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Abstract

Wave runup observations are key data for coastal management, as they help validate predictive
models for the inundation frequencies and erosion rates. Efforts to develop automated algorithms
that effectively identify the instantaneous water line from video imagery have led to a plurality of
methods. However, under dissipative conditions, the presence of a seepage face often hinders proper
extraction and requires time-intensive data quality control or manual digitization. In this study, we
explore traditional color contrast (CC) preprocessing techniques and develop a novel method that
incorporates a measure for texture roughness — specifically, local entropy — alongside saturation.
The CC-model showed good agreement with the manually digitized water line (0.12 m root-mean-
square-error (RMSE) and correlation coefficient (r) of 0.94), and with its runup statistics (0.08 m
RMSE, and r of 0.97 for the 2% runup exceedance, R2%). The timing aspect of the method also
showed good agreement (3.88 s RMSE, and r of 0.70 for Tm−1,0). Concurrently, a convolutional
neural network (CNN) informed by CC-preprocessed images was cross-validated using nine manually
labeled video time series, each lasting 1 hour and 30 minutes. The CNN model demonstrated good
agreement during cross-validation with manually labeled time series (0.10 m RMSE and r of 0.96
for the full-time series, and 0.09 m RMSE and r of 0.97 for R2%). The temporal dimension of
the CNN estimate was also satisfactory (3.51 s RMSE, and r of 0.79 for Tm−1,0). The observed
R2% values showed the best agreement with the formula for extremely dissipative conditions from
Stockdon et al. (2006), with RMSE-values lower than 0.13 m and r-values that exceeded 0.70 for all
three methods. When applied to other datasets, the CNN method occasionally failed to accurately
capture the water line due to specific characteristics of the new timestack images. These results
validate our ML method as a viable proof of concept and challenge us to enhance its adaptability
and accuracy across varied environmental conditions. Despite these limitations, the CNN method can
be effectively implemented for long-term runup analysis. Additionally, the CC method is anticipated
to be applicable across similar beaches along the northern Gulf of Mexico for long-term extreme
value analysis and wave-by-wave analysis. Both methods demonstrate potential in reducing the time
required to extract the instantaneous runup from video imagery under dissipative conditions and
enhance real-time monitoring, enabling better predictive modeling of coastal processes.
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1
Introduction

The Gulf of Mexico is a serene nesting ground for many sea turtles. Yet, beneath the tranquil
sands lies a critical concern: rising groundwater tables threaten the sanctuaries where these ancient
mariners entrust their eggs. Delving into the depths of coastal hydrology reveals a breathing system,
where ebb and flow, waves, storm surges, and sea level rise shape the landscape and dictate the fate
of sea turtle nests. In this fragile equilibrium, understanding shoreline processes becomes vital in
safeguarding these delicate nesting grounds against the pressing threat of climate change.

1.1. Endangered species

The International Union for Conservation of Nature (2021) lists two of the seven species of sea
turtles worldwide as critically endangered, one as endangered, and three as vulnerable. Sea turtles
face a myriad of anthropogenic stressors. These challenges encompass habitat loss and degradation
(Patrício et al., 2021; Caillouet Jr et al., 2018), indigenous harvesting practices (Jensen et al., 2022),
inadvertent by-catch (Cheng et al., 2019; Darquea et al., 2020), illicit trade activities (Nooren and
Claridge, 2002; Pheasey et al., 2021; Senko et al., 2022), vessel strikes (Fuentes et al., 2021), and
the pervasive impact of pollution (Sinaei et al., 2021; Arienzo, 2023). Globally, the majority of
sandy coastlines in marine protected areas have been subject to erosion (Luijendijk et al., 2018),
raising concern over sea turtle nesting grounds even more. Coastal interventions and continual river
manipulation have disrupted sediment supplies, resulting in the depletion of beaches and habitat loss
for sea turtles (Lutcavage, 2017). Along with these pressing concerns, the intricate interplay of rising
temperatures, shifting ocean currents, and sea level rise could amplify the challenges faced by these
marine species. These effects of climate change will impact their nesting grounds (Fuentes et al.,
2011), reshape their migration trajectories (Hays, 2017), and alter their reproductive success.

Sea turtle eggs are susceptible to temperature variations. For the incubation to be successful, the
thermal range should be between 25°C and 32°C (Yntema and Mrosovsky, 1982). Exposure to higher
or lower temperatures reduces the hatchlings’ survival and increases the probability of morphological
abnormalities (Matsuzawa et al., 2002; Segura and Cajade, 2010). Besides, sea turtle eggs show
temperature-dependent sex determination (TSD). The global warming of the oceans results in a bias
towards more females being born (Tomillo et al., 2014; Tanner et al., 2019), which will decrease
genetic variability among sea turtle species. The rapid pace of anthropogenic climate change and the
slow maturation to adulthood of sea turtles introduce uncertainty regarding the timely occurrence of
phenotype changes through natural selection or adaptation in nesting behavior (Dalleau et al., 2012).

1



1.2. No standard for nest relocation 2

Christiaanse et al. (2024) showed that potential suitable nesting regions are available for sea turtles
to migrate to. The question remains whether sea turtles will make this migration in time.

Besides seasonal disturbances, climate change also impacts sea turtle populations through more
extreme weather events (Dewald and Pike, 2014), rising groundwater tables by increased precipitation
(Rivas et al., 2018), and sea level rise (Fish et al., 2005; Veelenturf et al., 2020; Sönmez et al., 2021).
These changing environmental conditions impact the inundation frequency of nests, hindering the
proper exchange of gases for sea turtle eggs. Pike et al. (2015) compared the hatching rate of green
turtles (Chelonia mydas) eggs when submerged in saltwater for a certain period. They found that
submergence for 1 or 3h reduced the viability of the eggs by less than 10% but that submergence for
6h reduced the viability of the eggs by as much as 30%. Besides, eggs are most vulnerable during
the two first weeks after being laid and just before hatching. During that period an inundation of 30
minutes can cause 100% mortality of the clutch (Nooren and Claridge, 2002).

1.2. No standard for nest relocation

As a precaution, sea turtle nests are often relocated when prone to inundation. However, there seem to
be no standard criteria to determine whether a nest should be moved (Ware et al., 2019). And, while
nest relocation can be effective, unnecessary nest manipulation can have detrimental consequences
on the hatchlings’ survival rate (Grand and Beissinger, 1997; Limpus et al., 1979; Parmenter, 1980;
Wood and Bjorndal, 2000), and alter the sex ratio and morphological development (Glen et al., 2003;
Maulany et al., 2012; Mrosovsky, 2006; Whitmore and Dutton, 1985) of the embryos. Besides, it has
been shown that relocation of the nests should happen quickly after the eggs have been laid. Ahles
and Milton (2016) demonstrated that nests moved after 12 hours from deposition exhibited higher
rates of embryonic death compared to eggs that were relocated within the initial 12 hours. Nest
relocation should thus preferably be a preventive method based on historical data and long-term
predictions and not on last-moment forecasts. However, hazards related to rapid climate change and
other anthropogenic stressors such as oil spills may not always allow for nests to be relocated under
ideal conditions.

Christiaanse et al. (2024) analyzed the global nesting behavior of sea turtles and suggested sea
surface temperature, tidal range, extreme surges, and proximity to coral and seagrass habitats signif-
icantly influence nesting preferences. Using these coastal indicators they found that sea turtles are
only nesting in 30% of suitable global coastal regions between -39° and 48° latitude and indicating
the possibility for sea turtles to broaden their nesting habitat. This research can provide information
on eventual migration trends, and on where to relocate sea turtle nests but does not predict the
flooding likelihood of single nests.

Out of the twenty-two coastal indicators employed by Christiaanse et al. (2024), there is no
parameterization for the conditions beneath the sand, where the eggs are laid. According to Nooren
and Claridge (2002) ‘The only valid reason for moving a nest from its original location is that the
hatch success is threatened in some way. Typically [...] because the nest is located too low and will
be inundated by high tides, either directly or by seawater seeping in below the surface’. To date,
nest inundation has been related to waterline predictions only, and has not yet been translated to
groundwater variations. The extent of wave-induced groundwater fluctuations on sea turtle nests
remains uncertain, and the circumstances under which these fluctuations, if substantial, become
relevant in predicting inundation are not clearly defined.
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To successfully determine whether a sea turtle nest should be relocated or not, a better under-
standing of both the hydrodynamics and the eggs’ resilience to environmental influences is required.
Presently, our knowledge of species-specific tolerance to hypoxic events is limited, and, factors such
as frequency, duration, and timing relative to embryonic development remain understudied (Caut
et al., 2010; Foley et al., 2006; Pike et al., 2015; Ware and Fuentes, 2018) and require in-depth in-
vestigation. On the other hand, the hydrodynamics influencing sea turtle nest inundation remain
relatively unexplored and call for thorough investigations.

1.3. Prediction of nest inundation

Until now most nest relocations are based on in situ observations of the high tide water line (Ware
et al., 2019). However, some attempts have been made to predict nest inundation from offshore wave
conditions.

Wave runup models have been used to point out locations susceptible to inundation. The Stockdon
et al. (2006) formula has already been used by Ware et al. (2019, 2021) to improve the identification
of nests prone to inundation. In a study along the coast of Fort Morgan, Alabama, USA different
definitions of beach slope were compared (Ware et al., 2019). The wash-over state was correctly
identified in 83.3% of sites when using the nest slope while the dune-to-water slope performed better
when predicting the wash-over frequency of the nests. In another study conducted along 40 nesting
beaches along the northern Gulf of Mexico, 34% of nesting locations per beach were found to face
significant risk to wave exposure (Ware et al., 2021). In these studies, the wash-over state was defined
according to the high tide water level identified at the most recent wrack, at the wet-dry boundary,
by signs of erosion or deposition of sand, or by direct observation of waves interacting with the nests.

As an alternative to empirical predictions Dédina (2023) employed two numerical metamodels
(HyCReWW and BEWARE 2.0) to forecast wave exposure for nests within a data-scarce environment
on a fringing reef environment at Ras Baridi, Saudi Arabia. Due to the limited data, validation of
the metamodels against local runup time series was compromised, and the research methodology was
only assessed through comparison with validated Xbeach models elsewhere.

Although there has been a shift towards predicting the exposure of species nesting in coastal
areas to wave wash-over using wave runup models, validation of these models against runup time
series has not been conducted. While empirical predictions based on in situ observations of the
high tide water line have been the predominant method for nest relocation, wave runup models’
potential to enhance nest inundation predictions remains largely untapped. The limited validation
of these models against runup time series impedes their reliability and effectiveness in informing
management decisions. Therefore, there is a clear need for further research to validate wave runup
models through comparison with runup time series data, thereby enhancing their utility in coastal
ecosystem management strategies.

1.4. The importance of reliable runup data

To effectively protect sea turtle nests from inundation, it is essential to better understand the shoreline
dynamics. Our study focuses on improving the accuracy of runup extraction from video imagery,
which is a critical component for the validation of runup predictors and subsequent nest inundation.
But improving runup observation, and herewith runup predictions not only aids in protecting sea
turtle nests but contributes to a broader context of coastal management. Precise runup data is
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essential for design purposes, and for predicting and mitigating coastal erosion, sea-level rise, and
storm surges.

From previous studies, many preprocessing techniques have proved themselves to efficiently en-
hance specific nearshore features from timestack images, which are created by stacking sequential
video frames over time, capturing the temporal changes in wave runup. These methods encompass
the analysis of grayscale image Bailey and Shand (1994), Color Channel Difference (CCD) operations
Turner et al. (2001), Pixel Intensity Clustering (PIC) (Aarninkhof et al., 2005; Uunk et al., 2010),
pixel variance (Simarro et al., 2015), or a measure for image roughness (Zhang and Zhang, 2009).

However, on dissipative beaches, extracting runup can be challenging due to the low contrast
between the swash and the sand in low-energy conditions. Additionally, the presence of a seepage
face keeps the beach covered with a thin layer of water, making it difficult to distinguish the swash
from the sand. Color contrast (CC) methods often fall short in capturing these subtle processes at
play (Huisman et al., 2011; Simarro et al., 2015). Process-based methods, such as the Radon method
developed by Almar et al. (2017), require certain energetic conditions to operate properly. Given the
shortcomings of traditional methods and the prohibitively slow process of manual runup digitization,
which leaves a growing set of data unexplored, the interest in machine-learning implementations in
the field of runup extraction has grown substantially over the past two decades (Marti-Puig et al.,
2024; Kang et al., 2024a,b).

Recently, Collins et al. (2023) demonstrated that machine-learning (ML) algorithms, informed
by multi-channel LiDAR - elevation, reflectance, and spatial-temporal elevation variance - can delin-
eate the water line up to high levels of precision. While the high cost of LiDAR equipment limits
its widespread applicability, this method prompts a new question in video imagery: Can an ML
algorithm, informed by image preprocessing techniques for feature extraction, accurately extract the
instantaneous water line from timestack images? Traditionally, video images are limited to RGB
color channels and do not provide additional attributes such as real-world coordinates, reflectance,
or surface orientation, available with LiDAR data. However, the insights gained from CC methods
could be beneficial here. Applying preprocessing techniques to timestack images can create new in-
put channels for a multi-channel machine learning algorithm, thereby enhancing its ability to extract
meaningful features from video imagery.

1.5. Enhancing runup extraction on a dissipative beach

This study addresses the broad challenges sea turtle nesting habitats face, particularly the threats
posed by varying groundwater levels induced at the sea boundary. These environmental factors are
critical in understanding the sustainability of these habitats. Given the importance of groundwater
level monitoring, this research specifically focuses on developing and evaluating a detection algorithm
designed to improve the precision of runup measurements which are key data in connecting the
nearshore hydrodynamics to the beach hydrology. By honing in on the detection algorithm, this
study seeks to provide a robust tool that can be used in the broader context of coastal management
and conservation efforts.

This research aims to develop accurate algorithms for extracting the instantaneous water line
from video images. The following questions are addressed to achieve this: What CC method can be
implemented on a dissipative beach? Can image preprocessing techniques create effective new input
channels for a convolutional neural network (CNN) algorithm to extract wave runup from video
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imagery? Compared to manual digitization and the CC-based method, how does this enhanced ML
algorithm extract the water line on a dissipative beach? And, how do the observed water lines
compare to empirical estimates of runup?

Video imagery was collected from a beach along the Gulf of Mexico from which timestack images
were extracted. A range of preprocessing techniques was applied to these timestack images, and from
this, a CC method based on saturation and local entropy was developed following earlier work from
Zhang and Zhang (2009). Simultaneously, a multi-channel ML model was developed and optimized
using these preprocessed images as input channels and manually labeled timestacks for training. The
performance was then evaluated using runup statistics, with the R2% compared to both the general
formula and the formula for extremely dissipative beaches as presented by Stockdon et al. (2006). The
aim is to significantly improve the precision and reliability of runup extraction from video imagery
by providing a cost-effective alternative to LiDAR-based methods. This study does not address long-
term trends in shoreline dynamics, limiting its applicability, and the findings of this research are
based on a proof-of-concept implementation, which requires further validation and refinement before
practical deployment in diverse real-world scenarios.

The report is organized as follows: Chapter 2 provides a detailed review of wave runup, ground-
water processes, and extraction techniques of the water line from video imagery, Chapter 3 presents
the procedure for the collection of timestack images and outlines the CC-based and ML method as
well as the optimization process, in Chapter 4 and 5 we describe and discuss the results, and suggest
future perspectives, and Chapter 6 summarizes the conclusions of this study, along with the main
recommendations for future research.



2
State of the Art

This chapter provides a comprehensive review of the current state of the art in shoreline dynam-
ics, groundwater processes, and runup extraction techniques. It is divided into three main sections.
Section 2.1, explores the dynamic nature of the water line, focusing on key terminologies and con-
ceptual frameworks essential for understanding wave runup. Section 2.2 addresses the interactions
between groundwater processes and coastal dynamics. Various responses of groundwater systems
to different types of wave forcing are examined. Finally, Section 2.3 discusses the techniques used
for extracting runup data from video imagery. Topics include general camera setups for monitoring
the water line, georeferencing techniques, and various methods for runup and shoreline extraction.
Further considerations and challenges in extracting accurate runup data from video images are also
presented.

2.1. A moving water line

2.1.1. Lexicon of shoreline extrusion
Shoreline extrusion is defined as the motion of the waterline in the cross-shore direction up and down
the beach profile. It is characterized by a broad range of frequencies, going from incident waves to
tides, and storm surges. Figure 2.1 proposes a visualization of the shoreline extrusion caused by
incident waves, also referred to as runup.

Figure 2.1: Diagram illustrating wave runup, setup, setdown, groundwater level (GWL), still water level (SWL),
mean water level (MWL), runup as a sum of swash and setup, the SWL on a single barred beach profile and a sea

turtle nest.

When incident waves travel to shore and start to shoal, the wave force is directed offshore resulting
in a lowering of the mean water level (MWL) below the still water level (SWL), also referred to as
wave-induced setdown. Then as they carry on and meet even shallower water waves start breaking,

6
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and the wave force changes direction toward the shore, this time increasing the MWL above the SWL.
A phenomenon referred to as wave-induced setup. The remaining energy from the incident waves,
or swash, travels to shore as bores raising the water line even further. Setup and swash are the two
main components of wave runup.

As the name already gives away, the still water level corresponds to the hypothetical water level
without the action of any waves. Let’s consider a steady state over some time shorter than the tidal
fluctuation and longer than the wave actions, in the order of 30 minutes. The mean water level
corresponds to the time-averaged water level over this period. The still water level is a function of
sea level rise, the tide, and water level anomalies such as storm surges, climatic cycles (e.g. El Niño),
seasonal effects, or steric variations. Adding the time-averaged action of waves results in the mean
water level.

An important aspect of wave runup is the relative impact of infragravity waves versus incident
wind-generated waves. Generally, infragravity waves range from 0.004 Hz to 0.04 Hz, and incident
waves from 0.04 Hz to 1 Hz, or periods of 250 s to 25 s, and 25 s to 1 s respectively (Bertin
et al., 2018). However, the exact definition of infragravity versus incident waves is case-dependent.
Under reflective conditions, wind-generated waves dominate the nearshore dynamics of the swash
but infragravity waves can influence the mean water level near the shoreline - or setup. Under
dissipative conditions, the relative influence of infragravity waves is greater as incident waves break
over a longer distance and barely reach the shoreline. Therefore ‘dissipative beaches tend to have
long swash periods and infrequent swash excursions above the effluent line (i.e., transition between
saturated and unsaturated sand) across a wide intertidal zone compared to reflective beaches with
short swash periods and frequent excursions above the effluent line in a narrow intertidal zone’ (Ware
et al., 2019).

