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Abstract
Anticipating future situations from streaming sensor data is a key perception challenge for mobile robotics and automated
vehicles.We address the problem of predicting the path of objects with multiple dynamic modes. The dynamics of such targets
can be described by a Switching Linear Dynamical System (SLDS). However, predictions from this probabilisticmodel cannot
anticipate when a change in dynamic mode will occur. We propose to extract various types of cues with computer vision to
provide context on the target’s behavior, and incorporate these in a Dynamic Bayesian Network (DBN). The DBN extends the
SLDS by conditioning the mode transition probabilities on additional context states. We describe efficient online inference in
this DBN for probabilistic path prediction, accounting for uncertainty in bothmeasurements and target behavior. Our approach
is illustrated on two scenarios in the Intelligent Vehicles domain concerning pedestrians and cyclists, so-called Vulnerable
Road Users (VRUs). Here, context cues include the static environment of the VRU, its dynamic environment, and its observed
actions. Experiments using stereo vision data from a moving vehicle demonstrate that the proposed approach results in more
accurate path prediction than SLDS at the relevant short time horizon (1 s). It slightly outperforms a computationally more
demanding state-of-the-art method.

Keywords Intelligent vehicles · Path prediction · Situational awareness · Vulnerable road users · Intention estimation ·
Dynamic Bayesian Network · Probabilistic inference

1 Introduction

Anticipating how nearby objects will behave is a key chal-
lenge in various application domains, such as intelligent
vehicles, social robotics, and surveillance. These domains
concern systems that navigate trough crowded environments,
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that interact with their surroundings, or which detect poten-
tially anomalous events. Predicting future situations requires
understanding what the nearby objects are, and knowledge
on how they typically behave. Object detection and tracking
are therefore commonfirst steps for situation assessment, and
the past decade has seen significant progress in these fields.
Still, accurately predicting the paths of targets with multi-
ple motion dynamics remains challenging, since a switch
in dynamics can result in a significantly different trajectory.
People are an important example of such target. For instance,
a pedestrian can quickly change between walking and stand-
ing.

To improve path prediction of objects with switching
dynamics, we propose to exploit context cues that can
be extracted from sensor data. Especially vision can pro-
vide measurements for a diverse set of relevant cues. But
incorporating more observations in the prediction process
also increases sensitivity to measurement uncertainty. In
fact, uncertainty is an inherent property of any prediction
on future events. To deal with uncertainties, we leverage
existing probabilistic filters for switching dynamics, which
are common for tracking maneuvering targets (Bar-Shalom
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(a) Pedestrian path prediction

(b) Cyclist path prediction

Fig. 1 Path prediction of vulnerable road users with switching dynam-
ics. a The pedestrian can cross, or stop. Context for a crossing
pedestrian’s path includes vehicle trajectory, the pedestrian’s awareness
of the approaching vehicle, and pedestrian’s position w.r.t. the curbside.
b The cyclist approaching an intersection can cycle straight or turn left.
Context includes the vehicle trajectory, the cyclist’s expressed intent by
raising an arm, and distance to the intersection

et al. 2001). Our proposed method therefore extends a
Switching Linear Dynamical System (SLDS) with dynamic
latent states that represent context. The resulting model is a
Dynamic Bayesian Network (DBN) (Murphy 2002), where
the latent states control the switching probabilities between
the dynamic modes. We can utilize existing theory for
approximate posterior inference in DBNs to efficiently com-
pute predictive distributions on the future state of the target.

In this paper, we focus on applications in the Intelligent
Vehicle (IV) domain. More specifically, we demonstrate our
method on path prediction of pedestrians and cyclists, i.e. the
so-called Vulnerable Road Users (VRUs). For automated
vehicles, forecasting the future locations of traffic partici-
pants is a crucial input to plan safe, comfortable and efficient
paths though traffic (Althoff et al. 2009; Paden et al. 2016).
However, the current active pedestrian systems are designed
conservatively in their warning and control strategy, empha-
sizing the current pedestrian state (i.e. position) rather than
prediction, in order to avoid false system activations. Small
deviations in the prediction of, say, 30cm in the estimated
lateral position of VRUs can make all the difference, as this
might place them just inside or outside the driving corridor.
Better predictions can therefore warn the driver further ahead
of time at the same false alarm rate, and more reliably initiate

automatic braking and evasive steering (Keller et al. 2011;
Köhler et al. 2013).

