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Summary
Worldwide, almost 90% of vehicles on the road are powered by internal combustion engines that run on
petroleum products. Although vehicles with alternative power sources and more efficient vehicles are
becoming available, the oil demand for transportation is not expected to decrease in the next decades,
due to the drastic growth of the car fleet worldwide. At the same time, leaders around the world agreed
to reduce green gas house emissions. The European Commission has committed itself to a 20%
reduction of transport emissions from 2008 levels by 2030.

The aim of this research is to contribute to the sustainability goals by developing efficient planning
methods for the distribution of petroleum. In the literature, this problem is well known as the Petrol
Station Replenishment Problem (PSRP). The PSRP concerns the distribution planning of petroleum
products from a central depot to a set of gas stations by compartmentalised vehicles. The literature
gap addressed in this research is twofold. Firstly, new Mixed Integer Linear Programming (MILP)
models are developed for a new rich version of the PSRP, to better represent the real-life situation. The
main characteristics of the variant of the PSRP are considering inventory management, multiple time
periods, allowing multiple trips per day, allowing split loads, considering time constraints and station
restrictions. Secondly, a new heuristic is proposed and the simultaneous dry run inventory policy is
introduced. The planning is optimised over multiple days, since stations do not have to be replenished
every day. Therefore, the main research question of this research is formulated as ”What is an efficient
planning method for the multi-period petrol station replenishment problem, in terms of computation time
and solution quality?”.

The MILP models and the heuristic are presented as planning methods. MILP model variants are
presented as well, which are based on allowing the inventory level to drop below the safety stock level
by introducing soft constraints, including average levels in the objective and considering a service time
that depends on the delivery quantity. The solutions of the planning methods are evaluated with Key
Performance Indicators (KPIs), which are the total travel distance, average stock level, number of dry
runs, run time, vehicle utilisation and average number of stops per trip. In this research, dry run is the
moment when the inventory level of a tank drops below the safety stock level.

To evaluate the performance of the planningmethods, a case study based on a real-life petrol distributor
is used. The distributor uses software developed by AdvancedManufacturing Control Systems (AMCS)
to create the planning for their operations. The case study concerns a distribution network with 59 gas
stations, one depot and four vehicles.

The MILP models can be used to find solutions for up to 20 stations and 7 days. The models can,
however, not be used to find a solution for the real-life size problem. Therefore, a decomposition
heuristic is presented, based on decomposing the decision process of the supplier. Decomposition
heuristics have proven to be effective methods to solve the rich Vehicle Routing Problemss (VRPs).
Since the decisions of the supplier are not optimised simultaneously, a local improvement procedure
based on visiting stations earlier is proposed. To determine delivery quantities, the simultaneous dry
run inventory policy is applied. This new concept, which has been observed in practice, ensures that
a station is visited as few times as possible.

The exact solutions found with the MILP models are used to evaluate the heuristic solution quality. In
terms of computation time, the heuristic outperforms the MILP models. For experiments with seven
days, the average increase in travel distance for heuristic solutions is 15.6%. At the same time, vehicle
utilisation increases and the number of stops per trip decreases, indicating more efficient transport.
A heuristic solution could be found within two hours for the full case study data set, consisting of 59

v



0. SUMMARY

stations, 4 vehicles and one depot. Therefore, the proposed heuristic is an effective planning method
for the multi-period petrol station replenishment problem. Presenting the heuristic is the answer to the
main research question.

Moreover, MILP model variants are introduced to gain insight into trade-offs between KPIs. If inventory
levels and travel distance are optimised simultaneously, it can be advised to check if the solution is
Pareto efficient. In general, lower inventory levels require higher travel distance. If dry runs are allowed
and penalised in the objective, what means that costs are added when the inventory level drops below
the safety stock level, this could result in a decrease of 15.6% in total travel distance.

Future research in this area is encouraged. The value of the simultaneous dry run inventory policy
could be further explored by considering the exact inventory level in the tank at the time of delivery,
and adjusting maximum delivery quantities according to the remaining capacity. This allows to also
replenish the quantity of fuel that has already been sold during the day till the moment of delivery.
Moreover, the proposed local improvement procedure of the heuristic is based on recreating the plan-
ning when evaluating candidate solutions. If this process is sped up, more candidate solutions could
be evaluated.
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1
Introduction

Worldwide, almost 90% of vehicles on the road are powered by internal combustion engines that run
on oil, which makes road transport currently responsible for 44% of the total oil consumption. Oil
demand in road transport has grown steadily over the last decades and the demand is not expected
to decline soon. Although the global car fleet will grow drastically in the next decades, the growth in
oil demand for cars and trucks will only slightly increase (see Figure 1.1), because of the availability of
more efficient vehicles, a shift to alternative power sources and more efficient operations (International
Energy Agency, 2018).

Figure 1.1: Oil demand per sector (International Energy Agency, 2018)

The urgency of reducing emission of greenhouse gasses has been recognised by many countries
worldwide by signing the Paris Agreement (United Nations, 2015). The European Commission has
committed itself to a 20 % reduction of transport emissions from 2008 levels by 2030 (European Com-
mission, 2019). Improving the efficiency of operations is an important way to contribute to these goals.

Petrol distribution companies can make their operations more efficient by using modern optimisation
tools, which will result in less kilometres that need to be driven to fulfil their services (AMCS Group,
2019b). This will not only lower their carbon footprint by saving fuel, but it will also improve the compet-
itiveness of the company. Profit margins are low in the oil distribution sector due to fierce competition
among distribution companies. Because transport activities are the main cost factors for these com-
panies, savings on operations will directly improve the competitive position (Lima, Relvas, & Barbosa-
Póvoa, 2016).
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1. INTRODUCTION

The petrol distribution problem is well-known in literature as the PSRP, which concerns the distribu-
tion of petroleum products from a depot to a set of petrol stations. These stations have underground
tanks in which the fuel is stored and compartmentalised vehicles are used to transport the fuel (see
Figure 1.2 for a schematic overview). Since the car fleet is increasing and a reduction of emissions is
required, efficient planning methods are needed. Optimising the planning over multiple days leads to
better solutions, since stations do not have to replenished every day. Therefore, the objective of this
research is to develop an efficient planning method for the multi-period PSRP with real-life character-
istics. Considering the most relevant real-life characteristics of the problem leads to models that better
represent the real world situation.

Figure 1.2: Schematic overview of the petrol distribution problem

According to the definition for Rich Vehicle Routing Problems (RVRPs) presented by Lahyani, Khe-
makhem, and Semet (2015), the problem researched in this report can be considered as ”rich”. RVRPs
are extensions of academic variants of VRPs with complicating and challenging features to represent
the complexity of the real-life situation.

Since the problem is NP-hard and the exact mathematical models will only be able to find solutions
for instances of limited size, a heuristic is proposed to find solutions for instances of real-life size.
Braekers, Ramaekers, and Van Nieuwenhuyse (2016) recognised that real-life characteristics are often
considered with a limited number of other characteristics. Combining all relevant characteristics for
real-life problems in new models and developing efficient solutions for these models are additions to
the literature. Therefore, the gap in literature addressed by this research is to develop new planning
methods for the PSRPwith an unexplored combination of real-life characteristics. These characteristics
include an extended time horizon, single depot with unlimited supply, heterogeneous fleet of capacitated
vehicles with compartments, flow metres, vehicle restrictions, multiple stops per trip, multiple trips per
time period, split loads, time windows, vendor inventory management and a safety stock.

The newly formulated mathematical models and the heuristic are additions to the literature. The heuris-
tic can be classified as decomposition heuristic, because it divides the rich PSRP into smaller sub
problems based on the decomposition of the decision process of the supplies. This approach makes it
easier to find a solution. This approach, however, leads to lower quality solutions, since the decisions
are not optimised simultaneously. Therefore, a local improvement procedure is used to improve the
initial solution found by the decomposition heuristic. Candidate solutions are based on visiting a station
one day earlier.

The heuristic introduces the simultaneous dry run inventory policy. This concept, which has been ob-
served in practice, is used to determine the delivery amounts that ensure that gas stations are visited
as few times as necessary to prevent dry run. In this research, dry run is the moment when an un-
derground tank is considered as empty, which is the moment that the inventory level drops below the
safety stock level.

Moreover, to evaluate the planning methods, data from a client of AMCS is used. AMCS is a company
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that specialises in software and vehicle technology for the waste, recycling and material resources
industry. One of the company’s focus areas is routing solutions for the waste and resources industries.
With the product Oil Planner, AMCS automates the petrol distribution operations planning for their
customers. The current planning process requires many characteristics to be set manually. This may
lead to a sub-optimal solution and setting up the software for a new client requires a thorough analysis
of the distribution network. More automation of the planning process could be a way to improve the
efficiency and reduce the required customisation of the software product.

1.1. Research questions
Resulting from the above formulated problem definition and research objective, the main research
question of this thesis is:

”What is an efficient planning method for the multi-period petrol station replenishment problem, in
terms of computation time and solution quality?”

Furthermore, to help answering the main research question, sub-questions have been defined to divide
the problem into several relevant parts. The sub-questions are defined as follows:

1. What is the current state of the PSRP in the literature and practice?

2. Which KPIs are relevant for assessing a planning method?

3. Which planning methods can be developed for planning petrol station replenishment?

4. How do the proposed methods perform according to the KPIs?

1.2. Scope
The Petroleum Supply Chain (PSC) can be divided into an upstream, midstream and downstream seg-
ment. The upstream segment comprises the exploration of oil wells, oil production and transportation
until the refineries. The midstream part comprises petrochemical operations at the refineries. Trans-
portation to wholesale customers and retail stations is considered as the downstream segment (Lima
et al., 2016). The optimisation models presented in this research consider the downstream segment
of the supply chain, which refers to the distribution from an oil depot to gas stations.

The problem can be optimised at different planning levels. In the review written by Lima et al. (2016),
a distinction has been made between on the one hand the strategic and tactical level and on the other
hand the tactical and operational level. Both approaches differ in the length of the time span and the
consideration of investment costs of vehicles, depots and gas stations. In this research, the aim is to
focus on the operational level, which means that a fixed network and vehicle fleet is considered. The
goal of the models is to generate a daily planning for the distribution of fuel products.

3



1. INTRODUCTION

1.3. Methodology and research structure
The structure of the research is based on the double diamond method (Design Council, 2019). The
method consists of four phases;

• Discover and understand what the problem is.

• Define the problem.

• Develop different solutions for the problem.

• Deliver the best solutions.

A distinction is made between diverging (discover and develop) and converging thinking (define and
deliver). Idea generation is a diverging process, while narrowing ideas down to a concept is a converg-
ing process. In the double diamond method, these two processes happen twice, firstly to define the
problem and secondly to develop a solution. Both processes are represented by two diamonds.

The first process, defining the problem, is covered by the first two chapters of the research. A review
of the literature is, in the discover phase, used to understand the problem. A detailed overview of the
problem, its characteristics and the state of practice are presented. This leads in the define phase to
a clearly identified literature gap which covers the state-of-the-art situation for the PSRP. The first two
chapters conclude with the answer to the first sub-question.

A solution is developed in the second process, elaborated in chapters 3 and 4. The develop phase
translates itself to the elaboration of different solution methods, which are the methods used to create
the planning for the PSRP in this case. These methods and variations to these methods are first
introduced in the conceptual model (section 3.1) and presented in more detail in sections 3.2 - 3.4.
These planning methods are the answer to sub-question three. Moreover, objectives are identified in
the conceptual model, what leads to KPIs (answer to the second sub-question). The KPIs can be used
to compare the solutions from different planning methods. These planning methods are evaluated with
a case study. The case study and the corresponding data set are introduced in chapter 4. Experiments
are performed with this data sat and results are compared based on the values for the KPIs. The
evaluation of the methods is the deliver phase, of which the result is then used to answer sub-question
four.

Chapter 5 concludes with an answer to the main research question in the conclusion and recommen-
dations for further research. An overview of the research structure is shown in Figure 1.3.
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Figure 1.3: Research structure
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2
Literature review

The PSRP has received substantial attention in the literature over the last decades. A brief overview
of recent literature covering this problem is presented in the next section, followed by a a description
of the main characteristics considered in this research. Section 2.3 then gives an overview of the
state of practice, after which solution methods for the PSRP with inventory management are discussed
in section 2.4. The chapter concludes with a clear definition of the literature gap addressed by this
research.

2.1. Petrol station replenishment problem
The PSRP is an extended version of the VRP, of which the latter was formulated for the first time by
Dantzig and Ramser (1959). A VRP considers the problem of servicing a set of customers with a fleet
of vehicles. The goal is to find the best set of routes, according to an objective function and without
violating operational constraints.

The PSRP concerns the optimisation of the distribution of several petroleum products to a set of petrol
stations over a given planning horizon. The products, stored in underground tanks, are delivered to the
stations using a fleet of vehicles with multiple compartments. Maximum delivery amounts are limited
by the available capacity of a storage tank at a station and the capacity of vehicles. The aim is to
determine the most optimal route planning for the vehicles, according to the objective of maximising
revenue by minimising costs or number of kilometres driven (Benantar, Ouafi, & Boukachour, 2016;
Cornillier, Laporte, Boctor, & Renaud, 2009; Cornillier, Boctor, & Renaud, 2012; Triki, Chefi, 2013).

Several versions of the PSRP have been researched over the last three decades. Brown and Graves
(1981) were one of the first to publish about this problem. The authors described an Integer Linear
Programming (ILP) for a real-time dispatch system for petroleum tank trucks, which were dispatched
from multiple depots. A comprehensive overview of the history of the PSRP can be found in the papers
published by Cornillier et al. (2012) and Benantar et al. (2016). This review focuses on recent and
relevant research related to the version of the PSRP considered in this research.

Cornillier, Boctor, Laporte, and Renaud (2007) developed an exact algorithm for the single day PSRP
by decomposing the problem into a routing and a truck loading problem, of which the latter was used to
determine delivery quantities and assign quantities to compartments of vehicles. The number of stops
per trip was limited to two which made it possible to find an optimal solution. The problem is extended
to multiple days by Cornillier, Boctor, Laporte, and Renaud (2008), in which the researchers presented
a MILP model with the objective to minimise costs with a penalty for overtime use of vehicles.

Popović, Bjelić, and Radivojević (2011) defined a MILP model for the PSRP which minimises both
inventory and routing costs over a time span of multiple days. The number of stations that can be
visited in a trip is limited to three and a station cannot be visited by more than one vehicle during a time
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period. The authors used a fixed consumption rate per tank, which makes the demand deterministic.

In the paper published by Popović, Vidović, and Radivojević (2012), a Variable Neighbourhood Search
(VNS) heuristic with a shaking procedure based on shifting deliveries between days on the planning
horizon. In this research, homogeneous vehicles are used, which simplifies the situation. Vidović,
Popović, and Ratković (2014) also used a homogeneous fleet of compartmentalised vehicles to dis-
tribute fuel and presented two MILP models which minimise inventory and routing costs. One of the
model also includes vehicle fleet costs.

Li, Chen, Sivakumar, andWu (2014) presented a version of the PSRPwith a fixed fleet of homogeneous
vehicles. The stations are visited after a minimum delivery quantity can be delivered, which is set to
improve vehicle utilisation.The problem is solved with a tabu search algorithm. The lower bounds of
a reasonable sized problem are determined with Langrangian relaxation. The tabu search algorithm
proved to be able to find solutions that are near optimal.

An exact model for a variant of the PSRP with multiple compartments and time windows is presented
by Benantar et al. (2016). The time windows represent the scheduling horizon for each vehicle and
there are two sets of compartments. The problem is solved using an MILP model and a heuristic is
proposed.

2.2. Problem characteristics
The importance of combining real-life characteristics in VRPs has been recognised by Braekers et al.
(2016), who state that these characteristics are mostly studied individually or with a limited number of
other characteristics. The challenge is not only to create these ”richer” models, but also to develop
efficient solution methods, which is the aim of this research.

The consideration of real-life characteristics simultaneously puts this research in the category of the
RVRPs. In the survey written by Lahyani et al. (2015), a definition was presented for the RVRP. Ac-
cording to this definition, a VRP can be called ”rich”, when at least four strategic and tactical aspects
are included in the distribution system and at least six restrictions related to the physical network, which
is the case for this research. The main characteristics are discussed in the following sections.

2.2.1. Multi-period time horizon
The PSRP has traditionally been solved over a single day time span, mainly because of the complexity
of the problem, what makes it an NP-hard problem (Al-Hinai & Triki, 2018). Because of the fact that
stations do not have to be replenished every day, what happens in case when the remaining inventory is
enough to fulfil the demand. Solving the problem for a time span of multiple days leads to more efficient
solutions (Triki & Al-hinai, 2016). Cornillier et al. (2008) classified this problem as theMulti-Period Petrol
Station Replenishment Problem (MP-PSRP).

Triki, Chefi (2013) introduced a variant of the MP-PSRP, called the Periodic Petrol Station Replenish-
ment Problem (PPSRP). When a certain replenishment pattern can be established, frequencies can be
determined for how often a station should be visited. In the PPSRP, this periodicity is recognised and
the delivery of fuel is optimised to determine the optimal day to visit a station, while minimising total
travel distance. A mathematical formulation of the PPSRP is presented by Triki and Al-hinai (2016),
which has later been extended with frequency choice by Al-Hinai and Triki (2018).

2.2.2. Inventory routing
Although transportation and inventory costs generate most of the supply chain costs, modelling ap-
proaches for supply chain usually consider these two aspects independently. Since inventory and
routing decisions are interrelated, solving both problems simultaneously may lead to better solutions,
since the customer satisfaction can be improved while the distribution costs are decreased through
efficient vehicle utilisation (Vidović et al., 2014; Cordeau, Laganà, Musmanno, & Vocaturo, 2015).
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Problems in which inventory management, vehicle routing and scheduling decisions are considered,
can be classified as Inventory Routing Problems (IRPs). These problems assume that the Vendor-
Managed Inventory (VMI) concept is applied, what means that inventory levels are known by the sup-
plier and that the supplier makes decisions about replenishment. Decisions that need to be taken
simultaneously are when to serve a customer, quantities to deliver to this customer and the routes to
serve the customers. Both the supplier and vendors benefit from this situation, since the overall dis-
tribution costs are minimised and vendors don’t have to spend resources on inventory management
(Coelho, Cordeau, & Laporte, 2014).

Different policies can be applied to determine the quantities that are delivered. The main inventory
policies are maximum level policy and the order-up-to level policy. Under the maximum level policy,
the order quantity is flexible, but lower than the maximum capacity. The order-up-to level policy uses a
fixed order quantity, which sets the inventory to a certain level (Coelho et al., 2014). The most common
policy used for the PSRP is the maximum capacity policy. Cornillier et al. (2007) and Popović et al.
(2011) applied this policy by setting bounds on the delivery quantities, based on a the capacity of a
tank. Li et al. (2014) applied an order up to policy, which means that the delivery quantity is set to the
remaining tank capacity at the moment of delivery. The simultaneous dry run inventory policy presented
in this research, is a maximum level policy.

Several researchers have considered the PSRP as IRP, with often the objective tominimise both routing
and inventory costs (Popović et al., 2011; Popović et al., 2012; Vidović et al., 2014). Li et al. (2014)
presented a model with the objective to minimise the maximum route duration. This was done to
determine the trade off between number of vehicles and maximum route duration, which is relevant
because the use of a vehicle during a day is limited to the driver schedules.

2.2.3. Multi-compartment and split loads
In the PSRP, compartmentalised vehicles are used to distribute fuel. Only one product can be loaded
in the same compartment. The problem is then modelled as a variant of the Multi-Compartment Ve-
hicle Routing Problem (MCVRP), which requires that products must be transported in different com-
partments, because of incompatibility constraints (Kaabi & Jabeur, 2015). Coelho and Laporte (2015)
presented different MILPmodels for this problem, which the authors classified as split or unsplit delivery
and tanks. Split delivery means that the content of a compartment can be split over multiple stations,
where unsplit delivery means that the full content of the compartment must be delivered to a station.
With split tanks was meant that a tank can receive delivery from multiple vehicles.

Moreover, researchers often assumed that vehicles are not equipped with flow meters, what implies
that the full content of a compartment must be emptied at a station (Macedo, Alves, De Carvalho,
Clautiaux, & Hanafi, 2011; Cornillier et al., 2007; Cornillier et al., 2008; Benantar et al., 2016; Popović
et al., 2012; Vidović et al., 2014). The absence of flow meters limits the flexibility in utilisation of
vehicles, while it is possible to equip vehicles with flow meters nowadays (Coelho & Laporte, 2015). In
this research, vehicles are assumed to be equipped with flow meters, which allows split delivery. Tanks
can be resupplied by multiple vehicles as well.

2.2.4. Time constraints and multiple use of vehicles
Several researchers have considered the PSRP with time windows, during which a station needs to
be replenished. This problem can be classified as the Vehicle Routing Problem with Time Windows
(VRPTW). Benantar et al. (2016) considered this problem with compartmentalised vehicles for a single
day. The delivery quantities were determined by the demand for that day. A tabu search algorithm with
neighbourhoods defining the visiting order was used to solve the problem.

A variant of the VRPTW is problem with multiple use of vehicles, where each vehicle can perform mul-
tiple trips per time period. Azi, Gendreau, and Potvin (2010) studied this problem with a homogeneous
fleet of capacitated vehicles. The researchers presented a MILP model and showed how the problem
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can be solved using a branch-and-price algorithm.

Another MILP model for the single day VRPTW with multiple use of vehicles is presented by Macedo et
al. (2011). The fleet of vehicles is homogeneous with fixed capacity. The authors also proposed a net-
work flow model with all feasible routes generated prior to the optimisation. An interval was determined
for each route, which defines when the route is feasible according to the time windows for delivery at
the stations.

Time windows can also be applied to vehicles, to represent driver schedules. Cornillier et al. (2008)
limited the use of vehicles to a number of available hours. In this research, it was also possible to use
vehicles in overtime hours, which had higher costs.

2.2.5. Stochastic VRPs
The PSRP is usually solved by deterministic models. However, in the real-life situation, the fuel con-
sumption at stations cannot be known beforehand and is therefore stochastic. Uncertainty in actual fuel
consumption can be corrected by safety stock levels or emergency deliveries (Popović et al., 2011).
Cornillier et al. (2008) recognised the stochastic nature of demand, as well as the fact that the stock
is sold during the day and that the delivery amount should depend on the time of arrival. However,
the authors considered demand as deterministic and applied a safety stock level to make it feasible to
deliver during the entire day.

Demand, presence of customers, travel times and service times can be modelled as stochastic in the
VRPs. In stochastic models, not all information is available before decisions are made, where determin-
istic models have complete information (Oyola, Arntzen, & Woodruff, 2018). In this research, demand
is considered as deterministic and a safety stock is applied to prevent stock out due to uncertainty in
demand. Service times are based on realistic values for delivering a certain quantity. Travel times are
deterministic as well. To determine if the planning is affected by uncertainty in travel times, for example
caused by congestion, a sensitivity analysis is conducted.

Popović et al. (2011) developed a simulation model to determine the effect of uncertainty on the PSRP
planning, with different levels of safety stock applied. The authors showed that higher safety stock
levels are necessary when there the demand is less predictable. The same approach, increasing the
safety stock, can be used in practice if the uncertainty in demand is high for some of the stations.