2.1.2. Empirical formulations for runup
The accurate prediction of runup holds great significance in the design of infrastructure, as well as
in the assessment of coastal safety and environmental impact during extreme events. Yet, due to
the complexity of non-linear processes along the surf and swash zone and the perpetual changes in
bathymetry, runup prediction through numerical modeling remains challenging. Consequently, runup
is often predicted through empirical formulas (Gomes da Silva et al., 2020).

These formulas use simplified characteristics such as the beach slope, and the deep water wave
height and periods as input parameters to compute statistical runup values such as the maximum
runup (Rmax) or the runup exceeded by 2% of the waves (R2%). Due to the frequent bimodality of
wave spectra, empirical formulations commonly address infragravity and incident waves separately.
Also is it important to acknowledge that every formula comes with its own range of applicability,
based on its respective training and validation datasets. Certain equations are to be used solely for
gravel beaches (Poate et al., 2016; Didier et al., 2016; Dodet et al., 2018), others for sandy beaches
(Stockdon et al., 2006; Senechal et al., 2011; Guedes et al., 2011, 2012; da Silva et al., 2018; Power
et al., 2019), and some were built for estuaries and fetch limited areas only (Didier et al., 2020).

In the present case of a mildly sloping sandy beach, the widely used formula of Stockdon et al.
(2006) would be the choice of reference since it ‘outperformed previous works, in terms of generality
of the datasets considered and accuracy of the predictor’ (Gomes da Silva et al., 2020). By using a
dataset of 10 locations in the United States and the Netherlands they built an empirical formula for
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R2% (Eq. 2.1) that included wave setup (Eq. 2.2), infragravity (Eq. 2.3), and swash (Eq. 2.4):

R2% = α

η̄ +

√
S2
ig + S2

inc

2

 (2.1)

η̄ = 0.35βs (H0L0)
0.5 (2.2)

Sig = 0.06 (H0L0)
0.5 (2.3)

Sinc = 0.75βs (H0L0)
0.5 (2.4)

where α = 1.1, η̄ is the wave-induced setup, Sig infragravity wave-height, Sinc the incident swash,
and βs the beach slope. In addition to this, they developed a runup formula for dissipative beaches
(Eq. 2.5):

R2%d = 0.043 (H0L0)
0.5 (2.5)

This formula shares some similarities with the formula for Sig (Eq. 2.3) of Stockdon et al. (2006).
During dissipative conditions, the beach slope is milder, and as all incident waves break they saturate
a wider surf zone. Therefore, setup is of less importance as it spreads over a longer distance, and
mainly infragravity waves reach the shoreline. Hence the resemblance. However, one should be
aware of the eventuality of saturation extending towards the lower frequencies. Phenomena that was
observed by Ruessink et al. (1998) and later by Ruggiero et al. (2004).

2.1.3. Measurement methods for runup
As mentioned before the interest in runup prediction has grown exponentially over the past decades.
A large set of empirical formulations have entered the scientific world (Gomes da Silva et al., 2020)
simultaneously resulting in the development of wave runup measurement techniques.

Resistance wires have been used on the beach face by Guza and Thornton (1982). The method
consists of a wire under high-frequency alternating voltage deployed in the swash zone. Voltage
changes due to water coverage of the wire can be translated to runup values. The method provides
a high sampling frequency and spatial resolution but is restricted to mild environments due to its
fragility. Besides, Holland et al. (1995) found that the method underestimated runup values and,
that the height at which the wire is deployed influences the measurements. A higher deployment
above the bed results in a smaller runup and horizontal extrusion.

The human eye stands as the oldest instrument for measuring wave runup that remains in use
to this day. Nielsen and Hanslow (1991) installed a series of stakes over the beach face with known
locations and visually retrieved runup values as singular waves passed the markers. The primary
drawbacks of this straightforward method are its restricted spatial and temporal accuracy and the
labor intensity that it requires in the field. But, if coupled with a video monitoring system the
temporal accuracy and the labor intensity in the field can be easily overcome. Still, another limitation
of this method is its range of applicability as only mild wave conditions allow the proper installation
of stakes over the beach face.



2.2. A pervious boundary 9

Turner et al. (2008) first measured bed elevation and wave runup using ultrasonic sensors and
pressure sensors have been deployed to measure runup on steep rocky cliffs by Dodet et al. (2018).
These techniques both allow for high sampling frequencies but the effectiveness of these methods is
constrained by the availability of sensors, resulting in limited spatial resolution. The latter is even
more true on mildly sloping beaches where the required sensors are higher due to the longer beach
face. Moreover, deploying sensors in the surf zone proves challenging for high-energy environments,
and installing sensors on non-cohesive material beaches can be intricate due to the time scale of bed
level changes.

Runup can also be measured manually using a GPS with high spatial accuracy. A possibility
here is to search for spatial markers such as plant wracks, the limit between wet and dry sand, or
beach scarps, which are all indicators of past runup events. This technique was applied by Ware
et al. (2019) in their research on ‘wave runup modeling to inform coastal species management’. The
primary drawbacks are that GPS antennas often have slow performance and that the method demands
intensive and redundant efforts in the field, limiting the output to single values such as Rmax.

The application of video imagery to runup measurement has significantly influenced scientific
interest in wave runup. Since the early 2000s, the volume of publications related to runup has
grown exponentially, coinciding with the onset of deploying video monitoring systems for nearshore
applications (Mendes et al., 2022). Video imagery allows for a spatial resolution refined to 0.01 m
and a typical temporal resolution of 30 Hz. It also enables continuous monitoring while requiring
less manual labor. Further details on this technique are available in Section 2.3.

X-band radars have also been deployed to assess wave runup (Hasan and Takewaka, 2014; Lyddon
et al., 2021). Radars are top-notch technology as they allow for both very high spatial and temporal
resolution but, they are also very expensive instruments. And, as higher resolution comes hand in
hand with higher computational costs they should only be applied when needed.

2.2. A pervious boundary

2.2.1. Lexicon of groundwater processes
Beach groundwater can be considered as the interface between land and sea, where the coastal
aquifer meets the ocean. In this unconfined aquifer flows are driven by tides, storm surges, wave-
induced setup, swash, and water levels at the land boundary, but eventually also by rainfall and
evaporation. All contribute to a continuous exchange of water, sediment, gases, and organic matter
across the shoreline (Horn, 2006). Typically, the land boundary shows low-frequency variations at
the seasonal rate while the ocean boundary exhibits higher frequencies, going from tides to incident
waves (Bakhtyar et al., 2011). Figure 2.2 provides a visualization of the time-averaged groundwater
processes during falling and rising tides.

Subsequent discourse will delve into the key terminologies of groundwater for beaches defined in
Horn (2002). The groundwater table corresponds to the depth at which the pore pressure equals
the atmospheric pressure. Beneath the groundwater table, is the fully saturated phreatic zone where
pore pressure is higher than the atmospheric pressure. Above the groundwater table, the soil can
eventually be fully saturated as well due to capillary effects. In this so-called capillary fringe or
tension-saturated zone, pore pressure is lower than the atmospheric pressure. Above the capillary
fringe and up to the ground surface lays the intermediary zone where the pores are not fully saturated
and the pore pressure varies from place to place. Together, the capillary fringe and the intermediary
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Figure 2.2: Diagram illustrating the groundwater terminologies over a beach profile. In (a) the exit point and the
water line are decoupled during a falling tide and, in (b) the groundwater during a rising tide is depicted. Adapted

from Horn (2002).

zone form the vadose. Beware that these classical definitions hold for homogeneous soils only.
According to Horn (2002), ‘the slope of the water table changes with the tide, sloping seaward

on a falling tide and landward on a rising tide’. When the tide falls faster than the beach can drain
(Figure 2.2.a), the water table can become decoupled from the water line. The groundwater table
and the ground surface then coincide at an exit point above the instantaneous water line. In between
these two points, a seepage face develops from which groundwater exfiltrates the beach matrix. Under
a rising tide (Figure 2.2.b), the exit point and the water line are joined in one single point above
which water can infiltrate the beach matrix.

At first sight, the concept of a groundwater table appears to be a simple notion as it marks
the upper boundary of the saturated zone. Yet, further inspection of this concept has shown some
discrepancies between the theory and practice. Many issues arise from the heterogeneity of the soil
complexion. For instance, differences in permeability can result in perched and inverted water tables.
Another phenomenon is the encapsulation of air and the formation of biogenic gas bubbles below the
groundwater table. Also, strong bi-modality of the pore size distribution can result in the smaller
pores not filling up with water. Last but not least, rapid fluctuations in the groundwater table can
also occur when the capillary fringe reaches the ground surface. For a thick capillary fringe close to
the ground surface, ‘only a small depth of water is required to convert the water from the tension-
saturated zone to one of positive pore-water pressures, causing the water table to rise to the ground
surface’ (Baird and Low, 2022).

Beach groundwater processes are mainly driven by hydraulic gradients and hydraulic conductivity
(K), also referred to as coefficient of permeability. Many empirical formulas exist to estimate the
hydraulic conductivity from single soil characteristics such as the mean grain diameter (D) and the
degree of sediment sorting (σ). The formula from Krumbein and Monk (1943) is still broadly used
to estimate hydraulic conductivity (Eq. 2.6):

K =
kg

ν
(2.6)

where g is the gravitational constant (ms−2), and k the permeability (in units of Darcy, where 1
Darcy = 9, 87 · 10−13m2), that can be estimated as (Eq. 2.7):



2.2. A pervious boundary 11

k = 760D2e−1.3σ (2.7)

Although widely used, empirical formulations for hydraulic conductivity should always be con-
sidered with caution due to the variability in time and space. The soil’s heterogeneity, temperature
changes, and saturation can all affect the hydraulic conductivity. Baird et al. (1998) showed that
measured hydraulic conductivity can diverge from the estimated values by an order of magnitude.
And, in Benson et al. (1997) different measurement methods resulted in large differences in hydraulic
conductivity. Besides, most empirical formulations are appropriate for sandy soils only (Horn, 2002).

2.2.2. Response to tidal forcing
Early research on beach groundwater dynamics was oriented toward the effect of higher-frequency
signals. Hence, the tide. Studies including Emery and Foster (1948), Ericksen (1970), Waddell (1973,
1976, 1980) Lewandowski and Zeidler (1978), Nielsen (1990), Hegge and Masselink (1991), Kang et
al. (1994), Nielsen and Kang (1995), Baird et al. (1998), Raubenheimer et al. (1999) Cartwright
and Nielsen (2001), and Robinson et al. (2005), have shown the tidal signal to decay landwards, and
to be asymmetrical (fast rising and slow falling tide), and skewed (positively) in time. The phase lag
increases linearly in the landward direction while the amplitude decays exponentially (Cartwright
et al., 2004). Asymmetry of the groundwater response to the tidal forcing also increases in the
landward direction.

The work of Raubenheimer et al. (1999) showed that the tidal signal decays landwards, but,
that the lower frequency signal decays to a lesser extent than the higher frequency signals. In their
specific case, diurnal and semidiurnal signals were damped out completely 100m land inwards from
the shoreline while the spring-neep signal was still clearly visible at that same location.

Two regions can be distinguished when considering beach groundwater. In the upper intertidal
region, the beach matrix is successively saturated and unsaturated whereas in the lower section of the
intertidal zone, the beach matrix is permanently saturated (Horn, 2002). When the tide rises above
the beach groundwater table, seawater infiltrates the beach matrix landwards. As the tide falls again,
water exfiltrates the beach toward the sea. The beach groundwater table is sometimes considered as
the prolongation of the mean water level, which in turn relates closely to the tidal elevation. But as
mentioned before, when the tide drops faster than the beach matrix can drain the mean water level
becomes decoupled from the groundwater level (see Fig. 2.2.a). Between the two then, a seepage
face appears where water exfiltrates the beach matrix (Horn, 2006). This phenomenon is thought to
be of great importance for sediment transport in the intertidal zone.

The beach groundwater table was often measured higher than the tidal elevation (e.g. Nielsen et
al., 1988; Kang et al., 1994b; Turner et al., 1997, as cited in Horn, 2006). This so-called superele-
vation of the beach groundwater table is because of the non-linearity of the horizontal groundwater
flow (Philip, 1973; Knight, 1981; Nielsen, 1990, as cited in Horn, 2006). Overheight of the beach
groundwater table is thought to increase with decreasing beachface slope and sediment size and with
decreasing tidal range and wave infiltration (Turner et al., 1997).

Cartwright et al. (2004) showed that the sinusoidal tidal signal generates higher harmonics when
interacting with the sloping boundary of the beach aquifer. The generation of these harmonics was
found to be largest in the upper part of the aquifer (sand surface close to the shoreline) and smallest
in the lower parts of the aquifer (sand surface seaward of the shoreline). This nonlinear filtering of
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the sloping boundary is the largest where flow magnitudes are greatest. Hence, in the upper part of
the aquifer, where seawater infiltrates the beach matrix.

2.2.3. Response to incident wave forcing
Until now, the focus was set on a time-averaged situation over a period longer than individual waves
but shorter than the tidal cycle. In doing so, only the lower frequency signals have been assessed,
ignoring the response of the groundwater table to incident waves.

The tide results in the beach groundwater table’s slope changing over time. With the slope
being landward for a rising tide and seaward for a falling tide. However, other shapes of beach
groundwater tables have been measured. Namely, with a bulge landward of the shoreline and close
to the runup limit. Which, can be attributed to the infiltration of incident waves Horn (2006).
Near the shoreline, the wave-induced setup increases the mean water level, and a part of the swash
infiltrates the beach matrix raising the groundwater table even further. Besides, wave-induced setup
drives large circulation cells across the beach Bakhtyar et al. (2011).

Hegge and Masselink (1991) presented a thorough analysis of individual wave runup during a
falling tide. They distinguished three categories of runup events. The first concerns low-amplitude
runup events that did not affect the water table. The second was moderate runup events that did
transmit a pressure force to the saturated sand and, stabilized the water table. The third category
was the high-amplitude swashes that extended beyond the groundwater table and could contribute
to a rise in the groundwater table. Spectral analysis showed how the beach matrix functions as a
band-pass filter, where some frequencies (in the specific case, 0.013 Hz) are less attenuated than
others. The mechanisms behind the selective signal transmission of the beach matrix remain unclear
(Horn, 2006).

Hegge and Masselink (1991) also showed that the signal from the incident waves shifts towards
the lower frequencies when penetrating the beach matrix. This was confirmed by Turner et al. (1997)
and, Cartwright et al. (2005) suggested this to be related to the overtopping of the exit point. When
a wave overtops the exit point it infiltrates the beach matrix whereas when a wave does not overtop
the exit point it transmits momentum directly to the saturated beach aquifer. It is only logical that
the infiltration process affects the frequency of the incidence signal.

The higher frequency signals from incident waves have been shown to behave in an analog manner
to the tidal-induced perturbations. The amplitude of perturbations of the groundwater table decays
exponentially and the phase lag increases linearly (Cartwright et al., 2005). It is worth emphasizing
once more that lower frequencies are damped out less than higher frequencies. Hence, the further
landwards, the narrower the groundwater spectrum becomes and, the more it shifts towards the lower
frequencies. In the latest research (Guest and Hay, 2017; Stark et al., 2022; Kranenborg et al., 2023),
additional insights were provided, indicating that the pore pressure signal diminishes and undergoes
a shift as the depth increases. Lower frequencies tend to penetrate the bed deeper and shift less than
higher frequencies.

2.2.4. Response to infragravity waves
Darcy’s law states that flow through porous media is driven by pressure head variations. When
traveling to shore through the surf zone, waves apply differential pressure on the sea bed. This
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wave-induced pressure head is attenuated with depth, but the longer the wave, the more gradual the
attenuation. Infragravity waves are characterized by relatively long wavelengths and can thus induce
flow through the beach matrix. However, these flows remain relatively insignificant as the resulting
vertical flow is approximately 0.01 mm/s, and the corresponding horizontal flow is two orders of
magnitude smaller (Bertin et al., 2018).

More important is the impact of infragravity waves on the beachface. This is even more true for
dissipative sandy beaches, where infragravity waves dominate over incident waves and the related
setup. In dissipative conditions, the lower part of the swash zone is saturated. However, large
infragravity-uprushes can reach the unsaturated part of the beachface leading to infiltration of the
beach matrix. Sous et al. (2016) studied the groundwater processes under dissipative conditions.
They showed that the groundwater pressure field in the swash zone fluctuated in the same frequency
range as the overlying infragravity-driven swash.

2.2.5. Effect of the capillary fringe
A capillary fringe largely influences the dynamics of the groundwater table. Coarser sand and gravel
are not concerned, as pores in their soil matrices are too large for capillary forces to prevail over
gravity. However, soils are seldom uniformly distributed in space. And since smaller pores induce
greater tension, the capillary fringe will be thicker where the sediment is smaller and well-graded.
This complicates modeling of the capillary fringe since in-situ measurements are always limited. Yet
some empirical formulations have been developed to predict the thickness of the capillary fringe
(Turner and Nielsen, 1997; Atherton et al., 2001).

Apart from empirical formulations, numerical models for groundwater flow including the capillary
fringe have also grown substantially over the past few decades. Geng et al. (2017) compared numerical
and field results and showed that a thicker capillary fringe reduced the infiltration of waves into the
unsaturated zone. A thicker capillary fringe results in higher moisture content near the soil surface
and reduces the available space for infiltration. Besides, a thicker capillary fringe was found to
enhance horizontal flow induced by tidal forcing.

Earlier work from Nielsen and Turner (2000), and Cartwright et al. (2003, 2004), as cited in
Horn (2006), stated the influence of a capillary fringe to be even more important for higher frequency
forcing. Observations have revealed that groundwater waves propagated faster and decayed slower
with the presence of a capillary fringe.

The reversed Wieringermeer effect corresponds to an excessive enhancement of the water table
when a small amount of water rises the capillary fringe to the soil surface causing the pore tension to
be released all at once. A small amount of water then causes a jump in the groundwater level in the
order of magnitude of the capillary fringe, even though it is triggered by only a few millimeters of
additional water content. A schematic of the phenomenon is given in Figure 2.3. This phenomenon
also occurs near the shoreline due to the infiltration of swash into the beach matrix. Swash oscillations
cause the sequential destruction and formation of meniscuses at the ground surface. This results in
pressure head variations in the order of decimeters even tho the effective infiltration of swash is a few
millimeters of water (Turner and Nielsen, 1997).