We evaluate our approach on two scenarios. The first
scenario that we target considers a pedestrian intending to
laterally cross the street, as observed by a stereo camera on-
board an approaching vehicle, see Fig. 1a. Accident analysis
shows that this scenario accounts for a majority of all pedes-
trian fatalities in traffic (Meinecke et al. 2003). We argue that
the pedestrian’s decision to stop can be predicted to a large
degree from three cues: the existence of an approaching vehi-
cle on collision course, the pedestrian’s awareness thereof,
and the spatial layout of the static environment. Likewise,
the second scenario considers a cyclist driving on the same
lane as the ego-vehicle, who may turn left at an upcoming
crossing in front of the vehicle, see Fig. 1b. This scenario also
has three predictive cues, namely the cyclist raising an arm to
indicate intent to turn at the crossing, the cyclist’s proximity
to the crossing, and the existence of an approaching vehicle.

Our approach is general though, and can be extended with
additionalmotion types (e.g. pedestrian crossing the road in a
curved path), or to other application domains, such as robot
navigation in human-inhabited environments. Our method
also does not prohibit the use of other sensors or computer
vision methods than the ones considered here.

2 RelatedWork

In this section we discuss existing work on state estimation
and path prediction, especially for pedestrians and cyclists.
We also present different context cues from vision that have
been explored to improve behavior prediction.

2.1 Detection and Tracking

Object Detection The classical object detection pipeline first
applies a sliding window on the input image to extract image
features at candidate regions, and classify each region as
containing the target object. In recent years, state-of-the-art
detection and classification performance is instead achieved
by deep ConvNets trained on large datasets. For online
applications, ConvNet architectures are now also achieving
real-time performance by combining detection and classifi-
cation in a single forward pass, e.g. Single Shot Multibox
Detector (Liu et al. 2016) or YOLO (Redmon et al. 2016).

There are many datasets for pedestrian detection, e.g.
those presented in Enzweiler and Gavrila (2009), and Dol-
lár et al. (2012). For an overview on vision-based pedestrian
detection, see surveys from Enzweiler and Gavrila (2009),
Dollár et al. (2012) and Ohn-Bar and Trivedi (2016). For
cyclists, there is the Tsinghua-Daimler Cyclist Benchmark
from Li et al. (2016). These datasets make it possible to
create sophisticated models that require large amounts of
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training data, for instance for unified pedestrian and cyclist
detection (Li et al. 2017), or recovering the 3D pose of vehi-
cles and VRUs (Braun et al. 2016). Indeed, the IV domain
is used in many challenging Computer Vision benchmarks,
e.g. KITTI (Geiger et al. 2012; Menze and Geiger 2015) and
ADE20K (Zhou et al. 2017), hence we expect VRU detection
to improve even further in the near future.

State Estimation In the IV domain, state estimation is typ-
ically done in a 3D world coordinate system, where also
information from other sensors (e.g. lidar, radar) is fused.
Image detections can be projected to this world coordinates
through depth estimation from monocular or stereo-camera
setup (Hirschmüller 2008).

The per-frame spatial position of detections can then be
incorporated in a tracking framework where the measure-
ments are assigned to tracks, and temporallyfiltered. Filtering
provides estimates and uncertainty bounds on the objects’
true position and dynamical states. State estimation often
models the state and measurements as a Linear Dynamical
System (LDS), which assumes that the model is linear and
that noise is Gaussian. In this case, the Kalman filter (KF)
(Blackman and Popoli 1999) is an optimal filtering algo-
rithm. In the intelligent vehicle domain, the KF is the most
popular choice for pedestrian tracking (see Schneider and
Gavrila 2013 for an overview). The Extended and Unscented
KF (Meuter et al. 2008) can, to a certain degree, account
for non-linear dynamical or measurement models, but mul-
tiple motion models are needed for maneuvering targets that
alternate various dynamics.