2.3. State of practice
Brown and Graves (1981) was one of the first researchers to consider a real-life case for the PSRP for a
petroleum distributor in the United States. The research was used to automate the dispatching of trucks.
Brown, Ellis, Graves, and Ronen (1987) also described a planning optimisation for a oil company in
the United States, which was used to improve the productivity of personnel and to save costs. Van der
Bruggen, Gruson, and Salomon (1995) published about their consultancy study they performed in the
Netherlands, in which the distribution network for a large oil company was considered. Distribution of
petroleum products form the depot to gas stations was optimised to assist the management with the
restructuring of the network.

The distribution network of petroleum distribution is considered by Cornillier et al. (2007). A heuristic is
proposed to solve the problem. The proposed model was used to create awareness by the company
about the benefits of optimisation, which resulted in the integration of the algorithm in the planning
systems of the distribution company.

Ng, Leung, Lam, and Pan (2008) improved the distribution of petrol for a network in Hong Kong, in
which they applied the VMI concept. The proposed approach helped the company to increase the
delivery volume and decrease in driver costs.

Triki, Chefi (2013) used real-life cases to evaluate the performance of the solution methods proposed
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by the authors to solve the PPSRP. Compared to a planning made by a human operator, a saving of
17.7 % was achieved with the most effective presented heuristic. Triki, Al-hinai, Kaabachi, and Krichen
(2016) also investigated the PPSRP for a distributor of petroleum products in Oman to evaluate the
performance of the solver used to find an exact solution. The solver was able to find a solution for
up to 22 stations. The model will eventually be used to prepare a bid for auctions of transportation
procurement.

Li et al. (2014) considered a large petroleum company in China, with 40,000 gas stations spread all
over the country. The distribution of petroleum products in provinces was modelled as IRP. Regulations
applied by the company and the industry was translated to the model. The results of a heuristic are
proven to be the near optimal.

A case study of the downstream PSC in the United States is modelled using MILP by Kazemi and
Szmerekovsky (2015). The model is used to determine the optimal supply chain design, while consid-
ering multi-modal transportation methods when determining locations for the facilities.

The case of distribution for an Algerian petroleum company has been evaluated by Benantar et al.
(2016), with a model for the PSRP with compartmentalised vehicles and time windows. The method
proposed by the authors outperformed the solution created by the company, in terms of number of
vehicles and total travel distance.

The case studies mentioned in this sections show that developing MILP models and heuristic are suit-
able and effective methods for the planning of the PSRP. These methods can be used to gain insight in
tactical and operational choices that need to be made. New trends like the possibility to equip vehicles
with flow meters (Coelho & Laporte, 2015) and more interest in ”richer” models promise even more
effective methods for the future.

2.4. Matheuristics for solving the rich PSRP
Including real-life characteristics in a MILP model for the PSRP makes the model NP-hard (Li et
al., 2014; Cornillier et al., 2008; Vidović et al., 2014; Kaabi & Jabeur, 2015; Al-Hinai & Triki, 2018).
Matheuristics have proven to be an efficient category of heuristics that can be used to solve rich VRPs.
An introduction to matheuristics is given below, after which is shown that matheuristics can also be
used to solve rich variants of the PSRP.

The definition of matheuristics is defined by Boschetti, Maniezzo, Roffilli, and Bolufé Röhler (2009) as
”heuristic algorithms made by the interoperation of metaheuristics and mathematical modelling tech-
niques”. Archetti and Speranza (2014) defines three categories of matheuristics. Firstly, there are de-
composition approaches, where the problem is divided into sub problems and MILP models are used to
find a solution to at least one of these sub problems. Secondly, there are improvement matheuristics,
where MILP models are used to improve solutions from other heuristics. The third category is column
generation based approaches.

Decomposition matheuristics is the category that is especially relevant for solving the rich PSRP. De-
composing the complex problem, in which often many routing and inventory decisions need to be
made, into smaller sub problems makes it easier to find a solution. A sub class of the decomposi-
tion matheuristics are the multi-phase approaches, where sub problems are solved after each other
(Archetti & Speranza, 2014).

Several researchers solved the PSRP with decomposition heuristics. Triki, Chefi (2013) has solved
the PPSRP, in which inventory was not considered, by decomposing the problem into an assignment,
routing and improvement procedure. The authors presented different methods to solve the assignment
model; minimising daily demand, minimising daily number of stations, minimising depot distance and
minimising the distance of virtual clusters. The last mentioned approach proved to be most effective.
To improve the initial solution, the researchers used a local search technique based on switching any
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two stations between service days and checking if improvement has been made. Another solution
method for the PPSRP is presented by Carotenuto, Giordani, Massari, and Vagaggini (2015), where
the authors use a hybrid genetic algorithm to solve the routing model.

Cordeau et al. (2015) solved an IRP by decomposing the decision process of the vendor into a three-
phase heuristic. The decisions that are made in the phases are the replenishment plan, the delivery
sequence and determining which routes to drive. Inventory management has also been included by
(Cornillier et al., 2007), who decomposed the problem into a Tank Truck Loading Problem (TTLP) and a
routing problem. The objective of the TTLP is to maximise the total delivery quantity, while considering
vehicle and underground tank capacity constraints. Similar models are used in the heuristic presented
by Cornillier et al. (2008). The authors extended the heuristic by constructing the planning per day and
shifting the day of visit to a station. Both heuristic approaches discussed in this paragraph limit the
number of stops per trip to a maximum of two, what simplifies the problem.

Vidović et al. (2014) developed a MILPmodel and a heuristic to solve the PSRP with inventory manage-
ment, multiple products and multiple periods. The authors decomposed the problem into an inventory
and a routing problem. The initial solution found by the heuristic is improved by a local search pro-
cedure. This local search procedure is based on shifting the content of the compartment of a vehicle
between days in the planning. The same ”compartment transfer” heuristic has been used by Popović
et al. (2012), with an intra-period heuristic for route optimisation within one time period and a inter-
period route optimisation with compartment shaking for route optimisation over the full time horizon.
The assumption that only full compartments can be delivered to stations simplifies the problem. In this
research, delivery quantities are determined per litre.

The brief overview in this section shows that decomposing the complex PSRP into smaller sub problems
is an efficient solution method. Decisions that need to be taken by the supplier can then be made apart
from each other. The same approach will be used in the heuristic presented in this research. To improve
the solution found by the decomposition heuristic, a local improvement procedure is applied.
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2.5. Literature gap addressed by this research
The literature gap addressed by this research consists of presenting new optimisation models for the
considered version of the PSRP and the presentation of a heuristic in which the simultaneous dry run
inventory policy is applied. The version of the PSRP considered in this research is a combination
of real-life characteristics that has not been researched before. Table 2.1 presents an overview of
relevant papers in which MILP models are presented for VRPs with some of the characteristics. This
research considers all the characteristics mentioned in the table simultaneously. More commonly used
characteristics are considered as well. These are one depot with unlimited supply, heterogeneous fleet
of vehicles, a fixed number of vehicles and deterministic demand.

Table 2.1: Comparison between MILP models in the literature and in this research

Paper D S/T TH MP VU VF MC SL TC VR
Azi et al. (2010) R unlimited SP MT HO 3 3

Benantar et al. (2016) R unlimited SP 3 ST HE 3 3 3

Coelho and Laporte (2015) R + I unlimited MP 3 ST HE 3 3

Cornillier et al. (2008) R + I max. 2 MP 3 MT HE 3 3

Li et al. (2014) R + I unlimited SP SU HO. 3

Macedo et al. (2011) R unlimited SP MT HO 3 3

Popović et al. (2012) R + I max. 3 MP 3 ST HO 3

Al-Hinai and Triki (2018) R comp. + 1 MP 3 ST HO 3

Vidović et al. (2014) R + I max. 3 MP 3 ST HO 3

This research R + I unlimited MP 3 MT HE 3 3 3 3

Description of abbreviations used in the table:

• D = decision: routing (R) or routing and inventory
(R + I)

• S/T = allowed stops per trip
• MP = multi-product / multi-commodity
• TH = time horizon: single (SP) or multiple period
(MP)

• VU = vehicle use: single (ST) or multiple (MT) trip

• VF = vehicle fleet: homogeneous (HO) or hetero-
geneous (HE)

• MC = multi-compartment

• SL = split loads

• TC = time constraints

• VR = vehicle restrictions

The combination of considering these characteristics simultaneously has, to the best of my knowledge,
not been researched before. The developed MILP models are one part of the addition to the literature.
The mathematical formulations show how all the considered characteristics can be combined into a
single RVRPs, representing a new version of the PSRP. The mathematical formulation of these mod-
els does not only consists of combining constraints that have been presented by other researchers.
Constraints are adapted and new constraints are added.

The second part of addition to the literature is the proposed heuristic. The distinctive aspect of the
heuristic presented in this paper is the application of the introduced simultaneous dry run inventory
policy, which is used to determine the delivery quantities to a station. The heuristic procedure consists
of a decomposition heuristic and a local improvement procedure. A decomposition heuristic is used
to decompose the complex problem into smaller sub problems, for which it is easier to find a solu-
tion. Since decisions are not optimised simultaneously, a local improvement procedure is proposed to
improve the initial solution.
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2.6. Concluding remarks on the literature
The sub-question answered in the first part of this research is formulated as:

What is the current state of the PSRP in the literature and practice?

The PSRP is a variant of the well-known Capacitated Vehicle Routing Problem (CVRP) and has re-
ceived significant interest from researchers over the last decades. Researchers have been adding
more and more problem specific constraints to the PSRP, to create more representative models that
better reflect the complex real-life situation. The problem, that concerns the delivery of petroleum
products from a depot to a set of gas stations by a fleet of compartmentalised vehicles, has traditionally
been solved over a single time span. Recent research considers the problem together with inventory
management over a longer time horizon, since optimising inventory and routing simultaneously leads
to more efficient distribution. The availability of vehicles equipped with flow meters allow to split the
content of a compartment between stations and time constrains make the models more realistic.

Solving the PSRP with MILP models and decomposition heuristics have proven to be effective solution
methods. Many researchers have used such models to mathematically formulate and solve the real-life
problem. These studies provide insight in tactical and operational decisions. The trend of more interest
in ”richer” models promise even more effective evaluation methods for this problem in the future.

The version of the PSRP presented in this research considers a combination of characteristics that
has not been modelled simultaneously before (as shown in table 2.1). MILP models are presented
for this new rich variant, which are additions to the literature. Furthermore, the distinctive aspect of
the decomposition heuristic developed in this research is the newly introduced simultaneous dry run
inventory policy, which is observed in practice and ensures that stations are visited as few times as
necessary. This is done by determining minimal delivery amounts in a way that the next visit to the
station is postponed for as long as possible.
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Planning methods

Planning methods for the PSRP are presented in this chapter. Firstly, the problem is described concep-
tually, after which two MILP models are shown. The secondly presented model uses predetermined
routes, which makes it easier (faster) to find a solution compared to the firstly presented ”full” model.
Furthermore, a decomposition heuristic is presented, in which the new simultaneous dry run inventory
policy is applied. The chapter concludes with answers to sub research questions 2 and 3.

3.1. Conceptual model
The variant of the PSRP considered in this research is first described in words in this section. An
overview of definitions and model characteristics is presented, after which the main assumptions are
discussed. Thereafter, objectives are identified which lead to KPIs. The section concludes with an
overview of planning methods, for which requirements are discussed first.

3.1.1. Model characteristics
The goal of the models is to create the planning for the distribution of petrol products from a central
depot to a set of gas stations with one or multiple underground tanks over a planning horizon of multiple
days. Petrol products are transported by a heterogeneous fleet of compartmentalised vehicles. An
example of a vehicle driving a trip to three stations with different numbers of underground tanks is
shown by Figure 3.1. The models assume the application of the VMI concept, which means that the
supplier knows the inventory levels and that the supplier determines when and with which quantities
the stations are replenished.

Figure 3.1: Visualisation of a compartmentalised vehicle making a trip to multiple stations with underground tanks

Stations need to be replenished before a minimum level is reached. For each time period, the supplier
makes the following decisions:

• Determine when stations are visited and which stations are combined in trips
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• Determine which vehicles are used to perform the trips

• Determine the delivery quantities that are transported to each station

• Determine which compartments are used to deliver the fuel

• Determine for each trip the time a vehicle leaves and returns to the depot, while considering
service times at the depot and at the stations

An important distinction that has to be made is the difference between a stop, a route and a trip. In this
research a stop is when a vehicle visits a station. A route is a sequence of stops, and when a trip is
when a vehicle drives a route. A vehicle can perform multiple routes during a time period. Since the
vehicles are equipped with flow meters, the load from one compartment can be divided over multiple
stations. Another important characteristic is that some of the stations are not accessible by all vehicles,
because of spatial constraints. An overview of the model definitions and characteristics are presented
by Tables 3.1 and 3.2. A more detailed description of the model characteristics can be found in the
literature review in chapter 2.

Table 3.1: Model definitions

Term Definition
Fuel products Petrol products with different brands and types
Gas station Places where fuel products are sold to end customers
Depot Place from where the fuel products are distributed
Vehicle Tank trucks are used to distribute fuel from the depot to stations
Underground
tank

Fuel is stored at stations in underground tanks which can hold one type of
product

Safety stock Safety stock is the inventory level at which a underground tank is considered
empty

Dry run When the inventory level drops below the safety stock level
Stop When a vehicle visits a station to deliver fuel, it is called a stop
Route A route is a sequence of stops/stations to visit, starting and ending at the depot
Trip A trip is a vehicle that drives a route
Time period A planning is created per time period, which represents a day
Planning horizon The time horizon is the set of considered time periods

Table 3.2: Model characteristics

Characteristic Description
IRP Decision to take are inventory and routing decisions
Multi-period The planning is optimised for a time horizon of multiple days
Multi commodity Multiple types of products are distributed
Compartmentalised vehicles Vehicles have compartments which can contain one type of

product
Heterogeneous fleet The number of compartments and compartment capacities differ

for each vehicle
Vehicles with flow meters Vehicles are equipped with flow meters
Fixed number of vehicles The number of available vehicles is fixed
Deterministic demand Demand is considered as deterministic
Split loads Vehicles are allowed to split the load from one compartment over

multiple stations
Vehicles with time windows Use of vehicles is limited by time windows representing operating

hours
Multiple trip Vehicles can perform multiple trips during one time period
Station restrictions Some stations cannot be reached by each vehicle, because of

spatial limitations
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3.1.2. Main assumptions
The list below gives an overview of the assumptions made:

• There is enough inventory at the depot to fulfil the replenishment plan.
• Inventory levels at stations are known by the supplier.
• Demand is considered as deterministic, based on a forecast. In real-life, demand is created by
selling fuel during the day, which is a stochastic process. To prevent stock out, a a safety stock
level is determined for each tank at each station and the inventory level should always be higher
than the safety stock level.

• A station can have only one underground tank per product. If this is the case in real-life, tank
capacities and inventory levels should be combined.

• To transport the petrol products, a heterogeneous fleet of vehicles is used with compartments
of known size. The vehicles are assumed to be equipped with flow meters, which enables split
loads.

• Vehicle compartments do not have to be cleaned between transporting different types of fuel.
In real-life, compartments are not cleaned (based on personal communication with AMCS plan-
ning expert K. Hauge) and comparable studies discussed in the literature review do not require
cleaning.

• All vehicles are assumed to drive with the same speed, which means that they have the same
travel time.

• Some stations can not be visited by all vehicles, because of spatial restrictions.
• Stations can be visited multiple times a day and 24/7, since it is assumed that a truck can always
deliver the petrol products at the station.

• Vehicles can only be used within the operating hours. This represents the time schedules of
workers. It is only possible to have one time schedule per vehicle per time period, so if there are
multiple work shifts during one day, for each shift a vehicle should be added.

3.1.3. Objectives supplier and KPIs
An objective tree is used to identify KPIs that are relevant for the supplier, who makes the decision
about replenishment in the considered problem. The main objective of the supplier is to maximise the
company’s profit. This can be done by minimising cost and by maximising revenue. The objectives of
the supplier are shown in the objective tree in Figure 3.2. Personal communication with petrol station
replenishment expert K. Hauge helped to draw the objective tree.

Revenue can be maximised by maximising sales and minimising fines, what can be accomplished by
minimising the number of dry runs. In this research, dry run is the moment when the inventory level of
a tank drops below the safety stock level. If dry run is prevented, stock out is unlikely to occur and fuel
can be sold at the gas stations. In this way, sales are maximised. Furthermore, contractual liabilities
may allow the gas stations to impose a fine on the supplier if dry run occurs.

Routing costs and inventory costs are seen as the main factors of petrol distribution costs (Popović
et al., 2011; Vidović et al., 2014). Minimising costs can thus be achieved by minimising the travel
distance of all vehicles and by minimising the average stock level. Lower travel distance leads to less
use of vehicles, resulting in lower vehicle and driver costs. Lower travel distance will also lead to less
CO2 emissions, since less fuel is consumed by the vehicles. The travel distance can be decreased
by maximising vehicle utilisation while minimising the average number of stops per trip. This limits
the visits to a station, because driving routes with many stops multiple times will increase the travel
distance.

Average stock levels should be minimised, because excessive stock means that the fuel cannot be
sold elsewhere and that the value of excessive stock cannot be used for other purposes.
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Figure 3.2: Objective tree and identified KPIs

Preventing dry runs, minimising travel distance and minimising the average stock level are conflicting
goals. For the total travel distance, it might be more efficient to visit a station earlier than necessary,
which will increase the average stock level. Moreover, allowing dry runs might lower the total travel
distance and average stock level as well. These trade-offs will be evaluated with the case study in
chapter 4.

Lastly, costs can be minimised with efficient planning. If the time the planning algorithm takes is min-
imised, this means that there is more time for manual adjustments of the planning, before the drivers
need to know their schedule. Another benefit is that the algorithm can start later, which improves the
information quality since the used information is more representative.

The KPIs which will later be used to evaluate the solutions created by the planning methods follow from
the objective tree. These KPIs are calculated as follows:

• Total travel distance [km]
Total travel distance is calculated by enumerating the distances of routes all the vehicles during
the full time horizon make.

• Average stock level [%]
Average stock levels are calculated by dividing the sum of the total stock in all underground tanks
at the end of the day by the sum of all underground tanks’ capacities. An average of all days of
the time horizon is taken.

• Number of dry runs [#]
The number of dry runs is the number of tanks with an inventory level below the safety stock level.
All days in the time horizon are considered, so if the inventory level of a tank is lower than the
safety stock for two days in the time horizon, this is seen as two dry runs.

• Algorithm run time [s]
The run time is the time in seconds an algorithm needs to find a solution. The time it takes to load
input data or to write output data to files is excluded form the algorithm run time.

• Vehicle utilisation [%]
Vehicle utilisation is the sum of all delivery quantities divided by the sum of the capacity of vehicles.
The total capacity of vehicles is calculated by multiplying the sum of the capacity of the vehicles’
compartments with the number of trips performed by the vehicle. The total delivered quantity
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is a supporting indicator, because it can be used to compare solutions from different planning
methods.

• Average number of stops per trip [#]
The ratio between stops and trips is determined by dividing the total number of stops by the
number of trips during the full time horizon. The number of stops and number of trips are seen as
supporting indicators, which can be used to compare solutions from different planning methods.

3.1.4. Objective and requirements of the planning methods
The objective of the planning methods considered in this research, is to create the planning for the
replenishment of petrol stations with one or multiple underground tanks by compartmentalised vehicles.
Each planning method must meet the requirements, which are presented below.

• A planning must be generated
The output of the planning methods should be a replenishment plan, with shows drivers how
much and which type of fuel to load in a compartment, and the quantity of a product to deliver at
a station. The planning can be seen as the solution found by the planning method.

• The planning must be generated within seven hours
The planning methods must generate a planning within reasonable time. The planning is normally
made over night. Starting as late as possible will providemore up-to-date data. On the other hand,
there should be some time for manual adjustments before drivers get their schedule. Therefore,
seven hours is seen as acceptable for the run time, while lower runtime is preferred.

• KPIs must be calculated
For each solution generated by the planning methods, KPIs must be calculated in exactly the
same way. The values for the KPIs show the quality of the found solution, what can be used to
evaluate the different methods by comparing the solutions.

• The solution must be feasible
The solution must be feasible according to the applicable inventory, capacity and time constraints.
Solutions created by the planning methods must all be feasible for the variant of the PSRP consid-
ered in this research. In Chapter 4, where the performance of the planning methods is evaluated
with a case study, the created solutions must all be feasible for the considered case study.
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3.1.5. Planning methods
From the literature review in Chapter 2 can be concluded that MILP models and heuristic approaches
are effective methods to formulate and solve PSRP. Two MILP models are presented in this research.
Since the PSRP is NP-hard and a solution can only be found by a solver for limited size instances, a
heuristic is proposed to find a solution for real-life size instances. These three models are the main
planning methods considered in this research. Variations to these planning methods are proposed as
well. An overview of the differences between these planning methods and variations is shown by Table
3.3. Each planning method meets the requirements set in the previous section.

Table 3.3: Overview of planning methods *Implicit objective **Quantitatively rated relative to each other

Full MILP Model Simplified MILP model Heuristic
Basic Var. 1 Var. 2 Var. 3 Basic Var. 1 Var. 2 Basic

Objective
Minimise travel distance 3 3 3 3*
Min. travel dist. + penalty dry run 3 3

Min. travel distance + inventory 3 3

Routes created
With binary 𝑥ᑚᑛ variables 3 3 3 3

Prior to the optimisation 3 3 3 3

Constrained by
Inventory level ≥ safety stock 3 3 3 3 3 3

Inventory level ≥ 0 3 3

Inventory level ≤ tank capacity 3 3 3 3 3 3 3 3

1 product per compartment/tank 3 3 3 3 3 3 3 3

Station restrictions 3 3 3 3 3 3 3 3

Compartment capacities vehicles 3 3 3 3 3 3 3 3

Trip duration and driver schedule 3 3 3 3 3 3 3 3

Begin and start at depot 3 3 3 3 3 3 3 3

Deterministic daily demand 3 3 3 3 3 3 3 3

Solution method
Solved to optimality by solver 3 3 3 3 3 3 3

Constructed by heuristic 3

(Dis)advantages
Computation time** - - - - - - - - - - - - + +
Quality solution** + + + + + + + + + + + + -
Quantity based service time 3

Time at station determined 3 3 3 3

Stops per trip possible unl. unl. unl. unl. limited limited limited limited

Main planning methods
The main planning methods are the full MILP model, the simplified MILP model and the heuristic. The
objective of the basic version of each planning method is to minimise the total travel distance. This is
explicitly implemented in the MILP models by including travel distance in the objective function. Min-
imising travel distance is implicitly implemented in the heuristic, since the heuristic consists of multiple
phases for which it is not possible to set an overall objective. The aim if the heuristic is, however, to
minimise total travel distance. Moreover, dry run is not allowed for the basic planning methods, what
means that the inventory level is not allowed to drop below the safety stock level. The basic version
of the main planning methods are now discussed in more detail.

• Full MILP model (section 3.2)
As can be concluded from the literature review in chapter 2, using a MILP model to is a common
and effective method to formulate the PSRP. The model presented in this research considered
all characteristics as defined in the conceptual model. A solution is found with a commercial
solver. In the full MILP model, routes are constructed with a sequence of binary variables 𝑥።፣,
representing a vehicle driving a route from nodes 𝑖 to nodes 𝑗. The advantage of this model is that
an unlimited number of stations can be visited during a trip and that the time a station is visited is
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considered. The disadvantage is that this makes the model more complex, which makes it harder
(slower) for the solver to find a solution.