However, this phenomenon is mostly restricted to the swash zone where the capillary fringe lays
close to the ground surface and infiltration by waves occurs. The work of Li et al. (1997, 1999), as
cited in Horn (2006), suggested that the location of the top of the capillary fringe away from the
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Figure 2.3: The reversed Wieringermeer effect is illustrated through a schematic representation. In (a), the capillary
fringe nearly reaches the ground surface, displaying meniscuses. In (b), the system’s response to a small water influx

is depicted. Adapted from Turner and Nielsen (1997).

swash zone changes slowly in time. For the capillary fringe to change, water has to flow through the
unsaturated zone and this process is significantly slower than flow through saturated media.

2.2.6. Fluidization of the bed
The earlier discussed infiltration and exfiltration of the beach matrix are thought to be the main
drivers of the morphological changes in the swash zone. However important these may be, it is
essential to address the potential for fluidization within the bed as a driver for morphological changes
(Horn, 2002).

Fluidization takes place when water flows upward and, the induced drag force is greater than
the specific weight of the submerged sediment. For fluidization to occur hydraulic gradient must
be large enough and ‘ground water outflow from a beach in response to a falling tide is unlikely
to be sufficient’ (Baird et al., 1998). Hence, fluidization is presumed to happen preferably under
swash-induced hydraulic gradients over the seepage face (Baird et al., 1998). The exact mechanisms
behind fluidization in the swash zone remain intricate and are still under investigation.

2.2.7. Three-dimensionality of beach groundwater flow
To date, predominant scholarly attention on groundwater dynamics has been directed toward two-
dimensional flow and transport along a shore-perpendicular plane. The heterogeneous character of
soils was already mentioned. Soil heterogeneity can be either natural due to slow geological processes
or, anthropomorphic due to beach nourishments or engineered structures. Either way, the along-shore
variability of the soil matrix can influence the groundwater dynamics significantly.

Geng and Michael (2021) simulated groundwater flow through into different geologic structures.
They found that the along-shore component accounted for 40% to 50% of the total flow path for the
considered volcanic and deltaic soil structures. As anticipated, preferential passages with high perme-
ability significantly influence the trajectory of water particles. An extra parameter should be added
to the intricate relationship between beach characteristics and the beach reaction to hydrodynamic
forcing.
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2.3. Runup extraction from video imagery

2.3.1. Georeferencing of video images
Previously, the complexity of nearshore dynamics and the importance of reliable runup data for
validating predictive models were highlighted. Various runup measurement techniques were discussed,
leading to the selection of video imagery. The implementation of this method will be described here.

Figure 2.4: Artist impression of the relation between real-world and
pixel coordinates in a setup for runup extraction.

Runup extraction from video images requires a relation between the 3-dimensional real-world
coordinates x, y, z and the 2-dimensional pixel coordinates u, v (see Figure 2.4). For this purpose,
the homogeneous photogrammetric equation described in (Hartley and Zisserman, 2003) can be
followed (Eq. 2.8):
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(2.8)

where on the left hand side UD, VD represent the distorted pixel coordinates and U , V denote
the undistorted pixel coordinates. On the right-hand side, the calibration matrix, denoted by K,
incorporates the focal length fx, fy along the x- and y-axis and, U0, V0 correspond to the coordinates
of the principal point of the image. The rotation matrix, denoted by R, hides the three unknown
rotation angles: azimuth, tilt, and swing, defined in Figure 2.5. The camera matrix C contains the
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Figure 2.5: Angle definition for ZXZ rotation matrix.

camera’s positional coordinates. Finally, the XW , YW , and ZW correspond to the real-world system.
Two types of camera distortion can be distinguished. Namely, radial and tangential distortion.

Radial distortion can be described by Equation 2.9:

Udistorted = u(1 + k1r
2 + k2r

4 + k3r
6)

Vdistorted = v(1 + k1r
2 + k2r

4 + k3r
6)

(2.9)

where k1, k2, and k3 are the radial distortion coefficients, and r the distance from the center of the
image such that r2 = (u− u0)

2 + (v − v0)
2. Tangential distortion is described by Equation 2.10:

Udistorted = u+ 2t1uv + t2(r
2 + 2u2)

Vdistorted = v + t1(r
2 + 2v2) + 2t2uv

(2.10)

where t1 and t2 are the tangential distortion coefficients and r is the distance to the center of the
image. Following the ZXZ rotation (Bruder and Brodie, 2020), the rotation matrix can be described
by Eq. 2.11:

R =


− sin(a) sin(s) cos(t)− cos(s) cos(a) cos(s) sin(a)− sin(s) cos(t) cos(a) − sin(t) sin(s)
sin(a) cos(t) cos(s)− cos(a) sin(s) sin(s) sin(a) + cos(a) cos(t) cos(s) cos(s) sin(t)

sin(a) sin(t) sin(t) cos(a) − cos(t)

 (2.11)

with the three rotation angles azimuth (a), tilt (t) and swing (s) defined in Figure 2.5.
Solving this system requires intrinsic and then extrinsic camera calibration. The intrinsic calibra-

tion comes back to solving all the parameters inherent to the camera settings, namely, lens distortion
coefficients, focal lengths, and the coordinates of the principal point of the image, specific to every
camera setting combination. The distortion coefficients and the parameters for the camera calibra-
tion matrix can be estimated by shooting multiple photos of a checkerboard pattern with known
dimensions under different orientations. Then, a least square adjustment of the parameters is made
relative to the known relative real-world coordinates of the corners of the checkerboard. The OpenCV
library or the Matlab toolbox from Bruder and Brodie (2020) are user-friendly options to obtain the
camera intrinsics.

Once the intrinsics are known, the photogrammetric extrinsics can be determined. They consist
of six unknowns relative to the camera orientation and position, defined by the three angles azimuth,
tilt, swing, and the camera position in x, y, z. To solve the extrinsic parameters of the homoge-
neous photogrammetric equation one needs three distinct ground control points (GCPs) with known
real-world and pixel coordinates. In practice, using more GCPs than the minimum required is often
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beneficial to increase the accuracy of the result, and to have fallback options for erroneous measure-
ments (Bruder and Brodie, 2020). The extrinsic parameters should be solved for every deployment
individually, as small changes in the camera position and orientation greatly impact the results.

Once all intrinsic and extrinsic parameters are estimated a simple relation is obtained, linking
each camera pixel with coordinates u, v to the real world in x, y, z. However, one should remember
that the reliability of the result decreases further away from the GCPs. Hence, these should be placed
around the area of interest.

2.3.2. Methods for runup extraction
Often used in runup extraction are Timex, Variance, and Timestack images (Andriolo, 2019). Time-
exposure (Timex) images are acquired by averaging the RBG pixel intensity over a defined sampling
period. Variance images correspond to the RBG pixel intensity standard deviation throughout sam-
pling. A timestack image is created by extracting the same line of pixels from sequential frames of
a video and stacking these lines side by side. The result is an image in time and space of a singular
transect. These images are then further processed to extract nearshore properties such as the water
line and the effluent line but also nearshore wave transformation domains (Andriolo, 2019), wave
celerity (Almar et al., 2009), wave direction (Kuo et al., 2009), wave height (Colvin et al., 2020) or
bathymetry (Aarninkhof and Ruessink, 2004; Uunk et al., 2010).

Manual selection is probably the oldest method for runup extraction from video images. A
few examples of research in which runup was selected manually from timestack images are Holman
et al. (1993); Huisman et al. (2011); Power et al. (2011); Atkinson et al. (2017); Yang et al. (2022).
The redundancy of the manual method has not yet discouraged researchers from using it. Despite
the persistence of manual selection, recent advancements have led to the development of several
alternatives that enhance efficiency and accuracy in runup extraction.

Color Contrast methods
Color contrast (CC) methods have been abundantly developed over the past few decades to automate
runup extraction. Bailey and Shand (1994) proposed a method based on processing techniques of
grayscale images. The routine involved smoothing, edge detection, normalizing the contrast in time,
blurring, and finding the least cost path. The method seemed to agree relatively well with the pristine
data they presented. However, even for their almost noiseless timestack, the smaller runup events
were often missed, the top of runup events was smoothed, and the backwash was cut off resulting
in saw-tooth-shaped runup time series. Alternatively, methods based on Colour Channel Difference,
CCD, have also been proposed. Turner et al. (2001) computed the difference between the red and blue
color channels. The resulting image holds great information because sand pixels contain relatively
more red than blue and vice versa for water pixels. Alternatively, Simarro et al. (2015) proposed a
runup extraction method based on pixel variance. Their methods agreed with hand-picked results
but did not work quite as well when runup occurred within the seepage face.

Pixel Intensity Clustering, PIC (Aarninkhof et al., 2005; Uunk et al., 2010), was implemented into
the Argus coastal monitoring system to segregate water from sand on Timex images. This method
translates the RGB color space to the HSV color space, separating color (Hue, Saturation) from the
intensity (Value). Then, the two-dimensional histograms of color (Hue–Saturation) and luminance
(Value–Value) are constructed. These typically show two peaks corresponding to the wet and the dry
pixels. The histogram with the highest contrast is retained for pixel classification. For this, a line
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passing through the saddle point of the histogram is drawn. Zhang and Zhang (2009) approached
the problem from the HSV color space, from which they derived metrics for the image roughness.
Then they used Otsu’s method to classify pixels and extract the water line from timestack images.

Complications often arise from CC methods when applied on dissipative beaches because of the
wet-dry boundary. If the effluent line is decoupled from the waterline, which can happen on dissipative
beaches, a thin layer of water remains on the sand, hampering the distinction between water and
sand. Furthermore, the relatively lower energy levels under dissipative conditions contribute to more
subtle gradients, less easily distinguished from the background noise. This is especially true for the
backwash (Huisman et al., 2011).

Radon Transform routine
Almar et al. (2017) showed promising results with a runup extraction method based on Radon
transformation, which they validated on an energetic dissipative beach. This processed-based method
separates the incident component (uprush) from the reflected component (backwash) on timestack
images by using the Radon transform. Although the model returned a water line that agreed well
with LiDAR results in the considered cases, it requires wave conditions to hold a certain level of
energy. If not, the runup does not present foamy white characteristics and the Radon routine can’t
identify areas of high intensity to extract the water line.

Machine-learning algorithms
With recent technological advancements, runu[] extraction has leaped forward (Kingston, 2003; Rigos
et al., 2014; Vousdoukas et al., 2011). In a more recent study Marti-Puig et al. (2024) extracted the
waterline averaged in time from Timex images using a bidirectional Long Short-Term Memory (bi-
LSTM) Network over cross-shore pixel arrays. Their results agreed well with the manually picked
water line. Building on these technological strides, researchers are now extending these methods to
address new challenges and improve the accuracy and efficiency of coastal monitoring.

Water, dry sand, wet sand, and wrack can easily be distinguished by the eye. Currently, CNN
base architectures are being implemented to automate the detection process of these markers (Kang
et al., 2024a), to develop Stochastic properties of coastal flooding (Kang et al., 2024b). For now, their
research focused on developing pixel recognition but did not include georeferencing. Combining the
two will facilitate the collection of precise runup measurements over extended periods. Collins et al.
(2023) employed a CNN architecture, utilizing LiDAR data to extract the instantaneous waterline
from timestack images, with four input channels: elevation, reflectance, and the variance of elevation
across both space and time. They achieved impressive results, but the use of LiDAR data remains
a limiting factor due to the high cost of the equipment and the computational demand. The use of
multi-channel input has not been implemented yet for regular video imagery data.

2.3.3. Considerations on runup extraction from video images
Multiple CC-based runup extraction methods have been developed, highlighting the ongoing interest
in this area of research. However, these methods often encounter difficulties on dissipative beaches,
where seepage face disturbances complicate water line detection (Huisman et al., 2011). Despite these
challenges, the growing number of publications on machine learning algorithms signals a promising
shift towards more advanced techniques.

Traditionally, machine learning approaches for runup extraction have been limited to utilizing
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RGB or grayscale images as input channels. In a significant advancement, Collins et al. (2023)
demonstrated that machine-learning algorithms, when informed by multi-channel LiDAR data—
including elevation, reflectance, and spatial-temporal elevation variance—can accurately delineate
the water line. This success presents a notable step forward.

What if the same principles applied in multi-channel LiDAR data processing could be adapted
for video imagery? Video imagery, which typically provides only RGB color channels is limited in the
sense that it does not provide elevation or reflectance information. However, by preprocessing video
images using insights gained from CC-based methods new channels could be generated. Combining
these processed images to inform a multi-channel machine-learning algorithm, it may be possible to
significantly enhance the accuracy and reliability of runup detection from video sources.



3
Research Design and Methodology

This chapter outlines the methodology employed to analyze wave runup, from data collection with
three different runup extraction methods to empirical estimations. The approach integrates tradi-
tional and advanced extraction techniques, including manual digitization, machine learning (ML),
and color contrast (CC) methods to enhance the accuracy and reliability of runup measurements.
Figure 3.1 presents a schematic overview of the runup analysis.

Figure 3.1: Schematic overview of the runup analysis. This diagram details the process from initial data collection
through runup extraction methods from timestack images including Manual, Machine Learning (ML), and Color
Contrast (CC), to the final runup measurements. It also depicts the workflow for empirical runup estimates using

Stockdon et al. (2006) for dissipative conditions and with the general formula with beach slopes β = 0.016 and
β = 0.1. As input for the empirical estimates, the measure offshore wave parameters (Hs and Tp) were computed back

to deep water wave parameters (H0 and Tp). The absolute runup height was obtained summation of the measured
mean water level (tide + surge) to the Stockdon estimates (setup + swash).

The chapter is structured as follows: Section 3.1 characterizes the study site in Galveston, TX,
USA. Section 3.2 details the collection and processing of video imagery into georectified timestack
images and outlines the manual digitization process. Sections 3.3 and 3.4 describe the methodologies
for runup extraction using color contrast (CC) and machine learning (ML), respectively. Section
3.5 discusses additional optimization steps to enhance both models. Finally, Section 3.6 examines

20
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the runup characteristics and the application of the Stockdon et al. (2006) formulas for empirical
estimation.

3.1. Site Characterization

3.1.1. Spatial synopsis
Galveston Island is located on the Gulf Coast of Texas, USA, along the Gulf of Mexico. Positioned
approximately 50 miles southeast of Houston, it is a barrier island known for its sandy beaches.
Figure 3.2 a cartographic representation delineating Galveston Island and its proximate geographical
environs is presented for reference.

Figure 3.2: Cartographically delineates the Gulf of Mexico, the coastal region proximate to Houston, Texas,
and the topography of Galveston Island.

On the southwest end of the Island, a natural tidal inlet delimits the island. Its position coincides
with the location of the Brazos River channel belt 6000-4000 years ago. The inlet is extremely stable
and existed for 2100 years (Dellapenna and Olszewski, 2023). At the northeast end, a long jetty
delimits the Island and protects the entrance of the shipping channel into Galveston Bay.

3.1.2. Sea turtles in Galveston
Galveston Island provides an ideal study setting for exploring the hydrodynamics associated with sea
turtle nesting. Five species of sea turtles are found in the Gulf of Mexico (Valverde and Holzwart,
2017), the Kemp’s ridley (Lepidochelys kempii), loggerhead (Caretta caretta), green (Chelonia mydas),
leatherback (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata). Besides, nesting of sea
turtles has been shown to increase along the northern Texas coastline (Valverde and Holzwart, 2017),
including Galveston Island where the Kemp’s ridley is regularly found to lay eggs. This conquest
of the northern Texan coast by sea turtles may be interpreted as an extension of the Kemp’s ridley
nesting grounds or as the reinstatement of their original nesting habitat (Seney, 2008).

3.1.3. Hydrological Features

Surface currents in the Gulf of Mexico
Large-scale currents in the Gulf of Mexico play an important role in shaping the region’s marine
environment. Below, in Figure 3.3 the main surface currents averaged over the Spring-Summer and
the Autumn-Winter periods are shown.
The loop current, a large, warm current that originates from the Caribbean Sea, turns around in a
clockwise direction above Yucatan and leaves the Gulf through the Strait of Florida where it joins
the Gulf Stream. Meandering Eddies detach from the loop current and travel westwards into the
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Figure 3.3: Schematic of the main surface circulation patterns in the Gulf of Mexico during the Spring-Summer
and Autumn-Winter periods (Sanvicente-Añorve et al., 2018). Galveston is indicated with a purple cross.

Gulf of Mexico. Some of these Eddies are stable in time and are found back over seasonal averages.
The direction of the surface velocities shows a high correlation with the velocities at 30m depth

(Sanvicente-Añorve et al., 2018). Hence, surface circulation patterns are thought to be representative
of the direction of the shallow nearshore. In Figure 3.3 one can observe a seasonal shift in the
longshore current of the Texan coast. During the Summer period, the averaged longshore current
is directed towards the northeast while from Autumn to Spring, the averaged longshore current is
directed towards the southwest.

Tidal properties
The tidal signal at Galveston Island is mixed semidiurnal. The Gulf of Mexico is characterized as a
micro-tidal basin meaning that astronomical tide typically fluctuates within the range of 0.3 to 0.9
meters over a spring-neap cycle (NOAA, 2024b).

Despite being classified as a micro-tidal basin, tidal ranges within the Gulf of Mexico can vary
significantly. The observed water level and the NOAA estimates regularly differ with a factor two
(Lefevre et al., 2000), and the predictions have been found to jump from accurate to an error in this
range in only a few hours (Huff et al., 2020). A drop in the atmospherical pressure over a significant
area, wave-induced setup, and wind tides can have a great impact on local water levels (Huff et al.,
2020) and are not always accounted for in predictions.

Wave climate
Historical data from 1993 to 2021 shows some seasonal variation in the wave direction at Galveston
Island. The prevailing wave direction is southeast-south with a bias towards the southeast from
November to February, and a bias towards the south from June to August (NOAA, 2024a). This
coincides with the previously discussed seasonal variation in the direction of the current along the
coast of Texas. Oriented towards the northeast during Summer and towards the southeast from
Autumn to Spring.

Due to the protected Gulf environment wave energy remains relatively modest in Galveston
during normal conditions. During normal conditions from 2007 to the present, 95% of the waves were
smaller than 1.3m, 99% of the waves smaller than 2m, and 99.9% smaller than 3m (Surf-Forecast,
2024). However, Galveston is susceptible to the influence of tropical storms and hurricanes, especially
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during the Atlantic hurricane season from June to November. During these events, offshore waves
exceeding 10m have been measured (Nayak and Panchang, 2015).

3.1.4. Soil composition and geology
During the Pleistocene epoch, large ice sheets covered significant portions of the Earth’s surface,
resulting in a global sea level approximately 85 meters lower than present levels. As the ice sheets
gradually melted, the sea level began to rise. This rise in sea level led to the formation of coastal
ridges that eventually separated from the mainland, giving rise to new barrier islands. Among these
newly formed barrier islands is Galveston Island, which protects salt marshes and an open bay against
the sea.

