 𝑁𝑢(𝑥, 𝑧) for all the rough
surfaces considered.

For every DNS simulation, the domain size has dimensions
(𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧) = (5.63 × 2 × 2.815) in the streamwise, vertical
and spanwise directions respectively. The half-channel size is thus
assumed to be equal to unity in all simulations: 𝛿 = 𝐿𝑦∕2 = 1. The
reference length scale chosen for the rough surfaces (𝑘) has a value
ranging from 𝑘∕𝛿 = 16.12% to 17.44% across all the rough surfaces
considered for simulation. This length scale corresponds to the mean-
peak-to-valley height (𝑆𝑧,5×5) defined by Thakkar et al. (2017). Based
on this configuration, the grid size considered by Peeters and Sandham
(2019) was employed during the current study, which has dimensions
(𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧) = (280 × 280 × 140) for a friction Reynolds number
of 𝑅𝑒𝜏 = 180. This grid size further ensures that approximately 12 grid
points are used to discretize the smallest wavelength found in the defi-
nition of the height function 𝐻(𝑥, 𝑧) using a Fourier spectrum (Peeters
and Sandham, 2019; Thakkar et al., 2017). The global statistics for the
DNS simulations are presented later in Section 2.4, after the different
3

types of rough surfaces considered in the study have been defined.
2.2. Categories of rough surfaces

In order to create machine learning models, a DNS database was
generated with 80 flow cases simulated with a friction Reynolds num-
ber of 𝑅𝑒𝜏 = 180. Numerical simulations are used instead of experi-
mental measurements, since the machine learning formulation requires
detailed information regarding the local skin friction factors 𝐶𝑓 (𝑥, 𝑧)
and Nusselt numbers 𝑁𝑢(𝑥, 𝑧) distributed across the rough surfaces.
All the rough surfaces considered are generated by introducing phase
shift variations 𝜙𝑖 to the Fourier spectrum of the grit-blasted originally
surface scanned by Busse et al. (2015). The height function 𝐻(𝑥, 𝑧)
considered for the rough surfaces is the following,

𝐻(𝑥, 𝑧) =
∑

𝑖
𝑅𝑖 cos

(

2𝜋
(

𝑥
𝑀𝑖
𝐿𝑥

+ 𝑧
𝑁𝑖
𝐿𝑧

)

− 𝜙𝑖

)

. (7)

n Eq. (7), the terms 𝑅𝑖, 𝑀𝑖 and 𝑁𝑖 correspond to constants extracted
rom the Fourier spectrum defined by Busse et al. (2015) in order
o represent the grit-blasted surface scanned. Based on this formula-
ion, the DNS database was generated by considering two categories
f rough surfaces with a different methodology to define the phase
hift component 𝜙𝑖 of every rough surface. The first group of rough
urfaces, named Category I, was generated by considering 40 rough
urfaces with random phase shift variations 𝜙𝑖 according to Eq. (7).
espite the simplicity of the methodology used, the rough surfaces

ound in Category I contain different types of morphological features
nd clusters of roughness elements, as it can be observed in the left side
f Fig. 3. Therefore, predicting the local skin friction factors 𝐶𝑓 (𝑥, 𝑧)
nd Nusselt numbers 𝑁𝑢(𝑥, 𝑧) generated by each rough surface is a
hallenging machine learning task, where it is necessary to predict
he impact of each cluster of unique roughness elements in the local
urbulent flow fields. The rough surfaces found in Category I are the
ain database used to train deep learning models during the current

tudy.
The second group of rough surfaces, named Category II, corresponds

o a special selection of rough surfaces with unusually high slope angles
n the streamwise direction 𝛼𝑥 = 𝑡𝑎𝑛−1 (𝜕𝐻∕𝜕𝑥). These rough surfaces
erve as a challenging validation scenario to test the robustness of the
eep learning systems trained, since they contain roughness elements
ith abrupt changes in their shape, as well as substantial modifications

n their local turbulent flow fields. The methodology used to generate
hese rough surfaces is presented in Section 2.3.

A graphical comparison between the height maps 𝐻(𝑥, 𝑧) and the
radients 𝜕𝐻∕𝜕𝑥 for the rough surfaces contained in Categories I and
I can be found in Fig. 3. The rough surfaces found in Category II
ontain regions with higher gradients than the examples shown from
ategory I. In Fig. 4, a detailed histogram is presented regarding the
istribution of |𝜕𝐻∕𝜕𝑥| gradients for all rough surfaces belonging to
ategories I and II of the DNS database. According to the distributions
hown, the rough surfaces from Category II contain significantly steeper
lopes than any sample from Category I. Therefore, the rough surfaces
rom Category II correspond to outlier cases with large distortions in
heir roughness elements, which can be used to test the robustness of
he deep learning system to adverse conditions. Although it would be
ossible to include surfaces from Category II in the training sets, no
ignificant improvements were observed in the validation performance
uring a preliminary study. Therefore, the surfaces from Category II
re used exclusively to test the performance of the neural network for
ough surfaces with features that fall outside Category I of the training
ets.

.3. Generation of rough surfaces with high slope in the streamwise direction

The rough surfaces found in Category II of the DNS database were
enerated by using a methodology specifically designed to detect rough
urfaces with high slope in the streamwise direction 𝜕𝐻∕𝜕𝑥 across mul-
iple regions of the DNS domain. The methodology starts by considering
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Fig. 3. Examples of rough surfaces belonging to Categories I and II of the DNS database. All height percentages are scaled with respect to the half-channel height 𝛿 = 𝐿𝑦∕2. The
magnitude of the gradients 𝜕𝐻∕𝜕𝑥 is based on the reference length scales defined for the DNS simulations. Each height map presented corresponds to the entire DNS domain,
which is periodic in the streamwise and spanwise directions.
Fig. 4. Distribution of local |𝜕𝐻∕𝜕𝑥| gradients for rough surfaces belonging to
Categories I and II of the DNS database.

a collection of 1,000,000 rough surfaces, which contain purely ran-
dom phase shift variations 𝜙 according to the definition of the height
function 𝐻(𝑥, 𝑧) back in Eq. (7). Then, all rough surfaces are ranked
using an evaluation metric , which is defined using the highest
values for |𝜕𝐻∕𝜕𝑥| found in every quadrant shown in Fig. 5. The gray
zones between the quadrants in Fig. 5 correspond to regions where the
values for |𝜕𝐻∕𝜕𝑥| are not evaluated. This helps the algorithm to avoid
selecting rough surfaces where a single peak can represent the highest
value for |𝜕𝐻∕𝜕𝑥| across multiple quadrants, since the idea is to obtain
surfaces with multiple sharp roughness elements. The formula for the
evaluation metric  is the following,

 =
∏

𝑖 𝑄𝑖

𝑚𝑖𝑛(𝑄𝑖)
. (8)

In Eq. (8), the variables 𝑄𝑖 correspond to the largest values for |𝜕𝐻∕𝜕𝑥|
found in every quadrant of Fig. 5. The term 𝑚𝑖𝑛(𝑄𝑖) found in the
denominator of Eq. (8) is used to create an evaluation metric, which
effectively only depends on the three highest values registered for 𝑄𝑖.
This allows the algorithm to select rough surfaces that might also
contain one quadrant with smooth roughness elements, and thus it
helps to increase the diversity of the surfaces selected. Despite the
previous fact, the product term ∏

𝑖 𝑄𝑖 found in Eq. (8) implies that the
remaining three quadrants of the surfaces must contain sharp roughness
elements, or that at least one of the peaks found in the rough surfaces
has very large |𝜕𝐻∕𝜕𝑥| values. Other formulas were also tested as a
replacement for Eq. (8), such as  =

∑

𝑖 𝑄𝑖 − 𝑚𝑖𝑛(𝑄𝑖). However, the
empirical results proved that many of top-ranked surfaces found by
both methodologies corresponded to the same samples, and that the
remaining surfaces had a similar morphology.