• Simplified MILP model (section 3.3)
Cordeau, Gendreau, Laporte, Potvin, and Semet (2002) described that solutionmethods for VRPs
are often measured against accuracy and speed, where accuracy is used to describe the quality
of the solution and speed is measured in computation time. The authors recognised that there is a
trade-off between accuracy and speed. In this planning method, simplifications are made without
violating the characteristics as described in the conceptual model. The main simplification is
that routes are generated prior to the optimisation, which decreases the computation time for the
solver to find a solution. The disadvantage is that the number of stops per trip is limited and that
the time a station is visited is not considered.

• Heuristic (section 3.4)
As appears from the analysis in Chapter 4, the solver can only find a solution for the MILP models
for small size instances. To find solutions for larger real-life instances, a heuristic is proposed.
The objective of the heuristic is to implicitly minimise the total travel distance, since the model
consists of several phases with different objective, which means that an explicit overall objective
cannot be set. The main advantage of the heuristic is the decrease in time it takes to find a
solution, where the main disadvantage is a lower quality solution. The quality of the solution
is lower, because the heuristic divides the problem into sub problems, which are not optimised
simultaneously.

Planning method variations
Model variations will be proposed to each of the above presented models. These variations are:

1. Soft constraints on inventory
Preventing dry runs and minimising travel distance can be conflicting goals in planning policy. If it
would be allowed to visit a station a day later, even if the inventory level of one of the tanks drops
below the minimum level, this could lead to lower total travel distance. The trade-off between
travel distance and dry runs is investigated by introducing soft constraints on minimum inventory
level. This means that the inventory level is allowed to drop below the safety stock level. When
this happens, a penalty is applied to the objective function. Varying the penalty costs provides
insight in the trade-off between travel distance and dry runs. This model variation is only applied
to both MILP models, since the trade-off cannot be determined with the proposed heuristic.

2. Minimising travel distance and inventory
Another trade-off that is investigated, is the trade-off between travel distance and inventory. Visit-
ing a station a day earlier might decrease total travel distance, while it will lead to higher average
inventory. Including average inventory levels in the objective together with the travel distance will
give useful information about this planning policy trade-off. The inventory levels are multiplied
with a certain factor, which is used to set the relative weight of inventory compared to travel dis-
tance. This variation is not applied to the heuristic, because of the fact that the heuristics consists
of multiple phases and the decisions about routing and inventory are not made simultaneously.

3. Including service rate
The last model variation is calculating the service time at station with a service rate which is
multiplied by the delivered quantity. This could lead to a more precise planning, because the
service time is more precisely determined. The main planning methods use a fixed service time,
based on full truckloads and thus representing a worst-case situation. Considering the service
rate might lead to better solutions in some cases. The reason that it is not included in the main
models, is that the service rates adds complexity to the models. This complexity increases the
computation time necessary to find a solution. This variation is only applied to the full MILPmodel,
since this is the only model that considers the time a vehicle arrives at a station.
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3.2. Full MILP method
The basic version of the full MILP model is presented in this section. Firstly, the mathematical formu-
lation is presented with valid inequalities, after which verification experiments are performed and the
model is validated. The section concludes with the presentation of the variations of the full MILP model.

3.2.1. Mathematical formulation
The problem can be formulated as follows. Let 𝐺 = (𝑉, 𝐴) be a complete directed graph, where 𝑉 =
(0, 1, ..., 𝑛) is a set of nodes and 𝐴 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉} is the set of arcs. Each arc has a travel distance
𝑑።፣ and a travel time 𝑡።፣. The stations are represented by nodes 𝑁 = (1, ..., 𝑛) and the depot is defined
by node 0 or 𝑛 + 1, depending on whether it is the initial or final node in a trip. Each node has a fixed
service time 𝑆𝑡።. Set 𝑇 = (1, ..., 𝑛) defines the time periods in the planning horizon.
Stations have one or multiple underground tanks which store one type of product 𝑝. Set 𝑃 contains all
products, which are stored at the depot. Each underground tank has a maximum capacity 𝐿𝑐፩። , a safety
stock 𝐿𝑠፩። and an initial inventory level at the start of the planning horizon 𝐿𝑖፩። . 𝐿𝑑

፩
።፭ gives the demand

for each product at each station per day 𝑡.
Fuel is transported by a heterogeneous fleet of vehicles. The configuration of each vehicle 𝑘 is deter-
mined by 𝑄፤፦, which denotes the capacity of each compartment 𝑚. Station restrictions are included
in the model by variable 𝛿፤። , which equals 1 if station 𝑖 can be visited by vehicle 𝑘. Operating hours of
vehicles are represented by a time window [𝑎፤፭ , 𝑏፤፭ ]. Within the daily schedule, a vehicle can perform
multiple trips, which all start and end at the depot. Set 𝑅 contains the indices for these trips, with |𝑅|
chosen large enough to enable the maximum number of trips a vehicle can perform during a daily work
schedule. The trip indices are used in increasing order, which means that 𝑠 > 𝑟 if a vehicle performs
trip 𝑠 after trip 𝑟. 𝐿 is an arbitrary large constant. An overview of the used parameters and variables is
presented below.

Parameters
𝑑።፣ driving distance between node 𝑖 and 𝑗
𝑡።፣ travel time between node 𝑖 and 𝑗
𝛿፤። 1 if station 𝑖 can be visited by vehicle 𝑘, 0 otherwise
𝐿𝑠፩። safety stock level for product 𝑝 at station 𝑖
𝐿𝑐፩። tank capacity for product 𝑝 at station 𝑖
𝐿𝑖፩። inventory level at start of first time period
𝐿𝑑፩።፭ demand for product 𝑝 at station 𝑖 during day 𝑡
𝑄፤፦ capacity of compartment 𝑚 of vehicle 𝑘
𝑎፤፭ start time workday for vehicle 𝑘
𝑏፤፭ end time workday 𝑏
𝑆𝑡 fixed service time in seconds
𝐿 arbitrary large value

Variables

𝑥፤።፣፫፭ = { 1 if vehicle 𝑘 drives from 𝑖 to 𝑗 in trip 𝑟 during day 𝑡
0 otherwise

𝑦፤፫፭ = { 1 if vehicle 𝑘 drives trip 𝑟 during day 𝑡
0 otherwise

𝑧፤።፫፭ = { 1 if vehicle 𝑘 visits station 𝑖 during trip 𝑟 on day 𝑡
0 otherwise

𝑤፤፦፩፫፭ = { 1 if product 𝑝 is loaded into compartment 𝑚 of vehicle 𝑘 during trip 𝑟 on day 𝑡
0 otherwise

𝑢፤፫፬፭ = { 1 if trip 𝑠 is driven after trip 𝑟 by vehicle 𝑘 on day 𝑡
0 otherwise
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𝑞፤፦፩።፫፭ = quantity of product 𝑝 in compartment 𝑚 of vehicle 𝑘 delivered to location 𝑖 during trip 𝑟 on day 𝑡
𝑆፤።፫፭ = the time vehicle 𝑘 can start the service at station 𝑖 during trip 𝑟 on day 𝑡
𝐼፩።፭ = inventory level of product 𝑝 at station 𝑖 at the end of day 𝑡

With the variables and parameters defined above, the problem can be stated as:

𝑀𝐼𝑁∑
፭∈ፓ

∑
፫∈ፑ

∑
፤∈ፊ

∑
(።,፣)∈ፀ

𝑑።፣ 𝑥፤።፣፫፭ (1)

Subject to

𝐼፩።፭ ≥ 𝐿𝑠
፩
። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (2)

𝐼፩።,፭ዅኻ +∑
፫∈ፑ

∑
፤∈ፊ

∑
፦∈ፌ

𝑞፤፦፩።፫፭ ≤ 𝐿𝑐፩። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (3)

𝐼፩።ኺ = 𝐿𝑖
፩
። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁 (4)

𝐼፩።፭ = 𝐼
፩
።,፭ዅኻ +∑

፫∈ፑ
∑
፤∈ፊ

∑
፦∈ፌ

𝑞፤፦፩።፫፭ − 𝐿𝑑፩።፭ ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (5)

𝑧፤።፫፭ ≤ 𝛿፤። ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (6)

∑
፣∈ፕ
𝑥፤ኺ፣፫፭ = 1 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (7)

∑
።∈ፕ
𝑥፤።፣፫፭ −∑

።∈ፕ
𝑥፤፣።፫፭ = 0 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (8)

𝑧፤።፫፭ =∑
፣∈ፕ
𝑥፤።፣፫፭ ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (9)

𝑞፤፦፩።፫፭ ≤ 𝐿 𝑧፤።፫፭ ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃, ∀𝑚 ∈ 𝑀, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (10)

∑
።∈ፍ
𝑞፤፦፩።፫፭ ≤ 𝑤፤፦፩፫፭ 𝑄፤፦ ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (11)

∑
፩∈ፏ

𝑤፤፦፩፫፭ ≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (12)

𝑆፤።፫፭ ≥ 𝑎፤፭ ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (13)

𝑆፤።፫፭ ≤ 𝑏፤፭ ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (14)
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𝑆፤።፫፭ + 𝑡።፣ + 𝑆𝑡። − 𝐿(1 − 𝑥፤።፣፫፭) ≤ 𝑆፤፣፫፭
∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (15)

𝑆፤ኺ፬፭ + 𝐿(1 − 𝑢፤፫፬፭) ≥ 𝑆፤፧ዄኻ,፫፭ ∀𝑟, 𝑠 ∈ 𝑅, 𝑟 < 𝑠, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (16)

∑
፫∈ፑ

∑
፬∈ፑ|፬ጻ፫

𝑢፤፫፬፭ ≥∑
፫∈ፑ

𝑦፤፫፭ − 1 ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (17)

𝑧፤።፫፭ ≤ 𝑦፤፫፭ ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (18)

𝑥፤።፣፫፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (19)

𝑦፤፫፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (20)

𝑧፤።፫፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (21)

𝑤፤፦፩፫፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (22)

𝑢፤፫፬፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑟, 𝑠 ∈ 𝑅, 𝑟 < 𝑠, 𝑠 = 𝑟 + 1, ∀𝑡 ∈ 𝑇 (23)

𝑞፤፦፩።፫፭ ≥ 0 ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (24)

𝑆፤።፫፭ ≥ 0 ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (25)

𝐼፩።፭ ≥ 0 ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (26)

The objective function (1) minimises the total number of kilometres driven by all vehicles during the full
time horizon. Constraints (2) and (3) ensure that inventory levels for fuel in underground tanks stay
above the safety stock level and below the maximum capacity. Constraints (4) set the initial inventory
level for each product at each station and constraints (5) set the daily inventory level, taking into account
the demand and deliveries. Station restrictions are imposed by constraints (6), which means that some
stations cannot be accessed by all vehicles. Constraints (7) make sure that all vehicles start and end
at the depot. Constraints (8) represent the flow conservation constraints. Constraints (9) and (10) are
used to link 𝑥 and 𝑞 to 𝑧, which means that a vehicle can only drive to a station and deliver fuel when it
is visited by that vehicle in a certain time period. Constraints (11) ensures that compartment capacities
can not be exceeded and constraints (12) makes sure that only one type of product is loaded in a
compartment.

Constraints (13-14) forces the arrival time in node 𝑖 to be within the work schedule of the vehicles. The
start and end time of a trip must be within this time window. Constraints (15) take driving and service
time into account, to calculate at what time the service can start at a node. A variant to this model
is the version with a quantity dependent service time, described in section 3.2.7. Constraints (16-18)
make sure that, in case a vehicle performs multiple trips during a time period, these trips are driven
consecutively.

Finally, constraints (19-23) are used to define 𝑥, 𝑦, 𝑧, 𝑤 and 𝑢 as binary values and constraints (24-26)
enforce the integer variables to be non-negative.
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3.2.2. Valid inequalities to speed up the model
Valid inequalities are proposed to speed up the process of finding a solution. Constraint (27) ensures
that all vehicles return to the depot and constraint (28) strengthens the relationship between the binary
variables 𝑥 and 𝑦. Finally, (29) is used to link the constraint 𝑞 and 𝑤.

∑
።∈ፕ
𝑥፤።,፧ዄኻ,፫፭ = 1 ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (27)

𝑥፤።፣፫፭ ≤ 𝑦፤፫፭ ∀𝑘 ∈ 𝐾, ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (28)

𝑞፤፦፩።፫፭ ≤ 𝐿 𝑤፤፦፩፫፭ ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (29)

3.2.3. Verification of the model
To answer the question ”is model is right?”, experiments are performed with the model to determine if
the model behaves as expected. A data set (which can be found in Appendix B), based on the case
study data, is used to evaluate the performance. The data set contains one vehicle, four stations with in
total ten underground tanks and seven time periods. Five types of product are distributed. The model
is implemented in Python and solved using Gurobi Optimizer version 8.1.1 (Gurobi Optimization, LLC,
2019). The verification experiments are executed on a computer with a 3.50 GHz 4-core processor
and 32 GB of RAM.

For each verification experiment, the behaviour of the model is predicted. The KPIs are calculated
for each solution and used to confirm if the model behaves as it should. The result for the total travel
distance can, for example, be expected to be higher or lower in some situation. Finding a solution can
be expected to be infeasible as well. Results of the verification experiments are shown in table 3.4.

Table 3.4: Overview of verification experiments and results (distance = total travel distance)

# Description Expected behaviour Result Ok?
1 Described data set + all constraints distance >0

avg. stock >0%
vehicle util. >0%
avg. stops/trip >0
# dry runs = 0

distance = 541
avg. stock = 39.3%
vehicle util. = 67,0%
avg. stops/trip = 2.33
# dry runs = 0

Pass

2 Run without inventory constraints distance = 0
# dry runs > 0

distance = 0
# dry runs = 80

Pass

3 Run without vehicle capacity constraints distance <541
vehicle util. >67,0%

distance = 468
vehicle util. = 100,5%

Pass

4 Run without demand distance = 0 distance = 0 Pass
5 Run without vehicles Infeasible Infeasible Pass
6 2 vehicles with station restrictions distance >541 distance = 641 Pass
7 2 stations and small vehicle capacity ∑u >1 ∑u >1 Pass
8 Double station tank capacity distance <541

avg. stock <39,3%
distance = 391
avg. stock = 26,4%

Pass

9 Multiple vehicles with small time windows distance >541
avg. stops/trip <2.33

distance = 765
avg. stops/trip = 1.2

Pass

10 Set initial inventory levels to safety stock level distance >541 distance = 810 Pass

The performed experiments are discussed in more detail below.

1. Described data set + all constraints
This instance serves as benchmark for the other experiments. Values for the total travel distance
and KPIs are expected to be higher than zero, what is confirmed by running the model.

2. Run without inventory constraints
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Constraints (2-5) are removed in this experiment to create a situation without inventory con-
straints. Since this removes the incentive to visit a station, the expected value for the objective
function is zero, which is confirmed by the found solution.

3. Run without vehicle capacity constraints
In this instance, constraint (11) is removed from the model, which leads to vehicles with unlimited
capacity in the compartments. The total travel distance is expected to be lower than in experiment
one and the vehicle utilisation is expected to increase, since a vehicle can deliver more fuel during
one trip which decreases the total number of trips. The experiment confirms this result.

4. Run without demand
When the demand for each time period and tank is set to zero, the total travel distance is expected
to be zero as well, because the inventory level does decrease below theminimum level. The result
is as expected.

5. Run without vehicles
Without vehicles, a solution cannot be found because the model is infeasible. This is the expected
model behaviour.

6. Two vehicles with station restrictions
This instance has two vehicles which can both only visit two of the four stations. The two vehicles
can visit all stations. Since less stations can be combined in one trip, the value for the total
travel distance is expected to increase. This is confirmed by the experiment. Another model
characteristic that has been checked is to see if stations are only visited by vehicles that are able
to visit the station according to the station restrictions.

7. Two stations and small vehicle capacity
With this experiment it is checked that, if multiple routes are driven by a vehicle during the same
day, these routes are driven consecutively. This means that the service start times for the different
routes increase in time, taking service and travel times into account. The test situation is created
by lowering the vehicle’s capacity, with as result that vehicles need to drive more often during a
time period.

8. Double station tank capacity
If the capacity of the under ground tanks is doubled, it is expected that stations need to be visited
less often, which results in a lower value for the total travel distance. The average stock level is
expected to decrease, because the total capacity increases.

9. Use multiple vehicles with small time windows
If the time window of multiple vehicles is set to the maximum route duration for routes with one
stop, it is expected that the total travel distance increases, because less stations can be combined
in one trip. This also results in a lower average of stops per trip. The model behaves as expected.

10. Set initial inventory levels to safety stock level
The initial inventory level is set to safety stock level in this experiment, which means that there
is no initial stock and that the tanks need to be replenished more often. Therefore, a increased
value for the total travel distance is expected and confirmed by the experiment.
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3.2.4. Validation of the model
To check if the model is the right model if the model is right, the solution found by the model for an
instance with four stations, seven time periods and one vehicle is interpreted. Figure 3.3 shows a map
of the depot and stations that are visited during the time period. The differently coloured lines show the
trips made by vehicles. With the plot, it can be verified that all routes start and end at the depot.

Figure 3.3: Visualisation of a possible solution for four stations and seven time periods

The map in Figure 3.3 shows that some stations are visited multiple times during the time horizon of
seven days. To verify if this is necessary, the inventory levels are plotted for a tank of one of these
stations in Figure 3.4. The graph shows the inventory level at the end of each day. Since the delivery
time during the day is not taken into account, the maximum amount of fuel that can be delivered is the
empty capacity of the tank minus the demand for that day, to guarantee that the planned amount can
be delivered to the station. In the hypothetical case that a station is replenished before any fuel is sold,
the dark blue line shows the maximum inventory level at this moment.

Figure 3.4: Inventory levels for one tank
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Figure 3.5 shows the inventory levels for all tanks in the validation experiment combined. The safety
stock level and maximum capacity are shown as well. As can be seen, the inventory level starts at the
initial inventory level at day zero and declines till the safety stock level at the end of time period seven.
This can be explained by the fact that the model strives to minimise the total travel distance, while the
total travel distance increases when fuel is delivered. Since the inventory level must be higher than
the safety stock level and at the same time fuel is consumed, fuel must be delivered. However, since
delivery fuel increases the objective, the fuel delivered will be kept to a minimum.

Figure 3.5: Inventory levels of all tanks combined per time period
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3.2.5. Model variation 1: soft constraints on inventory
As explained in Section 3.1, a model variation with soft constrains on inventory level is proposed to
determine the trade-off between travel distance and dry runs. The variant is implemented by introducing
model variable 𝐸 and penalty costs 𝑝, which is a fixed value that can be varied to investigate the trade-
off between total travel distance and the occurrence of dry runs. Moreover, the objective function (1)
is replaced by equation (30) and constraints (2) are replaced by constraints (31). This will allow the
inventory to be below the safety stock level. If this occurs, however, a penalty is imposed in the objective
function.

The new variable 𝐸 is defined as:

𝐸፩።፭ = {
1 if the inventory of product 𝑝 at location 𝑖 is lower than the safety stock during day 𝑡
0 otherwise

𝑀𝐼𝑁∑
፭∈ፓ

∑
፫∈ፑ

∑
፤∈ፊ

∑
(።,፣)∈ፀ

𝑑።፣ 𝑥፤።፣፫፭ + 𝑝 ∑
፭∈ፓ

∑
፩∈ፏ

∑
።∈ፍ
𝐸፩።፭ (30)

𝐿 𝐸፩።፭ ≥ 𝐼
፩
።፭ − 𝐿𝑠

፩
። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (31)

3.2.6. Model variation 2: minimising travel distance and inventory
Model variant two is used to determine the trade-off between travel distance and inventory, by minimis-
ing inventory levels and travel distance simultaneously. This is done by replacing the objective function
(1) by equation (32). A factor 𝑓 is introduced to weigh the costs of inventory relative to the costs of
transportation.

𝑀𝐼𝑁∑
፭∈ፓ

∑
፫∈ፑ

∑
፤∈ፊ

∑
(።,፣)∈ፀ

𝑑።፣ 𝑥፤።፣፫፭ + 𝑓 ∑
፭∈ፓ

∑
፩∈ፏ

∑
።∈ፍ
𝐼፩።፭ (32)

3.2.7. Model variation 3: including service rate
If the service time depends on the delivery quantity, a service rate can be used. To implement the
service rate in the model, parameter 𝑆𝑟። is introduced for the service rate and constraints (15) and (16)
are replaced by constraints (33 - 35). Constraints (33) adds the service rate 𝑆𝑟። multiplied with the
delivered quantity to the station to the time between two deliveries. Constraints (34) and (35) add time
before the start of a route, representing the time it takes to fill up a vehicle at the depot.

𝑆፤።፫፭ + 𝑆𝑡። + 𝑆𝑟። ∑
፦∈ፌ

∑
፩∈ፏ

𝑞፤፦፩።፫፭ + 𝑡።፣ − 𝐿(1 − 𝑥፤።፣፫፭) ≤ 𝑆፤፣፫፭

∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (33)

𝑆፤ኺ፫፭ ≥ 𝑆𝑟ኺ ∑
።∈ፍ

∑
፦∈ፌ

∑
፩∈ፏ

𝑞፤፦፩።፫፭ ∀𝑟 ∈ 𝑅, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (34)

𝑆፤ኺ፬፭ + 𝐿(1 − 𝑢፤፫፬፭) ≥ 𝑆፤፧ዄኻ,፫፭ + 𝑆𝑟ኺ ∑
።∈ፍ

∑
፦∈ፌ

∑
፩∈ፏ

𝑞፤፦፩።፬፭ ∀𝑟, 𝑠 ∈ 𝑅, 𝑟 < 𝑠, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (35)
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3.3. Simplified MILP model
The exact model presented in section 3.2 contains many variables which makes the model grow ex-
ponentially in terms of complexity with large problem instances. To simplify this model, a new model is
proposed with predefined routes. This means that all possible routes are generated prior to the opti-
misation. Routes with a duration longer than the maximum work shift of a vehicle are not added to the
set of possible routes. Time constraints are simplified as well, since the service start time is neglected
and there is only checked if the sum of the duration of routes fits within the operating schedule of the
driver of a vehicle.

3.3.1. Defining the routes
The predefined routes that are used in the simplified MILPmodel are generated prior to the optimisation.
These routes consist of a set of stations that are visited, a travel time and a travel distance. The travel
distance of the route is based on starting at the depot, visiting all stations and returning to the depot.
The travel distance is based on visiting stations in the sequence that minimises travel distance. Route
duration is based on the travel times between nodes and fixed service time at the depot and stations.

Algorithm 1: Defining the routes
Result: A list of routes with a set of stations, route duration and travel distance

1 input: list of stations with distances, travel times and service times;
2 create set with max. number of stops per trip = [1, 2, 3 .. n];
3 foreach max. number of stops per trip do
4 foreach possible station sequence do
5 calculate route distance and duration;
6 if route distance is shortest for set of considered stations then
7 set route characteristics for considered set of stations;
8 end
9 end

10 end

3.3.2. Mathematical formulation
The problem can now be formulated as follows. Let 𝑉 = (0, 1, ..., 𝑛) is a set of nodes and 𝑅 is the set
of possible routes. For each route, the travel distance 𝑑፫ and sum of travel time and service time 𝑡፫
are known. The stations are represented by nodes 𝑁 = (1, ..., 𝑛) and the depot is defined by node 0 or
𝑛 + 1, depending on whether it is the initial or final node in a trip. Parameter 𝑥።፫ ∈ {0, 1} is used to set
if node 𝑖 is visited during route 𝑟. Each node has a fixed service time 𝑆𝑡።, which is added to the travel
time 𝑡፫ or a route prior to the optimisation. Set 𝑇 = (1, ..., 𝑛) defines the time periods in the planning
horizon.