The SLDS is a type of DBN which can model multiple
possible dynamics. It extends the LDS with a top-level dis-
crete Markov chain. At each time step, the state of this chain
determines which of the various possible motion dynam-
ics is applied to the underlying LDS, allowing to ‘switch’
the dynamics through discrete state transitions. Unfortu-
nately, exact inference and learning in an SLDS becomes
intractable, as the number of modes in the posterior distri-
bution grows exponential over time in the number of the
switching states (Pavlovic et al. 2000). There is however a
large body of literature on approximate inference in such
DBNs. One solution is to approximate the posterior by sam-
ples using some Markov Chain Monte Carlo method (Oh
et al. 2008; Rosti and Gales 2004; Kooij et al. 2016). How-
ever, sampling is impractical for online real-time inference
as convergence can be slow. Instead, Assumed Density Fil-
tering (ADF) (Bishop 2006; Minka 2001) approximates the
posterior at every time step with a simpler distribution. It
has generally been applied tomixed discrete-continuous state
spaces with conditional Gaussian posterior (Lauritzen 1992),
and to discrete state DBNs, where it is also known as Boyen-
Koller inference (Boyen and Koller 1998). ADF will be
further discussed in Sect. 3.2.

The Interacting Multiple Model (IMM) KF (Blackman
and Popoli 1999) is another popular algorithm to track a
maneuvering target, mixes the states of several KF filters
running in parallel. It has been applied for path prediction
in the intelligent vehicle domain for pedestrian (Keller and
Gavrila 2014; Schneider andGavrila 2013), and cyclists (Cho
et al. 2011) tracking. IMMcan be seen as doing an alternative
form of approximate inference in a SLDS (Murphy 2002).

2.2 Context Cues for VRU Behaviors

Even though SLDSs can account for changes in dynamics, a
switch indynamicswill onlybe acknowledged after sufficient
observations contradict the currently active dynamic model.
If we wish to anticipate instead of reacting to changes in
dynamics, amodel should includepossible causes for change.

Various papers provide naturalistic studies on pedestri-
ans behavior, e.g. during encounters at unsignalized cross-
ing (Chen et al. 2017), to predict when a pedestrian will
cross (Völz et al. 2016), or to categorizing danger in vehicle-
pedestrian encounters (Otsuka et al. 2017). Similar studies
are also being performed for cyclists. Zernetsch et al. (2016)
collected data at a single intersection for path prediction of
a starting cyclists, and Hubert et al. (2017) used the same
data to find indicators of cyclist starting behavior. Some
studies have used naturalistic data to detect and classify crit-
ical vehicle-cyclist interactions at intersections (Sayed et al.
2013; Vanparijs et al. 2015; Cara and de Gelder 2015), while
others use simulations to study bicycle motion at intersec-
tions (Huang et al. 2017; Zhang et al. 2017).

For online prediction of VRU behavior, cues must be
extracted from sensor data. Especially computer vision
provides many types of context cues, as the following sub-
sections will discuss. From the extract features, behavior
predicting can then be treated as a classification prob-
lem (Bonnin et al. 2014; Köhler et al. 2013). However,
probabilistic methods integrate the inherent detection uncer-
tainty directly into path prediction (Schulz and Stiefelhagen
2015a, b; Keller and Gavrila 2014; Kooij et al. 2014a).