2.4. Bulk flow properties and boundary layer parameters for the DNS
database

In Table 1, the variations in the bulk flow properties and boundary
layer parameters for the DNS simulations found in Categories I and
4

Fig. 5. Quadrants used to evaluate the absolute value of |𝜕𝐻∕𝜕𝑥| while selecting rough
surfaces belonging to Category II of the DNS database. In the diagram shown, the
horizontal and the vertical axis correspond to the streamwise and spanwise directions
respectively.

II are presented. Here, it can be noted that all DNS cases for each
category only present minor differences in the parameters being ana-
lyzed . However, the rough surfaces found in Category II present higher
maximum values for all turbulent flow parameters, such as 𝐶𝑓 , 𝑁𝑢,
𝛥𝑈+, 𝛥𝑇 +. This implies that the distorted roughness elements found in
these surfaces are able to produce minor changes in turbulence globally.
The slightly lower values for the bulk Reynolds numbers 𝑅𝑒𝑏 found
in rough surfaces from Category II can be explained since all DNS
simulations are performed using a fixed momentum source term 𝑆𝑓 = 1.
This implies that rough surfaces which further enhance turbulence, and
thus drag resistance, can reach the same target forces using slightly
lower bulk velocities 𝑈𝑏, as it is observed in Table 1.

For more information, Appendix B presents detailed sub-plots for
each quantity reported in Table 1, as well as the values of different
traditional surface metrics. Regarding these results, it must be noted
that all the rough surfaces found in our dataset have a constant the
root-mean-squared height of 0.0358. This implies that the phase shift
components 𝜙𝑖 of the height function 𝐻(𝑥, 𝑧) do not influence its
root-mean-squared value when integrated inside a periodic domain.
However, other surface metrics contain substantially different values.
For example, the skewness of the rough surfaces varies up to 662% with
respect to its median value within the dataset.

The parameter 𝑘+𝑠,𝑒𝑞 listed in Table 1 corresponds to the dimension-
less Nikuradse sand-grain roughness height for the irregular surfaces
considered. Please note that the flows in the current DNS simulations
are in the transitionally rough regime. Obtaining the equivalent sand-
grain roughness size 𝑘𝑠 for all DNS cases would require many more
simulations in order to find the fully-rough asymptote for each surface.
Instead, to find 𝑘+𝑠 = 𝑘𝑠𝑢𝜏∕𝜈, we compare our results with Nikuradse’s
equations (Nikuradse, 1933) directly, using the time-averaged velocity
𝑈+
𝑐 = 𝑈𝑐∕𝑢𝜏 obtained from the DNS simulations at the channel center

(𝑦 = 𝛿):

𝑈+ − 5.75 log
(

𝛿∕𝑘
)

= 𝐴(𝑘+ ), (9)
𝑐 10 𝑠 𝑠,𝑒𝑞
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Table 1
Variations in the bulk flow properties and boundary layer parameters for the DNS simulations present in Categories
I and II. All variations are calculated with respect to the middle value for each range: (𝑚𝑎𝑥 − 𝑚𝑖𝑛)∕((𝑚𝑖𝑛 + 𝑚𝑎𝑥)∕2).

Variable Category I Category II

Min. Max. Range Min. Max. Range

𝑘+𝑠,𝑒𝑞 25.30 35.15 32.59% 25.49 37.12 37.15%
𝑈𝑏 10.69 11.54 7.68% 10.49 11.53 9.44%
𝑅𝑒𝑏 3848 4156 7.68% 3776 4150 9.44%
𝐶𝑓 0.0150 0.0175 15.34% 0.0150 0.0182 18.83%
𝑇𝑏 12.14 12.84 5.65% 12.04 12.81 6.15%
𝑁𝑢 28.02 29.66 5.65% 28.12 29.9 6.15%
𝑆𝑡 0.0068 0.0077 13.03% 0.0068 0.0079 15.54%
𝛥𝑈+ 4.09 5.07 21.46% 4.14 5.26 23.91%
𝛥𝑇 + 3.63 4.47 20.58% 3.68 4.55 20.95%
𝐴(𝑘+𝑠,𝑒𝑞) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

5.5 + 5.75 log10(𝑘+𝑠,𝑒𝑞) if 𝑘+𝑠,𝑒𝑞 < 3.55
6.59 + 3.5 log10(𝑘+𝑠,𝑒𝑞) if 3.55 ≤ 𝑘+𝑠,𝑒𝑞 < 7.08
9.58 if 7.08 ≤ 𝑘+𝑠,𝑒𝑞 < 14.13
11.5 − 1.62 log10(𝑘+𝑠,𝑒𝑞) if 14.13 ≤ 𝑘+𝑠,𝑒𝑞 < 67.61
8.48 if 67.61 ≤ 𝑘+𝑠,𝑒𝑞

(10)

Eqs. (9)–(10) yield a 2.3% error when compared to the findings
of Thakkar et al. (2018) for a grit-blasted surface with 𝑘+𝑠 = 26.1.

2.5. Wall force and heat flux interpolation

In order to calculate the local skin friction factors 𝐶𝑓 (𝑥, 𝑧) and Nus-
selt numbers 𝑁𝑢(𝑥, 𝑧) acting over irregular surfaces, a post-processing
routine was first developed to estimate the local forces 𝐅 and heat
fluxes 𝑄 distributed across the rough walls. This step is necessary,
since the DNS solver uses a staggered grid to represent the velocity
components 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 in the computational domain, and the immersed
boundary method applied to CFD is used to account for the presence
of the rough surfaces. Therefore, the local forces 𝐅 and heat fluxes 𝑄
distributed across the rough surfaces are not readily available. The post-
processing routine is mainly based on a Gauss integration scheme with
face elements located over the rough walls. The integral equations are
the following,

𝐅 = ∫𝐴

(

−𝑃 𝐧 + 1
𝑅𝑒𝜏

(

∇𝐮 + ∇𝐮𝑇
)

⋅ 𝐧
)

𝑑𝐴, (11)

𝑄 = 1
𝑃𝑒𝜏 ∫𝐴

∇𝑇 ⋅ 𝐧 𝑑𝐴. (12)

Here, 𝐴 refers to the area of the rough surfaces in contact with the
fluid, and 𝐧 denotes the normal of the rough surfaces. The normal for
the bottom side of the channel can be determined using,

𝐧 =

(√

1 + 𝜕𝐻
𝜕𝑥

2
+ 𝜕𝐻

𝜕𝑧

2
)−1

[

− 𝜕𝐻
𝜕𝑥

, 1 , − 𝜕𝐻
𝜕𝑧

]𝑇
. (13)

For the top side of the channel, this vector needs to be mirrored.
The differential area 𝑑𝐴 for the face elements located over the rough
surfaces is given by,

𝑑𝐴 =

√

1 + 𝜕𝐻
𝜕𝑥

2
+ 𝜕𝐻

𝜕𝑧

2
𝑑𝑥 𝑑𝑧. (14)

When combining Eqs. (11)–(14), the expression
√

1+𝜕𝐻∕𝜕𝑥2+𝜕𝐻∕𝜕𝑧2

cancels. Therefore, a Gauss–Legendre scheme with a sufficient number
of integration points can be used to find the solution of the resulting
polynomial integrals for the drag forces and heat fluxes.