The stations have one or multiple underground tanks which store one type of product 𝑝. Set 𝑃 contains
all products, which are stored at the depot. Each underground tank has a maximum capacity 𝐿𝑐፩። , a
safety stock 𝐿𝑠፩። and an initial inventory level at the start of the planning horizon 𝐿𝑖፩። . 𝐿𝑑

፩
።፭ gives the

demand for each product at each station per day 𝑡.

Fuel is transported by a heterogeneous fleet of vehicles. Each vehicle 𝑘 has multiple compartments
𝑚 with maximum capacity 𝑄፤፦. Let 𝐾 and 𝑀 denote the set of vehicles and compartments. Station
restrictions are included in the model by variable 𝛿፤። , which equals one if and only if station 𝑖 can be
visited by vehicle 𝑘. Operating hours of vehicles are represented by a time window [𝑎፤፭ , 𝑏፤፭ ], where 𝑎፤፭ is
the start time and 𝑏፤፭ the end time of the schedule for vehicle 𝑘 during day 𝑡. Within the daily schedule,
a vehicle can perform multiple trips, which all start and end at the depot. A vehicle can drive a specific
route one time per time period. 𝐿 is an arbitrary large constant. An overview of the parameters and
variables is given below.
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3.3. SIMPLIFIED MILP MODEL

Parameters

𝑑፫ distance route 𝑟
𝑡፫ travel time for route 𝑟
𝑥።፫ 1 if station 𝑖 is included in route 𝑟, otherwise
𝛿፤። 1 if station 𝑖 can be visited by vehicle 𝑘, 0 otherwise
𝐿𝑠፩። safety stock level for product 𝑝 at station 𝑖
𝐿𝑐፩። tank capacity for product 𝑝 at station 𝑖
𝐿𝑖፩። inventory level at start of first time period
𝐿𝑑፩።፭ demand for product 𝑝 at station 𝑖 during day 𝑡
𝑄፤፦ capacity of compartment 𝑚 of vehicle 𝑘
𝑎፤፭ start time workday for vehicle 𝑘
𝑏፤፭ end time workday 𝑏
𝐿 arbitrary large value

Variables

𝑦፤፫፭ = { 1 if vehicle 𝑘 drives trip 𝑟 during day 𝑡
0 otherwise

𝑧፤።፫፭ = { 1 if vehicle 𝑘 visits station 𝑖 during trip 𝑟 on day 𝑡
0 otherwise

𝑤፤፦፩፫፭ = { 1 if product 𝑝 is loaded into compartment 𝑚 of vehicle 𝑘 during trip 𝑟 on day 𝑡
0 otherwise

𝑞፤፦፩።፫፭ = quantity of product 𝑝 in compartment 𝑚 of vehicle 𝑘 delivered to location 𝑖 during trip 𝑟 on day 𝑡
𝐼፩።፭ = inventory level of product 𝑝 at station 𝑖 at the end of day 𝑡

The model with predefined routes can be stated as:

𝑀𝐼𝑁∑
፭∈ፓ

∑
፫∈ፑ

∑
፤∈ፊ

𝑑፫ 𝑦፤፫፭ (1)

Subject to

𝐼፩።፭ ≥ 𝐿𝑠
፩
። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (2)

𝐼፩።,፭ዅኻ +∑
፫∈ፑ

∑
፤∈ፊ

∑
፦∈ፌ

𝑞፤፦፩።፫፭ ≤ 𝐿𝑐፩። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (3)

𝐼፩።ኺ = 𝐿𝑖
፩
። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁 (4)

𝐼፩።፭ = 𝐼
፩
።,፭ዅኻ +∑

፫∈ፑ
∑
፤∈ፊ

∑
፦∈ፌ

𝑞፤፦፩።፫፭ − 𝐿𝑑፩።፭∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (5)
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𝑧፤።፫፭ ≤ 𝛿፤። ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (6)

𝑧፤።፫፭ = 𝑦፤፫፭ 𝑥።፫ ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (7)

𝑞፤፦፩።፫፭ ≤ 𝐿 𝑧፤።፫፭ ∀𝑘 ∈ 𝐾, ∀𝑝 ∈ 𝑃, ∀𝑚 ∈ 𝑀, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (8)

∑
።∈ፍ
𝑞፤፦፩።፫፭ ≤ 𝑤፤፦፩፫፭ 𝑄፤፦ ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (9)

∑
፩∈ፏ

𝑤፤፦፩፫፭ ≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (10)

∑
፫∈ፑ

𝑦፤፫፭ 𝑡፫ ≤ 𝑏፤፭ − 𝑎፤፭ ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (11)

𝑦፤፫፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (12)

𝑧፤።፫፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (13)

𝑤፤፦፩፫፭ ∈ {0, 1} ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (14)

𝑞፤፦፩።፫፭ ≥ 0 ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑉, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (15)

𝐼፩።፭ ≥ 0 ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (16)

The objective function (1) minimises the total number of kilometres driven by all vehicles during the full
time horizon. Constraints (2) and (3) ensure that inventory levels for fuel in underground tanks stay
above the safety stock level and below the maximum capacity. Constraints (4) set the initial inventory
level for each product at each station and constraints (5) set the daily inventory level, taking into account
the demand and deliveries. Station restrictions are imposed by constraints (6), which means that some
stations cannot be accessed by all vehicles. Constraints (7) and (8) are used to link 𝑥 and 𝑞 to 𝑧,
which means that a vehicle can only drive to a station and deliver fuel when it is visited by that vehicle
during route 𝑟 in a certain time period. Constraints (9) ensure that compartment capacities can not be
exceeded and constraints (10) make sure that only one type of product is loaded in a compartment.
Constraints 11 limit the duration of all routes driven by one vehicle during one time period to the available
time in the work schedule of the driver of the vehicle. Lastly, constraints (12-14) are used to define 𝑦,
𝑧 and 𝑤 as binary values and constraints (15-16) enforce the variables to be non-negative.
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3.3.3. Verification of the simplified model
The experiments and criteria for an experiment to pass are the same as the verification experiments
described in Section 3.2.3, except for the fact that the same objective value is expected for experiment
1 as found in Section 3.2.3. The solver finds an exact solution for the verification data set, so the
expected objective function is the same for the full MILP model as for the simplified MILP model.

Table 3.5: Verification results for the simplified MILP model (distance = total travel distance)

# Description Expected behaviour Result Ok?
1 Described data set + all constraints distance = 541

avg. stock >0%
vehicle util. >0%
avg. stops/trip >0
# dry runs = 0

distance = 541
avg. stock = 43,1%
vehicle util. = 67,0%
avg. stops/trip = 2.33
# dry runs = 0

Pass

2 Run without inventory constraints distance = 0
# dry runs >0

distance = 0
# dry runs = 80

Pass

3 Run without vehicle capacity
constraints

distance <541
vehicle util. >67,0%

distance = 468
vehicle util. = 100,5%

Pass

4 Run without demand distance = 0 distance = 0 Pass
5 Run without vehicles Infeasible Infeasible Pass
6 2 vehicles with station restrictons distance >541 distance = 641 Pass
7 2 stations and small vehicle capacity multiple route use multiple route use Pass
8 Double station tank capacity distance <541

avg. stock <39,%3
distance = 391
avg. stock = 25,0%

Pass

9 Multiple vehicles with small time
windows

distance >541
avg. stops/trip <2.33

distance = 772
avg. stops/trip = 1.5

Pass

10 Set initial inventory levels to safety
stock level

distance >541 distance = 864 Pass
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3.3.4. Validation of the simplified model
Figure 3.6 shows the trips that are driven for the verification result of the simplified model. The same
routes as in the verification results of the full MILP model are driven (as shown in Section 3.2.4). More-
over, the total travel distance of 541 km is the same for the verification result of both models. This
shows that the simplified model can generate solutions that are comparable to the results found with
the full MILP model and that the model is working correctly.

Figure 3.6: Visualisation of trips that are driven for the result of the simplified MILP model
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3.3.5. Model variation 1: soft constraints on inventory
As explained in Section 3.1, a model variation with soft constrains on inventory level is proposed to
determine the trade-off between travel distance and dry runs. The variant is implemented by introducing
model variable 𝐸 and penalty costs 𝑝, which is a fixed value that can be varied to investigate the trade-
off between total travel distance and the occurrence of dry runs. Moreover, the objective function (1)
is replaced by equation (30) and constraints (2) are replaced by constraints (31). This will allow the
inventory to be below the safety stock level. If this occurs, however, a penalty is imposed in the objective
function.

The new variable 𝐸 is defined as:

𝐸፩።፭ = {
1 if the inventory of product 𝑝 at location 𝑖 is lower than the safety stock during day 𝑡
0 otherwise

𝑀𝐼𝑁∑
፭∈ፓ

∑
፫∈ፑ

∑
፤∈ፊ

𝑑፫ 𝑦፤፫፭ + 𝑝 ∑
፭∈ፓ

∑
፩∈ፏ

∑
።∈ፍ
𝐸፩።፭ (17)

𝐿 𝐸፩።፭ ≥ 𝐼
፩
።፭ − 𝐿𝑠

፩
። ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (18)

3.3.6. Model variation 2: minimising travel distance and inventory
Model variant two is used to determine the trade-off between travel distance and inventory, by minimis-
ing inventory levels and travel distance simultaneously. This is done by replacing the objective function
(1) by equation (32). A factor 𝑓 is introduced to weigh the costs of inventory relative to the costs of
transportation.

𝑀𝐼𝑁∑
፭∈ፓ

∑
፫∈ፑ

∑
፤∈ፊ

𝑑፫ 𝑦፤፫፭ + 𝑓 ∑
፭∈ፓ

∑
፩∈ፏ

∑
።∈ፍ
𝐼፩።፭ (19)

35



3. PLANNING METHODS

3.4. Heuristic
The previously discussed planning methods are solved using a solver, which is only able to find a
solution within reasonable time for small problem instances (as appears from the case study in Chapter
4). Therefore, a decomposition heuristic is presented in this chapter, used to find solutions for real-life
size instances. A decomposition approach is used to divide the large and complex problem into smaller
sub problems, based on the decomposition of the decision process of the supplier. Decomposition
approaches have proven to be an effective method to solve rich VRPs (as appears from Section 2.4 in
the literature review). This approach, however, leads to lower quality solutions, since the decisions are
not optimised simultaneously. Therefore, a local improvement procedure is used to improve the initial
solution found by the decomposition heuristic. Candidate solutions are based on visiting stations earlier.
The phases of the decomposition heuristic are shown in Figure 3.7 and discussed below. The heuristic
procedure used to create an initial solution is described in in Section 3.4.6. Lastly, the improvement
procedure is can be found in Section 3.4.7.

Figure 3.7: Phases of decomposition heuristic with input and output data

• Phase 1: Order generation (Section 3.4.1)
In the first phase, an order is generated per underground tank. An order consists of the station
index 𝑖, the product index 𝑝 and the day the tank depletes 𝑡. A station is assumed to have
maximum one tank per product, so the combination of the station index and the product index
define an underground tank.

• Phase 2: Order pairing (Section 3.4.2)
The following phases considered the ”current” day and combines, per station, all orders for this
station during the future time periods. The output is a list of stations, with per station a set of
tanks that are expected to deplete during future time periods in the considered time horizon.

• Phase 3: Set min and max quantities based on the simultaneous dry run inventory policy
(Section 3.4.3)
Minimum and maximum delivery quantities are determined in the third phase, according to the
firstly in this research reported simultaneous dry run inventory policy. The maximum delivery
quantity is set to the remaining tank’s capacity, where the minimum quantity is set to a level for
each tank at the considered station, that the next delivery to this station can be postponed for as
long as possible.

• Phase 4: Route creation (Section 3.4.4)
The list of stations that need to be visited during the considered time period, as determined in
phase 2, are combined into routes in the fourth phase. A route generation model is used to create
the routes with the lowest total travel distance for the considered day.

• Phase 5: Tank Truck Loading Problem (TTLP) (Section 3.4.5)
In the final phase, quantities and routes are assigned to vehicles, while taking capacities, station
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restrictions and driver schedules into account. The delivery quantity is bounded by the earlier
determined minimum and maximum quantity.

3.4.1. Phase 1: Order generation
In the first phase, orders are generated for the remaining time periods in the considered time horizon.
An order consists of an underground tank, represented by a station and product index, and the day the
tank depletes. The pseudo code for the algorithm is presented below.

Algorithm 2: Order generation
Result: List with orders for tank on depletion day

1 initialisation: load inventory levels and demand forecast;
2 set 𝑡 = current considered time period, T = last day time horizon;
3 foreach underground tank at station 𝑖 with product 𝑝 do
4 for 𝑡 in [𝑡, 𝑇] do
5 inventory level = inventory level end previous day - demand during 𝑡;
6 if inventory level < safety stock then
7 add tank to order list with depletion day 𝑡;
8 end
9 end

10 end

3.4.2. Phase 2: Order pairing
The second phase considers the ”current” day and combines, per station, all generated orders from
the previous phase. The algorithm is designed as follows:

Algorithm 3: Order pairing
Result: Per station, a list of orders for the full time horizon

1 set 𝑡 = current considered time period, T = last day time horizon;
2 step 1. filter order list on orders for current day;
3 foreach order generated in phase 1 do
4 if order depletion day = 𝑡 then
5 add order to order list for today;
6 end
7 end
8 step 2. combine orders for the same station;
9 foreach generated order with depletion day 𝑡 in [𝑡 + 1, 𝑇] do
10 if station is in order list for today then
11 add order to current day order list;
12 end
13 end
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3.4.3. Phase 3: Determine min and max delivery quantities
In the third phase, minimum and maximum quantities are determined to be delivered at the station. To
set the quantities, the simultaneous dry run inventory policy is applied. The concept, that is also used
by the company in the case study, considers all underground tanks at a station and sets the minimum
delivery quantities to a value that postpones the next delivery as much as possible. For determining the
maximum order quantity, the maximum level policy is applied, which means that the maximum delivery
is equal to the remaining capacity in the tank. The working of the concept is shown in the figure below.

Figure 3.8: Visualisation of the simultaneous dry run inventory policy

Figure 3.8 shows the inventory levels for two tanks at the same station. The capacity and safety stock
level are indicated by dashed lines and a simplified forecast is shown by the grey line. As can be
seen, tank one is expected to run dry first. In this research, dry run is the moment when the inventory
level drops below the safety stock level. The station needs to be replenished during the day that tank
one runs dry at the latest. To determine the minimum delivery amounts for this day, the tank with the
highest expected demand is filled to the maximum capacity. For the other tanks at the same station, the
minimum delivery quantity is set in a way that the next delivery moment, at the next simultaneous dry
run, is postponed as much as possible. The figure shows how setting the minimum delivery quantities,
in green, lead to a simultaneous dry run in the future.

The pseudo code for determining the minimum and maximum delivery quantities is presented by Algo-
rithm 4.
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Algorithm 4: Determine minimum and maximum delivery quantities based on the simultane-
ous dry run inventory policy
Result: Minimum and maximum quantities for each order

1 set 𝑡 = current considered time period, T = last day time horizon;
2 foreach station in current day order list do
3 step 1. set maximum quantities;
4 foreach order for the considered station do
5 set maximum delivery quantity to the remaining capacity in the tank;
6 end
7 step 2. determine second depletion day;
8 set current second depletion day = 100;
9 foreach order for the considered station do
10 foreach 𝑡 in [𝑡, 𝑇] do
11 inventory level = inventory level end previous day - demand during 𝑡;
12 if inventory level < safety stock then
13 if t < current second depletion day then
14 current second depletion day = 𝑡;
15 end
16 end
17 end
18 end
19 step 3. calculate consumption till second depletion day;
20 foreach order for the considered station do
21 foreach 𝑡 in [𝑡, second depletion day] do
22 consumption for tank = current value + demand for day t
23 end
24 end
25 step 4. per day, add the calculated consumption to the minimum delivery quantity;
26 until the vehicle capacity is reached;
27 set vehicle full = false;
28 while vehicle full is false do
29 foreach 𝑡 in [𝑡, second depletion day] do
30 foreach order for the considered station do
31 if minimum quantity for tank is lower than consumption till second depletion day

then
32 if combined minimum quantities are higher than vehicle capacity then
33 set vehicle full = true;
34 else
35 add consumption to minimum quantity for tank in order
36 end
37 end
38 end
39 end
40 end
41 end

As can be seen in Algorithm 4, minimum quantities are not set directly, since this may lead to infeasible
solutions in case there is no vehicle with enough capacity to transport the minimum capacities to the
station. Therefore, step 4 adds the expected demand per day to the value for the minimum delivery
quantity of the order, until the capacity of the vehicle is reached (with station restrictions taken into
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account). This ensures that the next visit to the station is postponed for as much as possible, even
when it is not feasible to deliver quantities that lead to simultaneous dry run.

3.4.4. Phase 4: Route creation
Now the minimum and maximum delivery quantities are determined for the stations that need to be
visited during the considered time span, routes can be created for these stations. A route genera-
tion model is presented in this section, with the objective to minimise the total travel distance for the
considered day.

All possible routes are generated prior to the optimisation, in the same way as described in Section
3.3.1. Only routes that can be driven by one of the vehicles are considered, taking station restrictions
into account. For these routes in set 𝑅, with index 𝑟, the travel distance 𝑑፫ are determined. If station 𝑖
is visited during route 𝑟, parameter 𝑥።፫, which is zero by default, is set to 1. 𝐶፫,፦ፚ፱ is the total capacity
of the vehicle with the largest transport capacity that can drive route 𝑟. This capacity will be used to
ensure that the created routes are feasible, because some stations have station restrictions and can
therefore not be visited by each vehicle. 𝑞፩።፫,፦።፧ follows from the previous phase and is set to the
minimum delivery quantities of product 𝑝 to station 𝑖 during route 𝑟. Moreover, the model uses the
following variables:

𝑦፫ = {
1 if vehicle 𝑟 is selected
0 otherwise

𝑧።፫ = {
1 if route 𝑟 is selected to visit station 𝑖
0 otherwise

The route creation model can now be stated as:

𝑀𝐼𝑁∑
፫∈ፑ

𝑦፫ 𝑑፫ (1)

𝑧።፫ ≤ 𝑥።፫ ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (2)

𝑧።፫ ≤ 𝑦፫ ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (3)

∑
፫∈ፑ

𝑧።፫ = 1 ∀𝑖 ∈ 𝑁 (4)

∑
።∈ፍ
(𝑞፩።፫,፦።፧𝑧።፫) ≤ 0.9 𝐶፤,፦።፧ ∀𝑟 ∈ 𝑅 (5)

The objective function (1) minimises the total travel distance for the considered time period. Constraints
(2) make the choice to visit station 𝑖 during route 𝑟 only possible when the station is included in the
predetermined route. Constraint (3) links variables 𝑦 and 𝑧. Constraints (4) are used to ensure that
each station is visited once. Combining stops in a route is limited by the sum of the minimum delivery
quantities to 90% of the total capacity of the largest vehicle by constraints (5). The minimum delivery
quantities 𝑞፩።፫,፦።፧ must be delivered, so the constraint ensures that the route can be driven with at least
one vehicle. The capacity of the vehicle is decreased by 10%, because different types of product need
to be transported by different compartments.
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3.4.5. Phase 5: Tank Truck Loading Problem
Now the routes that have to be driven during the day are determined, together with minimum and max-
imum delivery quantities per tank at each visited station, the next step is to assign these routes and
quantities to compartments of vehicles. A variant of the TTLP, which is also addressed by Cornillier et
al. (2007), is developed to execute this assignment procedure. The TTLPmaximises the actual delivery
quantities, which leads to efficient vehicle utilisation. Both variants have in common that delivery quan-
tities are maximised, within the minimum and maximum delivery quantities. The output of the model is
the daily planning for the distribution company. The variant presented in this research also comprises
a heterogeneous fleet of vehicles, station restrictions, multi commodity and driver schedule duration.

𝑞፩።፫,፦።፧ and 𝑞
፩
።፫,፦ፚ፱ follow from the previous phases and are the minimum and maximum delivery quan-

tities of product 𝑝 to station 𝑖 during route 𝑟. 𝛿፤። is set to one if station 𝑖 can be visited by vehicle 𝑘
and 0 otherwise. 𝑄፤፦ is the capacity of compartment 𝑚 of vehicle 𝑘. Time window [𝑎፤, 𝑏፤] represents
the driver schedule of vehicle 𝑘 and 𝑡፫ represents the route duration. 𝐿 is an arbitrary large value.
Furthermore, the model uses the following variables:

𝑦፤፫ = { 1 if vehicle 𝑘 drives trip 𝑟
0 otherwise

𝑤፤፦፩፫ = { 1 if product 𝑝 is loaded into compartment 𝑚 of vehicle 𝑘 during trip 𝑟
0 otherwise

𝑞፤፦፩።፫ = quantity of product 𝑝 in compartment 𝑚 of vehicle 𝑘 delivered to location 𝑖 during trip 𝑟

The tank truck loading model can be stated as:

𝑀𝐴𝑋∑
፫∈ፑ

∑
።∈ፍ

∑
፤∈ፊ

∑
፦∈ፌ

∑
፩∈ፏ

𝑞፤፦፩።፫ (1)

Subject to

∑
፤∈ፊ

∑
፦∈ፌ

𝑞፤፦፩።፫ ≥ 𝑞፩።፫,፦።፧ ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (2)

∑
፤∈ፊ

∑
፦∈ፌ

𝑞፤፦፩።፫ ≤ 𝑞፩።፫,፦ፚ፱ ∀𝑝 ∈ 𝑃, ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅 (3)

∑
፩∈ፏ

∑
፦∈ፌ

𝑞፤፦፩።፫ ≤ 𝐿 𝛿፤። ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾∀𝑟 ∈ 𝑅 (4)

∑
።∈ፍ
𝑞፤፦፩።፫ ≤ 𝑤፤፦፩፫ 𝑄፤፦ ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅 (5)

∑
፩∈ፏ

𝑤፤፦፩፫ ≤ 1 ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑟 ∈ 𝑅 (6)

∑
፤∈ፊ

𝑦፤፫ = 1 ∀𝑟 ∈ 𝑅 (7)

∑
፫∈ፑ
(𝑦፤፫ 𝑡፫) ≤ 𝑏፤ − 𝑎፤ ∀𝑘 ∈ 𝐾 (8)

𝑤፤፦፩፫ ≤ 𝑦፤፫ ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅 (9)

𝑞፤፦፩።፫ ≥ 0 ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, ∀𝑟 ∈ 𝑅 (10)
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The objective function (1) maximises the total delivered quantity, to ensure efficient vehicle utilisation.
Constraints (2-3) set the delivery quantity to be within the range previously determined by the minimum
andmaximum delivery quantities. Constraints (4) implement station restrictions and constraints (5) limit
the delivery quantity per compartment to its capacity. The fact that a compartment can only be filled
with one type of product is implemented with constraints (6). Constraints (7) ensure that each route is
driven by a vehicle exactly one time and constraints (8) are used to limit the duration of all routes driven
by a vehicle to the time available in the driver schedule. Constraints (9) link variables 𝑤 and 𝑦. Lastly,
constraints (10) are the non-negativity constraints.