Galveston Island began to accumulate 5500 years ago on top of the old Brazos Delta and continued
growing seaward until 1200 years ago when the sediment supply must have run out. At that time,
the coastal profile was rather steep but relative sea level rise and storms slowly eroded the island
according to the model described by Bruun (1962); Swift (1968). The erosion process resulted in
the redistribution of sediment, with a portion being washed over the island and filling its lagoon,
while the remainder settled at the bottom of the Gulf of Mexico. This sediment redistribution was
facilitated by multiple washover and storm surge channels, which enabled the exchange of water and
sediment between the sea and the bay. As a result of this erosion and sediment redistribution, the
coastal slope of Galveston Island became milder, leading to the formation of the dissipative beach
observed today. The deltaic history of Galveston Island resulted in poorly graded beaches with a
D50 ranging in between 0.07 to 0.1mm (US Amry Corps of Engineering, 2022).

3.1.5. Infrastructure and urbanization
In 1900, a category 4 hurricane struck Galveston Island, resulting in 10,000 casualties and destroy-
ing more than one-third of all the buildings. (National Geographic, 2024). This event led to the
construction of a 15km long seawall starting at the jetty on the northeast side of the island to the
southwest end of the city. The elevated position of the sea wall concerning the beach allows for a
strategic position of the video system.

The seawall was intended to protect Galveston from storms. As an inevitable side effect, it caused
the starvation of the longshore drift, exacerbating erosion for kilometers southwest of it. Paine et al.
(2020) quantified erosion rates from 2000 to 2019. They reported retreating coastlines at about 2m/yr
south of the seawall and advancing coastlines at similar rates along the seawall. The latter is mainly
due to the consecutive suppletions intended to protect the seawall from storms and to maintain an
aesthetically pleasing appearance. The last recorded sand deposit dates back to 2019 (US Amry
Corps of Engineering, 2022) when sediment from the shipping channel composed of 38% fines was
placed on the beaches of Galveston (Maglio et al., 2020).

In addition to the coastal erosion exacerbated by the seawall, Galveston Bay faces environmental
challenges from pollution and habitat loss. During hurricanes, significant amounts of pollutants are
released into Galveston Bay, impacting water quality (Du et al., 2020; Yang et al., 2021). Furthermore,
salt marshes in the area are rapidly eroding due to various factors, including wave action, subsidence,
eustatic sea-level rise, and insufficient sediment supply (Ravens et al., 2009). Salt marshes, that serve
as vital sources of food for sea turtles.



3.2. Data collection 24

3.2. Data collection

3.2.1. Overall setup
Monitoring the instantaneous water line was part of a data collection campaign motivated by the
need to validate predictive models for the flooding of sea turtle nests (see Figure 3.4).

Figure 3.4: Setup for data collection campaign.

The campaign involved collecting offshore wave data by deploying a buoy around 1 km from the
shoreline, tracking wave evolution in the nearshore area with submerged pressure sensors, extracting
wave runup data using video imagery, tracking of the nearshore water surface elevation, and mon-
itoring the groundwater table with pressure sensors installed 1 meter below the ground surface in
wells.

3.2.2. Camera deployment for timestack generation

Camera choice and settings
The GoPro Hero 10 Black was available for this measurement campaign and was chosen as the pre-
ferred camera for its compact design, durable construction, and suitability for outdoor environments.
Moreover, the GoPro’s flat lens enhances the camera’s ability to effectively shed raindrops, ensuring
clear visibility during adverse weather conditions. The linear lens was adopted for filming to minimize
distortion in captured images.

A crucial consideration in the camera selection process involved striking a balance between tem-
poral resolution and memory usage. GoPro cameras have a relatively high bitrate which results from
its compact but not-so-efficient storage algorithm which causes the memory to fill up quickly. The
GoPro Hero 10 Black supports a maximum SD card storage of 128 GB. These aspects are vital for
budgeting data storage resources throughout the monitoring period. A frame rate of 2 frames per
second (fps) was deemed sufficient to capture runup smoothly. The videos were recorded in 4K to
maximize the spatial resolution. Herewith, the cost of filming for one day, approximately 7 to 9
hours, translated to a data storage requirement of 30 GB. Acknowledging the limitation of the Go-
Pro’s internal battery life, lasting approximately 1 hour and 30 minutes at 2 fps and 4K resolution, an
external battery was integrated into the setup. This addition served to extend the filming duration,
enabling longer monitoring sessions without interruptions.

Camera installation
The beaches were monitored by deploying two GoPro cameras positioned to capture comprehensive
views of the transects of interest. Figure 3.5 provides a visualization of the setup.
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Figure 3.5: Deptiction of GoPro installation. In (a), pictures of the GoPro box (a.1,a.2), a GCP (a.3), and the
installed system (a.4). In (b), a schematic of the GoPro installation with the field of view.

The camera is securely enclosed within a protective box, which is then mounted to a pole for stability
and height. The camera is strategically positioned to capture a comprehensive view of the transect,
spanning from the distant horizon to the base of the dune. Additionally, it includes six Ground
Control Points (GCPs) within its field of vision. Through the Quick app, users can access a real-time
stream of the camera’s view and verify that the field of view satisfies the requirements.

The GCPs are strategically positioned above the waterline, ensuring they are visible to the camera.
Their arrangement is designed to prevent collinearity as much as possible and to cover the area of
interest. The precise locations of the camera and the six GCPs were determined using a Leica GS08
GPS RTK device with an accuracy of 3cm.

Camera calibration
Intrinsic camera calibration is performed individually for each camera and filming mode to tailor the
calibration parameters to specific settings. The calibration procedure involves capturing a short video
of a flat checkerboard pattern with known dimensions, observed under diverse angles and distances.
A selection of sharp frames, showing the complete checkerboard pattern, are extracted from the
video, and the OpenCV for Python toolbox is employed to recognize corner points in these frames.
Radial and tangential distortions - the fisheye effect and non-parallel alignment of the lens and image
plane - are corrected using the OpenCV toolbox. The outcome is a camera-specific calibration matrix
encompassing focal lengths, optical center location, and the Root Mean Square (RMS) reprojection
error. The RMS reprojection error serves as a criterion for the quality of calibration and is expected
to be sub-pixel. The obtained calibration matrix is then applied to undistort all videos filmed with
the same camera and with identical setting combinations.

Extrinsic camera calibration involves the georeferencing of two-dimensional undistorted images
to real-world coordinates. The calibration process is accomplished through the solution of a pho-
togrammetric algorithm with six unknowns, comprising three rotation angles of the camera and the
real-world coordinates of the camera in XYZ dimensions. The equation can be solved with three
ground control points (GCP) with known real-world and pixel coordinates. In practice, more GCPs
are needed to improve the accuracy and reliability of the solution. Six ground control points (GCPs)
were deployed each time the camera was used, allowing for adjustments in case of measurement errors.
The Matlab toolkit from Bruder and Brodie (2020) was used to approximate the solution.
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Timestack generation
A timestack image is obtained by extracting a line of pixels from sequential frames from a video
recording and putting the arrays one after another in chronological order. This way, one transect
can be analyzed in space and time.

Figure 3.6: Schematic of timestack generation.

To obtain a timestack, the average
transect is computed for each deploy-
ment and converted into pixel coordinates
through the earlier solved photogrammet-
ric equation, ensuring that the results are
georectified. The corresponding RGB ar-
rays from each frame are then extracted
and stacked on top of one another to gen-
erate the timestack image, which provides
a spatial and temporal representation of
the transect. Figure 3.6 gives a visualiza-
tion of the process.

From timestack properties to xyz
An averaged xy cross-shore transect was computed over each deployment. The z-coordinates of the
beach profiles were interpolated to the nearest points. Additionally, to achieve smooth interpolated
profiles, a Savitzky-Golay filter was applied. The filter had a window size of 2001, indicating the
number of data points used for smoothing, and a polynomial order of 3. The results are varying
beach profiles over a fixed cross-shore transect in the horizontal plane.

The timestack images represent the mean cross-shore beach transect in time and space with
fixed x- and y-coordinates. Once the water line is identified on this spatiotemporal image, it can be
mapped back to the corresponding profile. On days where no profile was measured the closest GPS
measurements in time were used.

3.2.3. Manual digitization
The instantaneous position of the water line water manually digitized on nine timestack images of
1 hour 30 minutes, except one that was 28 minutes 25 seconds long. A Matlab script was designed
for this purpose. A moving window allows one to move along the timestack in time and select the
contours of individual waves (Figure 3.7). The wave uprush was easily detected by a sharp white/gray
contrast. The backwash however was less obvious to the eye but was determined as the darker region
following each uprush. The reason for this complication related to backwash detection originates
from the dissipative character of the beach. When waves attain the shoreline, they have lost most of
their energy already, and, when they retract part of the wave infiltrates the beach matrix and part
flows back slowly over an extremely gentle slope. Resulting in an unclear delineation of water and
sand. During manual digitization, the backwash was precisely estimated in the darker region, and a
natural decay function was consistently followed, maintaining approximately the same slope as the
uprush. The timestack images that were manually digitized are summarized in Table 3.1.
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Figure 3.7: Snapshot of the manual
digitization process.

Table 3.1: Data compendium with days, video IDs, start and
end times, and whether or not the water line was manually labeled.

Day Video ID tStart tEnd Labeled

2023-11-13 GX010081 13:46:00 15:06:00 Yes
2023-11-13 GX020081 15:06:00 16:26:00 Yes
2023-11-13 GX030081 16:26:00 16:54:25 Yes
2023-11-14 GX010084 08:50:00 10:10:00 Yes
2023-11-14 GX020084 10:10:00 11:30:00 Yes
2023-11-14 GX030084 11:30:00 12:50:00 Yes
2023-11-14 GX040084 12:50:00 14:10:00 Yes
2023-11-14 GX050084 14:10:00 15:30:00 Yes
2023-11-14 GX060084 15:30:00 16:50:00 Yes

3.3. Development of a CC-based runup extraction method

3.3.1. Image processing techniques for nearshore features
The cleanest timestack image, taken from the video shot on November 14th (video ID: GX060084),
was selected for the first steps of the optimization process. The underlying assumption is that
processing techniques may not significantly enhance the swash signature in such a clean image and
might yield poorer results on timestack images with additional disturbances, such as beach wrack,
and variations in lightning. Conversely, successful feature extraction from a clean timestack image
does not necessarily imply similar success on more noisy images. Various image processing techniques
were applied to analyze nearshore features. Results from each processing technique were analyzed
to determine their efficacy in enhancing and identifying nearshore features. Visual comparisons
were drawn to assess which techniques provided the most significant insights into the dynamics and
characteristics of the near-shore area and, were most promising to use as channel input for a CC-base
method, and later, for a machine-learning algorithm.

Grayscale conversion and gradient calculation
Converting an RGB image to grayscale reduces the initial three channels to one intensity channel,
corresponding to the third channel of the HSV color space. The used conversion from the OpenCV
library reads as:

I = 0.299� ·R+ 0.587 ·G+ 0.114 ·B (3.1)

where I denotes the new grayscale channel derived from the original image, while R, G, and B
correspond to the red, green, and blue channels, respectively. Intensity images distinguish lighter
from darker features such as foam in the swash zone from the sand above it. Calculating the gradients
in time, dI/dt, and space, dI/dx, reveals information about the dynamical processes within the images
(Figure 3.8). These processing techniques emerged in the early dates of runup extraction, with among
others Bailey and Shand (1994).

The gradient time and space enhance the swash signature in the timestack images. However, a
considerable amount of noise persists in these images. Especially above the effluent line where the
beach isn’t smoothed out by the passage of waves. Although the swash is now easily distinguishable
from the beach to the naked eye, the pixel composition of both areas isn’t uniformly distributed,



3.3. Development of a CC-based runup extraction method 28

Figure 3.8: Panel (a) displays the temporal gradient of the grayscale image, denoted as dI/dt, while panel (b) shows
the spatial gradient of the grayscale image, denoted as dI/dx. Both images were histogram-equalized for visualization

purposes.

which hinders the binarization of the image. Even if the background seems dark compared to the
light swash, both areas contain large amounts of dark and light pixels. Therefore, dI/dt or dI/dx of
the grayscale images aren’t suitable for extracting the water line from timestack images.

What catches the eye in Figure 3.8a and 3.8b is the difference in texture between the two areas.
The swash appears rough and disordered, whereas the beach seems more organized and smooth,
interrupted occasionally by a horizontal line. This observation is logical considering the highly
turbulent nature of the swash zone and the smoothing effect of wave action on the beach.

Local entropy
A measure for roughness has already been implemented for runup extraction by Zhang and Zhang
(2009). Generally, local entropy is used to assess texture roughness in images, helping to distinguish
between different materials or conditions by capturing variations in pixel intensity. In this study,
local entropy was employed as a measure of the complexity or disorder within an image.

The swash-zone dynamics are characterized by turbulent movements that create significant gra-
dients in both time and space. These gradients are pronounced when compared to the more stable
and less dynamic sandy areas. The entropy function from the skimage.filters.rank module of the
Scikit-Image library was used here. This function computes the local entropy in an image, effectively
highlighting areas of high complexity and disorder, such as those found in the swash zone.

First, a local neighborhood is defined. Therefore the disk function from the skimage.morphology
module with a radius of 3 was implemented. Then, the local normalized histogram is computed
internally for each pixel according to (Eq. 3.2):

pi =
hi∑n−1
j=0 hj

(3.2)

where pi is the probability of intensity i in the local neighborhood, n is the number of distinct
intensity levels, and hi the pixel count per intensity entry i. Finally, the local entropy E of the local
neighborhood is computed as (Eq. 3.3):
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Figure 3.9: Swash zone delineation using the local entropy technique: (a) represents the dI/dt image after applying
local entropy; (b) shows the histogram of local entropy values with the optimum threshold determined by Otsu’s

method (Otsu et al., 1975) marked; and (c) depicts the resulting binary classification, distinguishing between high
and low entropy.

Figure 3.10: The gradient in time of the local entropy of dI/dt. Light values correspond to positive gradients while
dark values correspond to negative gradients.

E = −
n−1∑
i=0

pi log2(pi) (3.3)

The result is an image where each pixel describes the randomness of the surrounding area, allowing
the inference that high entropy values correspond to regions of high dynamics. Hence, the turbulent
swash motion. Figure 3.9 shows the binarization process for swash extraction from a timestack image
using the local entropy of dI/dt, as the local entropy of dI/dx gives the almost identical image.

The swash and the beach of the entropy image seem to have a uniform pixel distribution (see
Figure 3.9a). This is confirmed by the histogram in Figure 3.9b that shows a strong bimodality (see
Figure 3.9c), meaning that the image can easily be binarised using Otsu’s method (Otsu et al., 1975).
After binarization, some noise persists. Especially, some areas above the effluent line were classified
as high entropy.

Taking the gradient in time of the local entropy of dI/dt gives insightful results. This is not the
case for the gradients of the entropy over space, which are not depicted here but tend to enhance
noise. Figure 3.10 shows the dynamic changes in entropy over time, revealing the shape of individual
waves passing by.

The uprush can be distinguished clearly by the light region on the image. The backwash, though
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less striking, can be recognized by the darker regions that follow each uprush. This image is not
suited for the binarization of water and sand but could be processed further using an edge detection
algorithm to extract the waterline, or used to refine the machine-learning algorithm.

Saturation and Red-Blue channel operations
On reflective beaches with orange-yellowish sand, the Red-Blue channel operation can segregate the
swash from the sand quite well, because sand pixels contain more red than the water pixels, in
contrast to water pixels containing more blue. The saturation channel from the HSV color space
also segregates water from sand effectively (Aarninkhof et al., 2005; Uunk et al., 2010). However, on
dissipative beaches, the Red-Blue channel operation does not enhance the swash, because the seepage
face disturbs the signal (Huisman et al., 2011). Decoupling of the water line from the effluent line
results in a thin layer of water covering the beach above the swash and below the effluent line. Sand
grains located in this area are then falsely classified as water. Hence, under dissipative conditions,
the Red-Blue channel operation doesn’t enhance the swash but delineates the effluent line instead, as
does the saturation channel from the HSV color space. Figure 3.11 shows the implemented routine
to extract the effluent line from the saturation channel.

Figure 3.11: Effluent line detection via the Saturation channel: (a) the image after Gaussian-smoothing with a
kernel of (201x1), (b) the histogram of the smoothed image, and (c) the resulting binary classification relative to the

line according to Otsu’s method (Otsu et al., 1975).

First, the saturation channel is obtained from the HSV color space with the OpenCV library. Sub-
sequent application of Gaussian blur over time with a 201× 1 kernel allows for a clearer distinction
between the regions above and below the effluent line, depicted in Figure 3.11a. The strong bimodal-
ity of the corresponding histogram in Figure 3.11b further confirms this distinction and allows for
binarization of the image thanks to Otsu’s method (Otsu et al., 1975). The results clearly distinguish
between the region above the effluent line and the area below (Figure 3.11c).

3.3.2. A CC-based entropy-saturation method
Combining entropy and saturation results in a simple method for runup extraction for dissipative
beaches, where the image is first binarized according to local entropy values, and noise reduction is
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Figure 3.12: Diagram of runup extraction process utilizing local entropy and differential red-blue channel operation.
In (a) the grayscale image with pixel intensity I (b) dI/dt of the grayscale image with pixel intensity I, (c) the local
entropy image computed with a disk of 5, (d) the corresponding histogram with Otsu’s threshold (Otsu et al., 1975),

(e) the binarized image, (f) the saturation image from the HSV color space after gaussian blurring in time with (g) the
corresponding histogram with Otsu’s threshold, (h) the binarized image with the effluent line in red, (i) the results

binarized entropy image with all high entropy values above the effluent line deleted and (j) the grayscale image with
the computed water line in red.

achieved by deleting all values above the effluent line computed with the Red-Blue channel operation.
Figure 3.12 gives a visualization of the method.

For this particular timestack image, the uprush, backwash, and local maxima are captured by the
method. However, the highest peak is shortened a little due to the noise reduction process. Due to
Gaussian blurring over the time axis, the limit between wet and dry sand is smeared out (see Figure
3.12f), and when deleting the noise above the effluent line the top of the larger runup events are cut
off as well.

3.4. Development of a ML runup extraction method

3.4.1. Optimization and model evaluation framework

Optimization scheme
The resulting image has each pixel describing the randomness of the surrounding area, allowing the
inference that high entropy values correspond to regions of high dynamics. The question now is
whether these images can serve as input channels to a machine learning (ML) algorithm for runup
extraction, similar to what Collins et al. (2023) did with LiDAR data. The considered images are the
grayscale image, I, the intensity changes over time, dI/dt, the intensity changes over space, dI/dx,
local entropy, the entropy changes over time, dE/dt, the original RGB image, and the saturation
image, S. Figure 3.13 displays a schematic of the optimization and evaluation scheme.