Static EnvironmentCuesThe relation between spatial regions
of an environment and typical behavior has been exten-
sively researched in visual surveillance, where the viewpoint
is static. For instance, different motion dynamics may fre-
quently occur at specific space coordinates (Morris and
Trivedi 2011;Kooij et al. 2016;Robicquet et al. 2016;Yi et al.
2016; Jacobs et al. 2017). Another approach is to interpret
the environment, e.g. detect semantic regions and learn how
these affect agent behavior (Kitani et al. 2012; Rehder and
Kloeden 2015). Such semantics enable knowledge transfer
to new scenes too (Ballan et al. 2016). In surveillance, agent
models are also used to reason about intent (Bandyopadhyay
et al. 2013), i.e. where the pedestrian intends to go.
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In the IV domain, behavior is typically tied to road infras-
tructure (Oniga et al. 2008; Geiger et al. 2014; Kooij et al.
2014b; Sattarov et al. 2014; Pool et al. 2017). Road layout
can be obtained from localization using GPS and INS sen-
sors (Schreiber et al. 2013) to retrieve information map data
on the surrounding infrastructure. SLAM techniques pro-
vide another means for accurate self-localization in a world
coordinate frame, and are also used in automotive research
(Geiger et al. 2012; Mur-Artal and Tardós 2017). Another
approach is to infer local road layout directly from sensor
data (Geiger et al. 2014; Yi et al. 2017). Here, too, semantic
scene segmentation with ConvNets can be used to identify
static and dynamic objects, and drivable road [c.f. Cityscapes
benchmark (Cordts et al. 2016)].

DynamicEnvironmentCuesVRUbehaviormay also be influ-
enced by other dynamic objects in their surrounding. For
instance, social force models (Antonini et al. 2006; Helbing
and Molnár 1995; Huang et al. 2017) expect agents to avoid
collisions with other agents. Tamura et al. (2012) extended
social force towards group behavior by introducing sub-goals
such as “following a person”. The related Linear Trajectory
Avoidance model (Pellegrini et al. 2009) for short-term path
prediction uses the expected point of closest approach to fore-
shadow and avoid possible collisions.

Neural nets can also learn how multiple agents move in
each others presence (Alahi et al. 2016; Yi et al. 2016), even
from a vehicle perspective (Karasev et al. 2016; Lee et al.
2017). In the IV domain, interaction of road users with the
ego-vehicle is especially important.Anoftenused indicator is
the Time-To-Collision (TTC) which is the time that remains
until a collisionbetween twoobjects occurs if their course and
speeds aremaintained (Sayed et al. 2013). A related indicator
is the minimum future distance between two agents, which
like TTC assumes both travel with fixed velocity (Pellegrini
et al. 2009; Cara and de Gelder 2015).

Beyond accounting for the presence of other road users,
traffic participants also negotiate right of way to coordinate
their actions. Rasouli et al. (2017) presents a study of such
interactions between drivers and pedestrians.

Object Cues People may not always be fully aware of their
surroundings, and inattentive pedestrians are an important
safety case in the IV context. A study on pedestrian behavior
prediction by Schmidt and Färber (2009) found that human
drivers look for body cues, such as head movement and
motion dynamics, though exactly determining the pedes-
trian’s gaze is not necessary. Hamaoka et al. (2013) presents
a study on head turning behaviors at pedestrian crosswalks
regarding the best point of warning for inattentive pedestri-
ans. They use gyro sensors to record head turning and let
pedestrians press a button when they recognize an approach-
ing vehicle. Continuous head estimation can be obtained by
interpolating the results of multiple discrete orientation clas-

sifiers, adding physical constraints and temporal filtering to
improve robustness (Enzweiler and Gavrila 2010; Flohr et al.
2015). Benfold andReid (2009) uses aHistogramofOriented
Gradients (HOG) based head detector to determine pedes-
trian attention for automated surveillance. Ba and Odobez
(2011) combines context cues in a DBN to model the influ-
ence of group interaction on focus of attention. Recent work
uses ConvNets for real-time 2D estimation of the full body
skeleton (Cao et al. 2017).