3.4.6. Heuristic procedure
Since the planning of a day affects the inventory levels of the next day, and thus the planning for the
next day, an dynamic programming approach is required to create the planning. The planning must be
created per day, with the exact delivery quantities from the previous day known. Figure 3.9 gives an
overview of the heuristic procedure.

Figure 3.9: Heuristic procedure, with T = days in time horizon

To create the planning for the full time horizon, the planning for each time period are made separately,
based on all information available. To create the planning for one time period, orders are generated on
depletion day for each tank that depletes during the time horizon. In the second step, order pairing, the
orders stations which have to be replenished during the considered day are combined with orders for
other tanks at the same station from other time periods. Then, minimum and maximum quantities are
determined based on the simultaneous dry run inventory policy. The fourth step is to combine stations
into routes which need to be driven during the considered day. In the last step, the actual delivery
quantities are determined by assigning the orders to vehicles.

Now the planning for the considered day is created, inventory levels are adjusted and the process is
repeated for the next day untill the last day of the planning horizon is reached.
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3.4.7. Local improvement procedure
For the initial solution, the decision to visit a station is based on the day one of the tanks deplete. This
means that the routing is not optimised, since the planning is not based on minimising routing distances
over days. It could, for example, happen that during three days only one station is visited. It would,
from a routing perspective, be more efficient to visit these stations in the same trip. To improve the
initial solution, a local improvement procedure is proposed, which is shown by Figure 3.10.

Figure 3.10: Overview of local improvement process

Stations can only be visited earlier than in the initial solution, since at the day of delivery in the initial
solution, one of the tank depletes. Candidate solutions are, therefore, based on visiting a station a day
earlier. The local improvement procedure evaluates if these candidate solutions lead to a decrease
in total travel distance, compared to the current best solution. To evaluate a candidate solution, the
planning needs to be recreated for the remaining time periods in the time horizon. Since this is an
extensive process, the number of shifting actions is limited to perform each visit in the planning one
day earlier.

The improvement procedure improves the planning day by day. For the currently considered day, called
the improvement day, shifting actions are determined. These shifting actions are based on visiting a
station during the considered day, that is originally scheduled to be visited during the next time period.
These shifting actions are sorted on the number stops per trip in the original planning and the expected

43



3. PLANNING METHODS

effect on the total mileage. The algorithm then evaluates the effect of each shifting action, by recreating
the full planning for the remaining time periods [improvement day, last day time horizon]. If the action
leads to an improved solution, the current best solution is updated with this action and the corresponding
inventory level changes.

The design of the algorithms ensures that only feasible solutions are created, which is important be-
cause evaluating a solution is an extensive process. Therefore, it is not possible to evaluate a huge
number of small changes, which happens in many other heuristics.

3.4.8. Verification of the heuristic
The heuristic is implemented in Python and experiments are executed on a computer with a 3.50 GHz
4-core processor and 32 GB of RAM. The experiments are discussed below.

Table 3.6: Results of heuristic verification experiments

# Description Expected behaviour Result Ok?
1 Described data set + normal

configuration
distance >541
average stock >0%
vehicle util. >0%
# dryruns = 0

distance = 549
average stock = 46.3%
vehicle util. = 98.6%
# dryruns.= 0

Pass

2 Run without order generation distance = 0
# dryruns >0

distance = 0
# dryruns = 23

Pass

3 Run without demand distance = 0 distance = 0 Pass
4 Run without vehicles Infeasible Infeasible Pass
5 2 vehicles with station restrictons distance >541 distance = 641 Pass
6 Double station tank capacity distance <541

average stock <39.3%
distance = 487
average stock = 24.6%

Pass

7 Multiple vehicles with small time
windows

distance >541
stops/trip <2.33

distance = 685
stops/trip = 1.2

Pass

8 Set initial inventory levels to safety
stock level

distance >541 distance = 864 Pass

1. Described data set + normal configuration
With the normal configuration, the objective value is expected to be slightly higher than the value
found by the MILP models. No dry runs are allowed.

2. Run without order generation
If there are none orders generated, vehicles will not drive so the travel distance is expected to be
zero and the number of dry runs to be higher than 0.

3. Run without demand
No demand removes the incentive to drive with vehicles, so the travel distance is expected to be
zero.

4. Run without vehicles
No vehicles will lead to an infeasible solution.

5. 2 vehicles with station restrictions
This experiment is used to test the route selection procedure for the heuristic. Since the heuristic
decomposes the problem into multiple phases, the route selection algorithm should only select
routes that are feasible (routes that can be driven by at least one vehicle), otherwise the model is
infeasible in a following phase. Moreover, the total travel distance is expected to increase, since
some stations cannot be combined in a route any more.

6. Double station tank capacity
Double tank capacity should lead to an decreased total travel distance, since more fuel can be
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stored.

7. Multiple vehicles with small time windows
If the time windows are small, less stations can be combined in a route, so the total travel distance
is expected to increase.

8. Set initial inventory level to safety stock level
If the initial level is set to the safety stock level, more fuel needs to be transported during the
considered time horizon. Therefore, the total travel distance is expected to increase.

3.4.9. Verification of simultaneous dry run
Figure 3.11 shows the inventory and safety stock levels for the tanks at the same station. During the time
horizon of 14 days, the station is replenished twice. As can be seen, tank two has the highest demand.
At the moment of the first delivery, tank one and two are resupplied with a quantity that postpones the
next delivery as much as possible. Tank 3 is not resupplied, which is logical because the inventory
level is higher than the safety stock level during the full time horizon. These results confirm that the
simultaneous dry run inventory policy leads to the desired effect.

Figure 3.11: Inventory levels for the tank at one station
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3.4.10. Heuristic validation by result interpretation
Table 3.7 shows the planning for the verification data set for both MILP models and the heuristic. The
numbers between brackets are the stops in a route. As can be seen in the table, contains the initial
solution found by the heuristic more trips with a lower number of stops, compared to the solution found
by the MILPmodels. Therefore, the solution is improved by shifting visiting stations between days. This
has the desired effect, since an improved solution can be found. The improved solution has the same
number of trips as the solution found by the MILP models. The initial solution and improved solutions
found by the heuristic are shown in Figures 3.12 and 3.13.

Table 3.7: Comparison of planning for data set S4-D7

Day Solution MILP Sol. simpl. MILP Initial solution Improved solution
1
2
3 (1,2,3,4) (2,3) (2) (1,2)
4 (1) (1)
5 (1) (1,2,3,4) (3) (3)
6 (2,3) (2,4) (1,2,4)
7 (1)

Figure 3.12: Initial solution found by heuristic for verification data set
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Figure 3.13: Improved solution found by heuristic for verification data set

3.4.11. Heuristic validation by company reference run
AMCS has performed its own simulations with the same data. The result found by the company are
shown in table 3.8 and compared to the result found by the heuristic. Although the results cannot
be compared one to one, because different algorithms are used to generate the solutions, the results
indicate if the heuristic solution is feasible.

In terms of travel distance, the heuristic seems to be able to create a better solution compared to the
result found by AMCS. On the other had, since the total delivered volume is lower, the total travel
distance might only be lower for the considered time span and not for the long term. Furthermore, the
number of stops per trip has decreased, while vehicle utilisation remains high, what indicates a more
efficient planning. Unfortunately, the exact causes of the differences between the two results cannot
be identified, so the observed effects are only an indication.

Table 3.8: Comparison of result created by AMCS and proposed heuristic for 59 stations and 14 days

KPI AMCS Result Heuristic result Difference
Total distance (km) 12,398 10,877 -12.3%
Average inventory level (%) 43.6
Trips 159 139 -12.6%
Stops 276 203 -26.4%
Average stops/trip 1.74 1.46 -15.9%
Delivered volume (L) 7,680,394 5,994,000 -22.0%
Volume/trip (L) 48,304 29,529 -38.9%
Vehicle utilisation (%) 97.8 96.7 -1.1%
Dryruns 2 0
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3.5. Concluding remarks on the planning methods
The second research question formulated in this research is ”Which KPIs are relevant for assessing
a planning method?”. The objectives of the supplier, the decision maker, are analysed in this chapter
to answer this question. The main objective, maximising profit, can be achieved by minimising costs
and maximising revenue. To maximise revenue, dry run should be prevented and minimising costs can
be achieved by minimising travel distance, minimising the average stock level and minimising the run
time of the planning algorithm. Maximising vehicle utilisation and minimising the average number of
stops per trip lead to a minimised travel distance. These quantitative objectives are the KPIs, which are
used to evaluate the performance of the planning methods. The KPIs are calculated for each solution
generated by each planning method in exactly the same way.

Research sub question three is stated as ”Which planning methods can be developed for planning
petrol station replenishment?”. These planning methods are presented in this chapter. The three
main planning methods are a full MILP model, a simplified MILP model and a heuristic approach. The
literature review shows that these methods are a common and effective way to solve the PSRP. The
presented main planning methods differ on computation time and quality of the generated solutions.

To determine trade-offs between dry run and travel distance and average inventory levels and travel
distance, model variants are presented. These variants use a factor which can be varied to determine
the effect of different objective cost ratios for these trade-offs. Moreover, a model variant is presented
that shows how the main planning can be changed if the service time depends on the delivery quantity.

The heuristic is a combination of a decomposition heuristic with a local improvement procedure. The
considered variant of the PSRP is rich, which makes it hard to find a solution for larger size instances.
The decomposition heuristic divides the complex problem into smaller sub problems, based on the
decision process of the supplier. This makes it easier to find a solution. Since the heuristic approach
decomposes the problem into separate parts, inventory and routing decisions are not optimised simul-
taneously. To improve the initial heuristic solution, an improvement procedure is proposed, based on
visiting stations a day earlier than scheduled. Since evaluating a candidate solution is an extensive
process, only feasible solutions are considered.
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AMCS Case study

The case study, which is used to evaluate the planning methods, is presented in this chapter. Firstly,
the company AMCS is introduced in section 4.1, after which the characteristics of the case study are
described. The case study is based on the real-life situation for a client of AMCS. Moreover, the cur-
rently used planning algorithms are presented in section 4.3, followed by the evaluation of the planning
methods.

4.1. AMCS
AMCS is the worldwide market leader in software and vehicle technology for the waste, recycling and
material resources industries. The company hasmore than 500 employees and 2450 customers around
the world, who are being helped with reducing operating costs, increasing asset utilisation and improv-
ing customer service. In order to achieve these goals, AMCS has developed AMCS platform, a state
of the art software platform built on the best practices and designed to meet the needs of the waste,
recycling and resources industries (AMCS Group, 2019a). One of the focus areas of AMCS is routing
optimisation, for which the company has several solutions for different routing problems. The solution
for distribution of liquid fuels is called Oil Planner, a resource utility optimisation system with automatic
planning.

4.1.1. AMCS Oil Planner
AMCSOil Planner is an IT system developed to improve the efficiency of the distribution of all kinds of oil
and petrol. The system covers the whole distribution process, from planning to distribution. Oil Planner
is equipped with unique features to deal with oil and petrol distribution, such as tank level forecast,
volume deviations, truck compartment planning and regional restrictions planning. The achievements
experienced by the customers of AMCS, are (AMCS Group, 2019b):

• 5 − 20% reduction in operational costs (driven km, time, trucks)

• 5 − 20% reduction in 𝐶𝑂ኼ emissions
• 5 − 10% reduction in number of vehicles

• 5 − 15% increase of delivered oil and petrol per driven km

• 25 − 75% less time spent on planning and resource scheduling

• Employee satisfaction and customer service levels improvements
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4.2. Case study characteristics
The case study concerns the distribution network for one of AMCS’ clients. The network consists of
59 petrol stations and one central depot, for which the distance and travel times between the locations
are based on the road net and provided by AMCS. All stations have one to five tanks and there are
four vehicles that supply the stations with fuel, which is sold to end customers at the petrol stations.
Stations can have vehicle restrictions, which can be used to prevent trucks from blocking the road
if there is not enough space. There are two brands with three products each (gasoline with octane
number 92, gasoline with octane number 95 and diesel), so there are six products in total. Each station
sells only one brand of fuels, so there are up to three different products distributed to a single station.

Figure 4.1: A truck with a semi-trailer (HMK Bilcon, 2019b) Figure 4.2: Rigid trucks with drawbar trailers (HMK Bilcon,
2019a)

Two types of vehicles are used in the case study network, a truck with semi-trailer and rigid trucks with
drawbar trailers (see Figures 4.1 and 4.2). The trucks are equipped with flow metres and the tanks
have six to eight compartments. Because of the flow metres, the content of a compartment can be split
over multiple visited stations.

An overview of the case study characteristics is shown in the table below.

Table 4.1: Overview of case study characteristics

Parameter Value
Number of stations 59
Number of depots 1
Number of vehicles 4
Number of products 6 (2 brands, 1 brand per station)
Travel distances Provided by AMCS in metres
Travel times Provided by AMCS in seconds
Weekly consumption forecast per tank Provided by AMCS in litres per day
Tanks per station 1 to 5
Tank capacity 6.000 - 100.300 L
Compartments per vehicle 6 to 8
Compartment volume 5.000 - 13.000 L
Operating hours vehicles Time schedule provided by AMCS
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Figure 4.3 gives an overview of the spatial distribution of the depot (in blue) and the gas stations (in
green).

Figure 4.3: Map of stations (green dots) and depot (blue dot)

Furthermore, the stations are categorised by the distance to the depot, travel time to the depot, weekly
demand and number of different product types. These categories are shown in Table 4.2.

Table 4.2: Categorisation of case study data

Category 1 2 3 4 5
Distance to depot (*1000 m) 0 - 25 25 - 50 50 - 75 75 - 100 100 - 125
Number of stations 27 15 12 3 2
Percentage of stations (%) 45.8 25.4 20.3 5.1 3.4
Travel time to depot (*300 s) 0 - 5 5 - 10 10 - 15 15 - 20 20 - 25
Number of stations 13 19 16 9 2
Percentage of stations (%) 22.0 23.2 27.1 15.3 3.4
Weekly demand (*100 L) 0 - 250 250 - 500 500 - 750 750 - 1000 1000+
Number of stations 5 24 14 10 6
Percentage of stations (%) 8.5 40.7 23.7 16.9 10.2
Number of product types 1 2 3
Number of stations 4 9 46
Percentage of stations (%) 6.8 15.3 78.0
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4.3. Current planning method
The planning method currently used by AMCS consists of several steps, which are described in the
next sections. This section concludes with a schematic overview of the whole planning process. The
order planning algorithms are executed over night.

4.3.1. Order generation
The order generation process generates orders for each station. The stock forecast and the available
vehicles are the only input parameters for this algorithms. The orders are generated as follows:

1. Determine the exact expected depletion time for each tank at each station

2. Based on the depletion times for the tanks, set the expected depletion time for each station based
on the earliest depletion time of its tanks

3. Determine the ideal order time, which is initially set at the expected depletion time and then shifted,
taking into account:

• The opening hours of the station

• The operating hours of the available vehicles

• The service time at the station

• Driving time between the depot and the station

4. Determine smallest order amounts which push the next expected depletion as far as possible into
the future. These amounts, called the target amounts, are:

• For the tank with the highest consumption rate, the maximum delivery amount possible

• For the other thanks, the exact amount needed to shift the next dry run of the tank to the
moment when the tank with the highest consumption rate runs dry. This sets the expected
dry run time for the next delivery at the same time for each tank, also called simultaneous
dry run.

5. Determine the optional order amounts, which are the maximum amounts that could be delivered
on top of the target amounts without exceeding the tank’s capacity

6. Generate a time window for a possible delivery at the station, according to the following steps:

• Find an open time frame for the station that contains the ideal order time and set the time
window to this.

• If the time window ends after order time, set it to end at order time.

• If the time window begins before a minimal amount can be delivered without violating the
tanks’ capacities (because the stock first needs to be consumed), the time window’s start
time is changed to the earliest time when the minimum order amounts can be delivered
feasibly. The minimum amount is defined as the target amount minus a maximum allowed
percentage that defines how much can be differed from the intended amounts (typically 10
or 20 percent).

The result is an order for each station, with a target and optional amount for each tank at the station, a
time window and an order time. Figure 4.4 visualises the concept of using target and optional amounts
to push the simultaneous dryrun as far as possible in the future.
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Figure 4.4: Visualisation of two tanks at one station with simultaneous dryrun as far as possible in the future

4.3.2. Order pairing
The next step after creating an order for each station, is pairing the orders. A paired order means that
a truck visits multiple stations before it returns to the depot. The general order pairing algorithm works
as follows:

• Find the ”not full” orders for station within a station group. An order is considered ”not full” when
the order amounts are less than 90 % of a truck’s capacity.

• Make a pairing with the ”not full” orders with the earliest order times.

• Repeat the order generation process while considering the paired stations as one station. This
results in new order amounts and a new time window.

Orders are generally only paired within the manually made groups. This pairing algorithm has several
drawbacks.

• The network has to be thoroughly analysed to manually determine the station groups.

• If the order amounts for paired orders lead to simultaneous dry run, this will lead to the same
paired orders in the future. This might mean that more multiple stop trips are generated than
needed.

• When a paired order contains stations with high and low consumption rates, the station with low
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consumption rates will be visited more frequently than necessary, since the combined expected
depletion time is determined by the station with high consumption rates. It might be better to
visit the station with low consumption rates with maximum order amounts, because the above
described algorithm might lead to more trips than necessary.

To overcome the last mentioned drawback, some stations are given the ”priority” or ”dump” label. Sta-
tions with the ”priority” label must always be visited with the target amounts, to prevent unnecessary
trips in the long run. Stations with the ”dump” label may always be visited to maximise the use of the
vehicles’ capacities. Next to the use of these labels, many other ”ifs” are used to determine which order
pairings lead to less driven kilometres in the end.

4.3.3. Order planning
The last step in the planning process is to assign the generated orders to available trucks. There are
a lot of ”empty trips” which represent stretches of operating hours of the different vehicles. Orders are
planned on these trips. A greedy algorithm is used to assign the orders to compartments of the trucks.
The target amounts of prioritised orders are firstly assigned to a compartment, followed by the target
amounts of non-prioritised orders. Lastly, the optional amounts are used to fill up the vehicle.

4.3.4. Overview of the planning algorithm

Figure 4.5: Overview of the planning algorithm
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4.3.5. Concluding remarks on the planning algorithm
• Currently, vehicles are filled to the maximum, what possibly leads to the most efficient planning.

• Order pairing (and in the end vehicle routing) is based on manually defined groups and other
empirically defined rules to generate desired behaviour in special situations, which means that
the network has to be thoroughly analysed. It might be beneficial to automate a part of the order
pairing process.

The current planning analysis is used to define recommendations for AMCS. These recommendations,
which follow from the evaluation of the planning methods as well, are discussed in Section 4.6.
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4.4. Evaluation of planning methods with the case study data
The planning methods presented in this research are evaluated with the case study. This section
describes how the situation for the case study is implemented using the models.

4.4.1. Case study implementation
The case study data is slightly modified before the data could be used as input data for themathematical
models of the planning methods. Although the modifications are a relaxation of the real-life problem,
the changes are made in such a way that the model remains as representative for the real-life situation
as possible. The modifications are discussed below.

• Underground tanks
The mathematical models only allow one tank of a product type per station. In the case study,
there are stations with more tanks containing the same product type. In the models, the tanks
with the same product at a station are considered as one. This means that the inventory levels
and capacities are combined.

• Capacity and inventory levels per tank
The case study data specify for each tank a capacity, maximum stock level, minimum stock level,
empty level, an initial inventory level and a demand forecast per day. The maximum andminimum
stock levels are set by the petrol company, where the minimum level is based on the capacity of
the tank and the demand forecast. In the models, the capacity of each tank is set to the maximum
stock level and the minimum stock level in the case study data is used as safety stock level. Initial
inventory levels and the demand forecast per day are the same in the case study and in themodel.

• Driver shifts
Each vehicle is often used by two drivers during two work shifts in the case study. During such a
shift, a driver can perform multiple trips. In the models, this situation is implemented by adding a
vehicle twice. The time windows of the two vehicles differ, representing the driver schedules.

• Station restrictions
Some stations cannot be visited by each vehicle in the case study. The normal configuration
of vehicles is often too large to visit stations with restrictions. Therefore, the rigid truck without
drawbar is used to visit stations with restrictions. Implementing this situation is done by reducing
the number of compartments for this smaller vehicle that can visit all stations.

• Accuracy of the units
The unites used in the case study data set are litres for quantities, seconds for time and meters
for distances. The mathematical models model per 100 litres, 300 seconds and 1000 meters.
This increases the speed of the solver to find a solution, which is seen as more important than
the limited loss of accuracy. The effect of the loss of this accuracy on the results is limited.

• Acceptable computation time
The planning methods must generate a planning within reasonable time. The planning is nor-
mally made over night. Starting as late as possible will give the more up-to-date data. At the
other hand, there should be some time for manual adjustments before drivers get their schedule.
Therefore, seven hours is seen as the maximum computation time. Using seven hours for cre-
ating the planning is only justified if this leads to significantly better solutions (based on personal
communication with AMCS planning expert K. Hauge).

• Maximum number of stops per trip
In the simplified MILP model and in the heuristic, routes are defined before the optimisation starts.
The routes are generated for each combination of stations, for up to a number of stops per route.
Verification the models in the previous chapter is performed with five stops per route for these two
models, to create results that can be compared to the first presented MILP model. For the results

56



4.4. EVALUATION OF PLANNING METHODS WITH THE CASE STUDY DATA

for the simplified model with case study data, there has been noticed that considering five stops
per route significantly slows down the model relative to three stops per route, while the solution
quality does not increase. This is due to the huge number of possible route combinations if five
stops are allowed. Therefore, the number of stops per trip is limited to three in the case study
experiments. According to AMCS planning expert K. Hauge, this is also representative for the
real-life situation.

• Service time
In the case study, there is a fixed service time at the terminal of fifteen minutes and a service rate
of 1800 litres per minute. At a station, the fixed service time is ten minutes and the service rate is
900 litres per minute. Since the basic variants of the planning methods do not consider a service
time that depends on the delivery quantity, the service time it would take to fully load and empty
the vehicle with the largest capacity is taken as fixed service time for each route. This is done by
adding the time it takes to fully empty and load the vehicle to the fixed service time at the depot.
Fixed service time per station is added per stop.
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4.4.2. Experimental setup
As appears from the results presented in Section 4.5, a solution for the MILP models can only be found
by the solver for instances with a relatively small number of stations. The fourteen stations per subset
are randomly selected, but same subsets of stations will be used to evaluate all models and model
variations. This allows comparison of the results for different models. Doing multiple experiments
instead of one limit the effect of spatial distribution and underground tank configuration on the results.
The stations for a subset, with their own geographical distribution, are shown in Figure 4.6.

Figure 4.6: Sub sets of data set for experiments MILP model and simplified MILP model
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4.5. Computational results
The mathematical models are implemented in Python and the MILP models are solved using Gurobi
Optimizer version 8.1.1 (Gurobi Optimization, LLC, 2019). The experiments are executed on a com-
puter with a 3.50 GHz 4-core processor and 32 GB of RAM. Results are generated for each sub set for
each model. The heuristic is also ran with the full data set. The most relevant results are presented in
this section, an overview of the solutions for all performed experiments is included in appendix C.

4.5.1. Evaluation of performance of the solver
Figure 4.7 shows the computation time versus the gap and objective value found by the solver for
an experiment with 6 stations and 7 days. The graph shows that during 24 hours run time, the most
optimal objective value is found within several minutes and does not improve anymore. The gap quickly
becomes smaller during the first minutes, steadily declines for a few hours, but after four hours, the
decrease of the gap is marginal for the remaining hours. At the same time, the objective value does not
improve any more after the first tens of minutes. For this reason, the maximum run time of experiments
is set to two hours, even though a longer run time would be acceptable in practice.