The model is trained to recognize sand from water because labeling only the water line would
introduce significant errors. This is due to the difficulty in precisely selecting the boundary between
sand and water. Additionally, focusing solely on the water line would lead to a large class imbalance,
which could negatively impact the model’s performance. The model is first evaluated on its ability
to accurately predict classes through the mean and standard deviation of the accuracy across folds.
This encompasses the search for an adequate smoothing function for each input channel, as well as
the determination of the optimal combination of channels for the model. Later, the parameters from
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Figure 3.13: Optimization and evaluation scheme of ML model for runup extraction.

the optimum model are used to predict water and sand on new timestack images. The resulting water
line is then compared to the hand-picked one, and the performance is assessed by local correlation.
A more detailed explanation is provided in Section 3.5.1.

CNN architecture
A machine-learning algorithm designed to take n input channels according to a classic Convolutional
Neural Network (CNN). A Sequential architecture was implemented using the tensorflow.keras.models
python library.

The input dimensionality of the model was set to small patches, specifically 60×60 pixels, and ’n’
input channels. Resulting in a 60×60xn input. This decision balances computational efficiency with
sufficient spatial and temporal resolution, ensuring that the physical processes at play are effectively
captured. The spatial resolution of the input channel’s height corresponds to 4.2 meters in real-world
coordinates, while the width represents 30 seconds.

A rudimentary CNN was implemented. Convolutional layers are a standard for image processing
as they capture features efficiently thanks to their shared weights but local receptive field. Setting up
32 and 64 successive convolutional layers seemed to result in sufficient learning capability for water
and sand detection during input channel testing. A standard kernel 3x3 was chosen to capture local
features without losing too much spatial resolution. To avoid overfitting and reduce memory load,
each convolutional layer was followed by a MaxPooling layer downsampling the feature map in height
and width by a factor of 2 by taking the maximal value over a window of 2x2.

Consequently, the local receptive field widens, allowing the network to build a more global view of
the earlier computed features. After, the feature maps are transposed back to recover the dimension
lost in earlier layers so the output is of the same dimension as the original image. This process
involves upscaling the image by inserting zeros between pixels and then applying a convolutional
kernel to fill in the blanks. Then, finally to achieve binary image segmentation the final Conv2D
with a 1x1 kernel and sigmoid activation, typical for binary image segmentation.

It was determined that the model should focus on distinguishing between water and sand, rather
than directly identifying the water line. This decision was based on the observation that the manually
selected water line will likely contain more inaccuracies than the broader classification of areas as
either water or sand. Segregating water from sand presents a less error-prone task, as the extensive
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areas covered by each category provide more reliable and consistent data than the precise delineation
of the water line.

k-fold cross-validation
The performance and generalizability of our image processing models were assessed through k-fold
cross-validation. This involves the partitioning of the data into k equally sized subsamples. The cross-
validation process is repeated k times, where every subsample is retained once as testing data while the
remaining k-1 subsamples are used for training. This process allows for a statistical description of the
training procedure. Here, the k resulting accuracies were averaged and the corresponding variances
were computed and used as a metric for model performance. During the initial optimization stages, k-
fold cross-validations were conducted within a single timestack lasting 1 hour and 30 minutes, using k
= 5. This approach aimed to strike a balance between statistical reliability and computational costs.
Subsequently, the training dataset was expanded to include 9 timestacks. K-fold cross-validation
was then performed across these 9 timestack images to further enhance robustness and validate the
model’s performance across a broader temporal scope.

Evaluation metrics
During the first part of the optimization process, model performance was assessed through the model’s
accuracy and precision. Where the accuracy was defined as the percentage of correctly predicted
pixels, such that:

Accuracy =
Number of correctly predicted pixels

Total number of pixels × 100% (3.4)

and the standard deviation of the accuracy in between folds:

Precision = σacc =

√∑k
i=1(xi − µacc)2

k − 1
(3.5)

where µacc is the mean accuracy in between folds i, and k the total number of folds.

3.4.2. Input-channel assessment
In the first optimization steps, the ML algorithm is trained on a single timestack of 1 hour and
30 minutes (video ID: GX060084) and validated on a new timestack from the same day (video ID:
GX050084). The k-folds are thus done by splitting up one single timestack image.

Sensitivity to smoothing-kernel dimensions
The optimum smoothing kernel dimensions were assessed through the grayscale image only, based on
the assumption that all relevant features shared similar spatial and temporal dimensions throughout
input channels. Different Gaussian smoothing kernels were applied. This smoothing method is
commonly used to reduce noise in images. It involves applying a weighted average to the pixels
within a specified neighborhood around each pixel in the image. The weights are determined by the
Gaussian function, which ensures that pixels closer to the center of the neighborhood have a higher
influence on the smoothed value. The GaussianBlur function from the OpenCV library was used

A horizontal kernel in time of size n× 1, and a square kernel of dimension n× n were evaluated
for different values of n using a k-fold cross-validation. The best n was then chosen based on the
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model’s accuracy and precision as described just above. The resulting best horizontal and square
kernels were then applied to all input channels and assessed as described in the following section.

Input-channel sensitivity to smoothing techniques
To evaluate the efficacy of different image-smoothing techniques on the model’s accuracy for different
input channels, a pairwise comparison between smoothing methods and a baseline to which no
smoothing was applied. To this end, two variants of the Gaussian blurring method were examined;
one employing a horizontal kernel, smoothing across time only, with a length of 3 pixels, and the
other using a square kernel, smoothing across both time and space, with dimensions of 3x3 pixels.
These resulted from earlier sensitivity analysis of the model’s accuracy and variance due to kernel size.
For each input channel, the mean accuracy and the variances of the two methods were individually
compared to the no-smoothing baselines, according to the following hypothesis:

• h0: The mean accuracy and the standard deviation of smoothing method X in between folds
equals the no-smoothing method.

• h1: The mean accuracy or the standard deviation of smoothing method X in between folds is
lower/higher than the no-smoothing method.

The mean and the variance were assessed through a t-test and a f-test respectively. The one-sided
t-test evaluates whether the mean of method X in between folds is significantly lower than the no-
smoothing baseline. The f-test assesses whether the standard deviation of the accuracy of method
X is larger than that of the no-smoothing baseline. The threshold for statistical significance was es-
tablished at α = 0.05 for both tests. A p-value above that threshold implies no significant difference
between the accuracy of the smoothing method and the no-smoothing baseline. A p-value below
that threshold is a substantial detriment to the model’s accuracy due to the blurring method. To
choose the optimum smoothing preprocessing technique for each input channel, preference was given
to the squared kernel if it did not result in accuracy loss. The underlying assumption is that maximal
smoothing of the original image provided it does not obscure relevant shapes, will facilitate easier
feature extraction. This approach aims to reduce noise and irrelevant details, enhancing the algo-
rithm’s ability to discern and process key features more effectively. If the square kernel resulted in a
significant decline in accuracy, the horizontal kernel was envisaged. When the horizontal kernel did
not result in a substantial decline in accuracy, it was chosen for the given input channel, otherwise,
the no smoothing method was chosen.

Assessing input-channel combinations
Out of the seven input channels, all 127 combinations were evaluated. Channel normalization is
crucial when combining different types of preprocessed images. Standardizing the scale of the features
across input channels ensures that all inputs contribute equally to the learning process, preventing
features with larger scales from dominating the learning. The model was trained using k-fold cross-
validation for each of the 127 combinations. On a laptop equipped with an Intel Core i7 processor and
16 GB of RAM, this took approximately 10 hours to complete. After, a cluster of best combinations
was selected based on accuracy and standard deviation. This resulted in 24 combinations that gave
similar performances. Finally, the channel combination with the highest accuracy was retained.
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3.5. Further optimization of CC-based and ML method

3.5.1. Assesment of input statistics for model performance

Model performance according to the hand-picked water line
Until now, the model was optimized according to the mean and standard deviation of the accuracy
across folds. These metrics give information about the number of correctly predicted pixels across
categories. However, they do not disclose much about the shape of the runup estimate computed
from these pixel estimates. Therefore, once the best combination of input channels was selected the
ML model was validated on a new timestack image. The water line was computed by column-wise
summation of the sand pixel, binarized as 1, and compared to the manual and the CC methods. No
additional smoothing was applied to the obtained water line to evaluate the standalone performance
of the ML method. For both methods, the Pearson correlation r coefficient between the hand-picked
water line and the model outcome was computed over a moving window of 100 grid cells in time, as
(Eq. 3.6):

r =

∑100
i=1(xi − x̄)(mi − m̄)√∑100

i=1(xi − x̄)2
∑100

i=1(mi − m̄)2
(3.6)

with xi the pixel runup values of method X, x̄ the mean runup value of methods X, mi the pixel runup
values of the manually selected water line, and m̄ the mean runup value of the manual results. The
edges of the runup estimates were padded to ensure that the resulting correlation coefficients time
series had the same temporal dimension as the runup time series (see right side of Figure 3.14). The
correlation coefficients with the entire hand-picked water line were computed to assess the models’
overall performance.

Correlation of model performance and input statistics
To identify the eventual causes of low model performances, the Pearson correlation coefficient between
the full correlation times series and the different input statistics were computed for each model
and each input channel (see Figure 3.14). Therefore, the input channels were reduced to the time
dimension by taking the mean, standard deviation, maxima, and minima over each column. Next,
the correlation coefficient of each statistical measure was calculated against the correlation coefficient
between the model and the hand-picked data. The result is one correlation coefficient per input
statistic.

Figure 3.14: Schematic of the evaluation of model performance input statistics. First, the water line is extracted
and compared to the manual results. This results in a correlation time series that is then correlated to the statistics of

the different input channels.

The correlation coefficient served as a guideline for new optimization measures that could be under-
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taken to improve the CC and ML methods. Some of these measures were assessed and gave birth to
a more robust model, others were left aside for discussion.

3.5.2. Optimization of CC-based method

Window size reduction
All runup extractions with the CC method were first estimated on full timestack images of 1 hour
33 min. Meaning, that the thresholds were computed according to characteristics over this entire
time frame. To try and refine the thresholds to local characteristics a sensitivity analysis of the
computational window size was performed. A range of windows from 9000 grid cells down to 5 grid
cells in time were tested and evaluated on their correlation with the manual results.

Column-wise normalization
Another attempt to accommodate local temporal variations was a column-wise normalization of
the processed images. Three cases were compared to the non-normalized baseline: one where the
saturation image was normalized, one where the entropy image was normalized, and one where both
the saturation and entropy images were normalized.

3.5.3. Further optimization of ML method

Column-wise normalization
Similar to the CC method, column-wise normalization was implemented for the ML method to accom-
modate local temporal variations. This time three cases were also compared to the non-normalized
baseline, namely, one where the saturation image was normalized, one where the entropy image
was normalized, and one where all input channels were normalized. The input channels begin the
grayscale image (I), dI/dx, saturation (S), entropy (E), and dE/dt.

Training set expansion
Previously, the ML algorithm was trained on a single timestack of 1 hour and 30 minutes (video
ID: GX060084) and validated on a new timestack of the same duration (video ID: GX050084). In
total, nine timestacks were digitized. To assess whether expanding the training set improved overall
performance, 9-fold cross-validation was performed using the labeled timestacks. The results from
the fold where GX050084 was the test timestack (M1) were compared to the results of the model
trained on a single timestack (M8). The efficacy of this multi-channel expanded model was assessed
by comparing it to a single-channel model. Informed only by a grayscale image, I, and trained on
eight timestacks as well. Finally, the predictions of the k-fold cross-validation were stitched together
and converted to real-world coordinates to assess the ML model performance in terms of runup
statistics.

3.6. Assessment through runup characteristics

3.6.1. Analysis of runup statistics
The pixel coordinates were converted to real-world coordinates using the photogrammetric equation
(see Section 3.2.2). From this transformation, an elevation time series was obtained from which runup
statistics were computed.
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Figure 3.15: In (a), the runup time series with the still water level (SWL) and the mean water level (η̄), and in (b)
the resulting CDF with runup height exceeded by 2% of the events (R2%) from Gomes da Silva et al. (2020).

The runup height was calculated by finding the local maxima (see Figure 3.15a). From the CDF
of the runup heights (Figure 3.15b) the runup height exceeded by 2% (R2%) and 50% (R50%) are
then derived by taking the 98th and 50th percentile respectively. The runup statistics were evaluated
using a 30-minute moving window across the runup time series. Subsequently, a rolling average over 1
hour was applied, and comparisons between methods were made against the manually digitized water
line. This comparison was quantified using the correlation coefficient and the root mean square error
(RMSE).

3.6.2. Spectral decomposition
The spectra of the runup time series are computed over a duration D of 30 minutes with blocks of
length D/16 which satisfies a trade-off between spectral resolution and reliability. The 90%-confidence
interval resulting from the variance between blocks was also computed. The frequency ranges of 0.004
to 0.04 Hz and 0.04 to 1 Hz were used to characterize the infragravity waves and the incoming swash,
respectively Bertin et al. (2018). To assess the timing aspect of the runup extraction methods the
mean period Tm−1,0 was computed as (Eq. 3.7):

Tm−10 =
m−1

m0
(3.7)

where m0 and m−1 are the zeroth and the -1th spectral moments. The mean runup period Tm−1,0 is
often used in wave runup as is gives relatively more weight to the lower frequencies, which are more
relevant for the runup process on gently sloping beaches for predicting the swash oscillations. The
n-th spectral moment is computed as (Eq. 3.8):

mn =

∫ ∞

0
fnE(f) df (3.8)

where f is the frequency, and E(f) is the spectral density function. At first, the spectrum on
November 14th from ‘15:00’ to ‘15:30’ was computed and the ML and CC methods were evaluated
according to the manually digitized water line. Then for a discontinuous runup time series from
November 13th ‘13:46’ to ‘16:54’ and from November 14th ‘13:46’ to ‘10:10’, the Sig and Sig were
compared and the correlation and RMSE to the manual results were assessed.
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3.6.3. Comparison with empirical estimates
Two formulas were used to predict the wave runup height exceeded by 2% of the runup events. The
first is the general expression from Stockdon et al. (2006) used earlier by Ware et al. (2019, 2021) to
predict the flooding of sea turtle nests. Which reads as (Eq. 3.9):

R2 = 1.1

(
0.35βf (H0L0)

1/2
)2

+

H0L0

(
0.563β2

f + 0.004
)

2

1/2


1/2

(3.9)

where βf is the foreshore slope or beach slope, H0 the deep-water significant wave height, and L0

the deep-water wave length. The second is the formula from Stockdon et al. (2006) for extremely
dissipative conditions, that is applicable for ξ < 0.3, and read as (Eq. 3.10):

R2 = 0.043(H0L0)
1/2 (3.10)

for ξ, the Iribarren number or surf similarity parameter that reads as (Eq. 3.11):

ξ =
tanα√
H/L0

(3.11)

for α the seaward beach slope. It is worth noticing that the formula for extremely dissipative
conditions does not require a beach slope to predict R2%.

The offshore wave conditions needed to drive the runup formulas were retrieved from a buoy
deployed at approximately 1km from the site at 7.5 m depth. The significant wave height at that
location was translated back to the deep-water significant wave height H0. Refraction was disregarded
under the assumption of alongshore uniformity and energy losses due to white capping or wave
breaking were also neglected. First, the wave period at 7.5 m depth is computed by iterating over
the dispersion relation (Eq. 3.12):

Ln+1 =
gT 2

p

2π
tanh

(
2πd

Ln

)
(3.12)

with the initial guess L1:

L1 =
gT 2

p

2π
tanh

(
2πd

L0

)
(3.13)

Then, the group velocities at a depth of 7.5 m, cg, and in deep water, cg0, are computed. From this
the shoaling coefficient Ks can finally be computed as (Eq. 3.14):

Ks =
√
cg0/cg (3.14)

And, the deep-water significant wave height is derived (Eq. 3.15):

H0 = Hs/Ks (3.15)

Mean water level data (tide + wind surge) were obtained from a nearby station at San Luis Pass
(NOAA Station ID: 8771972, Location: 29.080°N, 95.130°W). The total water level was computed
as the sum of the observed mean water level and the wave runup predicted by either the general
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expression or the formula for extremely dissipative conditions (Stockdon et al., 2006). Table 3.2
provides an overview of all implementations for predicting R2%, and Figure 3.16, displayes the mean
profile and corresponding beach slopes β.

Figure 3.16: In (a) the mean interpolated profile elevation and
variation band during deployment. In (b) the corresponding

profile slope.

Table 3.2: Different Stockdon
implementations for R2% predictions

with Stockdon et al. (2006).

Stockdon formula β (-)

General expression 0.100
General expression 0.016
Extremely dissipative -

In Ware et al. (2019), the nest slope –corresponding to the slope at the dune toe– was found to give
best estimates for R2%, which corresponds to the flattest section over the entire beach profile and
a slope of 0.016 (see Figure 3.16b at 10m distance). To asses how different beach slopes affect the
results of the general expression a slope of 0.1 was also evaluated. Finally, the formula for extremely
dissipative conditions was also applied, which does not require a beach slope as input.



4
Results

This chapter presents the findings and analyses derived from the development and evaluation of multi-
channel informed machine learning (ML) and color contrast (CC) methods for runup extraction. In
Section 4.1, the ML method is developed. Section 4.2 focuses on the optimization processes for both
the ML and CC methods. Finally, in Section 4.3, the resultant runup time series are rigorously com-
pared with manually digitized values and empirical estimates, providing a comprehensive validation
of the proposed approaches.

4.1. Development of a multi-channel informed ML model

Here, the efficacy of channel inputs to inform a machine-learning model is evaluated. The considered
channels are the grayscale image, I, the intensity changes over time, dI/dt, the intensity changes over
space, dI/dx, local entropy, the entropy changes over time, dE/dt, the original RGB image, and the
saturation image. In Section 4.1.1, a smoothing kernel will be selected for each channel individually
to reduce noise without losing relevant details. In Section 4.1.2, the predictive performance of each
input will be assessed. In Section 4.1.3 the optimal combination of channels for the multi-channel
informed machine-learning algorithm will be selected.

4.1.1. Sensitivity to smoothing-kernel
Finding the appropriate smoothing kernel for each channel relied on the assumption that all relevant
features shared similar spatial and temporal dimensions. Various kernel sizes, denoted as n, were
applied to find the horizontal and squared kernels that best suited the model’s accuracy and precision
of the grayscale channel (Figure 4.1a). After, the resulting best kernels were applied to all input
channels individually through k-fold analysis (Figure 4.1b).