The full body appearance can also be informative for
path prediction, e.g. to classify the object and predict a
class-specific path (Klostermann et al. 2016), or to identify
predictive poses. Köhler et al. (2013) rely on infrastructure-
based sensors to classify whether a pedestrian standing at the
curbside will start to walk. Keller and Gavrila (2014) esti-
mates whether a crossing pedestrian will stop at the curbside
using dense optical flow features in the pedestrian bounding
box. They propose twonon-linear, higher orderMarkovmod-
els, one usingGaussianProcessDynamicalModels (GPDM),
andone usingProbabilisticHierarchical TrajectoryMatching
(PHTM). Both approaches are shown to perform similar, and
outperform the first-order Markov LDS and SLDS models,
albeit at a large computational cost.

3 Proposed Approach

We are interested in predicting the path of an object
with switching motion dynamics. We consider that non-
maneuvering movement (i.e. where the type of motion is not
changing) is well captured by a LDS with a basic motion
model [e.g. constant position, constant velocity, constant
turn rate (Blackman and Popoli 1999)]. An SLDS combines
multiple of such motion models into a single model, using
an additional switching state to indicate which of the basic
motion model is in use at any moment. These probabilistic
models can express the state probability given all past posi-
tion measurements (i.e. online filtering), or given all past and
future measurements (i.e. offline smoothing). Similarly, it is
also possible to infer future state probability given only the
current past measurements (i.e. prediction). Details on infer-
ence will be presented in Sect. 3.2.

While the SLDS can provide good predictions overall, we
shall demonstrate that this unfortunately comes at the cost of
bad predictions when a switch in dynamics occurs between
the current time step and the predicted time step. To tackle
the shortcomings of the SLDS, we propose an online filter-
ing and prediction method that exploits context information
on factors that may influence the target’s motion dynamics.
More specifically, for VRU path prediction we consider three
types of context, namely interaction with the dynamic envi-
ronment, the relation of the VRU to the static environment,
and the VRU’s observed behavior.
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The presented work offers several contributions:

1. We present a generic approach to exploit context cues
to improve predictions with a SLDS. The cues are rep-
resented as discrete latent nodes in a DBN that extends
the SLDS. These nodes influence the switching probabil-
ities between dynamic modes of the SLDS. An algorithm
for approximate online inference and path prediction is
provided.

2. We apply our approach to VRU path prediction. Var-
ious context cues are extracted with computer vision.
The context includes the dynamic environment, the static
environment, and the target’s behavior. The proposed
approach goes beyond existing work in this domain that
has considered no or limited context. We show the influ-
ence of different types of context cues on path prediction,
and the importance of combining them.

3. Our work targets online applications in real-world envi-
ronments. We use stereo vision data collected from
a moving vehicle, and compare computational perfor-
mance to a state-of-the-art method in the IV domain.

We shall now formalize the SLDS, and demonstrate with a
simple example how context can improve prediction quality
when an actual switch in dynamics occurs. Afterwards, we
discuss approximate inference, and specify how our general
approach can be applied to VRU path prediction.

3.1 Contextual Extension of SLDS

Given noisy positional measurements Yt of a moving tar-
get, the target’s true dynamics can be modeled as a Linear
Dynamical System (LDS) with a latent continuous state Xt .
The process defines the next state as a linear transformation A
of the previous state, with process noise εt ∼ N (0, Q) added
through linear transformation B. Observation Yt results from
a linear transformation C of the true state Xt with also
Gaussian noise ηt ∼ N (0, R) added, referred to as the mea-
surement noise.