Figure 4.7: Performance of the solver

The effect of restarting the solver during the optimisation process is considered. Restarting the optimi-
sation process of the solver does not lead to a significant effect. If runs with and without restarts are
considered, the objective value is exactly the same and there is no significant difference in computation
time. An explanation for this could be that, for MIP models, there is not much ”warm information” avail-
able when the solver is restarted. Restarting the solver may be more suitable for solving LP models.
This possible explanation is not verified.
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4.5.2. Evaluation of performance of the heuristic
Figure 4.8 shows the gradual decrease in travel distance during the improvement phase of the heuristic.
The results are based on an experiment with 10 stations and 7 days. Per day, there is evaluated what
the effect is of visiting a station during the considered day that is originally scheduled to be visited
tomorrow. This leads to the evaluation of 21 shifting actions, of which 8 actions lead to a decreased
travel distance. For such small instances, the computation time of the heuristic is a few seconds.

Figure 4.8: Gradual decline of travel distance during improvement phase
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4.5.3. Distance and computation time comparison
Table 4.3 shows the distance and computation time for the basic variants of MILP models and the
heuristic. The results are the average of performed experiments and the computation time is limited to
two hours. Exact solutions can be found with the MILP models for instances with up to 10 stations and
5 days. Not exact solutions are found for instances with up to 12 stations and 7 days. A solution for 20
stations and 7 days is found with the full MILP model and not with the simplified MILP model. This can
be explained by the fact that the large number of predefined routes makes it harder to find a solution.

In terms of computation time, the heuristic outperforms the MILP models. If an exact solution can be
found within two hours, the solution is found faster by the simplified MILP model compared to the full
MILP model.

The total travel distance for the solutions found by the simplified MILP model, compared to the full MILP
model, are exactly the same for the experiments with four stations and slightly different for the other
experiments. This can be explained by the fact that the simplified model uses predetermined routes.
The average increase in travel distance for solutions created by the heuristic, compared to full MILP
model, is 19.1%. If only experiments with seven days are considered, the average increase in travel
distance is 15.6%.

Table 4.3: Computational results, with computation time (CT) and difference in distance relative to the full MILPmodel (ጂ). Shown
results are averages and S4-D5 means an experiment with 4 stations and 5 days. *not an exact solution **no solution found

Full MILP model Simplified MILP model Heuristic
Experiment Distance (km) CT (s) Distance (km) Δ CT (s) Distance* (km) Δ CT (s)
S4-D5 267 2 267 0.0% 2 304 13.8% 2
S4-D7 480 469 480 0.0% 90 550 14.6% 4
S6-D5 321 544 326 1.5% 42 413 28.8% 3
S6-D7 582* 7200 583* 0.1% 7200 690 18.5% 6
S8-D5 399 1955 412 3.2% 124 501 25.5% 5
S8-D7 753* 7200 747* -0.8% 7200 849 12.7% 8
S10-D5 454* 7200 463 1.9% 2132 581 28.1% 6
S10-D7 873* 7200 857* -1.8% 7200 984 12.7% 14
S12-D5 478* 7200 504* 5.4% 7200 606 26.8% 8
S12-D7 972* 7200 934* -3.9% 7200 1063 9.4% 18
S20-D7 1376* 7200 -** - -** 1642 19.3% 39
S30-D7 -** 7200 -** - -** 2281 - 79
Average 0.6% 19.1%
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4.5.4. Results for larger instances
For larger instances, the MILP models can not be used to find solutions, even not when the limit on
computation time is set to seven hours. Therefore, heuristic solutions are found for these instances.
Table 4.4 shows the computational results for these real-life size instances. The initial solution found
by the decomposition heuristic is improved during the improvement procedure by 4.6% on average.
For the full data set, a solution is found within two hours, which proves that the heuristic is an effective
method for creating solutions for real-life cases.

Experiments in which the simultaneous dry run inventory policy was not applied, showed a 22.3%
increase in travel distance for an experiment with 20 stations and 14 days. An experiment with 30
stations and 14 days increased the travel distance by 18.2%. In these experiments, the minimum
delivery amount was set to the demand of a few days. It was not possible to find a feasible solution for
the full data set with this approach. This confirms that the proposed heuristic is an effective planning
method.

Table 4.4: Computational results for larger instances. S20-D14 means 20 stations and 14 days.

Experiment Initial solution (km) Final solution (km) Δ CT Initial (s) CT Improve proc. (s)
S20-D14 3931 3670 -6,6% 2 162
S30-D14 5588 5365 -4,0% 4 589
S40-D14 6965 6735 -3,3% 12 727
S50-D14 10267 9813 -4,4% 29 3747
S59-D14 11426 10877 -4,8% 14 5103

Figure 4.9 shows a visualisation of the solution for 59 stations and 14 days. Each coloured line repre-
sents a trip that is driven by a vehicle. Some stations are visited as only stop in a trip, what happens
when the demand of one station is so high that it is not possible to combine stations in a trip.

Figure 4.9: Impression of solution for S59-D14 (not all trips are shown in the legend)
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4.5.5. Sensitivity analysis on route duration
Travel time and service time are assumed to be fixed in the mathematical models. In real-life, unex-
pected events and congestion can affect the duration of a trip. Table 4.5 shows the results for experi-
ments in which the route duration is increased and decreased. The total travel distance changes less
than one percent, when the rout duration is increased or decreased by 20%. The difference for the
other KPIs is less than 2.5%. This shows that, for the full case study data set, the effect route duration
on the solution is limited. There are enough hours available in the driver schedule to fulfil the service,
even when the route duration is increased by 20%.

Table 4.5: Sensitivity analysis route duration. The results are based on the full data set with 59 stations and 14 days.

Route duration 80% Δ 100% Δ 120%
Total travel distance (km) 10,853 -0.2% 10,877 0.6% 10942
Average stock level (%) 44.4% 1.8% 43.6% -0.1% 43.5%
Number of dry runs 0 0 0
Total delivered (L) 60,517 1.0% 59,944 0.3% 60118
Delivered per stop (L) 301 2.0% 295 0.8% 298
Vehicle utilisation (%) 95.5% -1.2% 96.7% -0.4% 96.3%
Trips 141 1.4% 139 1.4% 141
Stops 201 -1.0% 203 -0.5% 202
Average # stops per trip 1.43 -2.4% 1.46 -1.9% 1.43

4.5.6. Sensitivity analysis on safety stock
It can be assumed that a lower safety stock level leads to a decreased travel distance, since the mo-
ment that the inventory level drops below the safety stock level is postponed. This is confirmed by an
experiment with 10% lower safety stock levels, of which the results are shown in Table 4.6. The total
travel distance decreases by 2.3%.

Table 4.6: Sensitivity analysis safety stock level. The results are based on the full data set with 59 stations and 14 days.

Safety stock 90% Δ 100%
Total travel distance (km) 10,625 -2.3% 10,877
Average stock level (%) 43.3% -0.6% 43.6%
Number of dry runs 0 0
Total delivered (L) 59,709 -0.4% 59,944
Delivered per stop (L) 302 2.1% 295
Vehicle utilisation (%) 96.8% 0.0% 96.7%
Trips 138 -0.7% 139
Stops 198 -2.5% 203
Average # stops per trip 1.43 -1.8% 1.46

63



4. AMCS CASE STUDY

4.5.7. Comparison of planning methods on KPIs
Table 4.7 shows average KPIs for experiments with 4 stations and 7 days for the basic variants of
the planning methods. There can be seen that, as found in the previous sections, the total travel
distance for the solution generated by the heuristic is increased by 14.6%, while the computation time
is significantly lower.

Furthermore, the total delivered quantity is much higher for the heuristic solution compared to the
solution found with theMILP models. Higher total delivered quantity leads to higher values for the
average stock level and vehicle utilisation. This can be explained by the fact that in the MILP models
there is no incentive to maximise delivery quantities to the capacity of the vehicle, because inventory
policy is based on maintaining a level higher than the safety stock level. For the long term, the heuristic
solution is probably more efficient, since vehicle utilisation is higher and the number of stops per trip is
lower. This is a strong indicator for more efficient transport as described in Section 3.1.

Table 4.7: Average KPIs for experiments with four stations and seven days. *relative difference with full MILP model

Full MILP model Simplified MILP Δ* Heuristic Δ*
Total travel distance (km) 480 480 0.0% 550 14.6%
Average stock level (%) 38.6% 40.1% 4.0% 45.5% 18.0%
Number of dry runs 0 0 0
Computation time (s) 461 90 -80.5% 5 -98.9%
Total delivered (L) 1379 1357 -1.6% 2086 51.3%
Delivered per stop (L) 171 168 -1.6% 294 72.1%
Vehicle utilisation (%) 81.0% 79.8% -1.5% 86.4% 6.6%
Trips 4 4 0.0% 6 35.3%
Stops 8 8 0.0% 7 -12.5%
Average # stops per trip 1.95 1.95 0.0% 1.21 -37.9%
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Figure 4.10 shows the average inventory levels for the data set with 4 stations and 7 days. As expected,
the average inventory level is higher for the heuristic solution compared to the solution found with the
MILP models. Furthermore, the average inventory level decreases towards the end of the time horizon.
To show that this effect only happens at the end of the simulation, the inventory levels for a simulation
with 14 days are shown by the yellow line. Average inventory levels for this experiment remain constant
during the first 7 time periods.

Figure 4.10: Average inventory level per time period
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4.5.8. Trade-off between travel distance and dry runs
Model variant one of the MILP models, with soft constraints on inventory levels, is used to determine
the trade-off between travel distance and dry run. In this research, dry run is the moment when the
inventory level of a tank drops below the safety stock level, so allowing dry run increases the risk of
selling out. On the other hand, however, allowing dry runs may decrease the total travel distance.

Average results for experiments with four stations, seven days and different penalty costs are shown in
Figure 4.11. In the reference run (**), dry runs are not allowed. If dry run is allowed, the travel distance
decreases. In general, lower penalty costs lead to a larger decrease in travel distance. The decrease
in travel distance when comparing the results for a penalty of 25 and 0 is, however, relatively small
compared to the large increase in number of dry runs. If dry runs are allowed, the penalty should not
be much higher than 25 to prevent an unnecessarily high number of dry runs.

Penalty costs of 50 lead to an 15.6% decrease in distance and 0.75 dry runs, where penalty costs of
25 decreases the travel distance by 23.5%.

Figure 4.11: Travel distance and dry runs for different penalty costs. *the orange line is hidden below the yellow line **reference
run, where dry run is not allowed
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4.5.9. Trade-off between travel distance and average inventory level
Model variant two of the MILP models, where travel distance and inventory levels are minimised si-
multaneously, is used to determine the trade-off between travel distance and average inventory levels.
The variant uses a cost factor to weigh distance costs versus inventory costs. Popović et al. (2011) and
Vidović et al. (2014) also considered inventory and routing costs in their models. These authors used a
costs of 2 euro per km and 1.09 euro per ton inventory costs per day. Experiments are performed for a
data set of 4 stations and 7 days with the same factor ratio. Considering 7 time periods and modelling
quantities per 100 L, this leads to a costs factor of 0.38 for the ratio between routing and inventory
costs. The objective is then, in words, minimise the total travel distance plus 0.38 times the inventory
level.

Figure 4.12 shows the average travel distances and inventory levels for experiments with different cost
factors. Results are shown for the full MILP model and for the simplified MILP model. The inventory
levels for the results of both models are different if a cost value of zero is applied, what can be explained
by the fact that average inventory level is not minimised in that case. Furthermore, the general trend
can be identified that a higher cost factor leads to an increase in travel distance and a decrease in
average inventory level, up to a certain cost factor. Increasing the cost factor does then not lead to
changed travel distance and inventory levels.

A cost factor of 0.1 leads to a 9.3% decrease in average inventory levels and a 6.1% increase in travel
distance, where a cost factor of 0.3815 decreases the average inventory level by 13.7% and increases
the travel distance by 38.4%.

Figure 4.12: Inventory levels and distance of solutions found for different cost factors
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To further explore the trade-off between travel distance and inventory levels, experiments are performed
with only the objective to minimise travel distance or inventory levels, instead of minimising both objec-
tives simultaneously. Results of experiments with one of the objectives and no other limitations are set
to determine the minimum and maximum values for travel distance and inventory level. After determin-
ing these values, experiments are performed in which the average inventory level or the travel distance
is limited to a value between the maximum and minimum value. The results of these experiments are
plotted in Figure 4.13 for both MILP models. The result for cost factors 0.1 and 0.38 are shown as well.

Figure 4.13: Pareto front (marked by the red square) for travel distance and average inventory level objectives

The figure shows that travel distance and inventory levels depend on each other, which is logical be-
cause having low inventory levels means that a station needs to be replenished more often. The figure
also shows a red square. Solutions within this square are Pareto efficient and show the Pareto front.
Solutions outside this square have an unnecessarily high increased value, since the other objective
is not decreased. This can be seen for solutions with an inventory level just below 38%, where travel
distance increases without further decreasing the average inventory level.
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4.6. Recommendations for AMCS
If the heuristic solution is compared to the solution found by AMCS, the travel distance is 12.3% lower
for the heuristic solution (as discussed in Section 3.4.11). These results cannot be compared one to
one, because different algorithms are used to generate the solutions. It indicates, however, that the
heuristic solution is efficient. Vehicle utilisation is high for both solutions. The average number of stops
per trip is decreased by 15.9% in the heuristic solution, what indicates efficient planning. This could
possibly be explained by the fact that, if a vehicle is not fully loaded, AMCS adds stations from a certain
group to the trip to increase vehicle utilisation. The heuristic solution shows that, without adding extra
stations, vehicle utilisation remains high.

Furthermore, one of the drawbacks of the planning algorithm used by AMCS, as identified in Section
4.3, is that stations are only combined into routes if the stations are in the samemanually defined group.
This requires a thorough analysis of the network for new clients. Next to the manually defined groups,
stations have labels to determine if minimum delivery quantities must be delivered and if stations always
can be visited to increase vehicle utilisation. The heuristic solution shows that high vehicle utilisation
can be achieved without these customer specific settings. The heuristic does not use station categories,
but optimises routing and truck loading per day. As this optimisation process only takes a few seconds,
a recommendation for AMCS would be to do experiments with the same approach and see if this leads
to improved solutions.

Moreover, in both experiments, the simultaneous dry run inventory policy is applied. The heuristic
solution confirms this inventory policy to be an effective planning method. Another interesting area
for AMCS to explore is allowing the inventory level to drop below the safety stock level. This research
shows that if this is allowed it may result in a significant decrease in travel distance. Lastly, this research
shows that in case inventory levels should be minimised, this can be achieved with higher travel dis-
tance. If multiple objectives are used simultaneously, the solution should be checked to be Pareto
efficient.
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4.7. Concluding remarks on the planning methods evaluation
From the computational results, it can be concluded that exact solutions can be found with the MILP
models for instances with up to 10 stations and 5 days. Not exact solutions are found for instances
with up to 20 stations and 7 days. In terms of computation time, the heuristic outperforms the MILP
models. If an exact solution can be found within two hours, the solution is found faster by the simplified
MILP model compared to the full MILP model. The average increase in travel distance for solutions
created by the heuristic, compared to full MILP model, is 19.1%. If only experiments with seven days
are considered, the average increase in travel distance is 15.6%.

For larger instances, including the full data set, the heuristic was able to find solutions within two hours.
The travel distance of the initial decomposition heuristic solution is decreased during the improvement
procedure by an average of 4.6%. For the full data set, the heuristic provides a better solution than
the solution found by AMCS (as discussed in Section 3.4.11). The MILP models are not able to find
solutions for larger instances, even not when the limit on computation time is set to seven hours.

The final sub research question is stated as ”How do the proposed methods perform according to the
KPIs?”. To calculate the KPIs for the planning methods, the average result of multiple experiments is
determined (as described in Section 4.4.2). This excludes the effect of underground tank configuration
and spatial distribution of a sub set of stations on the KPIs. The total travel distance for the solution
generated by the heuristic compared to the MILP models is 14.6% higher, while the computation time is
significantly lower. The heuristic solution delivers more fuel with less stops per trip and higher vehicle
utilisation, what is a strong indicator of more efficient transport. This results in higher average stock
levels, compared to the MILP models.

Furthermore, if dry runs are allowed, it is advised to use a penalty cost for dry run in the objective
function of not higher than 25. A dry run is seen as a moment when the inventory level drops below the
safety stock level during a time period. If average inventory levels are minimised, there is a trade-off
between inventory levels and travel distance. Optimising one objective will lead to deteriorated values
for the other objective. Solutions with trade-offs should be checked on Pareto efficiency.
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5
Conclusion and recommendations

The main research question is stated as ”What is an efficient planning method for the multi-period petrol
station replenishment problem, in terms of computation time and solution quality?”. To answer this
question, several planning methods are presented and evaluated according to the KPIs. The proposed
planning methods are based on common methods to solve the PSRP, namely with MILP models and
a decomposition heuristic. These models are an addition to the literature, because the combination
of included real-life characteristics has not considered simultaneously before. This ”richness” of the
models, what makes the models more representative, is also the disadvantage of these models. The
added constrains are adding complexity to the models too, what increases the time it takes for a solver
to find a solution. A case study based on a petrol distributor is used to evaluate the performance of the
models.

The MILP models can be used to find solutions for up to 20 stations and 7 days. The models can,
however, not be used to find a solution for the real-life size problem. Therefore, a decomposition
heuristic is presented, based on decomposing the decision process of the supplier. Decomposition
heuristics have proven to be effective methods to solve the rich VRPs. Since the decisions of the
supplier are not optimised simultaneously, a local improvement procedure based on visiting stations
earlier is proposed. Delivery quantities are determined with the simultaneous dry run inventory policy.
This new concept, which has been observed in practice, ensures that a station is visited as few times
as possible.

The exact solutions found with the MILP models are used to evaluate the heuristic solution quality. In
terms of computation time, the heuristic outperforms the MILP models. For experiments with seven
days, the average increase in travel distance for heuristic solutions is 15.6%. At the same time, vehicle
utilisation increases and the number of stops per trip decreases, indicating more efficient transport.
A heuristic solution could be found within two hours for the full case study data set, consisting of 59
stations, 4 vehicles and 1 depot. Therefore, the proposed heuristic is an effective planning method
for the multi-period petrol station replenishment problem. Presenting the heuristic is the answer to the
main research question.

Moreover, MILP model variants are introduced to gain insight into trade-offs between KPIs. If inventory
levels and travel distance are optimised simultaneously, it can be advised to check if the solution is
Pareto efficient. In general, lower inventory levels require higher travel distance. If dry runs are allowed
and penalised in the objective, what means that costs are added when the inventory level drops below
the safety stock level, this could result in a decrease of 15.6% in total travel distance.

Future research in this area is encouraged. The value of the simultaneous dry run inventory policy
could be further explored by considering the exact inventory level in the tank at the time of delivery,
and adjusting maximum delivery quantities according to this remaining capacity. This allows to also
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5. CONCLUSION AND RECOMMENDATIONS

replenish the quantity of fuel that has already been sold during the day till the moment of delivery.
Moreover, the proposed local improvement procedure of the heuristic is based on recreating the plan-
ning for evaluating candidate solutions. If this process is sped up, more candidate solutions could be
evaluated.

Another direction for further research is to simulate deliveries with unexpected events to investigate
the effect of uncertainty on the distribution performance. Considering uncertainty can also be used to
determine efficient safety stock levels.
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ABSTRACT
The petrol distribution problem is well-known in the literature as the Petrol Station Replenishment
Problem (PSRP). This research concerns a "rich" version of the multi-period PSRP with real-life
characteristics, to represent the complexity of the practical problem. The planning is optimised over
multiple days, since stations do not need to be replenished every day. Mixed-Integer Linear Program-
ming (MILP) models and a decomposition heuristic are proposed as planning methods, which are
evaluated with a case study based on a real-life petrol distributor. Variants to these MILP models are
proposed for the situations where the inventory is allowed to drop below the safety stock level, where
inventory levels need to be minimised and where the service time depends on the delivery quantity.
Moreover, to determine delivery quantities, the heuristic uses the new introduced simultaneous dry
run inventory policy. An improvement procedure is applied to improve the initial heuristic solution. A
commercial solver is able to find solutions for instances with up to 20 stations and 7 days for the MILP
models. Exact solutions are found for instances up to 10 stations and 5 days. A heuristic solution was
found for the full case study of 59 stations and 14 days, within the time limit of two hours.

1. Introduction
The PSRP, which is an extension of the well-known Ca-

pacitated Vehicle Routing Problem (CVRP), concerns the
optimisation of the distribution of several petroleum prod-
ucts to a set of petrol stations over a given planning horizon.
The products, stored in underground tanks, are delivered to
petrol stations using a fleet of vehicles with multiple com-
partments. Maximum delivery amounts are limited by the
available capacity of a storage tank at a station and the ca-
pacity of vehicles. The aim is to determine the most optimal
route planning for the vehicles, according to the objective of
maximising revenue by minimising costs or total travel dis-
tance (Benantar et al., 2016; Cornillier et al., 2009, 2012;
Triki, Chefi, 2013). The aim of this research is to develop
efficient planning methods for a new version of the PSRP,
for which the main characteristics are discussed below.

Figure 1: A trip of a vehicle to multiple stations with different
numbers of underground tanks

The PSRP has traditionally been solved over a single day
time span, mainly because of the complexity of the prob-
lem, what makes it an NP-hard problem (Al-Hinai and Triki,
2018). Because of the fact that stations do not have to be re-
plenished every day, the problem is solved in this research
for a time span of multiple days, since this leads to more

efficient solutions (Triki and Al-hinai, 2016).
To decide when a station needs to be replenished, the

Vendor-Managed Inventory (VMI) concept is applied. This
means that the inventory levels at the stations are known by
the supplier. The supplier makes then, per time period, the
following decisions:
• Determine when stations are visited and which stations

are combined in trips
• Determine which vehicles are used to perform the trips
• Determine the delivery quantities that are transported to

each station
• Determine which compartments are used to deliver the

fuel
• Determine for each trip the time a vehicle leaves and re-

turns to the depot, while considering service times at the
depot and at the stations
Solving the inventory and routing decision simultane-

ously leads to more efficient operations, since inventory and
routing decisions are interrelated and these two factors are
the main cost drivers of petrol supply chain costs (Vidović
et al., 2014; Cordeau et al., 2015).

Petrol products are transported by compartmentalised ve-
hicles. These vehicles are often assumed not to be equipped
with flowmeters (Macedo et al., 2011; Cornillier et al., 2007,
2008; Benantar et al., 2016; Popović et al., 2012; Vidović
et al., 2014). The absence of flowmeters limits the flexibility
in utilisation of vehicles, since flow meters allow to split the
load from one compartment over multiple vehicles (Coelho
and Laporte, 2015). The case studied in this research as-
sumes the availability of flow meters, which allows splitting
loads.

Moreover, the PSRP is usually solved by deterministic
models. However, in the real-life situation, the fuel con-
sumption at stations cannot be known beforehand and is there-
fore stochastic. Uncertainty in actual fuel consumption can
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be taken into account by applying safety stock levels or emer-
gency deliveries (Popović et al., 2012). In this research, a
safety stock level is used to cope with uncertainty. The daily
planning is usually made over night, with the latest inventory
levels known. The safety stock ensures that the tank does not
fully deplete during the next delivery day, what allows deliv-
ery during the full day.