In order to perform integration, the variables (𝐮, 𝑃 , 𝑇 ,𝐻) were re-
constructed using shape functions based on a symmetric stencil of data
points surrounding each face element. The degree of the polynomial
terms chosen for every variable in each direction is listed in Table 2,
whereas a graphical representation of original shape functions is given
in Fig. 6. Here, it can be noted that all interpolation schemes considered
5

Table 2
Order of the polynomial terms considered for the shape functions in every
direction while interpolating the local forces and heat fluxes.

Variable Streamwise (x) Vertical (y) Spanwise (z)

𝑃 2 1 2
𝑇 2 1 2
𝑢𝑥 1 1 2
𝑢𝑦 2 1 2
𝑢𝑧 2 1 1
𝐻 2 – 2

Fig. 6. Schematic representation of the shape functions described in Table 2 for every
flow variable considered. The red nodes correspond to data points extracted from the
staggered grid of the DNS simulations, whereas the blue nodes are fixed points (with a
value of zero) considered over the rough surfaces. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.).

linear terms in the wall-normal direction (𝑦), whereas mixed-order
linear or quadratic terms were considered in the horizontal directions
(𝑥 − 𝑧). The latter was necessary because the DNS solver employed
a staggered discretization scheme to handle the velocity components
𝐮 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧). Therefore, the number of data points required to
form a symmetric stencil was different in each direction. The usage of
linear interpolation schemes in the wall-normal direction was validated
empirically, since it was noted that quadratic terms yielded slightly
higher errors with respect to both the global force and heat transfer bal-
ances. All integration areas considered for Eqs. (11)–(12) were centered
around the original 𝑥− 𝑧 coordinates for the pressure and temperature
fields (𝑃 , 𝑇 ). The pressure field was extrapolated in the wall-normal
direction (𝑦) by considering the first two data points available above
the rough surfaces. However, the velocity and temperature fields (𝐮, 𝑇 )
considered that the first layer of data points was located exactly over
the rough surfaces at the corresponding 𝐻(𝑥, 𝑧) locations, with a value
equal to the homogeneous Dirichlet boundary conditions (𝐮 = 𝑇 = 0).

The numerical implementation of the current post-processing rou-
tine was written in PyTorch, since the entire procedure can be ex-
pressed as a sequence of parallelizable array operations. The process
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Fig. 7. Schematic representation of the depthwise separable convolution (DSC) modules employed in the machine learning study. The abbreviation 𝐵𝑁 refers to the 2-D batch
ormalization operations applied before each PReLU activation function.
p

f gathering data points located in neighboring 𝑥 − 𝑧 locations can be
xpressed using standard array shift operations due to the presence of
eriodic boundary conditions for the rough surfaces.

Finally, it is important to note that the local skin friction factors
𝑓 (𝑥, 𝑧), Nusselt numbers 𝑁𝑢(𝑥, 𝑧) and Stanton numbers 𝑆𝑡(𝑥, 𝑧) for
ach face element can be computed using the formulas described back
n Eqs. (4)–(5). Within the context of these formulas, the local forces
𝑥(𝑥, 𝑧) and heat fluxes 𝑞(𝑥, 𝑧) per unit of area are given by,

𝑥(𝑥𝑖, 𝑧𝑗 ) =
𝐅𝑖,𝑗 ⋅ 𝑒𝑥
𝛥𝑥𝑖 𝛥𝑧𝑗

, (15)

(𝑥𝑖, 𝑧𝑗 ) =
𝑄𝑖,𝑗

𝛥𝑥𝑖 𝛥𝑧𝑗
. (16)

In Eqs. (15)–(16), the sub-indexes (𝑖, 𝑗) refer to the 2-D array position
of each finite element integration area considered. The variables 𝐅𝑖,𝑗
and 𝑄𝑖,𝑗 correspond to the results of the global integrals for the drag
forces and heat transfer rates defined in Eqs. (11)–(12) for each face
element. The term 𝑒𝑥 corresponds to the unitary vector in the 𝑥-
direction, whereas the variables 𝛥𝑥𝑖 and 𝛥𝑧𝑗 refer to the size of each
integration area in the 𝑥 − 𝑧 directions. Regarding the denominator
term (𝛥𝑥𝑖 𝛥𝑧𝑗 ) found in Eqs. (15)–(16), this expression corresponds
to the projected area of each finite element with respect to the 𝑥 − 𝑧
plane, or a smooth wall configuration. This definition is consistent with
the definitions given in Eqs. (4)–(5) for the skin friction values and
Nusselt numbers, since in most engineering applications, the wetted
area of a rough surface corresponds to an unknown quantity. Therefore,
traditional definitions for the skin friction factor (𝐶𝑓 ) or the Nusselt
number (𝑁𝑢) are given with respect to an equivalent smooth wall
configuration.

3. Machine learning

In general, the relationship between the input height map 𝐻(𝑥, 𝑧)
of a rough surface and its local skin friction values 𝐶𝑓 (𝑥, 𝑧) or Nusselt
numbers 𝑁𝑢(𝑥, 𝑧) corresponds to a complex non-linear function. This
Section presents a detailed description of the machine learning systems
employed during the current study. First, in Section 3.1, a detailed
overview of the neural networks created is given, together with a
description of the training procedure and its cost function. Additionally,
a novel smoothing procedure is introduced in Section 3.2.

3.1. Neural networks and training procedure

During the current study, convolutional neural networks are em-
ployed since these models have been specifically designed to process
images and to predict any target quantity of interest. The input height
maps for rough surfaces 𝐻(𝑥, 𝑧) are processed as 2-D arrays formed by
pixels, which correspond to grid points on the rough surface. These
pixels are then translated into the corresponding local skin friction
values 𝐶𝑓 (𝑥, 𝑧) or Nusselt numbers 𝑁𝑢(𝑥, 𝑧) located at the center of each
input image.

The deep learning systems employed during the study are formed
by layers of depthwise separable convolution (DSC) modules (Chollet,
2017). The main benefits of this approach are that the total number
of trainable parameters contained by convolutional neural networks is
substantially reduced. Furthermore, an additional layer of non-linear
6

activation functions is added between the depthwise and pointwise
convolutional operators to increase the expressivity of the neural net-
works. For a convolutional operator with 𝐶 internal channels and
kernel size 𝐾 × 𝐾, the total number of parameters employed by DSC
modules is reduced from 𝐶2𝐾2 for a traditional kernel into only 𝐶2 +
𝐶𝐾2 parameters. Since 𝐶 ≫ 𝐾 inside the majority of deep learning
systems, the previous analysis implies that the total number of trainable
parameters is reduced by a factor of almost 𝐾2.

The configuration of each DSC module employed during the study
can be found in Fig. 7. Here, it can be noted that traditional RELU
activation functions have been replaced by PReLU operators (He et al.,
2015). PReLU operators are able to rescale negative input values by a
trainable parameter 𝛼, whereas RELU operators simply cancel negative
values (𝛼 = 0). As a result, PReLU operators can increase the expres-
sivity of neural networks with a minimal computational cost, and they
can facilitate the convergence of the training procedure. Batch normal-
ization is applied before each PReLU activation function to rescale the
internal layers of the deep learning system and to train independent
bias factors associated to every non-linear classifier. Furthermore, the
usage of max-pooling operators was discarded during the current study.
While max-pooling can extract physically relevant features generated
by the internal layers of neural networks, we found during a prelimi-
nary study that neural networks with max-pooling or average-pooling
operators did not yield higher accuracy. Due to this reason, we believe
that max-pooling should only be considered as an alternative among
other options while designing a neural network. In our final deep
learning system, all reduction layers replaced max-pooling operators
by additional convolutional modules.