Figure 4.1a shows how the horizontal kernel size of the Gaussian smoothing filter impacts the
model’s accuracy for a one-dimensional smoothing kernel in time only and for a two-dimensional
kernel in time and space. In both scenarios, a slight increase in accuracy and a decrease in standard
deviation are observed as the kernel size increases to 3. Beyond this point, accuracy decreases, and
the standard deviation increases. This suggests that a smoothing kernel with a temporal dimension
of 3 effectively enhances the model’s stability and performance without losing relevant details. This
value was chosen to assess the impact of pre-smoothing on different input channels.

The boxplot in Figure 4.1b displays the results of the k-fold cross-validation for all input channels
with no preprocessing techniques, and pre-smoothed in time with a 3× 1 kernel or in time and space

40
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Figure 4.1: In (a), the graph illustrates the mean accuracy as a function of the horizontal kernel size for a
pre-smoothed grayscale image using two different Gaussian kernels: a one-dimensional kernel applied in time (n× 1)

and a squared kernel that smooths both time and space (n× n). In (b), the boxplot illustrates the k-fold
cross-validation outcomes for all input channels under three distinct preprocessing scenarios: a baseline without any

smoothing, a Gaussian smoothing with a kernel size of 3x1, and a squared kernel of size 3x3.

with a 3 × 3 kernel. For the Entropy, Grayscale, dI/dt, RGB, and Saturation input channels the
smoothing methods seem to have little impact on the accuracy and the spreading of the results.
For the gradient of entropy over time (dE/dt), accuracy increased substantially for both smoothing
methods, while the spreading showed only minor differences. For the gradient of the grayscale image
over space (dI/dx), the mean accuracy and spreading remained roughly equal for both methods
compared to the no-smoothing baseline. However, prepossessing with a 3 × 3 smoothing kernel
resulted in large variations in accuracy. The appropriate smoothing kernel for each input channel
was determined by evaluating whether the mean accuracy or the spreading of the accuracy did
not significantly decrease/increase upon applying one of the two smoothing filters. The results are
summarized in Table 4.1.

The ‘Kernel Choice’ column indicates the final smoothing kernel choice for each input channel
based on the results of the T-test and the F-test. The grayscale image and the RGB image did not
seem to benefit from any smoothing method. Hence, the no smoothing baseline was maintained for
these input channels. The entropy image, the dE/dt image, the dI/dt, and the saturation image did
not suffer in accuracy or precision due to either smoothing method. For these input channels, the
square kernel was thus retained. The input channel dI/dt experienced a notable decrease in precision
with the square kernel. However, it performed satisfactorily when applying a horizontal kernel along
the time axis. Smoothing in the spatial dimension led to excessive detail loss; hence, the horizontal
kernel was the preferred choice for dI/dt.
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Table 4.1: Paired T-test and F-test results for different smoothing kernels across all input channels, compared to a
no smoothed baseline. The kernel choice column indicates the selected kernel based on the p-values of both tests, with

a preference for the square kernel when both options meet the criteria.

Input Channel Kernel Choice Horizontal kernel (3x1) Square kernel (3x3)

T-test p-value F-test p-value T-test p-value F-test p-value

Entropy square 0.7618 0.8931 0.5195 0.1414
dE/dt square 0.9988 0.3709 0.9994 0.5652
Grayscale no smoothing 0.0171 0.6304 0.0060 0.4837
dI/dx horizontal 0.1003 0.3531 0.1450 0.0001
dI/dt square 0.7145 0.9099 0.9556 0.8497
RGB no smoothing 0.0414 0.2698 0.0024 0.8408
Saturation square 0.3411 0.3775 0.1873 0.2079

4.1.2. Assessment of single-channel estimates
Each input channel was evaluated individually on its ability to predict water and sand pixels. The
smoothing options from Table 4.1, aimed at improving pixel prediction accuracy by reducing noise,
were applied to each channel individually. A snapshot of the predicted timestack for all input layers,
along with the corresponding confusion matrices that display prediction accuracy and error rates, is
presented in Figure 4.2

Table 4.2: Accuracies of input channels

Input Channel Accuracy (%)
Grayscale 85
dI/dt 90
dI/dx 84
Saturation 81
RGB 86
Entropy 87
dE/dt 80

It appears that the Grayscale (I), dI/dt, dI/dx,
and Entropy channels detect individual waves with
a discernible degree of precision. However, the
Grayscale and the RGB input channels introduce
noise between the effluent and the water line. Other
channels fail to capture these rapid variations of the
water line over time and only provide a rough segrega-
tion between water, at the bottom of the time stacks,
and sand, at the top. The Grayscale, the dI/dx, and
the RGB input channel present grid-like features re-
lated to the applied patches of 60x60. This suggests
model overfitting due to patch-related discontinuities
during training.

Remarkable is that the other predictions do not present these grid-like structures. Grayscale,
Saturation, and RGB effectively recognize all sand pixels above the effluent line. This outcome was
expected for the Saturation input channel, as it has been previously demonstrated how effectively
this input channel segregates wet from dry regions. For the Grayscale and the RGB input channels,
this is more surprising. The dE/dt input channel introduces a lot of noise in the predictions. This
was expected as the dE/dt image only delineates the water line but does not give any information
about water and sand elsewhere over the timestack image.

Based on Table 4.2 the best single-input channel would be dI/dt as it has the highest accuracy.
Additionally, when comparing the confusion matrices in Figure 4.2 this is also the input channel that
balances best the false positives and the false negatives. Meaning that there is no overprediction of
water or sand pixels. While the various channels individually exhibit distinct strengths in feature
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Figure 4.2: Labels and predictions for all single inputs, and corresponding confusion matrices with predicted and
actual sand (S) and water (W) pixels.
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representation within the timestacks, their unique attributes may complement each other. Integrating
multiple input channels could enhance the model’s precision in classifying water and sand pixels.

4.1.3. Analysis of multi-channel inputs
A total of 127 channel combinations were evaluated through k-fold cross-validation. Figure 4.3a
presents the resulting mean accuracy and standard deviation. Subsequently, the 24 best combinations
were selected based on arbitrary thresholds of µacc > 95.5% for mean accuracy and σacc < 0.5% for
standard deviation. These correspond to the blue dots in Figure 4.3a. The frequency of occurrence
of every input channel in these 24 best combinations was then computed, and displayed in Figure
4.3b.

Figure 4.3: In (a), the results of a k-fold cross-validation analysis across all possible combinations of input channels,
illustrate the standard deviation of the results as a function of the mean accuracy. Arbitrary thresholds were set at a
µacc = 95.5% and σacc = 0.5% to select the best combinations of input channels. In (b), the frequency of occurrence

of input channels in these best combinations.

In Figure 4.3a, the results of the k-fold cross-validations show large disparities between the differ-
ent combinations. The accuracy varies from 68% up to 96% and the standard deviation from 0.2%
up to 10%. A cluster of channel combinations that showed an accuracy higher than 95.5% and a
standard deviation smaller than 0.5% are depicted in blue in Figure 4.3a. Inspection of the frequency
of occurrence of the different input channels over these best combinations showed that both the sat-
uration and the entropy input channels were present in every one of the best combinations. This is
surprising for the Saturation channel, which was performing poorly on its own, as demonstrated in
Figure 4.2. These channels seem to enhance nearshore features and give complementary information
to the model.

Also, among the 24 best combinations, 17% included six inputs, 29% five inputs, 33% four inputs,
17% three inputs, and only 4% (one combination) utilized just two channels: Saturation and Entropy.
Which, once more advocates the efficacy of those channels to enhance nearshore features advantageous
for runup extraction under the presented conditions. From the 24 best combinations the one with the
highest accuracy was retained for comparison with manual selection and the CC-based Saturation-
Entropy method. This best model combined the grayscale image with dI/dx, saturation, entropy,
and dE/dt as input channels.
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4.2. Optimization of ML and CC model

4.2.1. Model performance and correlation to input statistics
Until now the ML results were assessed only through accuracy: the percentage of correctly predicted
pixels. To further refine the model, the local performance in time was evaluated by comparing the
ML-predicted water line with the hand-picked results and CC estimates. The time correlations of
the two methods with the hand-picked water line are displayed in Figure 4.4.

Figure 4.4: In (a), the timestack image along with the hand-picked water line, and in (b), the corresponding Pierson
correlation coefficient of the ML and CC methods in a moving window of 100 grid cells.

Over the entire timestack, the ML method achieves a correlation of 0.7 with the handpicked data,
whereas the CC method achieves a correlation of 0.68. The correlation coefficient in time seems
negatively skewed, with many values close to one, and outliers that reach negative correlations. The
percentage of correlation coefficients above 0.7 is 67% for the ML method and 62% for the CC method.
Hence, most data points align strongly with the manual results for both methods. However, large
sections remain where they fail to capture the water line accurately. The results provide a baseline
for further comparison, encouraging further analysis of why certain segments show discrepancies and
which features may be responsible.

To assess how the input channels affected the correlation between the models and the hand-picked
results (Figure 4.4b), the input channels were reduced to the time dimension by taking the mean,
standard deviation, maxima, and minima over each column. Next, the correlation coefficient of
each statistical measure was calculated against the correlation coefficient between the model and the
hand-picked data.

Performance ML method and correlation to input statistics
The correlation coefficients between the input channel statistics and the machine-learning model
performance are summarized in Table 4.3. The column minima of the saturation channel, Smin,j , with
a correlation of -0.255 suggests that the minimum value in the saturation channel might negatively
impact the match between machine-learning and hand-picked results, possibly indicating that lower
saturation levels might be problematic for the model. The column average of the saturation channel,
Smean,j , with a negative correlation of -0.213 shows that higher average saturation over space is
associated with lower model performance. Also, dE/dtmin,j with a positive correlation of 0.156
shows that a higher minimal value might enhance the predictive performance of the machine-learning
model. On the other hand, σdE/dt,j with a correlation of -0.191 indicates that the minimal variations
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in entropy over time have a moderately positive relationship with better-matching results, which
might suggest that stable regions of low variability in texture are easier for the model to predict
accurately. The extremes of the grayscale channel, Imin,j and Imax,j , also show positive correlations,
0.142 and 0.138 respectively, suggesting that extreme grayscale values, whether high or low, correlate
positively with better matches between the two methods. However, σI,j shows a negative correlation,
implying that high variability in pixel intensity could coincide with poor model results. Furthermore,
dI/dtmean, σE,j , Emin,j , and dE/dtmean,j show very weak correlations close to zero. This indicates
that these metrics might not strongly or directly influence the correlation between machine learning
and hand-picked results in your current setup.

Table 4.3: Correlation coefficients organized by input feature types and statistical measures
of the input channels.

Correlation Coefficient

Statistic Grayscale (I) dI/dt Saturation (S) Entropy (E) dE/dt

Mean 0.082 0.008 -0.213 0.110 -0.008
Std -0.176 -0.054 -0.027 -0.009 -0.191
Min 0.142 0.129 -0.255 -0.007 0.156
Max 0.138 -0.022 -0.110 -0.026 -0.108

The negative correlations with saturation-related metrics (Smean, Smin) could imply that the ma-
chine learning model may not handle well the variations in saturation. Reviewing how the model
processes saturation might uncover opportunities for model improvement. A positive correlation with
dE/dtmin,j but negative with σdE/dt,j suggests that while the model handles stable textures well, it
struggles with high variability in texture over time. This might point to incorporating more robust
features in the model that can handle textural changes better.

Performance CC method and correlation to input statistics

Table 4.4: Correlation coefficients for different
statistics and input features.

Correlation Coefficient

Statistic Saturation (S) Entropy (E)

Mean 0.130 -0.183
Std -0.090 0.300
Min 0.098 -0.191
Max -0.138 0.014

The correlation coefficients between
the input channel statistics and the
CC method performance are summa-
rized in Table 4.4. The column-
averaged entropy, Emean,j , with a
low negative correlation coefficient of
−0.183 suggests that high randomness
and complexity tend to decrease the
effectiveness of the CC-based method.
On the other hand, σE,j with a moder-
ate positive correlation indicates that
high variability of entropy in space im-
proves contrast detection, most likely because of bimodality in the entropy spectra. The column-
minima of the entropy channel, Emin,j has a coefficient of −0.191. This moderate negative correla-
tion suggests less complexity in the least complex regions could enhance the method’s effectiveness.
Regarding the correlation with the saturation statistics, it might be that high column-average Smean,j
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positively influence the performance and that extreme values Smax,j negatively impact the model’s
result.

4.2.2. Towards a more robust ML model

Column-wise normalization
From the correlation of model performance with input channel statistics, it was concluded that
the most potential lies in preprocessing the entropy or the saturation channel. Several processing
techniques were mentioned that could eventually enhance model performance. Table 4.5 resumes the
results when applying column normalization to the entropy channel, the saturation channel, and all
channels simultaneously.

Table 4.5: Correlation coefficients of
column-wise normalized input channels.

Normalized columns r (−)

None 0.70
Entropy 0.66
Saturation 0.70
All channels 0.64

Column-wise normalization of the entropy
channel and all channels simultaneously de-
creases the model performance without any gain
along the timestack. When only the saturation
channel is normalized, overall performance re-
mains constant. Although the model appears
to handle areas of high luminescence more effec-
tively, this adjustment concurrently leads to de-
creased performance across other sections of the
timestack, notably in regions exhibiting a noisy
seepage face. The example of column-wise normalization shows how complex optimization through
channel preprocessing can be. A measure can solve one issue while creating new ones. As the column-
normalization of input channels did not seem to have any conclusive positive impact on the model’s
performance, the measures were not retained.

Figure 4.5: In (a), the timestack image along with the hand-picked water line, and in (b), the corresponding Pierson
correlation coefficient of the ML method when trained on either one (ML1) and eight (ML8) timestacks of 1 hour 33

minutes over a moving window of 100 grid cells.

Training set expansion
Earlier, the water line was extracted by training the ML algorithm with small data sections, namely,
a timestack of 1 hour and 33 minutes. The results were promising, but expanding the dataset
seems unavoidable to improve the model’s robustness and accuracy, ensuring it generalizes well to
diverse conditions. The model was trained on all timestack images from Table 3.1 except one left for
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validation (video ID: GX050084).
Overall, the correlation curve shifts upwards when increasing the training set to nine timestacks

(Figure 4.5). The correlation coefficient goes from 0.7 when training the machine-learning model on
a single timestack image to 0.77 when training on eight timestack images, meaning that training set
expansion improves the model’s performance.

Comparison to single-channel input
Until now, efforts have been focused on optimizing a multi-channel ML model. The training set
was expanded, resulting in substantial model improvement. However, to evaluate the added value
of a multi-channel informed model, it is compared against a baseline single-channel informed model.
Therefore, an additional model was trained on the expanded set, using only the grayscale image as
input. The results are summarized in Table 4.6.

Table 4.6: Comparison of multi- and single-channel input for the ML algorithm with corresponding correlation
coefficients with the manual results and the mean accuracy (µacc) and standard deviation of the accuracy (σacc).

ML model # Training r (−) µacc (%) σacc (%)

Multi-channel 1 0.70 96.09 0.42
Multi-channel 8 0.77 93.03 1.40
Single-channel 8 0.66 90.92 2.23

When comparing the machine-learning results using channels I, dI/dx, S, E, and dE/dt with
those using only I, it becomes evident that the multi-channel approach significantly enhances the
performance. The correlation coefficient over the entire timestack with the hand-picked water line
is 0.77 for the multi-channel model and 0.66 for the single-channel. Overall, only 42% of the single-
channel model results have a correlation coefficient above 0.7 with the hand-picked results. For the
multi-channel informed model, this was 72%.

When considering the results of the multi-channel models, it appears that the accuracy decreases
when the training set is expanded to all labeled data. Initially, when k-fold cross-validation was
performed within a single timestack, the model achieved an accuracy of 96.09% with a standard
deviation of 0.42%. However, with the expanded training set, the mean accuracy dropped to 93.03%,
and the standard deviation increased significantly, indicating greater variability and less consistent
performance. However, when zooming in on the individual folds of the multi-channel model trained
on the extended set, it appears that the accuracy is lower when the validation timestacks are from
November 13th, 2023, which had fewer timestacks. Specifically, the accuracies for this day were
91.97%, 91.52%, and 90.13%, with an average of 91.21% and a standard deviation of 0.78%. In
contrast, the accuracies for November 14th, 2023, which had more timestacks, ranged from 93.33%
to 94.56%, with an average of 93.94% and a standard deviation of 0.41%. This suggests that the
model performs better when validated on a larger and more diverse set of timestacks, capturing a
wider range of conditions and improving generalization. Possible causes for this discrepancy might
be that the validation timestacks from, November 13th, 2023, have higher data variability, or that
the model does not have enough similar samples from that day compared to November 14th, 2023.

4.2.3. Towards a more robust entropy-saturation model
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Window size reduction
The entropy-saturation model shows the highest correlation with the manual water line for a window
size of 500 (r = 0.72), corresponding to approximately 4 minutes of measurements. The results of
the CC method exhibit rapid degradation for window sizes smaller than 100, whereas the model
performance gradually declines for windows larger than 500. The window size of 500 was retained in
later computations.

Column-wise normalization
Normalization of the entropy and saturation columns slightly enhances the method. However, the
increase in correlation with the hand-picked results remains modest. While beneficial, normalization
alone may not sufficiently elevate model performance. Consequently, a more thorough investigation
into additional or alternative enhancements is warranted to optimize the correlation outcomes.

Figure 4.6: Correlation coefficient of CC method with
hand-picked water line, shown as a function of temporal window

size.

Figure 4.7: Correlation of CC methods with
different normalized columns.

Normalized columns r (−)

None 0.72
Entropy 0.72
Saturation 0.74
Entropy & Saturation 0.74

4.3. Comparison with manual and empirical estimates

4.3.1. Instantaneous runup
Figure 4.8 shows a time series plot comparing runup excursions measured by manual digitization
and computed by ML and CC methods. The runup estimates of the ML and CC methods appear to
closely follow the manually digitized water line, suggesting good agreement in detecting the position
of the runup.

Figure 4.8: Section from the timestack from November 14th (video ID: GX050084), 2023, with the manually
digitized water line, and the results of the CC and the ML methods.
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There are minor discrepancies between the methods at certain points. In the left section of the
image, where the swash appears less distinctly white and horizontal seepage lines are visible, both
models demonstrate challenges in accurately estimating the runup. They tend to overestimate the
shoreline position compared to the manually digitized results. This discrepancy suggests that the
models may struggle with areas where the swash zone has lower contrast and with non-wave features
in the seepage face such as horizontal lines.

Table 4.7: Swash characteristics from Manual, ML and CC: runup exceeded by 2% of the waves (R2%) and
corresponding RMSE, and correlation coefficient (r) of ML and CC Methods with the manually digitized water line

from ‘2023-11-14 14:10:00’ to ‘2023-11-14 15:30:00’.