The remainder of the paper is organised as follows. An
overview of related literature is presented in Section 2, af-
ter which the problem is defined in Section 3. MILP models
are proposed in Section 4 and the heuristic is presented in
Section 5. The results of the evaluation of the models is dis-
cussed in Section 6 and Section 7 concludes with the main
findings and recommendations for further research.

2. Literature review
The PSRP has received substantial attention in the liter-

ature over the last decades, after the problemwas formulated
for the first time by Brown and Graves (1981). A compre-
hensive overview of the history of the PSRP can be found in
the papers published by Cornillier et al. (2012) and Benan-
tar et al. (2016). Relevant and recent literature is discussed
below.

Cornillier et al. (2007) developed an exact algorithm for
the single day PSRP, where the number of stops per trip was
limited to two. The problem is extended to multiple days by
Cornillier et al. (2008), in which the researchers presented
a MILP model with the objective to minimise costs with a
penalty for overtime use of vehicles.

Popović et al. (2011) defined aMILPmodel for the PSRP
which minimises both inventory and routing costs over a
time span of multiple days. The number of stations that can
be visited in a trip is limited to three and a station cannot be
visited by more than one vehicle during a time period. The
authors used a fixed consumption rate per tank.

In the paper published by Popović et al. (2012), a Vari-
ableNeighbourhood Search (VNS) heuristic is proposed, with
a shaking procedure based on shifting deliveries between
days on the planning horizon. In this research, fuel is trans-
ported by a homogeneous fleet of vehicles. Vidović et al.
(2014) also used a homogeneous fleet of compartmentalised
vehicles to distribute fuel and presented two MILP models
which minimise inventory and routing costs. One of the
models also includes vehicle fleet costs.

Li et al. (2014) presented a version of the PSRP with a
fixed fleet of homogeneous vehicles. The stations are visited
after a minimum delivery quantity can be delivered, which is
set to improve vehicle utilisation .The problem is solved with
a tabu search algorithm. The lower bounds of a reasonable
sized problem are determined with Langrangian relaxation.
The tabu search algorithm proved to be able to find solutions
that are near optimal.

An exact model for a variant of the PSRP with multiple
compartments and time windows is presented by Benantar
et al. (2016). The time windows represent the scheduling
horizon for each vehicle and there are two types of vehicles

with different compartment sizes. The problem is solved us-
ing a MILP model and a heuristic.
2.1. Real-life case studies

Several researchers developed models to consider real-
life cases. Ng et al. (2008) improved the distribution of petrol
for a network in HongKong, in which the authors applied the
VMI concept. The proposed approach helped the company
to increase the delivery volume and decrease driver costs.
Triki, Chefi (2013) used real-life cases to evaluate the per-
formance of the solution methods proposed by the authors
to solve the PSRP. Compared to a planning made by a hu-
man operator, a saving of 17.7 % was achieved with the most
effective method. Triki et al. (2016) also investigated the
PSRP for a distributor of petroleum products in Oman, in
which aMILPmodel is presented that eventually can be used
to prepare a bid for auctions of transportation procurement.

Li et al. (2014) considered a large petroleum company in
China. The distribution of petroleum products in provinces
wasmodelled as Inventory Routing Problem (IRP). A heuris-
tic is developed, for which the solutions were proven to be
near optimal. Kazemi and Szmerekovsky (2015) consid-
ered the petrol distribution in the United States. A MILP
model was used to determine the optimal supply chain de-
sign, while considering multi-modal transportation methods
when determining locations for the facilities. The case of
distribution for an Algerian petroleum company has been
evaluated by Benantar et al. (2016), with a model for the
PSRP with compartmentalised vehicles and time windows.
The method proposed by the authors outperformed the solu-
tion created by the company, in terms of number of vehicles
and total travel distance.

The case studies mentioned in this sections show that de-
veloping MILP models and heuristics are suitable and ef-
fective methods for solving the PSRP and to gain insight in
tactical and operational choices that need to be made. New
trends like the possibility to equip vehicles with flow me-
ters (Coelho and Laporte, 2015) andmore interest in "richer"
models promise even more effective methods for the future.

An overview of the problem characteristics considered
in this research and in exact models presented by other re-
searchers is shown in Table 1.
2.2. Decomposition heuristics

The combination of characteristics makes the considered
version of the PSRP NP-hard, since most of the characteris-
tics are already a NP-hard problem if considered separately
(Li et al., 2014; Cornillier et al., 2008; Vidović et al., 2014;
Al-Hinai and Triki, 2018). Decomposition heuristics are
an effective method to solve rich and complex VRPs, be-
cause decomposing the complex problems into smaller sub
problems makes it easier to find a solution. Decomposition
heuristics can be seen as a class of matheuristics. Matheuris-
tics is a category of heuristics that divides a problem into sub
problems, of which at least one sub problem is solved using
a MILP model. Another class of matheuristics are improve-
ment heuristics, where MILP models are used to improve a
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Table 1
Overview of related research, with time horizon (TH), single period (SP), multi-period (MP), single trip (ST), multiple trip (MT),
multi-product (MP), vehicle use (VU), vehicle fleet (VF), homogeneous (HO), heterogeneous (HE), station restrictions (SR)

Paper IRP Stops/trip TH MP VU VF Compartments Split loads Time Con. SR

Azi et al. (2010) unlimited SP MT HO 3 3

Benantar et al. (2016) unlimited SP 3 ST HE 3 3 3

Coelho and Laporte (2015) 3 unlimited MP 3 ST HE 3 3

Cornillier et al. (2008) 3 max. 2 MP 3 MT HE 3 3

Li et al. (2014) 3 unlimited SP SU HO 3

Macedo et al. (2011) unlimited SP MT HO 3 3

Popović et al. (2012) 3 max. 3 MP 3 ST HO 3

Al-Hinai and Triki (2018) comp. + 1 MP 3 ST HO 3

Vidović et al. (2014) 3 max. 3 MP 3 ST HO 3

This research 3 unlimited MP 3 MT HE 3 3 3 3

solution (Archetti and Speranza, 2014). The heuristic pre-
sented in this research is a decomposition heuristic, based
on decomposing the decision process of the supplier. Since
decisions are not optimised simultaneously, a local improve-
ment procedure is proposed to improve the solution found by
the decomposition heuristic.

Triki, Chefi (2013) has used a decomposition heuristic to
solve the PSRP, in which inventory was not considered. The
problem was decomposed into an assignment, routing and
improvement procedure. A local search technique based on
switching any two stations between service days was used to
improve the solution found by the decomposition heuristic.

Cordeau et al. (2015) solved an IRP by decomposing the
decision process of the vendor into a three-phase heuristic.
The decisions that are made in the phases are the replenish-
ment plan, the delivery sequence and which routes to drive.
Inventory management has also been included by Cornillier
et al. (2007), who decomposed the problem in a Tank Truck
Loading Problem (TTLP) and a routing problem. The ob-
jective of the TTLP is to maximise the total delivery quan-
tity, while considering vehicle and underground tank capac-
ity constraints. The minimum delivery quantity per station
was set to fulfil the demand and themaximum delivery quan-
tity was set to the remaining capacity of the tank. Simi-
lar models are used in the heuristic presented by Cornillier
et al. (2008), where the planning is constructed for each day
of the planning horizon. The heuristic presented in this re-
search uses the simultaneous dry run inventory policy to de-
termine delivery quantities, which are set in a way that limits
the number of visits to a station.

3. Problem definition
The problem can be formulated as follows. Let G =

(V ,A) be a complete directed graph, where V = (0, 1, ..., n)
is a set of nodes and A = {(i, j) ∶ i, j ∈ V } is the set of
arcs. Each arc has a travel distance dij and a travel time tij .The stations are represented by nodesN = (1, ..., n) and the
depot is defined by node 0 or n + 1, depending on whether
it is the initial or final node in a trip. Each node has a fixed
service time Sti. Set T = (1, ..., n) defines the time periods

in the planning horizon.
The stations have one ormultiple underground tankswhich

store one type of product p. Set P contains all products,
which are stored at the depot. Each underground tank has
a maximum capacity Lcpi , a safety stock Lspi and an initial
inventory level at the start of the planning horizon Lipi . Ldpitgives the demand for each product at each station per day t.

Fuel is transported by a heterogeneous fleet of vehicles.
Each vehicle k has multiple compartmentsmwith maximum
capacity Qkm. Let K andM denote the set of vehicles and
compartments. Station restrictions are included in the model
by variable �ki , which equals 1 if station i can be visited by
vehicle k. Operating hours of vehicles are represented by a
time window [akt , bkt ], where akt is the start time and bkt theend time of the schedule for vehicle k during day t. L is an
arbitrary large constant.

Furthermore, the list below gives an overview of the as-
sumptions made:
• There is enough inventory at the depot to fulfil the replen-

ishment plan.
• Inventory levels at stations are known by the supplier.
• Demand is considered as deterministic, based on a fore-

cast. In real-life, demand is stochastic. To prevent stock
out, a a safety stock level is determined for each tank at
each station and the inventory level should always be higher
than the safety stock level.

• A station can have only one underground tank per product.
• To transport the petrol products, a heterogeneous fleet of

vehicles is used with compartments of known size. The
vehicles are assumed to be equipped with flow meters.

• All vehicles are assumed to drive with the same speed,
which means that they have the same travel time, given
the same distance.

• Some stations can not be visited by all vehicles, because
of spatial restrictions.

• Stations can be visited multiple times a day and 24∕7, be-
cause it is assumed that a truck can always deliver the
petrol products at the station.

• Vehicles can only be used within the operating hours, rep-
resenting the work schedules of drivers.
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4. Mathematical formulation
AMILP model and a simplification of this MIPL model

are proposed to solve the problem. The models are defined
in the next sections, after which the performance is evaluated
in Section 6.
4.1. MILP model

Let variable xkijrt be one if and only if vehicle k drives
from i to j in trip r during day t. Variable ykrt is used to de-
fine if vehicle k drives trip r during day t. The same holds
for variable zkirt, where i is added to define that station i is
visited. If binary variable wkmprt is one, product p is loaded
into compartmentm of vehicle k during trip r on day t. If trip
s is driven after trip r by vehicle k during day t, binary vari-
able ukrst is set to one. Variable qkmpirt is used for the delivery
quantity of product p, loaded in compartment m of vehicle k
and delivered to location i during trip r on day t. Skirt is thetime vehicle k can start the service at station i during trip r
on day t and Ipit represents the inventory level of product p
at station i at the end of day t.

Set R contains the trips that can be driven by vehicles,
with |R| chosen large enough to enable the maximum num-
ber of trips a vehicle can perform during a daily work sched-
ule. The trip indices are used in increasing order, which
means that s > r if a vehicle performs trip s after trip r.

The problem can then be formulated as:
Minimise∑

t∈T

∑

r∈R

∑

k∈K

∑

(i,j)∈A
dij x

k
ijrt (1)

Subject to:
Ipit ≥ Lspi ∀p ∈ P ,∀i ∈ N,∀t ∈ T (2)
Ipi,t−1 +

∑

r∈R

∑

k∈K

∑

m∈M
qkmpirt ≤ Lcpi

∀p ∈ P ,∀i ∈ N,∀t ∈ T (3)
Ipi0 = Lipi ∀p ∈ P ,∀i ∈ N (4)
Ipit = I

p
i,t−1 +

∑

r∈R

∑

k∈K

∑

m∈M
qkmpirt − Ldpit

∀p ∈ P ,∀i ∈ N,∀t ∈ T (5)
zkirt ≤ �ki ∀k ∈ K,∀i ∈ N,∀r ∈ R,∀t ∈ T (6)
xk0jrt = 1 ∀k ∈ K,∀r ∈ R,∀t ∈ T (7)
xkijrt −

∑

i∈V
xkjirt = 0

∀k ∈ K,∀j ∈ V ,∀r ∈ R,∀t ∈ T (8)
zkirt =

∑

j∈V
xkijrt ∀k ∈ K,∀i ∈ N,∀r ∈ R,∀t ∈ T (9)

qkmpirt ≤ L zkirt ∀k ∈ K,∀p ∈ P ,∀m ∈M,
∀i ∈ N,∀r ∈ R,∀t ∈ T (10)

∑

i∈N
qkmpirt ≤ wkmprt Qkm ∀k ∈ K,∀m ∈M,∀p ∈ P ,

∀r ∈ R,∀t ∈ T (11)
∑

p∈P
wkmprt ≤ 1 ∀k ∈ K,∀m ∈M,

∀r ∈ R,∀t ∈ T (12)
Skirt ≥ akt ∀k ∈ K,∀i ∈ V ,∀r ∈ R,∀t ∈ T (13)
Skirt ≤ bkt ∀k ∈ K,∀i ∈ V ,∀r ∈ R,∀t ∈ T (14)
Skirt + tij + Sti − L(1 − x

k
ijrt) ≤ Skjrt

∀k ∈ K,∀(i, j) ∈ A,∀r ∈ R,∀t ∈ T (15)
Sk0st + L(1 − u

k
rst) ≥ Skn+1,rt
∀r, s ∈ R, r < s,∀k ∈ K,∀t ∈ T (16)

∑

r∈R

∑

s∈R|s>r
ukrst ≥

∑

r∈R
ykrt − 1 ∀k ∈ K,∀t ∈ T (17)

zkirt ≤ ykrt ∀k ∈ K,∀i ∈ N,∀r ∈ R,∀t ∈ T (18)
xkijrt, y

k
rt, z

k
irt, w

kmp
rt , ukrst ∈ {0, 1} ∀k ∈ K,∀m ∈M,

∀p ∈ P ,∀i, j ∈ V ,∀r ∈ R,∀t ∈ T (19)
qkmpirt , S

k
irt, I

p
it ≥ 0 ∀k ∈ K,∀m ∈M,

∀p ∈ P ,∀i ∈ V ,∀r ∈ R,∀t ∈ T (20)
The objective function (1) minimises the total number of

kilometres driven by all vehicles during the full time hori-
zon. Constraints (2) and (3) ensure that inventory levels for
fuel in underground tanks stay above the safety stock level
and below themaximum capacity. Constraints (4) set the ini-
tial inventory level for each product at each station and con-
straints (5) set the daily inventory level, taking into account
the demand and deliveries. Station restrictions are imposed
by constraints (6), which means that some stations cannot be
accessed by all vehicles. Constraints (7) makes sure that all
vehicles start and end at the depot. Constraints (8) represent
the flow conservation constraints. Constraints (9) and (10)
are used to link x and q to z, which means that a vehicle can
only drive to a station and deliver fuel when it is visited by
that vehicle in a certain time period. Constraints (11) en-
sure that compartment capacities can not be exceeded and
constraints (12) make sure that only one type of product is
loaded in a compartment.

Constraints (13-14) force the arrival time in node i to be
within the work schedule of the vehicles. The start and end
time of a trip must be within this time window. Constraints
(15) take driving and service time into account, to calculate
at what time the service can start at a node. Constraints (16-
18) make sure that, in case a vehicle performs multiple trips
during a time period, these trips are driven consecutively.

Lastly, constraints (19) define x, y, z, w and u as binary
values and constraints (20) enforce the integer variables to
be non-negative.
4.1.1. Valid inequalities

Valid inequalities are proposed to speed up the solution.
Constraints (21) ensure that all vehicles return to the depot
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and constraints (22) strengthen the relationship between the
binary variables x and y. Finally, (23) is used to link the
constraint q and w.

∑

i∈V
xki,n+1,rt = 1 ∀k ∈ K,∀r ∈ R,∀t ∈ T (21)

xkijrt ≤ ykrt ∀k ∈ K,∀i, j ∈ V ,∀r ∈ R,∀t ∈ T (22)

qkmpirt ≤ Lwkmprt ∀k ∈ K,∀m ∈M,
∀p ∈ P ,∀i ∈ N,∀r ∈ R,∀t ∈ T (23)

4.1.2. Model variation: soft constraints for dry run
A model variation is adopted in this section for the case

that dry run is allowed, which means that the inventory level
is allowed to drop below the safety stock level. Binary vari-
able E is introduced, which is set to one if and only if the
inventory of product p at location i is lower than the safety
stock during day t. Moreover, a penalty cost p is added to
the model, which is used to add costs to the objective in case
the inventory level drops below the safety stock level. The
objective function (1) is replaced by equation (24) and con-
straint (2) is replaced by constraint (25).

Minimise∑
t∈T

∑

r∈R

∑

k∈K

∑

(i,j)∈A
dij x

k
ijrt+

p
∑

t∈T

∑

p∈P

∑

i∈N
Epit (24)

L Epit ≥ Ipit − Ls
p
i ∀p ∈ P ,∀i ∈ N,∀t ∈ T (25)

4.1.3. Model variation: inventory costs in the objective
For the situation that that inventory levels should be kept

to a minimum, the objective function (1) should be replaced
by equation (26). A factor f is introduced to weigh the costs
of inventory relative to the costs of travel distance.

Minimise∑
t∈T

∑

r∈R

∑

k∈K

∑

(i,j)∈A
dij x

k
ijrt+

f
∑

t∈T

∑

p∈P

∑

i∈N
Ipit (26)

4.1.4. Model variation: service rate
In case that the service time depends on the delivery

quantity, constraint (15) and (16) should be replaced by (27
- 29). Constraint (27) adds the service rate Sri, multiplied
with the delivered quantity, to the time between visiting two
stations. Constraint (28) and (29) add time before the start
of a route, representing the time it takes to fill up a vehicle
at the depot.

Skirt + Sti + Sri
∑

m∈M

∑

p∈P
qkmpirt + tij −L(1 − xkijrt) ≤ Skjrt

∀k ∈ K,∀(i, j) ∈ A,∀r ∈ R,∀t ∈ T (27)

Sk0rt ≥ Sr0
∑

i∈N

∑

m∈M

∑

p∈P
qkmpirt

∀r ∈ R,∀k ∈ K,∀t ∈ T (28)
Sk0st + L(1 − u

k
rst) ≥ Skn+1,rt + Sr0

∑

i∈N

∑

m∈M

∑

p∈P
qkmpist

∀r, s ∈ R, r < s,∀k ∈ K,∀t ∈ T (29)
4.2. Simplified MILP model

In the simplifiedMILP model, routes are generated prior
to the optimisation. Per combination of stations, the sequence
of visiting these stations that leads to the lowest travel dis-
tance are the order in which the stations are visited. Service
time is included in the route duration. Variable xkijrt is re-placed by parameter xir ∈ {0, 1}, which defines the stationsthat are visited in a route. Variable ykrt is then used to de-
termine the routes r that are driven by vehicle k during time
period t.

5. Heuristic
A decomposition heuristic, based on decomposing the

decision process of the supplier, is considered to solve the
rich version of the PSRP for real-life size instances. This
approach does not lead to optimal solutions, since the de-
cisions are not optimised simultaneously. To improve the
initial solution created with the decomposition heuristic, an
improvement procedure is proposed. The full heuristic pro-
cedure is discussed in Section 5.2.
5.1. Decomposition heuristic

Tofind a solution, the problem is divided into five phases,
based on the decision process of the supplier. These phases
are discussed in the next sections.
5.1.1. Phase 1 - Order generation

During the order generation phase, an order is generated
for the time period when the inventory level drops below the
safety stock level. An order is defined by the station index,
product index and depletion day. Orders are generated with
Algorithm 1.

Algorithm 1: Order generation
Result: List with orders for tank on depletion day

1 initialisation: load inventory levels and demand
forecast;

2 set tc = current considered time period, T = last day
time horizon;

3 foreach underground tank at station i with product
p do

4 for t in [tc , T ] do
5 inventory level = inventory level end

previous day - demand during t;
6 if inventory level < safety stock then
7 add tank to order list with depletion day

t;
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5.1.2. Phase 2 - Order pairing
The second phase (Algorithm 2) considers the "current"

day and combines, per station, all orders. The result is a list
of stations and tanks that "run dry" (inventory level < safety
stock level) during the considered time horizon.

Algorithm 2: Order pairing
Result: Per station, a list of orders for the full time

horizon
1 set tc = current considered time period, T = last day

time horizon;
2 step 1. filter order list on orders for current day;
3 foreach order generated in phase 1 do
4 if order depletion day = tc then
5 add order to order list for today;
6 step 2. combine orders for the same station;
7 foreach generated order with depletion day t in

[tc + 1, T ] do
8 if station is in order list for today then
9 add order to current day order list;

5.1.3. Phase 3 - Set min and max quantities
In the third phase, minimum andmaximumdelivery quan-

tities are set, based on the newly introduced simultaneous
dry run inventory policy. All tanks at a station are consid-
ered and the minimum quantities are set to postpone the next
visit to the station as much as possible. This minimum deliv-
ery quantity is the full remaining capacity for the tank with
the highest consumption rate and for the other tanks it is the
quantity necessary to ensure simultaneous dry run in the fu-
ture (as can be seen in Figure 2. The maximum delivery
quantity is set to the remaining capacity in the tank. Pseudo
code is presented by Algorithm 3.

Figure 2: Minimum delivery quantities are set for two tanks at
a station to ensure simultaneous dry run in the future.

Algorithm 3: Determine minimum and maximum
delivery quantities based on the simultaneous dry
run inventory policy
Result: Minimum and maximum quantities for

each order
1 set tc = current considered time period, T = last day

time horizon;
2 foreach station in current day order list do
3 step 1. set maximum quantities;
4 foreach order for the considered station do
5 set maximum delivery quantity to the

remaining capacity in the tank;
6 step 2. determine second depletion day;
7 set current second depletion day = 100;
8 foreach order for the considered station do
9 foreach t in [tc , T ] do
10 inventory level = inventory level end

previous day - demand during t;
11 if inventory level < safety stock then
12 if t < current second depletion day

then
13 current second depletion day =

t;
14 step 3. calculate consumption till second

depletion day;
15 foreach order for the considered station do
16 foreach t in [tc , second depletion day] do
17 consumption for tank = current value +

demand for day t
18 step 4. per day, add the calculated consumption

to the minimum delivery quantity;
19 until the vehicle capacity is reached;
20 set vehicle full = false;
21 while vehicle full is false do
22 foreach t in [tc , second depletion day] do
23 foreach order for the considered station

do
24 if minimum quantity for tank is

lower than consumption till second
depletion day then

25 if combined minimum quantities
are higher than vehicle
capacity then

26 set vehicle full = true;
27 else
28 add consumption to

minimum quantity for tank
in order

In step 4 of the algorithm, vehicle capacity is taken into
account. If it is not feasible to deliver the minimum delivery
quantities with at least one vehicle, the vehicle needs to be
visited again before the moment of simultaneous dry run.
Minimum quantities are added per day to ensure that the next
visit is postponed for as much days as possible.
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5.1.4. Phase 4 - Route creation
The route creation model combines stations into a route.