The global configuration of the deep learning architectures used
to predict the local skin friction values 𝐶𝑓 (𝑥, 𝑧) and Nusselt numbers
𝑁𝑢(𝑥, 𝑧) are listed in Tables 3 and 4 respectively. In these Tables, the
columns 𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡, 𝐾, 𝐷, 𝐴𝐹 refer to the number of input channels,
output channels, kernel size, dilation and the presence of activation
functions respectively. The increasing dilation levels found in Tables 3
and 4 correspond to a modification introduced into the neural networks
to improve their time and space complexity by orders of magnitude,
while still producing the same output as a classical convolutional neural
network. A detailed explanation of this modification can be found in
Appendix A. Fig. 8 presents the total image size employed by the ML
system described in Table 3 to predict 𝐶𝑓 (𝑥, 𝑧) at a particular (𝑥, 𝑧)
location. As it can be observed, this ML system considers 0.48 𝐿𝑥 ×
0.49 𝐿𝑧 of the total domain size. Similarly, the ML system to predict
𝑁𝑢(𝑥, 𝑧) covers 0.91 𝐿𝑥 × 0.92 𝐿𝑧 of the total domain. From a physical
erspective, using the entire image size (𝐿𝑥 × 𝐿𝑧) as input would be

ideal. However, increasing the image size can lead to neural networks
using an increased number of parameters, which in turn could result
in over-fitting. Therefore, a trade-off must be considered between the
input image size of a convolutional neural network and its number
of trainable parameters. The architectures presented in Tables 3 and
4 were discovered by a simple neural architecture search algorithm
based on greedy optimization (Lupo Pasini et al., 2021) for the leading
ML configuration. Our algorithm aimed at optimizing the total number
of layers, the number of internal convolutional channels, and the
configuration of the dilation levels inside the neural networks for both
𝐶𝑓 (𝑥, 𝑧) and 𝑁𝑢(𝑥, 𝑧). The smaller image sizes used to predict 𝐶𝑓 (𝑥, 𝑧)
are potentially caused by the fact that modeling this quantity is a more
challenging task than predicting heat transfer, due to the non-locality
of pressure drag effects. Therefore, the optimizer may have allocated

a large number of trainable parameters to process small input images
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Table 3
Deep learning architecture to predict the local skin friction values 𝐶𝑓 (𝑥, 𝑧). The
parameters 𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡, 𝐾 and 𝐷 refer to the number of input channels, output
channels, kernel size, dilation and the presence of an activation function
respectively.

Layer 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 𝐾 𝐷 𝐴𝐹

DSC 1 20 3 1×1 Yes
DSC 20 20 3 2×1 Yes
DSC 20 20 3 4×2 Yes
DSC 20 20 3 4×2 Yes
DSC 20 20 3 8×4 Yes
DSC 20 20 3 16×8 Yes
DSC 20 20 3 32×16 Yes
Conv. 1D 20 1 1 – –

Table 4
Deep learning architecture to predict the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧).

Layer 𝐶𝑖𝑛 𝐶𝑜𝑢𝑡 𝐾 𝐷 𝐴𝐹

DSC 1 20 3 1×1 Yes
DSC 20 20 3 2×1 Yes
DSC 20 20 3 4×2 Yes
DSC 20 20 3 8×4 Yes
DSC 20 20 3 16×8 Yes
DSC 20 20 3 32×16 Yes
DSC 20 20 3 64×32 Yes
Conv. 1D 20 1 1 – –

Fig. 8. Physical image size (shaded region) employed by the deep learning architecture
described in Table 3 to predict 𝐶𝑓 (𝑥, 𝑧) at a particular (𝑥, 𝑧) location (black circle). The
shaded region must always be centered with respect to the predicted point, and thus
it must be translated to obtain predictions for other (𝑥, 𝑧) locations.

for 𝐶𝑓 (𝑥, 𝑧), and it avoided using larger images to prevent over-fitting.
For future reference, both of the deep learning architectures described
in Tables 3 and 4 have a total of 5621 trainable parameters. While the
greedy optimizer contained multiple options to increase the number
of trainable parameters in each neural network separately, the final
architectures chosen by the optimizer contained the same number of
layers and trainable parameters.

It is important to highlight that our convolutional neural network
always considers input images which are centered with respect to the
prediction location. Therefore, the relative position of every roughness
element is clearly defined in the streamwise and spanwise directions.
Moreover, each pixel in the input images always represents the same
physical size (in length units) within the DNS domain, and the row and
column indexes of every 2-D image are aligned with the streamwise and
spanwise directions respectively.

The training procedure for the deep learning systems was based on
a L1 cost function instead of a traditional L2 penalization scheme,

 =
∑

𝑘,𝑖,𝑗

|

|

|

𝑌 [𝑘] 𝑑𝑛𝑠
𝑖,𝑗 − 𝑌 [𝑘] 𝑚𝑙

𝑖,𝑗
|

|

|

. (17)

In Eq. (17), the variables 𝑌 𝑑𝑛𝑠 and 𝑌 𝑚𝑙 correspond to the reference
DNS data and the deep learning predictions respectively. Depending
on the target of the study, the labels 𝑌𝑖,𝑗 can correspond to the local
skin friction factors 𝐶𝑓 (𝑥𝑖, 𝑧𝑗 ) or the local Nusselt numbers 𝑁𝑢(𝑥𝑖, 𝑧𝑗 ).
The sub-index 𝑘 refers to the identifier of the DNS case belonging to
the training dataset that is being processed. The choice of a L1 cost
7

function given by Eq. (17) allows optimizers to train deep learning
models which more accurately focus on minimizing the average errors
for the local skin friction factors 𝐶𝑓 (𝑥, 𝑧) or Nusselt numbers 𝑁𝑢(𝑥, 𝑧)
than L2 loss functions, which tend to over-penalize small outlier re-
gions. Additionally, during the training procedure, physics-informed
data augmentation is performed to account for the fact that mirrored
rough surfaces should have identical local skin friction values 𝐶𝑓 (𝑥, 𝑧)
and Nusselt numbers 𝑁𝑢(𝑥, 𝑧). Moreover, since all rough surfaces are
subject to periodic boundary conditions, the deep learning systems
presented in Tables 3 and 4 utilize circular padding (Paszke et al., 2017)
to account for the periodicity of the rough surfaces.