A Switching LDS (SLDS) conditions the dynamics on
a discrete switching state Mt . We shall consider that the
switching state Mt selects the appropriate state transforma-
tion matrix A(Mt ) for the process model, though generally
other LDS terms could also be conditioned on Mt , if needed.
Accordingly, the SLDS process is here defined as

Xt = A(Mt )Xt−1 + Bεt εt ∼ N (0, Q) (1)

Yt = CXt + ηt ηt ∼ N (0, R). (2)

These equations can be reformulated as conditional distri-
butions, i.e. P(Xt |Xt−1, Mt ) = N (Xt |A(Mt )Xt−1, BQB�)

and P(Yt |Xt ) = N (Yt |CXt , R). Thefirst time step is defined

x →

y
→

current pos
future pos
LDS (1st-order)
LDS (2nd-order)
SLDS
C-SLDS

time →

lo
g-

lik
el

ih
oo

d

P(E|Z=true) used in C-SLDS

Fig. 2 Best viewed in color. Toy example of path prediction for a target
(moving left to right) with two motion types. Four models are con-
sidered: a LDS with 1st- and 2nd-order state space, a SLDS, and the
proposed Context-based SLDS (C-SLDS). Each model extrapolates the
filtered dynamics three time steps ahead, resulting in a Gaussian dis-
tribution over the future state. Top: Spatial view where gray dots show
the target’s actual path. The noisy measurements are omitted for clarity.
Black circles mark the target’s position t = 5, 10 and 15. Stars mark
its corresponding future position. Colored lines and uncertainty ellipses
show the predicted path, and the distribution at the prediction horizon of
eachmodel.Middle: Log likelihood over time of the true future position
under the predictive distributions. Bottom: The evidence from the spa-
tial context over time, used by the C-SLDS. If this context is ‘activated’
(white) the state transition probabilities are high and the C-SLDS acts
like the 1st-order LDS, otherwise (black) it acts like the SLDS

by initial distributions P(X0|M0) and and P(M0). The for-
mer expresses our prior knowledge about the position and
movement of a new target for each switching state, the lat-
ter expresses the prior on the switching state itself. Note
that the SLDS describes a joint probability distribution over
sequences of observations and latent states. It is therefore a
particular instance of a DBN.

As an example, consider predicting the future position of
a moving target which exhibits two types of motion, namely,
moving in positive x direction (type A), and moving in pos-
itive x and y direction (type B). The target performs motion
type A for 10 time steps, and then type B for another 10
time steps. The target’s motion dynamics are known, and a
LDS is selected to filter and predict its future position for
three steps ahead. An LDS with a 1st-order state space only
includes position in its state, Xt = [xt ]. The target velocity is
assumed to be fixed. Each time step, this LDS adds the fixed
velocity and random Gaussian noise to the position. For the
considered target, the optimal fixed velocity of the LDS is an
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Z0

M0

X0

E0 Y0

Z1

M1

X1

E1 Y1

Fig. 3 Context-based SLDS as directed graph, unrolled for
two time slices. Discrete/continuous/observed nodes are rectangu-
lar/circular/shaded

average of the two possible motion directions. Figure 2 illus-
trates this example, and shows predictions made using this
LDS in blue. The LDS provides poor predictive distribution
which do not adapt to the target motion.

An LDS with a 2nd-order state space also includes the
velocity in the state, Xt = [xt , ẋt ]�. Through process noise
on the velocity, this LDS can account for changes in the tar-
get direction. However, its spatial uncertainty grows rapidly
when predicting ahead as the velocity uncertainty increases
without bounds. The figure shows its predictions in purple.

An SLDS can instead combine multiple LDS instances,
each specialized for one motion type. This example consid-
ers an SLDS combining two 1st-order LDSs, one with fixed
horizontal, and onewith fixed diagonal velocity. Less process
noise is needed compared to the single LDS. The switching
state is to 1/20 chance of changing motion types. The pre-
dictions of this SLDS, shown in red in the figure are better
during each mode. It exploits that changes between modes
are rare, and the prediction uncertainty is therefore smaller.
However, this notion leads to bad results when half-way the
rare switch does occur, as the log-likelihood plots shows. The
SLDS thus delivers good predictions for typical time steps
where the dynamics do not change, at the cost of inaccurate
predictions for raremomentswhere the dynamics switch. But
a switch could be part of expected behavior for maneuvering
targets. Preferably, themodel should deliver good predictions
for typical or ‘normal’ tracks, even if these switch, at the cost
of inaccurate predictions during rare tracks with anomalous
behavior.