R2% (m) RMSE (m) r (−)

Manual 0.84 – –
ML 1.01 0.17 0.75
CC 0.95 0.17 0.72

From Table 4.7 it seems that the R2% are consistent across methods with correlation coefficient
of 0.75 and 0.70 for the ML and the CC methods respectively. However, the RMSE value stands at
0.17 meters for both methods throughout this period, which is considerable relative to the amplitude
of the wave runup (∼ 1m). This level of error may still impact the reliability of runup estimations in
practical applications. Table 4.8, summarizes the comparison between the ML and the CC methods
over the full runup time series on November 13th and November 14th.

Table 4.8: RMSE, and correlation coefficient (r) of ML and CC Methods with the manually digitized runup time
series. From ‘2023-11-13 13:46:00’ to ‘2023-11-13 16:54:24.5’ and from ‘2023-11-13 13:46:00’ to ‘2023-11-14 10:10:00’.

r (−) RMSE (m)

ML 0.96 0.10
CC 0.94 0.12

Both methods demonstrate very strong correlations with the actual data. With correlation co-
efficients of 0.96 and 0.94 for the ML and CC method respectively, which indicates an excellent
linear relationship between the predicted and actual values of the runup time series. The RMSE
values provide a measure of the average magnitude of the errors between the predicted values by
each method and the actual values of the runup time series. The ML and the CC method show
predictions deviating from the actual values by about 10 and 12 cm on average, which corresponds
to an error of approximately 16% with respect to the maximal runup amplitudes.

4.3.2. Runup statistics
In general, the estimated runup quantiles show good agreement with the manual method. In Figure
4.9, for the two methods, runup exceeded by 2% of the waves (R2%), and runup exceeded by 50% of
the waves (R50%) show generally good agreement with the manually digitized water line.

This is confirmed by high correlation coefficients of 0.97 and 0.99, respectively, which indicates
a solid linear relationship between the ML and CC runup statistics and manual values, suggesting
that both models are highly effective in predicting the spatial extent of wave uprush on the beach.
Additionally, the RMSE values for runup heights are relatively low (0.05-0.09 m), indicating minor
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deviations from the manually digitized water line (Table 4.9). This low error metric further validates
the accuracy of the ML and CC models in estimating runup heights, enhancing their reliability for
practical applications in coastal management. Especially in extreme-value applications.

Figure 4.9: Runup statistics (R2% and R50%) on November 13th and November 14th, 2023, including Manual, ML,
and CC methods. The time ranges are from ‘2023-11-13 13:46:00’ to ‘2023-11-13 16:54:24.5’ and from ‘2023-11-13

13:46:00’ to ‘2023-11-14 10:10:00’.

On November 13th, the manual method yielded a higher R2% compared to the ML and CC
methods. Overall, the difference was reasonable, approximately 0.15 m, corresponding to a horizontal
excursion of 2 m. On this day, the uprush was distinguishable on the timestack images. However,
the backwash was not, and it appears that both the ML and CC methods struggled with larger
runup events as the effect is especially pronounced in the R2% metric. Additionally, it raises inquiries
regarding the reliability of the manual findings.

Table 4.9: Correlation and RMSE of (R2%) and (R50%)
from ML and CC methods with manually digitized swash
characteristics from November 13th and November 14th.

R2% R50%

r (-) rmse (m) r (-) rmse (m)

ML 0.97 0.09 0.99 0.05
CC 0.97 0.08 0.99 0.05

On November 14th, the R2% values
are slightly overestimated by the ML and
CC methods. This overestimation is likely
due to the method by which R2% is ex-
tracted from the runup time series. The
ML and CC methods introduce higher fre-
quency components into the runup time
series, causing single large runup events
to exhibit multiple local maxima. Conse-
quently, this biases the R2% estimates to-
wards higher values. On November 14th from ‘13:00’ to ‘15:00’ the ML method slightly underesti-
mates the R50%. During this period, the timestack images exhibit extremely low contrast between
the water and the sand. The absence of white foam in the swash zone likely leads to an increased
number of incorrectly classified sand pixels. This effect is most pronounced during smaller runup
events, which are characterized by less energy and thus less turbulent motion, thereby influencing
the R50%. On November 14th around ‘15:00’ both methods overestimate R50% slightly. This corre-
sponds to the timestack described in Section 4.3.1, where disturbances in the seepage face result in
high entropy values, leading to more pixels being classified as water.
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4.3.3. Spectral decomposition of runup
The runup spectra were computed on November 14th from ‘15:00’ to ‘15:30’ for all three methods,
ass well as the mean long-wave oscillations, Sig, and the mean short-wave oscillations, Sinc. The
results are displayed in figure 4.10.

The spectra of the Manual, ML, and CC methods closely follow each other across the frequencies,
indicating that each method captures similar dynamics, and although some deviations are observed,
they are negligible when considered within the 90%-confidence interval (Figure 4.10a).

Figure 4.10: In (a), the wash energy density spectra for manual, ML, and CC methods with associated
90%-confidence interval. In b) the mean long-wave oscillations, Sig, and in c) the mean short-wave oscillations, Sinc.

All from ‘2023-11-14 15:00:00’ to ‘2023-11-14 15:30:00’.

The infragravity part of the spectra (left of the dashed line at 0.05 Hz) shows less variability be-
tween the methods, suggesting that all approaches consistently capture the lower frequency motions.
For all three methods, the spectral decay is approximately -2. It corresponds to nearshore character-
istics, usually less steep than a full-grown offshore spectrum due to the energy losses associated with
wave breaking and wave-wave interaction, transporting energy away from the peak.

In terms of energy contained in the spectra, the manually digitized water line shows the highest
oscillation values among the three methods, suggesting it might be capturing a larger amplitude
wave runup. This may be due to the tendency to manually digitize the waves retreating further after
each backrush, and because manual digitization follows the peaks more closely than the ML and CC
methods, which tend to round them off. However, the difference across methods remains within the
90%-confidence interval of the energy density spectra, meaning that the deviations aren’t significant.
The methods do not present a significant difference along the short-wave components. They all show
reduced oscillation values in the Sinc category, which is typical as this component represents higher
frequency waves that generally contain less energy in the nearshore due to breaking and dissipation.

From Figure 4.11a, it is clear that most energy is contained in the infragravity band of the spectra.
On November 14th from 12:30, some more energy is found in the incoming wave part of the spectra.
In Figure 4.11b and Figure 4.11c, the manual spectra and the differences between the ML and CC
spectra compared to the manual spectra are shown (ML - manual and CC - manual). Positive
values (red) correspond to overestimation by the method, while negative values (blue) correspond
to underestimation by the methods. For both methods, the difference in energy density is largest
around the peak frequency, located in the infragravity band (0.004 Hz - 0.04 Hz). This is confirmed
by the RMSE of the SIG which is higher than the RMSE of Sinc (0.02 m - 0.01 m for both methods).
Overall, the methods tend to slightly underestimate the energy contained around the peak, except
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(a) Spectrogram (Manual)

(b) Spectrogram (ML - Manual)

(c) Spectrogram (CC - Manual)

Figure 4.11: Spectrogram of the extracted runup: manually digitized results (a), and the spectral
difference between ML and Manual (b), and CC and Manual (c). From 2023-11-13 13:46:00 to

2023-11-13 16:54:24, and from 2023-11-13 13:46:00 to 2023-11-14 10:10:00.
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for the ML method on November 13th around 17:00.
From the plots, it appears that the sub-infragravity band is slightly underestimated by both

methods. However, this is an artifact of the interpolation method of the plotting options, as the
frequency resolution (δf) is 0.009 Hz, meaning that sub-infragravity components fall out of the
resolution range.

The models’ performance is satisfactory when considering the mean wave period (Tm−1,0). The
ML model shows a correlation coefficient of 0.79, while the CC method has a slightly lower correlation
coefficient of 0.70. Although these values are slightly lower than those for the runup extremes
(R2% and R50%), they are still very high. Hence, despite the models tending to underestimate the
infragravity part of the spectrum, the differences remain tolerable as the mean frequency (fm−1,0)
is not too far off. The RMSE for Tm−1,0 remains within 10% of the observed values (Tm−1,0 ∼ 40
seconds), at 3.51 seconds for the ML model and 3.88 seconds for the CC method. This indicates
that the models accurately predict the timing aspects of the runup, which is crucial for dynamic
assessments, such as predicting the frequency of inundation of sea turtle nests.

Table 4.10: Comparison of Sig, Sinc and T−1,0 for ML and CC methods.

Sig Sinc Tm−1,0

r (-) rmse (m) r (-) rmse (m) r (-) rmse (s)

ML 0.90 0.02 0.88 0.01 0.79 3.51
CC 0.90 0.02 0.92 0.01 0.70 3.88

4.3.4. Empirical estimates for runup
The runup observations from the Manual, the ML, and the CC methods were compared to empirical
estimates according to Stockdon et al. (2006). The runup predictions were made according to the
general formula with two different beach slopes (β = 0.1, and β = 0.016), and the formula for
extremely dissipative conditions (Figure 4.12).

All methods and predictions exhibit an increasing trend in R2% throughout the day on November
13th and November 14th. Each observation method demonstrates a high correlation (greater than
0.7) with the empirical estimates, which is expected given that a significant portion of the estimates
is derived from the observed mean water levels from the NOAA station. However, there are notable
differences in the R2% values predicted by the various methods and Stockdon implementations.

The Stockdon formula with β = 0.1 consistently predicts the highest R2% values, which is con-
firmed by the higher RMSE values for all three methods: 0.38 for Manual, 0.51 for ML, and 0.50
for CC. For a beach slope of β = 0.016, the predicted R2% values are lower than those for β = 0.1.
Correspondingly, the RMSE values are smaller, at 0.16, 0.28, and 0.27 for Manual, ML, and CC,
respectively.

The Dissipative Stockdon method appears to align best with the observations. It shows the lowest
predictions and maintains a high correlation across all observation methods, with r values of 0.71
for Manual, 0.83 for ML, and 0.83 for CC. This runup formula also minimizes the RMSE, achieving
values of 0.08 for Manual, 0.13 for ML, and 0.13 for CC.

Notably, all runup estimates show the least alignment with runup observations during low tide,
while they follow more closely the observations during mid- and high tide. This trend is also evident
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Figure 4.12: Runup observations and estimates of R2% on November 13th and November 14th, 2023. Observations
include Manual, ML, and CC methods. Estimates are based on the general Stockdon formula (with β = 0.1 and
β = 0.016), and the Stockdon formula for extremely dissipative conditions. The time ranges are from ‘2023-11-13

13:46:00’ to ‘2023-11-13 16:54:24.5’ and from ‘2023-11-13 13:46:00’ to ‘2023-11-14 10:10:00’.

in the runup estimates derived from the Stockdon formula for extremely dissipative conditions. Dur-
ing high tide, the estimates align almost perfectly with the observations, whereas during low tide,
discrepancies can reach up to 20 cm.

Table 4.11: Comparison of Manual, ML, and CC methods with
different Stockdon implementations.

Stockdon

Dissipative β = 0.016 β = 0.1

r (-) rmse (m) r (-) rmse (m) r (-) rmse (m)

Manual 0.71 0.08 0.72 0.16 0.74 0.38
ML 0.83 0.13 0.83 0.28 0.83 0.51
CC 0.83 0.13 0.82 0.27 0.82 0.50



5
Discussion

A CC and ML method has been successfully implemented, demonstrating generally good agreement
with manually digitized water lines. However, this discussion aims to address lingering questions. It
will explore the relevance and applicability of these ML and CC methods (Section 5.1), along with
their potential real-world applications and future research directions, including empirical estimates
for sea turtle nest flooding. Key considerations will encompass the impact of training set size and
composition, challenges and opportunities in preprocessing techniques, refining ground truth for
model assessment, and investigating additional input channels and their combinations to further
enhance the ML algorithm (Section 5.2).

5.1. Relevance of multi-channel input for water line detection

5.1.1. Insights from traditional runup extraction methods
Traditional CC methods for runup extraction showed limited performance under dissipative condi-
tions due to the presence of a seepage face and low energy waves, which show little contrast with the
sand, especially along the backwash of waves (Huisman et al., 2011). The Radon Transform (RT)
method developed by Almar et al. (2017), showed good agreement with LiDAR data on an energetic
dissipative beach, and was able to delineate the water line where the CC methods failed to. How-
ever, in most timestacks on this particular beach, the Radon method was not able to capture runup
effectively and demonstrated high sensitivity to the input minimum and maximum runup values.

Earlier work has shown that spatial pattern analysis, can effectively be implemented for shoreline
detection in satellite images (Fuse and Ohkura, 2018) and that on topographical LiDAR data, the
swash zone can be identified thanks to variations in surface roughness (Wang et al., 2023). The local
entropy, as a measure of roughness, has demonstrated significant potential in isolating the swash
zone due to its turbulent nature compared to the sand above it. This underscores the efficacy of
roughness measures in swash detection on dissipative beaches, as observed by Zhang and Zhang
(2009). Combined with saturation, to reduce noise above the effluent line, entropy can be an efficient
method for runup extraction.

The estimates on the full runup time series from November 13th and 14th aligned well with the
hand-picked water line, with a correlation coefficient (r) of 0.94 and root-mean-square-error (RMSE)
of 0.12m. The runup extreme values showed even better agreement with a r-value of 0.97 and an
RMSE of 0.08m for the R2%, and a r-value of 0.99 and RMSE of 0.05 m for the R50%. Regarding
temporal accuracy, the CC predictions were satisfactory, with a r value of 0.70 and an RMSE of 3.88

56
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seconds.
However, the model still has limitations. It requires a smooth seepage face to perform well;

otherwise, high entropy values in the seepage face lead to an overestimated water line and the
introduction of high frequencies. Additionally, the model needs a certain level of turbulence in
the swash zone. Without it, the swash is characterized by patches of low entropy, leading to an
underestimated water line. This issue is particularly pronounced in the backwash of singular runup
events.

Window size reduction and column normalization of the saturation channel enhanced the CC
method’s performance over the considered data. However, the correlation increment with the man-
ually digitized water line remained small, and further research is needed to prove the robustness of
these measures, and whether they generalize well on other dissipative beaches.

5.1.2. Enhanced runup detection with multi-channel approaches
The multi-channel informed ML model showed superior results to the single-channel model in terms
of accuracy and standard deviation. The idea, derived from Collins et al. (2023) with their multi-
informed CNN algorithm with LiDAR data showed promising results, and aligned well with the
hand-picked data (r = 0.77), while the single-channel informed model returned poorer performance
(r = 0.66). This improvement could be attributed to the increased informational content captured
by these channels, which likely enhances the model’s ability to distinguish between sand and water
in various environmental conditions.

In total 7 input channels and 127 different combinations were assessed. Out of these, the 24
best combinations all included the entropy and saturation channels, and one combination consisted
solely of these two channels. This highlights the critical importance of these channels for a multi-
channel informed ML model for runup extraction and suggests they warrant further investigation.
Our findings corroborate the work of Zhang and Zhang (2009) who highlighted the the role of texture
and color for runup extraction.

The model with the highest accuracy out of the 127 combinations was retained for further opti-
mization, while other models had similar accuracies and lower standard deviations. Furthermore, the
best choice was based on k-fold cross-validation performed on one timestack of 1 hour 30 minutes. It
might as well be that other models would have performed better on different training sets. Therefore,
the training set should be extended during this phase for a more generalized approach, and ensure
a more robust selection of combinations. Unfortunately, the limited amount of labeled data and
the computational tools at hand did not allow for this during this research, as evaluating the 127
combinations took 10 hours for a CPU implemented CNN with tensorflow.keras.model.Sequential on
an Intel Core i7 processor with 16 GB of RAM when training on a single timestack image.

The ML learning model was cross-validated on nine timestacks and the estimates of instantaneous
runup were concatenated. The resulting runup time series from November 13th and 14th aligned
well with the hand-picked water line, with a correlation coefficient of 0.96 and RMSE of 0.10m. The
runup extreme values showed even better agreement with a correlation of 0.97 and a RMSE of 0.09
m for the R2%, and a r-value of 0.99 and RMSE of 0.05 for the R50%. Similarly to the CC method,
when it comes to the temporality of the ML prediction, the model performed quite well concerning
the manually observed water line, with a correlation of 0.79 and a RMSE of 3.51 seconds for the
significant wave period (Tm−1,0).
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One limitation of this study is the relatively small dataset. While it is sufficient to demonstrate
proof-of-concept, it may not capture the full variability of coastal environments needed for a robust
model for wave-by-wave analysis. When the estimations were extrapolated to new time series, the
ML model occasionally failed to accurately capture the water line due to specific characteristics of
the new timestack images. However, these errors were infrequent and should not pose a problem
for long-term runup analysis. For wave-by-wave analysis, future research should focus on extending
the training to a more extensive and diverse set of coastal regions and environmental conditions to
improve the model’s robustness. Alternatively, to overcome the incorrect runup extraction due to new
unknown artifacts, it might be beneficial to add synthetic artifacts during training on the timestack
images. This process is called data augmentation and could also help in raising a flag when strange
patterns are encountered.

5.1.3. Real world applications and future research direction
Both the ML and the CC method demonstrated good agreement with the manually digitized runup
time series, as well as with the extreme runup heights R2%, and R50%. The CC method is anticipated
to be applicable across similar beaches along the northern Gulf of Mexico for extreme value analysis
and wave-by-wave analysis; however, it is recommended to visually verify the runup estimates from
the CC method to ensure accuracy. Despite that the ML model sometimes failed to capture the water
line when extrapolated outside the k-fold training sets, due to artifacts never encountered before, it
might be used for extreme value analysis under similar environmental conditions. However, visual
data control is a prerequisite, and there is a risk of losing large portions of the time series that are
not accurately estimated by the model, and filling these gaps manually will lead to redundant and
time-consuming work. Alternatively, one should accept that a portion of the extracted water line
may be somewhat inaccurate.

These models contribute to the optimization of runup data acquisition and build forth on a
trend directing towards a more stochastic approach for species management, whether probabilistic
(Ware and Fuentes, 2018; Ware et al., 2019) or numerical (Dédina, 2023). Reliable data is key in
validating these predictions. The study by Dédina (2023) focused on predicting the likelihood of
nest inundation but was limited by data scarcity, which impeded the direct validation of the runup
estimates produced.