3.2. Smoothing procedure to combine the predictions of multiple neural
networks

In order to avoid spurious oscillations in the final ML predictions,
the results of the study were obtained by combining the results of two
independently trained neural networks as shown in Fig. 9. All neural
networks were trained by splitting the DNS cases from Category I of
the database into 32 training cases and 8 test cases. For each DNS
case, only neural networks which included such case in their test set
were considered. To explain the smoothing procedure, we consider two
different sets of predictions, 𝑌 [1] and 𝑌 [2], generated by independent
neural networks as shown in Fig. 9. We imagine now that 𝑌 [1] and 𝑌 [2]

can be combined such that a smoothed field 𝛽 is obtained. In other
words, 𝛽 can be written as a weighted combination of multiple 𝑌 [𝑘]

fields,

𝛽𝑖,𝑗 =
∑

𝑘
𝛼[𝑘]𝑖,𝑗 𝑌 [𝑘]

𝑖,𝑗 . (18)

In Eq. (18), the variable 𝑌 [𝑘]
𝑖,𝑗 represents the predictions of each individ-

ual neural network with sub-index [𝑘]. The multipliers 𝛼[𝑘]𝑖,𝑗 represent the
weight factors. These factors are subject to the following constraints,

0 ≤ 𝛼[𝑘]𝑖,𝑗 ≤ 1, (19)

∑

𝑘
𝛼[𝑘]𝑖,𝑗 = 1. (20)

Eqs. (19)–(20) imply that the value of each point in the combined field
𝛽𝑖,𝑗 must be obtained though interpolation between the existing sets of
predictions 𝑌 [𝑘]

𝑖,𝑗 . To comply with these conditions, the values of the 𝛼[𝑘]𝑖,𝑗
coefficients were expressed using the softmax function,

𝛼[𝑘]𝑖,𝑗 =
exp 𝑠[𝑘]𝑖,𝑗

∑

𝑘 exp 𝑠
[𝑘]
𝑖,𝑗

. (21)

In Eq. (21), the variable 𝑠[𝑘]𝑖,𝑗 corresponds to an internal set of parameters
employed by the softmax function. In order to create a smooth field
𝛽𝑖,𝑗 , the following cost function is used,

𝐽𝛽 =
∑

𝑖,𝑗

(

𝜕2𝛽𝑖,𝑗
𝜕𝑥2

)2

+

(

𝜕2𝛽𝑖,𝑗
𝜕𝑧2

)2

,

𝛽𝑖,𝑗 = argmin(𝐽𝛽 ).

(22)

In Eq. (22), the second-order derivatives of the target 𝛽𝑖,𝑗 distri-
bution are minimized by the cost function 𝐽𝛽 . This formulation has
favorable numerical properties, such as being able to avoid isolated
spikes in the target 𝛽𝑖,𝑗 distributions, while still preserving physically
meaningful peaks or gradients in the solutions generated by machine
learning. All the ground-truth values for 𝐶𝑓 (𝑥, 𝑧) and 𝑁𝑢(𝑥, 𝑧) in our
DNS database contain smooth gradients, which implies that the pre-
vious formulation is well-suited to capture the trends observed in the
physical data. Finally, the second-order expressions 𝜕2𝛽𝑖,𝑗∕𝜕𝑥2 and
𝜕2𝛽𝑖,𝑗∕𝜕𝑧2 in Eq. (22) were approximated using central finite difference
expressions,

𝜕2𝛽𝑖,𝑗
2

≈
𝛽𝑖+1,𝑗 − 2 𝛽𝑖,𝑗 + 𝛽𝑖−1,𝑗

2
, (23)
𝜕𝑥 𝛥𝑥𝑖
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Fig. 9. Schematic representation of the filtering procedure considering two neural
networks. The variable 𝐶𝑖 refers to the DNS case being predicted, which must belong
to the test set of both neural networks. Only DNS cases from Category I of the database
are included in the training sets. However, the case 𝐶𝑖 may belong to Category I or II.

Fig. 10. Synthetic example presenting the results of the filtering methodology
described in Section 3.2.

𝜕2𝛽𝑖,𝑗
𝜕𝑧2

≈
𝛽𝑖,𝑗+1 − 2 𝛽𝑖,𝑗 + 𝛽𝑖,𝑗−1

𝛥𝑧2𝑗
. (24)

The optimizer chosen to find 𝛽𝑖,𝑗 corresponds to a gradient-descent
scheme with adaptive learning rates (Sanhueza et al., 2022; Battiti,
1989). This algorithm has several advantages, such as converging at
optimal speeds using learning rates dynamically adjusted at run-time,
or preventing divergence by performing line search until a smaller
learning rate is found. From a practical perspective, another important
property of the previous algorithm is that an early stopping criterion
can be applied after a fixed number of iterations 𝑁𝑚𝑎𝑥, since the
changes observed in 𝛽𝑖,𝑗 decrease exponentially over time. An example
of the results generated by the filtering methodology can be found in
Fig. 10. Here, it can be seen that spurious predictions are filtered by the
methodology and that a smooth combined field is obtained as a result.

Regarding the number of candidate predictions 𝑌 [𝑘] passed to the
algorithm, it is important to note that the current methodology is
intended to work with only two prediction candidates 𝑌 [1] and 𝑌 [2].
While more 𝑌 [𝑘] fields could be considered in theory, the optimization
algorithm will always try to choose the smoothest part of every input
distribution. Therefore, using only two predictions candidates allows
the algorithm to avoid numerical spikes in isolated regions, while still
preserving physically meaningful gradients for 𝐶𝑓 (𝑥, 𝑧) or 𝑁𝑢(𝑥, 𝑧).

4. Results

4.1. Local predictions

The local skin friction factors 𝐶𝑓 (𝑥, 𝑧) and Nusselt numbers 𝑁𝑢(𝑥, 𝑧)
were computed by combining the machine learning systems and filter-
ing methodology described in Section 3. The results for the local skin
friction factors 𝐶𝑓 (𝑥, 𝑧) can be found in Fig. 11. Here, a comparison is
presented between the machine learning predictions with the highest
and the lowest accuracy with respect to the DNS data for rough surfaces
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belonging to Categories I and II of the DNS database. At it can be
seen in Fig. 11, the deep learning predictions show physically realistic
trends, with the majority of the errors located in areas where extreme
values of 𝐶𝑓 (𝑥, 𝑧) are found. The latter is especially evident for the
DNS cases with the highest prediction errors. Moreover, the machine
learning predictions for rough surfaces belonging to Categories I and
II of the DNS database show similar patterns, which implies that the
deep learning system is able to handle irregular surfaces with larger
local height gradients in the streamwise direction. However, it can also
be noted that the deep learning system tends to under-predict negative
𝐶𝑓 (𝑥, 𝑧) values in recirculation zones, such as the region indicated by
the pairs of markers (𝐴, 𝐴′) or (𝐵, 𝐵′) in Fig. 11. One possible reason for
this behavior is that large negative 𝐶𝑓 (𝑥, 𝑧) values rarely occur in our
database, and thus the neural network can be biased towards predicting
positive quantities.

The results of the deep learning predictions for the local Nusselt
numbers 𝑁𝑢(𝑥, 𝑧) are presented in Fig. 12. As it can be observed, there
is a high degree of similarity between all machine learning predictions
and the reference DNS data. Even for the worst case scenarios, the
differences between the predicted 𝑁𝑢(𝑥, 𝑧) values and the DNS data are
much smaller than the differences calculated for 𝐶𝑓 (𝑥, 𝑧). However, it
should be noted that the deep learning predictions for 𝑁𝑢(𝑥, 𝑧) tend
to be more diffusive near regions with extreme values; see the regions
indicated by the pairs of markers (𝐴, 𝐴′) or (𝐵, 𝐵′) in Fig. 12, for
instance.

The results of the sensitivity analysis for the deep learning predic-
tions with respect to the dataset size can be found in Fig. 13. Here,
histograms are presented comparing the distribution of local L1 errors
for deep learning systems trained using 32, 16 and 8 rough surfaces.
As it can be observed in the histograms, increasing the training set size
from 8 to 16 or 32 rough surfaces has a positive effect on improving the
accuracy of the momentum and heat transfer predictions. Moreover, it
can be noted that predictions for the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧)
tend to have lower L1 errors than predictions for the local skin friction
factors 𝐶𝑓 (𝑥, 𝑧). One potential reason for the higher accuracy of the
local Nusselt number 𝑁𝑢(𝑥, 𝑧) predictions is that heat transfer tends to
occur mainly in peaks of the rough surfaces with high exposure to the
incoming bulk flow, which can be easily identified by the deep learning
system. In contrast, the local skin friction factors 𝐶𝑓 (𝑥, 𝑧) are directly
influenced by both pressure and viscous drag (Chung et al., 2021),
which correspond to different physical processes. While viscous drag
tends to occur close to the windward sides of local peaks, pressure drag
can also occur in near stagnant regions due to the non-local pressure
changes upstream or downstream with respect to large roughness ele-
ments. Therefore, predicting heat transfer may correspond to a simpler
regression task than predicting momentum quantities.