We make a simple observation to tackle the poor SLDS
performance during a switch. Consider having information
that the target approaches a region with higher probability of
switching than usual, i.e. spatial context. Outside this region
the SLDS behaves as before. But inside, the switching proba-
bility is set to 1/2, whichmakes every dynamicmode equally
likely in the future such. The SLDS then behaves as the orig-
inal 1st-order LDS. By selectively adapting the transition
probabilities based on the spatial context, this model can
ideally take best of both worlds, as the yellow log-likelihood
plot in Fig. 2 confirms.

To obtain this behavior, the transition probability of the
SLDS switching state is conditioned on additional discrete
latent context variables (which will be specified in more
detail later). These different context states can collectively
be represented by a single discrete node Zt . Each contex-
tual configuration Zt = z defines a different motion model
transition probability,

P(Mt = mt |Mt−1 = mt−1, Zt = zt ) = P(Mt |Mt−1, Zt )

(3)

P(Zt = zt |Zt−1 = zt−1) = P(Zt |Zt−1) (4)

Here we use P(·) to denote probability tables.
We also introduce a set of measurements Et , which

provide evidence for the latent context variables through
conditional probability P(Et |Zt ). The bottom plot in Fig. 2
demonstrates this likelihood for the example. Even though
the context Zt is discrete, during inference the uncertainty
propagates from the observables to these variables, resulting
in posterior distributions that assign real-valued probabilities
to the possible contextual configurations.

Like the SLDS, this extended model is also a DBN.
Figure 3 shows all variables as nodes in a graphical represen-
tation of the DBN. The arrows indicate that child nodes are
conditionally dependent on their parents. The dashed arrows
show conditional dependency on the nodes in the previous
time step.

3.2 Online Inference

The DBN is used in a forward filtering procedure to incorpo-
rate all available observations of new time instances directly
when they are received.We have amixed discrete-continuous
DBN where the exact posterior includes a mixture of |M |T
Gaussian modes after T time steps, hence exact online infer-
ence is intractable (Pavlovic et al. 2000). We therefore resort
to Assumed Density Filtering (ADF) (Bishop 2006; Minka
2001) as an approximate inference technique. The filtering
procedure consists of executing the three steps for each time
instance: predict, update, and collapse. These steps will also
be used for predicting the target’s future path for a given
prediction horizon, as described later in Sect. 3.4.

We will let Pt (·) ≡ P(·|Y1:t−1, E1:t−1) denote a predic-
tion for time t (i.e. before receiving observations Yt and Et ),
and ̂Pt (·) ≡ P(·|Y1:t , E1:t ) denote an updated estimate for
time t (i.e. after observing Yt and Et ). Finally, ˜Pt (·) is the
collapsed or approximated updated distribution that will be
carried over to the predict step of the next time instance t+1.
Figure 4 shows a flowchart of the computational performed
in the steps, which will now be explained in more detail.

123



International Journal of Computer Vision

Fig. 4 Flowchart of the three ADF steps in a single time instance. For
simplicity, two motion models and three context states are assumed,
and no example numbers are shown in the probability tables, except
for the likelihoods of the context evidence Et and observed position Yt .
Table rows correspond to the model M and/or context state Z of the

previous time step t − 1, columns correspond to the model M and/or
context state Z of the time step t . Within each probability table, cell
blocks with thick lines correspond to a single Z value, cell blocks with
solid lines are normalized and therefore sum to one

3.2.1 Predict

To predict time t we use the posterior distribution of t − 1,
which is factorized into the joint distribution over the latent
discrete nodes ˜Pt−1(Mt−1, Zt−1), and into the conditional
distribution and the dynamical state, ˜Pt−1(Xt−1|Mt−1) =
N (Xt−1|μ̃(Mt−1)

t−1 , ˜Σ
(Mt−1)

t−1 ).
First, the joint probability of the discrete nodes in the pre-

vious and current time steps is computed using the factorized
transition tables of Eqs. (3) and (4),