Binary variables yr and zir are introduced to determine if
route r is used. Moreover, with the minimum delivery quan-
tity qpir,min following from the previous phase, the roue cre-
ation model can be stated as:

Minimise∑
r∈R

yr ∗ dr (30)
Subject to:

zir ≤ xir ∀i ∈ N,∀r ∈ R (31)
zir ≤ yr ∀i ∈ N,∀r ∈ R (32)
∑

r∈R
zir = 1 ∀i ∈ N (33)

∑

i∈N
(qpir,min ∗ zir) ≤ 0.9 Ck,min ∀r ∈ R (34)

The objective function (30) minimises the total travel
distance for the considered time period. Constraints (31)
make the choice to visit station i during route r only possi-
ble when the station is included in the predetermined route.
Constraints (32) link variables y and z. Constraints (33) are
used to ensure that each station is visited once. Combining
stops in a route is limited by the sum of the minimum deliv-
ery quantities to 90% of the total capacity of the largest ve-
hicle by constraints (34). The minimum delivery quantities
qpir,min must be delivered, so the constraint ensures that the
route can be driven with at least one vehicle. The capacity
of the vehicle is decreased by 10%, because different types
of product need to be transported by different compartments.
5.1.5. Phase 5 - Tank Truck Loading

In the final phase, routes are assigned to trucks while
maximising vehicle utilisation. This ensures efficient use of
the vehicles. A variant of the Tank Truck Loading Problem
(TTLP), which is also addressed byCornillier et al. (2007), is
developed to execute this assignment procedure. Values for
qpir,min and qpir,max are previously determined. Binary vari-
ables ykr is introduced to determine which vehicle k drives a
route r and wkmpr is introduced to set in which compartment
product p is loaded. The model can then be stated as:

Maximise∑
r∈R

∑

i∈N

∑

k∈K

∑

m∈M

∑

p∈P
qkmpir (35)

Subject to:
∑

k∈K

∑

m∈M
qkmpir ≥ qpir,min ∀p ∈ P ,∀i ∈ N,∀r ∈ R (36)

∑

k∈K

∑

m∈M
qkmpir ≤ qpir,max ∀p ∈ P ,∀i ∈ N,∀r ∈ R (37)

∑

p∈P

∑

m∈M
qkmpir ≤ L ∗ �ki ∀i ∈ N,∀k ∈ K∀r ∈ R (38)

∑

i∈N
qkmpir ≤ wkmpr ∗ Qkm

∀k ∈ K,∀m ∈M,∀p ∈ P ,∀r ∈ R (39)
∑

p∈P
wkmpr ≤ 1 ∀k ∈ K,∀m ∈ M,∀r ∈ R (40)

∑

k∈K
ykr = 1 ∀r ∈ R (41)

∑

r∈R
(ykr ∗ tr) ≤ bk − ak ∀k ∈ K (42)

wkmpr ≤ ykr ∀k ∈ K,∀m ∈ M,∀p ∈ P ,∀r ∈ R (43)
The objective function (35) maximises the total deliv-

ered quantity, to ensure efficient vehicle utilisation. Con-
straints (36-37) set the delivery quantity to be within the
range previously determined by the minimum andmaximum
delivery quantities. Constraints (38) implement station re-
strictions and constraints (39) limit the delivery quantity per
compartment to its capacity. The fact that a compartment
can only be filled with one type of product is implemented
with constraints (40). Constraints (41) ensure that each route
is driven by a vehicle exactly one time and constraints (42)
are used to limit the duration of all routes driven by a vehi-
cle to the time available in the driver schedule. Lastly, con-
straints (43) links variables w and y.
5.2. Heuristic procedure

Since the planning of a day affects the inventory levels of
the next day, a dynamic programming approach is required
to create the planning day by day. After each iteration, in-
ventory levels are adjusted with the delivery quantities. An
overview of this iterative process is shown by Figure 3.

Figure 3: Heuristic procedure, with T days in time horizon
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Table 2
Computational results, with computation time (CT) and difference in distance relative to the full MILP model (Δ). Shown results
are averages and S4-D5 means an experiment with 4 stations considering 5 days. *not an exact solution **no solution found

Full MILP model Simplified MILP model Heuristic
Experiment Distance (km) CT (s) Distance (km) Δ CT (s) Distance* (km) Δ CT (s)

S4-D5 267 2 267 0.0% 2 304 13.8% 2
S4-D7 480 469 480 0.0% 90 550 14.6% 4
S6-D5 321 544 326 1.5% 42 413 28.8% 3
S6-D7 582* 7200 583* 0.1% 7200 690 18.5% 6
S8-D5 399 1955 412 3.2% 124 501 25.5% 5
S8-D7 753* 7200 747* -0.8% 7200 849 12.7% 8
S10-D5 454* 7200 463 1.9% 2132 581 28.1% 6
S10-D7 873* 7200 857* -1.8% 7200 984 12.7% 14
S12-D5 478* 7200 504* 5.4% 7200 606 26.8% 8
S12-D7 972* 7200 934* -3.9% 7200 1063 9.4% 18
S20-D7 1376* 7200 -** - -** 1642 19.3% 39
S30-D7 -** 7200 -** - -** 2281 - 79
Average 0.6% 19.1%

Table 3
Computational results for larger instances, with computation time (CT). S20-D14 means 20 stations and 14 days.

Experiment Initial solution (km) Final solution (km) Δ CT Initial solution (s) CT Improvement proced. (s)

S20-D14 3931 3670 -6.6% 2 162
S30-D14 5588 5365 -4.0% 4 589
S40-D14 6965 6735 -3.3% 12 727
S50-D14 10267 9813 -4.4% 29 3747
S59-D14 11426 10877 -4.8% 14 5103

For the initial solution, the decision to visit a station is
based on the day that one of the tanks deplete. This means
that routing is not optimised over the full time horizon and
that the stations can not be visited later. To improve the ini-
tial solution, an improvement procedure is usedwith solution
candidates that are based on visiting stations one time period
earlier. To evaluate if the solution improves, the planning is
recreated for the remaining days. Since this is an extensive
process, the number of candidates is limited to the number
of station visits.

6. Computational results
The mathematical models are implemented in Python

and the MILP models are solved using Gurobi Optimizer
version 8.1.1 (Gurobi Optimization, 2019). The experiments
are executed on a computer with a 3.50 GHz 4-core proces-
sor and 32 GB of RAM. A data set based on a petrol dis-
tributor is used to evaluate the performance of the models.
The full data set consists of one depot, 59 gas stations and 4
vehicles.

Table 2 shows the distance and computation time for so-
lutions found with the MILP models and the heuristic. The
results are the average of performed experiments and the
computation time is limited to two hours. Exact solutions
can be found with the MILP models for instances with up to
10 stations and 5 days. Not exact solutions are found for in-
stances with up to 12 stations and 7 days. A solution for 20

stations and 7 days is found with the full MILP model and
not with the simplified MILP model. This can be explained
by the fact that the large number of possible routes makes it
harder to find a solution.

In terms of computation time, the heuristic outperforms
the MILP models. If an exact solution can be found within
two hours, the solution is found faster by the simplifiedMILP
model compared to the full MILP model.

The total travel distance for the solutions found by the
simplified MILP model, compared to the full MILP model,
are exactly the same for the experiments with four stations
and slightly different for the other experiments. This can be
explained by the fact that the simplified model uses prede-
termined routes. Moreover, the average increase in travel
distance for solutions created by the heuristic, compared to
full MILP model, is 19.1%. If only experiments with seven
days are considered, the average increase in travel distance
is 15.6%.

Table 3 shows the computational results for real-life size
heuristic solutions. The initial solution found by the decom-
position heuristic is improved during the improvement pro-
cedure by 4.6% on average. For the full data set, a solution
is found within two hours, what proves that the heuristic is
an effective method for solving real-life cases.
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7. Conclusions
Planning methods for the multi-period PSRP with real-

life characteristics are presented in this paper. Given these
characteristics, themodels becomemore representative. This
adds complexity as well, what leads to longer computation
time for a solver to find a solution to theMILPmodels. There-
fore, a heuristic is presented, which is a combination of a de-
composition heuristic and an improvement procedure. The
decomposition heuristic uses the new introduced simultane-
ous dry run inventory policy to determine maximum and
minimum delivery quantities. The models have been tested
with a data set based on the real-life situation for a petrol
distribution company. It is found that the MILP models can
be used to find a solution within the two hour time limit for
instances of up to 20 stations and 7 days. The heuristic can
create the planning for the full case study with 59 stations
and a considered time horizon of 14 day.

Future research in this area is encouraged. The value of
the simultaneous dry run inventory policy could be further
explored by considering the moment of delivery to increase
the maximum delivery quantities. This allows to also re-
plenish the quantity of fuel that has already been sold during
the day till the moment of delivery. Another direction for
further research could be to simulate deliveries with unex-
pected events, to determine the effect of uncertainty on the
distribution performance.
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Appendix B - Verification and validation
data set

Table 1: Travel distances (*1000 m)

From/To 0 1 2 3 4
0 0 107 39 43 82
1 109 0 86 89 36
2 39 85 0 5 48
3 44 88 5 0 51
4 83 36 48 51 0

Table 2: Travel times (*300 s)

From/To 0 1 2 3 4
0 0 23 11 14 18
1 23 0 18 19 9
2 11 18 0 3 11
3 14 19 3 0 13
4 18 8 12 13 0

Table 3: Station data, with i = station number, p = product index, levels are per 100L

i p Ls Lc Li Ld-t1 Ld-t2 Ld-t3 Ld-t4 Ld-t5 Ld-t6 Ld-t7
1 3 28 186 141 19 18 39 47 43 42 33
1 2 15 188 131 11 11 8 8 8 8 12
2 5 30 289 213 28 26 31 31 31 35 35
2 6 68 438 216 36 40 112 114 114 111 93
3 5 35 289 202 37 37 39 37 37 42 44
3 6 66 513 386 39 43 89 86 88 91 94
3 4 15 94 52 8 8 9 9 9 10 11
4 5 28 288 174 23 23 25 28 28 29 32
4 6 36 414 215 19 22 31 34 32 31 32
4 4 15 113 51 6 6 5 5 6 6 6

Table 4: Vehicle characteristics

Characteristic Value
Compartments [*100L] 70, 50, 70, 70, 70, 50, 70, 70
Time window 5:00 - 15:30 every day
Station restrictions All stations can be visited
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Appendix C - Results experiments
KPIs are only shown if an exact solution is found by the solver.

Full MILP model results

Experiment Dist. RT (s) Gap (%) IL (%) # DR Del. Del/trip VU (%) # trips # stops Stops/trip
S4-D5-1 303 0 0.0% 44.2% 0 440 147 55.7% 2 3 1.50
S4-D5-2 272 1 0.0% 47.4% 0 666 167 84.3% 2 4 2.00
S4-D5-3 202 4 0.0% 43.8% 0 376 75 47.6% 2 5 2.50
S4-D5-4 292 3 0.0% 31.6% 0 954 159 72.3% 3 6 2.00
S4-D7-1 611 354 0.0% 40.8% 0 1045 149 66.1% 4 7 1.75
S4-D7-2 447 13 0.0% 43.5% 0 1672 209 79.2% 5 8 1.60
S4-D7-3 338 1041 0.0% 40.2% 0 962 120 91.6% 3 8 2.67
S4-D7-4 525 435 0.0% 29.9% 0 1836 204 87.0% 5 9 1.80
S6-D5-1 409 78 0.0% 34.8% 0 878 110 66.5% 3 8 2.67
S6-D5-2 278 16 0.0% 43.6% 0 1039 148 98.0% 2 7 3.50
S6-D5-3 305 2062 0.0% 38.8% 0 547 68 52.1% 3 8 2.67
S6-D5-4 291 21 0.0% 34.9% 0 1048 131 79.4% 3 8 2.67
S6-D7-1 777 7200 27.5%
S6-D7-2 512 7200 6.4%
S6-D7-3 482 7200 29.7%
S6-D7-4 557 7200 10.6%
S8-D5-1 406 328 0.0% 36.4% 0 1050 88 79.6% 3 12 4.00
S8-D5-2 386 82 0.0% 42.1% 0 1129 125 85.5% 3 9 3.00
S8-D5-3 333 5454 0.0% 40.2% 0 776 86 73.9% 3 9 3.00
S8-D5-4 470 7200 11.3%
S8-D7-1 773 7200 33.8%
S8-D7-2 712 7200 13.5%
S8-D7-3 644 7200 45.0%
S8-D7-4 883 7200 44.6%
S10-D5-1 414 1754 0.0% 36.8% 0 1326 102 71.7% 4 13 3.25
S10-D5-2 401 7200 4.0%
S10-D5-3 440 7200 24.1%
S10-D5-4 560 7200 20.2%
S10-D7-1 801 7200 41.7%
S10-D7-2 771 7200 22.6%
S10-D7-3 818 7200 48.4%
S10-D7-4 1100 7200 44.5%
S12-D5-1 423 7200 2.4%
S12-D5-2 448 7200 9.6%
S12-D5-3 446 7200 22.9%
S12-D5-4 595 7200 23.9%
S12-D7-1 824 7200 46.1%
S12-D7-2 888 7200 31.0%
S12-D7-3 877 7200 50.5%
S12-D7-4 1299 7200 51.3%

Description of abbreviations used in the table:

• S4-D5-1: 4 stations. 5 days. subset 1

• Dist = travel distance (km)

• RT = run time (s)

• IL = average inventory level (%)

• # DR = number of dry runs

• Del. = total delivered (*100 L)

• Del/trip = delivered per stop (*100 L)

• VU = vehicle utilisation (%)
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. APPENDIX C - RESULTS EXPERIMENTS

Simplified MILP model results

Experiment Dist. RT (s) Gap (%) IL (%) # DR Del. Del/trip VU (%) # trips # stops Stops/trip
S4-D5-1 303 1 44.0% 0 0.0% 372 124 47.1% 2 3 1.50
S4-D5-2 272 1 47.3% 0 0.0% 666 167 62.8% 2 4 2.00
S4-D5-3 202 4 43.3% 0 0.0% 513 103 64.9% 2 5 2.50
S4-D5-4 292 3 31.7% 0 0.0% 954 159 72.3% 3 6 2.00
S4-D7-1 611 190 42.1% 0 0.0% 1045 149 66.1% 4 7 1.75
S4-D7-2 447 6 44.0% 0 0.0% 1609 201 76.3% 5 8 1.60
S4-D7-3 338 75 41.1% 0 0.0% 944 118 89.9% 3 8 2.67
S4-D7-4 525 7200 14.1%
S6-D5-1 413 22 35.8% 0 0.0% 799 114 60.5% 3 7 2.33
S6-D5-2 290 6 43.0% 0 0.0% 990 141 62.3% 3 7 2.33
S6-D5-3 307 132 38.6% 0 0.0% 526 75 50.1% 3 7 2.33
S6-D5-4 292 7 34.8% 0 0.0% 1040 149 78.8% 3 7 2.33
S6-D7-1 776 7200 16.2%
S6-D7-2 512 7200 0.6%
S6-D7-3 482 7200 13.1%
S6-D7-4 560 7200 6.8%
S8-D5-1 420 144 34.6% 0 0.0% 967 121 73.3% 3 8 2.67
S8-D5-2 392 23 41.7% 0 0.0% 1088 121 68.4% 3 9 3.00
S8-D5-3 357 204 39.3% 0 0.0% 722 80 68.8% 3 9 3.00
S8-D5-4 477 301 37.8% 0 0.0% 1590 159 86.0% 4 10 2.50
S8-D7-1 779 7200 19.6%
S8-D7-2 707 7200 1.4%
S8-D7-3 620 7200 19.5%
S8-D7-4 882 7200 22.2%
S10-D5-1 426 2132 35.9% 0 0.0% 1310 131 70.8% 4 10 2.50
S10-D5-2 419 217 44.4% 0 0.0% 1522 138 71.8% 4 11 2.75
S10-D5-3 447 259 38.2% 0 0.0% 1270 115 69.0% 5 11 2.20
S10-D5-4 558 642 38.7% 0 0.0% 2127 142 89.8% 6 15 2.50
S10-D7-1 798 7200 20.2%
S10-D7-2 749 7200 6.1%
S10-D7-3 857 7200 25.0%
S10-D7-4 1023 7200 22.5%
S12-D5-1 442 7200 0.2%
S12-D5-2 526 922 39.9% 0 0.0% 1534 110 64.5% 5 14 2.80
S12-D5-3 453 865 40.6% 0 0.0% 1413 118 59.6% 6 12 2.00
S12-D5-4 594 2338 38.1% 0 0.0% 2560 142 88.3% 7 18 2.57
S12-D7-1 833 7200 21.0%
S12-D7-2 937 7200 40.0%
S12-D7-3 840 7200 23.7%
S12-D7-4 1125 7200 27.0%

Description of abbreviations used in the table:

• S4-D5-1: 4 stations. 5 days. subset 1

• Dist = travel distance (km)

• RT = run time (s)

• IL = average inventory level (%)

• # DR = number of dry runs

• Del. = total delivered (*100 L)

• Del/trip = delivered per stop (*100 L)

• VU = vehicle utilisation (%)
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Heuristic solutions

Experiment Dist IL DR Deliv Del/tr VU Tr St St/Tr CI IPT IT
S4-D5-1 318 45.5% 0 558 186 78.6% 2 3 1.5 1 1 1
S4-D5-2 281 49.4% 0 1053 263 66.2% 3 4 1.3 1 1 1
S4-D5-3 215 42.4% 0 520 104 100.0% 2 5 2.5 1 1 1
S4-D5-4 403 40.7% 0 2160 360 90.8% 5 6 1.2 0 2 1
S4-D7-1 685 47.5% 0 1640 273 80.8% 5 6 1.2 1 2 1
S4-D7-2 549 47.1% 0 2296 328 87.3% 6 7 1.2 2 3 1
S4-D7-3 421 47.5% 0 1505 251 85.5% 5 6 1.2 0 2 1
S4-D7-4 546 40.1% 0 2901 322 91.8% 7 9 1.3 1 4 1
S6-D5-1 492 37.6% 0 1214 202 71.8% 4 6 1.5 2 1 1
S6-D5-2 403 47.2% 0 1883 269 88.8% 4 7 1.8 0 3 1
S6-D5-3 355 43.4% 0 1120 160 91.1% 4 7 1.8 1 2 1
S6-D5-4 402 41.8% 0 2160 309 90.8% 5 7 1.4 2 2 1
S6-D7-1 947 39.1% 0 2664 242 88.5% 7 11 1.6 2 4 1
S6-D7-2 580 44.3% 0 3163 288 99.8% 7 11 1.6 1 6 1
S6-D7-3 561 46.2% 0 2105 263 85.2% 7 8 1.1 0 3 1
S6-D7-4 670 40.4% 0 3391 283 91.7% 8 12 1.5 3 7 1
S8-D5-1 506 39.2% 0 1733 248 75.7% 5 7 1.4 2 2 1
S8-D5-2 520 45.7% 0 2096 233 88.1% 5 9 1.8 0 5 1
S8-D5-3 380 43.9% 0 1310 164 100.0% 4 8 2.0 1 3 1
S8-D5-4 596 40.9% 0 2355 236 99.0% 5 10 2.0 2 4 1
S8-D7-1 963 39.9% 0 3207 247 84.6% 9 13 1.4 5 5 1
S8-D7-2 805 45.2% 0 3663 262 84.4% 9 14 1.6 2 8 1
S8-D7-3 655 45.2% 0 2438 222 95.6% 7 11 1.6 0 6 1
S8-D7-4 969 39.0% 0 4674 292 98.2% 10 16 1.6 5 10 1
S10-D5-1 514 39.9% 0 2263 283 80.3% 6 8 1.3 2 3 1
S10-D5-2 542 44.9% 0 2413 241 91.1% 5 10 2.0 0 5 1
S10-D5-3 578 44.1% 0 2201 200 84.0% 7 11 1.6 1 5 1
S10-D5-4 682 41.6% 0 3145 242 99.2% 7 13 1.9 4 7 1
S10-D7-1 988 38.7% 0 3973 265 91.8% 10 15 1.5 1 8 1
S10-D7-2 872 44.8% 0 4649 273 94.1% 10 17 1.7 1 14 1
S10-D7-3 868 44.6% 0 3627 227 92.1% 10 16 1.6 1 11 1
S10-D7-4 1141 39.9% 0 5979 285 98.7% 13 21 1.6 6 17 1
S12-D5-1 511 37.0% 0 2402 240 85.2% 6 10 1.7 2 4 1
S12-D5-2 610 44.1% 0 2713 209 87.5% 6 13 2.2 3 9 1
S12-D5-3 581 46.5% 0 2389 199 91.2% 7 12 1.7 2 6 1
S12-D5-4 745 41.8% 0 4098 256 96.9% 9 16 1.8 2 10 1
S12-D7-1 1022 37.0% 0 4335 255 92.8% 11 17 1.5 3 11 1
S12-D7-2 1059 44.7% 0 5262 251 99.7% 11 21 1.9 4 19 1
S12-D7-3 874 46.0% 0 4012 236 91.4% 11 17 1.5 1 13 1
S12-D7-4 1298 42.0% 0 7183 276 85.9% 18 26 1.4 4 26 1

Description of abbreviations used in the table:

• S4-D5-1: 4 stations. 5 days. subset 1

• Dist = travel distance (km)

• IL = average inventory level (%)

• DR = number of dry runs

• Deliv = total delivered (*100 L)

• Del/trip = delivered per stop (*100 L)

• VU = vehicle utilisation (%)

• Tr = number of trips

• St = number of stops

• St/Tr = number of stops per trip

• CI = number of actions that led to improvement

• IT = computation time initial solution (s)

• IPT = computation time improvement procedure
(s)

91






	Preface
	Summary
	List of abbreviations
	Introduction
	Research questions
	Scope
	Methodology and research structure

	Literature review
	Petrol station replenishment problem
	Problem characteristics
	Multi-period time horizon
	Inventory routing
	Multi-compartment and split loads
	Time constraints and multiple use of vehicles
	Stochastic VRPs

	State of practice
	Matheuristics for solving the rich PSRP
	Literature gap addressed by this research
	Concluding remarks on the literature

	Planning methods
	Conceptual model
	Model characteristics
	Main assumptions
	Objectives supplier and KPIs
	Objective and requirements of the planning methods
	Planning methods

	Full MILP method
	Mathematical formulation
	Valid inequalities to speed up the model
	Verification of the model
	Validation of the model
	Model variation 1: soft constraints on inventory
	Model variation 2: minimising travel distance and inventory
	Model variation 3: including service rate

	Simplified MILP model
	Defining the routes
	Mathematical formulation
	Verification of the simplified model
	Validation of the simplified model
	Model variation 1: soft constraints on inventory
	Model variation 2: minimising travel distance and inventory

	Heuristic
	Phase 1: Order generation
	Phase 2: Order pairing
	Phase 3: Determine min and max delivery quantities
	Phase 4: Route creation
	Phase 5: Tank Truck Loading Problem
	Heuristic procedure
	Local improvement procedure
	Verification of the heuristic
	Verification of simultaneous dry run
	Heuristic validation by result interpretation
	Heuristic validation by company reference run

	Concluding remarks on the planning methods

	AMCS Case study
	AMCS
	AMCS Oil Planner

	Case study characteristics
	Current planning method
	Order generation
	Order pairing
	Order planning
	Overview of the planning algorithm
	Concluding remarks on the planning algorithm

	Evaluation of planning methods with the case study data
	Case study implementation
	Experimental setup

	Computational results
	Evaluation of performance of the solver
	Evaluation of performance of the heuristic
	Distance and computation time comparison
	Results for larger instances
	Sensitivity analysis on route duration
	Sensitivity analysis on safety stock
	Comparison of planning methods on KPIs
	Trade-off between travel distance and dry runs
	Trade-off between travel distance and average inventory level

	Recommendations for AMCS
	Concluding remarks on the planning methods evaluation

	Conclusion and recommendations
	References
	Appendix A - Scientific paper
	Appendix B - Verification and validation data set
	Appendix C - Results experiments