It should also be noted that the magnitude of 𝐶𝑓 (𝑥, 𝑧) can reach
values up to 48.1 times higher than the average. This marks a large
contrast with respect to the values for the local Nusselt numbers
𝑁𝑢(𝑥, 𝑧), which only reach magnitudes up to 14.0 times higher than the
average in the datasets analyzed. Therefore, small relative differences
between the deep learning predictions and the DNS data in regions
where strong drag forces are expected will create much greater L1
errors than similar percentual differences in regions where large heat
fluxes occur. The average error of the local ML predictions for 𝐶𝑓 and
𝑁𝑢 are 46.55% and 10.25% respectively. The worst 10% percentile
of all local predictions have errors higher than 109.3% and 23.49%
for 𝐶𝑓 and 𝑁𝑢 respectively. Note that these values are scaled with
respect to the global values for 𝐶𝑓 or 𝑁𝑢 extracted from the DNS
simulations. Due to this reason, the previous machine learning errors
only correspond to a reference, and it is possible to reach values higher
than 100% (of the average) in regions with large peaks for 𝐶𝑓 (𝑥, 𝑧) or
𝑁𝑢(𝑥, 𝑧). For example, the peaks in the local skin frictions factors and
Nusselt numbers can easily reach magnitudes of 𝐶𝑓 (𝑥, 𝑧)∕𝐶𝑓 = 48.1 and
𝑁𝑢(𝑥, 𝑧)∕𝑁𝑢 = 14.0 within the DNS database. Under these conditions,
a machine learning prediction with a magnitude of 𝐶 (𝑥, 𝑧)∕𝐶 ≈ 43.29
𝑓 𝑓
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Fig. 11. Comparison between the local skin friction factors 𝐶𝑓 (𝑥, 𝑧) predicted by deep learning and the DNS data. The cases presented correspond to the highest and the lowest
values for the L1-norm of the local errors. The values in the colormap indicate the ratio between 𝐶𝑓 (𝑥, 𝑧) at every spatial location and the average skin friction factor 𝐶𝑓 calculated
according to the DNS data.
in the region with the highest recorded values for the local skin friction
factors would only have a 10% local error, yet a 481% error with
respect to the average value of 𝐶𝑓 . While the previous analysis may
suggest that using local relative errors would be a better alternative,
the opposite case can also occur. For instance, in a region with low
𝐶𝑓 (𝑥, 𝑧)∕𝐶𝑓 ≈ 0.001 values, a ML prediction of 𝐶𝑓 (𝑥, 𝑧)∕𝐶𝑓 ≈ 0.01
would be off by a factor of 10 locally, but only have a 0.9% error with
respect to the global 𝐶𝑓 value. Due to this reason, it was decided to
always report the ML errors performing a comparison with respect to
the average 𝐶𝑓 values.

After a detailed analysis, it was found that the local slope angles
of the rough surface and the errors in the machine learning predic-
tions were only weakly correlated. However, the highest errors in the
machine learning predictions are correlated with the presence of large
clusters of roughness elements blocking the path of the incoming flow.
The machine learning errors can occur either upstream or downstream
with respect to these elements, due to pressure drag effects. This
observation is not directly quantified by traditional metrics, but it
can be clearly observed in examples, such as Fig. 14. The cluster of
roughness elements shown in this image creates multiple recirculation
zones, which are not well-predicted by machine learning. Additionally,
discrepancies can be observed at the top of the rough surfaces, and
upstream of the cluster of roughness elements.

4.2. Global predictions

A study was conducted to analyze the errors observed for the global
skin friction factors (𝐶𝑓 ) and Nusselt numbers (𝑁𝑢) for every rough
surface. The results were compared with traditional correlations found
9

in the literature, which are based on the dimensionless Nikuradse sand-
grain roughness height 𝑘+𝑠,𝑒𝑞 . After performing a preliminary analysis,
it was determined that the correlation developed by Flack and Schultz
(2010) yielded the most accurate predictions,

𝑘𝑠,𝑒𝑞 = 4.43 𝑆𝑞 (1 + 𝑆𝑠𝑘)1.37. (25)

In Eq. (25), the variables 𝑆𝑞 and 𝑆𝑠𝑘 are the root-mean-squared height
variations of the rough surface and its skewness, respectively (Thakkar
et al., 2017),

𝑆𝑞 =

√

√

√

√

1
𝑛𝑥𝑛𝑧

𝑛𝑥 ,𝑛𝑧
∑

𝑖,𝑗
𝐻2

𝑖,𝑗 , (26)

𝑆𝑠𝑘 = 𝑆−3
𝑞

1
𝑛𝑥𝑛𝑧

𝑛𝑥 ,𝑛𝑧
∑

𝑖,𝑗
𝐻3

𝑖,𝑗 . (27)

In Eqs. (26)–(27), the variable 𝐻𝑖,𝑗 corresponds to a 2-D array with
the height of the rough surfaces at discrete [𝑖, 𝑗] locations in the
𝑥 − 𝑧 directions respectively. After obtaining the Nikuradse sand-grain
roughness height 𝑘𝑠,𝑒𝑞 , the value of 𝑘+𝑠,𝑒𝑞 can be computed from:

𝑘+𝑠,𝑒𝑞 = 𝑘𝑠,𝑒𝑞
𝑢𝜏
𝜈
. (28)

In order to obtain the skin friction factor 𝐶𝑓 associated with 𝑘+𝑠,𝑒𝑞 in
the Nikuradse diagram (Nikuradse, 1933), the following formulas can
be used (Peeters and Sandham, 2019; Thakkar et al., 2017):

𝐶𝑓 = 2
(

𝑈+
𝑏
)2

, (29)

𝑈+ = 𝑈+ − 𝛥𝑈+, (30)
𝑏 𝑏,𝑠
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Fig. 12. Comparison between the local Nusselt numbers 𝑁𝑢(𝑥, 𝑧) predicted using machine learning and the reference DNS data. The colormap indicates the ratio between the local
values of the Nusselt numbers 𝑁𝑢(𝑥, 𝑧) and the average Nusselt numbers 𝑁𝑢 given by the DNS data.

Fig. 13. Changes in the distribution of the absolute errors for the local skin friction factors 𝐶𝑓 (𝑥, 𝑧) and the Nusselt numbers 𝑁𝑢(𝑥, 𝑧) with respect to the training dataset size. All
errors are scaled using the average DNS values for 𝐶𝑓 or 𝑁𝑢 within each case. The legend indicates the number of DNS cases used to train the deep learning models, which were
extracted from Category I of the database. The title of each subplot indicates to which category the test cases plotted in each histogram belong. For the DNS cases from Category
I of the database, multiple deep learning models were trained, such that each sample could be considered as a held-back test case in a separate study.