However useful extreme value analysis might be in coastal species management, the timing aspect
of the estimates is also of importance, especially in groundwater processes. Unfortunately, this study
did not encompass the analysis of groundwater table fluctuations. However, the literature has shown
how intricate these processes can be. At first, the beach matrix was considered as a low pass filter
(Raubenheimer et al., 1999). This means that in general low-frequency fluctuations such as the tide
damp out slower in the onshore direction, and that the corresponding time scales are most important
in the determination of the groundwater table. However, a myriad of other processes alter this
simple statement. For instance, Nielsen and Hanslow (1991); Cartwright et al. (2004) showed that
the presence of a capillary fringe allows groundwater waves to propagate faster and decay slower and
found that this phenomenon is even more significant for high-frequency waves. Hence, it is crucial to
accurately represent the periodicity of runup events, to ensure the accurate modeling of these subtle
groundwater processes. Understanding what frequencies are translated into the beach matrix will
help determine which time scales are relevant and will support precise management strategies.
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Also in the context of shoreline erosion, the periodicity of runup is of importance and an accurate
spectral description is necessary, as waves stir up the sediment that is then transported by current
(Bosboom and Stive, 2021). Higher frequency waves result in a constant agitation of the swash
which prevents the settlement of sediment and makes it available for transport. A better spectral
representation of the swash zone will enable more accurate estimates of coastal erosion. For now,
both the ML and the CC methods introduce high frequencies that aren’t extracted manually. Post-
processing of the runup time series could help overcome this issue. For instance, smoothing techniques
could be applied that preserve the amplitudes of larger events, such as polynomial filters or median
filters.

To enable a better understanding of the hydrodynamics it is necessary to further refine auto-
mated runup extraction methods. While it may be unrealistic to develop a universal CC method
adaptable to all beach types and environmental conditions, one significant challenge identified in
this study is the fragmented information regarding the applicability of various models. It would be
extremely beneficial to have a comprehensive tool that compiles all relevant preprocessing techniques
and extraction methods developed to date. Such a tool would accept a timestack image as input,
apply all available methods, and then provide a visual representation of each method’s performance.
Currently, researchers must independently navigate the same extensive investigation process, often
grappling with various programming languages. This redundancy likely leads to suboptimal solu-
tions, which is unfortunate given the wealth of existing research that remains underutilized amidst
the continual influx of new studies. However, it must be recognized that attempts have been made
to generalize the applicability of methods by developing user-friendly toolboxes (Vousdoukas et al.,
2011; Nuyts et al., 2023).

While knowledge about hydrodynamics is a prerequisite, a better understanding of the resilience
of specific species to environmental influences is also required. Presently, bringing it back to sea turtle
eggs, our knowledge of species-specific tolerance to hypoxic events is limited, and, factors such as
frequency, duration, and timing relative to embryonic development remain understudied (Caut et al.,
2010; Foley et al., 2006; Pike et al., 2015; Ware and Fuentes, 2018). A multidisciplinary approach
is essential to investigate both the stressors affecting coastal systems and their resilience, whether
these relate to turtle nests or other species.

5.1.4. Empirical estimates for flooding of sea turtle nests
In prior studies, Ware et al. (2019, 2021) utilized the empirical formula of Stockdon et al. (2006)
to estimate R2% and assess the necessity for relocating nests. Their evaluation involved comparing
runup estimates against GPS measurements of the high water line, leading to the conclusion that
the optimal beach slope β for applying the Stockdon formula was at the dune toe, the gentlest slope
across the profile.

In this research, the Stockdon formula was applied to two distinct beach slopes: one corresponding
to the dune toe (β = 0.016) and the other to the dune slope itself (β = 0.1). Additionally, the formula
for extremely dissipative conditions, as suggested by Stockdon et al. (2006), was examined. The
most favorable outcomes were observed with the formula adapted for extremely dissipative beaches,
applied to data collected on November 13th and 14th. These settings yielded the lowest RMSE
values across all three runup observation techniques, with the manual method recording 0.08 m, the
machine learning (ML) approach 0.13 m, and the cross-correlation (CC) technique 0.13 m. These
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results corroborate with Ware et al. (2019), however the formula for extremely dissipative conditions
outperformed the general formula with the β as the dune toe slope.

Comparing the two beach slope estimates, the gentler slope at the dune toe (β = 0.016) con-
sistently outperformed the steeper dune slope (β = 0.1). Lower β values significantly reduced the
RMSE, enhancing the model’s performance. Specifically, for β = 0.016, the RMSE was 0.16m for
Manual, 0.28m for ML, and 0.27m for CC; whereas, for β = 0.1, the values escalated to 0.38m,
0.51m, and 0.50m respectively.

Furthermore, all three estimates exhibited a strong linear correlation with the measured runups
(exceeding 0.7). It is important to note that a significant component of the runup estimates was
derived from the recorded mean water level (tide + surge) at the NOAA station, which induced
notable similarities in the shape of the three estimates for R2%.

Despite the high correlation between the R2% estimates and actual runup measurements, the
alignment was not uniform throughout the tidal cycle. During low tide, the estimations tended
to overestimate R2% more than during mid- to high tide. This pattern was also observed with
the formula for dissipative conditions, where the measured values closely matched the estimates
during high tide but overestimated R2% by up to 0.2m during low tide. These findings align with
observations by Stockdon et al. (2006), who noted a significantly lower correlation between estimates
and observed values during low tide (ρ = 0.29) compared to mid- to high tide (ρ = 0.52), attributable
to the shallower depth of the nearshore platform causing waves to break further offshore.

5.2. Prospect for multi-channel ML model

5.2.1. Importance of training set size and composition
Initially, the idea was to train the ML model on a small data selection of 1 hour 30 minutes on a
particular day and then compute estimates of the remaining timestacks of that same day. However,
one timestack image did not seem to provide enough variability. The model performed poorly un-
der certain conditions not present in the training set, such as high luminescence or a non-smooth
seepage face. To overcome these limitations a k-fold cross-validation was performed on all 9 labeled
timestacks from November 13th and 14th. The results were promising but prompted some additional
considerations.

On the one hand, the prediction of the considered timestack from November 14th gave a higher
correlation with the hand-picked water line when the training set was extended to 8 timestacks.
Namely, 0.77 instead of 0.70. This means that additional data helped the model generalize to data
from the same day.

On the other hand, the mean accuracy across folds decreased from 96.09% to 93.03%, when the
training set was increased. Suggesting that the model’s performance became less consistent with
expanded training. This outcome can be attributed to the high quality and similarity of the original
training timestack to the validation data, which resulted in high initial accuracy. However, the
imbalance within the extended training set might as well have caused the model to overfit to the
timestacks of November 14th. In total, 9 labeled timestacks were used of which 6 were shot on
November 14th, and only 3 on November 13th. The over-represented class had a mean accuracy
of 93.94% with a standard deviation of 0.41%, while the under-represented class had an accuracy
of 91.21% with a standard deviation of 0.78%. The imbalance, with more data from November
14th, likely affected the model’s learning, making it less effective when validating the November 13th
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timestacks. Therefore in future work, the model should be trained with balanced data or either
naturally or by data augmentation, and regularization techniques could be implemented to address
this issue and avoid overfitting. Another explanation would be the lesser quality of the timestack
images from November 13th, where the swash is characterized by an undefined backwash.

Further training set expansion is recommended to increase the model’s ability to overcome all en-
vironmental conditions and anomalies it could encounter. When predicting new unlabeled timestacks,
areas that follow the water line accurately are observed, while others have estimates that are off by a
few meters in the horizontal plane. Often, visual inspection reveals anomalies in the timestack that
likely caused these inaccurate predictions, such as the presence of a truck or a person that remained
in the section for a while and was not present in the training sets.

5.2.2. Challenges and opportunities related to preprocessing techniques
Analysis of the correlation of the model’s performance to the hand-picked water line with the input
channels statistics revealed that most potential lay in improving the model’s handling of features
with high variability in saturation and entropy, as these channel statistics correlate strongest with
low model performances. Additional preprocessing steps that could help balance these aspects within
our input data could be evaluated.

In this research, the timestacks were normalized over the full images. Column-wise normalization
or clipping could reduce the variability of the timestack images and reduce the impact of sudden
changes in time of for instance high luminescence. Normalization techniques are commonly used to
ensure that all the data is on a similar scale and that gradients do not become too large, which can
impede learning (Chng, 2022). Other preprocessing steps would be additional smoothing, transfor-
mation, standardizing, or combining channels by taking the mean of two channels.

The example of column-wise normalization of the entropy and the saturation channel showed
how complex these measures operate, and, that a measure that seemingly improves the model’s
performance on one section of a timestack concurrently degrades other areas. A comprehensive
sensitivity analysis that evaluates the impact on all input channels and preprocessing measures may
provide more clarity.

5.2.3. Refining ground truth for better model assessment
The model was trained towards a manually digitized water line, and, after optimization areas of low
correlation remained. It is important to recognize that hand-picked data shouldn’t be treated as
absolute ground truth. Instead, it functioned as a baseline for optimization in the absence of a more
accurate water line, and, comparison with other data sources would be beneficial to improve the ML
model further.

Manual digitization is straightforward and remains widely used (Simarro et al., 2015; Atkinson
et al., 2017; Yang et al., 2022; Collins et al., 2023). However, on dissipative beaches such as the
study case, distinguishing the backwash can be challenging. This can be mediated by assessing the
averaging of the manually digitized waterline over multiple specialists. However, the labor involved
with manual digitization is tremendous, and unrealistic if one wishes to extend the training set further.
Preferably, another measurement method such as LiDAR measurements or resistance wires should
be installed and used as ground truth.



5.2. Prospect for multi-channel ML model 62

5.2.4. Additional input channels and combinations
In this study, only 7 input channels were evaluated on their joint ability to segregate water from
sand in timestack images. These channels were the grayscale image (I), dI/dt, dI/dx, saturation,
RGB, entropy (E), and dE/dt. It took 10 hours to complete the k-fold cross-validation for all 127
combinations with an Intel Core i7 processor and 16 GB of RAM. Adding more input channels will
result in an exponential increase in the computational time and should be performed on a higher-
performance machine. Despite the increased computational demands, evaluating extra input channels
is essential for further developing a multi-channel informed ML model for runup extraction.

In research by Collins et al. (2023) a CNN model was informed by multiple channels from LiDAR
data. One of which was the elevation. Video imagery does not return height maps directly. However,
by solving the photogrammetric equation, it is possible to project the two-dimensional pixel coordi-
nates back to three-dimensional world coordinates -if the beach profile is measured accurately. The
resulting elevation map can be included as an extra channel, which would naturally assign weight
to the distribution of sand and water in the cross-shore direction. Alternatively, if regular profile
measurements are unavailable, a linear function could be implemented to approximate this effect.
The function should be implemented carefully to ensure a balanced delineation between water and
sand, meaning that the water line should be positioned approximately at the center of the times-
tack. Otherwise, this additional channel might adversely impact the results by misrepresenting the
boundary, leading to inaccurate predictions of water or sand regions.

Another possible improvement could be the addition of other covariates such as temperature, wind
speed, offshore wave characteristics, atmospheric pressure, or humidity. These variables are easily
obtained from local measurement stations and could be included as one-dimensional metrics in the
learning process. This process, known as statistical downscaling, has been successfully implemented
for medium-term shoreline prediction (Antolínez et al., 2019). By incorporating these additional
covariates, the model could achieve better accuracy and robustness in predicting runup.

The Hue channel from the HSV color model was not evaluated here because the resulting image
resembled the Saturation channel for the considered timestacks. The limited computational power
led to choosing the Saturation over the Hue. However, studies (Aarninkhof et al., 2005) have used this
channel in the context of shoreline and wet/dry boundary detection. It might be worth investigating
whether or not it holds any added value compared to the saturation channel.

Also, combining channels into new ones by averaging might help balance certain extreme features
by reducing the variance of the newly generated input channel. This method is called ensemble
averaging and ‘has been frequently compared to the individual estimators, and in many cases improves
the resultant model accuracy’ (Hashem, 1997).

Here the best channel combination for runup extraction was chosen based on the highest accuracy
from a sensitivity analysis. It might be beneficial to conduct a feature importance analysis to identify
and prioritize the most significant channels (Verdinelli and Wasserman, 2023). Alternatively, channels
could be weighted dynamically during training (Turali et al., 2024).

During this research, the different channels were combined linearly. However, exploring non-
linear combinations might improve the model’s ability to predict runup. Non-linear combinations
can capture more complex interactions and relationships between variables, which linear methods
might miss. This could lead to more accurate and robust predictions by allowing the model to better
understand and represent the underlying dynamics of runup phenomena. However, non-linearity in-
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creases the model’s complexity and herewith the chances of overfitting. A non-linear implementation
is more likely to be beneficial if paired with and larger training set or measures to avoid overfitting.
Also, the additional computational costs associated with a non-linear approach should be considered.

5.2.5. Further develop the machine-learning algorithm
Limitations, related to the computational time led to a stripped-down version of a CNN architecture,
and hyperparameter tuning was left out of the scope of this research. The model was trained on
small patches of 60 × 60 which internally limits the ML model’s ability to capture the entire scales.
It is advised to reduce the number of patches by using, for instance, square patches matching the
spatial dimension. This way the ML model would be given a broader context, which is crucial in
runup extraction where spatial and temporal continuity of larger patterns play an important role.
Models trained on larger patches tend to generalize better on unseen data as they learn from a more
comprehensive view of the timestack (Hamwood et al., 2018). Also, reducing the number of patches
concurrently reduces the edge effects, observed in the predictions based on some of the input channels.
To overcome the edge effects, diverse padding methods could also be evaluated, to better handle the
border of the patches.

Adaptations in the CNN architecture could further enhance the model. For instance, augmenting
the number of layers and filters could increase its ability to capture more complex patterns and the
amount of information that the network can process. The size of filters influences the field of view of
each convolutional operation. And it might be that a more suited kernel size exists that could help
the model recognize specific patterns for the scales at play in the timestack images. Our research used
Max pooling to reduce the dimension of the input data and widen the field of view of the neurons.
Other pooling methods such as average pooling, might result in better results. Especially because
extreme values in the entropy and the saturation channel correlated with low model performance.
Averaging might help balance this issue. Additional model improvement could involve varying the
activation functions (e.g., ReLU, sigmoid, tanh), or the optimizers (e.g., Adam, SGD, RMSprop) to
speed up the convergence and improve stability.

The end model returns the most wrongly predicted water pixels in the seepage face. This corrob-
orates with most CC-based methods that fail to extract the water line on dissipative beaches due to
the decoupling of the water line from the effluent line (Huisman et al., 2011). To address this issue,
the addition of a third class to the model is proposed, which distinguishes the seepage face from the
dry sand. It might help to segregate the characteristics of the seepage face from the sand and the
water as it is very different from both classes to the eye. In recent literature (Kang et al., 2024a)
analyzed coastal video images and classified them according to the following three classes: ‘water’,
‘sky’, and ‘background’ (or beach). Here, the ‘sky category was added to reduce the amount of [...]
wrongly predicted water pixels’.



6
Conclusion

& Recommendations

The goal of this study was to extract the instantaneous runup from video imagery under the chal-
lenging conditions of dissipative beaches, to enable more precise coastal management strategies. A
more traditional color contrast (CC) method based on local entropy and saturation, demonstrated
good performance and is considered applicable under similar conditions. The results from the de-
veloped machine learning (ML) algorithm validate it as a viable proof of concept and challenge us
to enhance its adaptability and accuracy across varied environmental conditions. When applied to
other datasets, the CNN method occasionally failed to accurately capture the water line due to
specific characteristics of the new timestack images. Despite these limitations, the CNN method
can be effectively implemented for long-term runup analysis under similar conditions. Both meth-
ods demonstrate potential in reducing the time required to extract the instantaneous runup from
video imagery and contribute to the enhancement of real-time monitoring and predictive modeling
of coastal processes.

6.1. Conclusion

• Image preprocessing techniques have proven effective in creating new input channels for a
convolutional neural network (CNN), enhancing its ability to accurately extract wave runup
from video imagery. A multi-channel informed machine learning (ML) algorithm was developed
to utilize the grayscale image (I), its spatial derivative (dI/dx), saturation (S), entropy (E), and
the temporal derivative of entropy (dE/dt) as input. This multi-channel ML model significantly
outperformed the single-channel approach using only grayscale as input, achieving a correlation
coefficient of 0.77 compared to 0.66.

• The ML model demonstrated strong agreement during cross-validation with manually labeled
time series and corresponding runup statistics and mean period (Tm−1,0). The model achieved
a root-mean-square-error (RMSE) of 0.10 m and a correlation coefficient (r) of 0.96 for the
runup time series, an RMSE of 0.09 m, and an r-value of 0.97 for R2%, and an RMSE of 3.51
s with an r-value of 0.79 for Tm−1,0. However, when applied to other datasets, the method
occasionally failed to accurately capture the waterline due to specific characteristics of the new
timestack images. Despite these small limitations, the ML method could be implemented for
long-term runup analysis.

64
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• The CC method demonstrated strong agreement with the manual runup time series, achieving
an RMSE of 0.12 m and an r-value of 0.94. For the R2% metric, the method showed an RMSE
of 0.08 m and an r-value of 0.97. Additionally, for Tm−1,0, the method achieved an RMSE
of 3.88 s and an r-value of 0.70. These results suggest that the CC method is likely to be
applicable to similar beaches along the northern Gulf of Mexico.

• Among the three empirical estimates for R2% (Stockdon et al., 2006), the formula for extremely
dissipative conditions best agreed with the measured runup (Manual, ML, and CC), with
RMSE-values lower than 0.13 m and r-values exceeding 0.7. For the general formula, the dune
toe slope provided the best results—similarly concluded by Ware et al. (2021)—although the
alignment was not as accurate as that achieved with the dissipative formula.

6.2. Recommendations

• In general, the field of runup extraction would benefit from a holistic literature review of all the
methods developed to date. Including their availability (whether open source or proprietary),
the specific environmental conditions under which they are applicable, and the prerequisite
knowledge required for proper implementation, such as familiarity with the relevant program-
ming languages or the availability of a guided user interface (GUI).

• Based on the obtained results, it is recommended to use the formula for extremely dissipa-
tive conditions from Stockdon et al. (2006) under similar environmental conditions as those
presented here. However, it is important to note that the R2% estimates will likely be overesti-
mated during low tide.

• Future research should refine the automation of runup extraction routines to produce even more
reliable data for model validation, focusing on the timing aspect of the runup time series. For the
ML model, it is suggested to further extend the training set to enhance robustness, investigate
other possible input channels and additional preprocessing techniques, use more reliable ground
truth data such as LiDAR, and further develop the ML algorithm. This development could
include increasing the patch size and the network depth, changing the pooling method, or
adding the seepage face as a third prediction class.

• Aside from enhancing runup extraction and understanding hydrodynamic processes, further
development of knowledge on species’ resilience to withstand partial flooding events is necessary,
focusing on aspects such as frequency, duration, and timing relative to embryonic development.
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