Fig. 14. Example of the correlation between large clusters of roughness elements blocking the incoming flow and large errors in the machine learning predictions distributed
nearby.
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𝛥𝑈+ = 𝑈+
𝑐,𝑠 − 𝑈+

𝑐 . (31)

In Eqs. (29)–(31), the variable 𝑈+
𝑏 corresponds to the dimensionless

bulk velocity. The parameters 𝑈+
𝑐,𝑠 and 𝑈+

𝑏,𝑠 correspond to the di-
mensionless time-averaged velocity of a turbulent channel flow with
smooth walls at the channel center (𝑦 = 𝛿) and its bulk velocity
respectively. Based on existing DNS data (Peeters and Sandham, 2019),
these variables were assigned values of 𝑈+

𝑐,𝑠 = 18.64 and 𝑈+
𝑏,𝑠 = 15.79

for a turbulent channel flow at 𝑅𝑒𝜏 = 180. The dimensionless velocity
at the channel center (𝑈+

𝑐 ) can be calculated using Eqs. (9)–(10) from
Section 2.4 based on the value of 𝑘+𝑠,𝑒𝑞 in Eq. (28). The Nusselt number
for the rough surfaces is then calculated from the correlation for the
Stanton number given by Dipprey and Sabersky (1963),

𝑆𝑡 =
𝐶𝑓∕2

1 +
√

𝐶𝑓∕2
{

𝑘𝑓
[

𝑅𝑒𝑏
√

𝐶𝑓∕2 (𝜖𝑠∕𝐷)
]0.2𝑃𝑟0.44 − 8.48

} . (32)

In Eq. (32), the parameters 𝑘𝑓 has a value of 5.19. The ratio 𝜖𝑠∕𝐷 found
in Eq. (32) is given by,

𝜖𝑠
𝐷

= exp

(

3 − 1∕
√

𝐶𝑓∕2
2.5

)

. (33)

he Nusselt number 𝑁𝑢 associated to the correlation of Dipprey and
Sabersky (1963) is then calculated from the Stanton number using
the formula 𝑁𝑢 = 𝑆𝑡 𝑅𝑒𝑏 𝑃𝑟 given by Eq. (6). The bulk Reynolds
umber found in Eq. (32) can be calculated from the dimensionless bulk
elocity 𝑈+

𝑏 given by Eq. (29), since 𝑢𝜏 = 1 in all DNS cases.
The results of the study regarding the accuracy of the global skin

riction factors 𝐶𝑓 and Nusselt number predictions 𝑁𝑢 can be found
n Fig. 15. As it can be observed, the deep learning system is sub-
tantially more accurate than traditional correlations while predicting
oth momentum 𝐶𝑓 and heat transfer 𝑁𝑢 parameters. The maximum

errors for the skin friction coefficients 𝐶𝑓 in the deep learning sys-
tem reached values of 8.07%, whereas the system with traditional
correlations reached errors up to 24.9%. In the case of heat transfer,
the maximum errors for the local Nusselt numbers were 2.87% and
13.5% for the deep learning system and the traditional correlations
respectively. Both of these results are satisfactory for machine learning.
Moreover, only small differences were found between the accuracy of
the deep learning system while making predictions for rough surfaces
belonging to both Categories I and II of the DNS database.

Additionally, it is important to analyze the ratio between the errors
in the machine learning predictions and the variations observed in the
DNS database for 𝐶𝑓 and 𝑁𝑢. If the machine learning errors have an
bsolute value smaller than the variations observed for 𝐶𝑓 and 𝑁𝑢 in

the DNS data, it means that machine learning is accurately predicting
the physical changes observed. Given this context, the results of Table 1
indicate that the maximum variations observed in the DNS data for
𝐶𝑓 and 𝑁𝑢 are 18.8% and 6.5% respectively. Therefore, the maximum
rrors found in the machine learning predictions of 8.1% for 𝐶𝑓 and
.9% for 𝑁𝑢 can be regarded as small. The ratio between the maximum
ariations observed in the DNS data and the deep learning predictions is
.3 for both 𝐶𝑓 (18.8%∕8.1%) and 𝑁𝑢 (6.5%∕2.87%). Therefore, it can be

concluded that deep learning constitutes a valid alternative to generate
improved predictions for flow parameters, such as 𝐶𝑓 or 𝑁𝑢, if enough
raining data is collected.

To further put the neural network predictions into perspective,
he maximum and the mean relative errors are compared with other
redictive methods in Table 5, namely, the correlations of Flack and
chultz (2010) and Dipprey and Sabersky (1963), the re-calibrated
ersions of the latter, and simply considering the average values found
n the training sets. The last method refers to averaging the 𝑛𝑠 − 1
amples found in the training set of a predictive model for a target
ough surface. The re-calibrated version of the correlation by Flack and
chultz (2010) has the following form: 𝑘𝑠,𝑒𝑞 = 𝑎 𝑆𝑞 (1 + 𝑆𝑠𝑘)𝑏, where 𝑎
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varies from 4.114 to 4.129 in every trained model, and 𝑏 varies from
0.272 and 0.322. Additionally, in order to analyze heat transfer, the
correlation from Dipprey and Sabersky (1963) was also re-calibrated
to fit our training data, the parameterized version of the correlation
has the form:

𝑆𝑡 =
𝐶𝑓∕2

1 +
√

𝐶𝑓∕2
{

𝑎
[

𝑅𝑒𝑏
√

𝐶𝑓∕2 (𝜖𝑠∕𝐷)
]𝑏𝑃𝑟0.44 − 𝑐

} , (34)

𝜖𝑠
𝐷

= exp

(

𝑑 − 1∕
√

𝐶𝑓∕2
𝑒

)

. (35)

In Eqs. (34)–(35), the re-calibrated parameters have the following
values after training: 𝑎 ∈ [5.213, 5.222], 𝑏 ∈ [0.230, 0.234], 𝑐 ∈ [8.453,
8.461], 𝑑 ∈ [3.011, 3.016] and 𝑒 ∈ [2.562, 2.589]. The mean relative
errors are calculated as follows:

𝐿1 𝐶𝑓
= 1

𝑛𝑠

𝑛𝑠
∑

𝑘=1

|

|

|

|

|

|

|

𝐶𝑓
[𝑘] 𝑝𝑟𝑒𝑑

− 𝐶𝑓
[𝑘] 𝑑𝑛𝑠

𝐶𝑓
[𝑘] 𝑑𝑛𝑠

|

|

|

|

|

|

|

, (36)

𝐿1 𝑁𝑢 =
1
𝑛𝑠

𝑛𝑠
∑

𝑘=1

|

|

|

|

|

|

𝑁𝑢
[𝑘] 𝑝𝑟𝑒𝑑

−𝑁𝑢
[𝑘] 𝑑𝑛𝑠

𝑁𝑢
[𝑘] 𝑑𝑛𝑠

|

|

|

|

|

|

. (37)

In Eqs. (36)–(37), 𝑛𝑠 refers to the number of samples in our dataset.
As it can be observed in Table 5, our machine learning model signifi-
cantly outperforms the traditional correlations from Flack and Schultz
(2010) and Dipprey and Sabersky (1963). However, the machine learn-
ing model for 𝐶𝑓 only displays a marginal improvement compared to
he predictions of the re-calibrated correlation and the 𝑛𝑠 − 1 averaged
alues. This result stems from the fact that the machine learning model
as not trained to predict 𝐶𝑓 and 𝑁𝑢 directly, but it was rather trained

to predict the local 𝐶𝑓 (𝑥, 𝑧) and 𝑁𝑢(𝑥, 𝑧) values. Therefore, the deep
learning predictions for 𝐶𝑓 and 𝑁𝑢 reported in Table 5 correspond to
an emergent quantity, rather than an objective.

Regarding the generalizability of the model, we believe that the cur-
rent convolutional neural network requires training data with similar
flow characteristics, or boundary conditions, as the target test cases
to make accurate predictions. In order to utilize different Reynolds
numbers 𝑅𝑒𝜏 or Prandtl numbers 𝑃𝑟, further research is required to
establish the best methodology to include these quantities as input to
the neural network.

5. Conclusions

This study presented a deep learning architecture capable of pre-
dicting detailed maps for the local skin friction factors 𝐶𝑓 (𝑥, 𝑧) and
Nusselt numbers 𝑁𝑢(𝑥, 𝑧) of irregular surfaces. The results show that
machine learning is able to achieve reliable results while predicting
both global force and heat transfer parameters. A sensitivity study with
respect to the dataset size also revealed a significant reduction in the
errors for the momentum and heat transfer predictions once the dataset
size is increased from 8 to 32 DNS cases. The comparisons performed
with respect to traditional correlations proved that deep learning is
a valid alternative to generate improved predictions for important
flow parameters, such as the skin friction factors 𝐶𝑓 or the Nusselt
numbers 𝑁𝑢. Moreover, the machine learning systems trained were
able to obtain reliable predictions while working with rough surfaces
containing abrupt changes in their roughness elements. The maximum
error for 𝐶𝑓 using traditional correlations was 24.9%, whereas deep
learning only reached errors of 8.1%. Similarly, the maximum errors
for 𝑁𝑢 were reduced from 13.5% using traditional correlations to only
2.9% using deep learning. Regarding the local errors for 𝐶𝑓 (𝑥, 𝑧) and
𝑁𝑢(𝑥, 𝑧), the probability density functions revealed that the median of
the errors were lower than 28.42% and 6.37% respectively. The reason
for the higher errors observed in 𝐶𝑓 is likely related to non-local effects
caused by pressure drag, as there is no analogous phenomenon for
heat transfer. Therefore, it is recommended to perform further research
regarding the creation deep learning models to predict the behavior of

turbulent flows past rough surfaces.
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Table 5
Comparison of the maximum and the mean relative errors in the predictions for the global skin friction factors 𝐶𝑓 and Nusselt numbers 𝑁𝑢
using different models for rough surfaces belonging to Categories I and II of the DNS database.

𝐿1 𝐶𝑓
𝐿∞ 𝐶𝑓

𝐿1 𝑁𝑢 𝐿∞ 𝑁𝑢

Machine learning 2.69% 8.07% 0.94% 2.87%
Correlation by Flack and Schultz (2010), Dipprey and Sabersky (1963) 7.89% 24.88% 10.05% 13.49%
Re-calibrated correlations from Flack and Schultz (2010), Dipprey and Sabersky (1963) 2.78% 8.92% 1.02% 3.74%
𝑛𝑠 − 1 averaged values 2.95% 11.12% 1.03% 3.86%
Fig. 15. Histograms comparing the distribution of errors for the skin friction values 𝐶𝑓 and the Nusselt numbers 𝑁𝑢 between the deep learning model and the traditional
correlations of Flack and Schultz (2010) and Dipprey and Sabersky (1963). The title of each subplot indicates the category of the DNS database to which the test cases found
in each histogram belong. For rough surfaces belonging to Category I of the DNS database, the mean relative errors in the machine learning predictions are 2.92% for 𝐶𝑓 and
0.90% for 𝑁𝑢. Similarly, for Category II, the mean relative errors are 2.46% and 0.97% for 𝐶𝑓 and 𝑁𝑢 respectively.
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Appendix A. Time and space complexity optimization

During the current study, one of the main challenges encountered
while using traditional convolutional neural networks is that their
architecture has been adapted to reduce an input image until a single
prediction point is obtained, and to discard the results of all intermedi-
ate convolutional layers. This process is highly inefficient, as it can be
observed in Fig. A.16. Here, an example is presented regarding the sub-
images required to perform predictions for the local skin friction values
𝐶𝑓 (𝑥, 𝑧) or Nusselt numbers 𝑁𝑢(𝑥, 𝑧) associated with two neighboring
data points 𝑃1 and 𝑃2 inside a rough surface. The large overlapping
area highlighted in Fig. A.16 corresponds to the shared portion of both
sub-images which must be scanned redundantly once predictions are
12
Fig. A.16. Example regarding two prediction points 𝑃1 and 𝑃 2 obtained as output
from a traditional convolutional neural network. The shaded area corresponds to the
shared portion of the input images passed to the convolutional neural network, which
must be reprocessed again.

required for a second data point 𝑃2. From a mathematical perspective,
this implies that in order to obtain predictions for the local skin
friction values 𝐶𝑓 (𝑥, 𝑧) or Nusselt numbers 𝑁𝑢(𝑥, 𝑧) associated to a
rough surface discretized using images with 𝑁𝑥 × 𝑁𝑧 pixels, the total
numbers of pixels to be processed by the deep learning architecture
is proportional to 

(

𝑁2
𝑥𝑁

2
𝑧
)

. In practical terms, a traditional convo-
lutional neural network replicating the behavior of the deep learning
systems presented in Tables 3 or 4 would require processing a total of
365,148,000 pixels for each DNS case considered.

However, an efficient alternative can be developed to solve the pre-
vious problem, and to reduce the total number of pixels to be processed
from quadratic complexity 

(

𝑁2
𝑥𝑁

2
𝑧
)

to linear complexity 
(

𝑁𝑥𝑁𝑧
)

with respect to the total image size 𝑁𝑥𝑁𝑧. The approach is based on
the idea of sharing the results of all intermediate convolutional layers
by using an advanced dilation system that replaces the reduction strides
found in traditional convolutional neural networks by a unified matrix
system. A schematic representation of this approach can be found in
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Fig. A.17. Comparison in 1-D between a standard convolutional neural network and the efficient computer vision system developed.
Fig. B.18. Distribution of averaged flow quantities reported in Table 1 for our DNS database, as well as other traditional surface metrics. For improved readability, all values
shown for Categories I and II are sorted in ascending order according to their global skin friction factors 𝐶𝑓 . All the rough surfaces shown in the subplots have a root-mean-squared
height of 0.0358.
Fig. A.17. Here, it can be noted that, instead of reducing images using
convolutional strides, the efficient deep learning system proposed uses
increased levels of dilation to replicate the effect of using reduction
strides. The main benefit of this approach is that neighboring data
points, such as 𝑃1 and 𝑃2 back in Fig. A.16, can share the results for the
intermediate convolutional layers, and all the predictions for the local
skin friction values 𝐶𝑓 (𝑥, 𝑧) or Nusselt numbers 𝑁𝑢(𝑥, 𝑧) associated to
a rough surface can be obtained after only one pass through the neural
network. As a result, the total number of pixels to be processed for each
DNS case is reduced from 365,148,000 pixels into only 39,200 pixels,
which equivalent to a reduction factor of 9315. Moreover, the running
times required to train deep learning systems can be reduced from
months of GPU-time into only a few hours. The optimized architecture
13
described in Fig. A.17 is highly compatible with GPU’s, since most
machine learning frameworks contain efficient implementations of the
dilation operator for convolutions.

Appendix B. Averaged flow quantities and surface metrics for the
DNS database

In this Appendix, subplots are presented regarding the distribution
of the flow quantities reported in Table 1, as well as the value of
traditional surface metrics for our DNS database. For improved trans-
parency, the results of Fig. B.18 are split for rough surfaces belonging
to Categories I and II of the DNS database. As mentioned in Section 2.4,
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all the rough surfaces found in our DNS database have a constant
root-mean-squared height of 0.0358.
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