Pt (Mt , Mt−1, Zt , Zt−1) = P(Mt |Mt−1, Zt )

× P(Zt |Zt−1) × ˜Pt−1(Mt−1, Zt−1). (5)

Then for the continuous latent state Xt we predict the
effect of the linear dynamics of all possible models Mt on
the conditional Normal distribution of each Mt−1,

Pt (Xt |Mt , Mt−1) =
∫

P(Xt |Xt−1, Mt )

× ˜Pt−1(Xt−1|Mt−1) dXt−1. (6)

With the dynamics of Eq. (1), we find that the parametric
form of (6) is the Kalman prediction step, i.e.

Pt (Xt |Mt , Mt−1) = N (Xt |μ(Mt ,Mt−1)
t ,Σ

(Mt ,Mt−1)

t ) (7)

μ
(Mt ,Mt−1)
t = A(Mt )μ̂

(Mt−1)

t−1 (8)

Σ
(Mt ,Mt−1)

t = A(Mt )
̂Σ

(Mt−1)

t−1 A(Mt )
� + BQB�. (9)

3.2.2 Update

The update step incorporates the observations of the current
time step to obtain the joint posterior. For each joint assign-
ment (Mt , Mt−1), the LDS likelihood term is

P(Yt |Mt , Mt−1) =
∫

P(Yt |Xt ) × Pt (Xt |Mt , Mt−1) dXt

= N (Yt |Cμ
(Mt ,Mt−1)
t ,Σ

(Mt ,Mt−1)

t + R),

(10)

where we make use of Eq. (2). Combining this with the pre-
diction [Eq. (5)] and context likelihood P(Et |Zt ), we obtain
the posterior as one joint probability table

̂Pt (Mt , Mt−1, Zt , Zt−1) ∝ P(Yt |Mt , Mt−1)

× P(Et |Zt ) × Pt (Mt , Mt−1, Zt , Zt−1). (11)

Here we normalized the r.h.s. over all possible assignments
of (Mt , Zt , Mt−1Zt−1) to obtain the distribution on the l.h.s.
The posterior distribution over the continuous state,

̂Pt (Xt |Mt , Mt−1) ∝ P(Yt |Xt ) × Pt (Xt |Mt , Mt−1)

= N (Xt |μ̂(Mt ,Mt−1)
t , ̂Σ

(Mt ,Mt−1)
t ) (12)
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has parameters
(

μ̂
(Mt ,Mt−1)
t , ̂Σ

(Mt ,Mt−1)
t

)

for the |M |2 pos-

sible transition conditions, which are obtained using the
standard Kalman update equations.

In case there is no observation for a given time step,
there is no difference between the predicted and updated
probabilities, which means both Eqs. 11 and 12 simplify to
̂Pt (·) = Pt (·).

3.2.3 Collapse

In the third step, the state of the previous time step is
marginalized out from the joint posterior distribution, such
that we only keep the joint distribution of variables of the
current time instance, which will be used in the predict step
of the next iteration.

˜Pt (Mt , Zt ) =
∑

Mt−1

∑

Zt−1

̂Pt (Mt , Mt−1, Zt , Zt−1) (13)

Similarly, ˜P(Mt−1|Mt ) is straightforward to obtain,

˜P(Mt−1, Mt ) ∝
∑

Zt

∑

Zt−1

̂Pt (Mt , Mt−1, Zt , Zt−1) (14)

˜P(Mt−1|Mt ) = ˜P(Mt−1, Mt )/
∑

Mt−1

˜P(Mt−1, Mt ). (15)

We approximate the |M |2 Gaussian distributions from
Eq. (12) by just |M | distributions,
˜Pt (Xt |Mt ) =

∑

Mt−1

̂Pt (Xt |Mt , Mt−1) × P(Mt−1|Mt )

= N (Xt |μ̃(Mt )
t , ˜Σ

(Mt )
t ). (16)

Here, the parameters
(

μ̃
(Mt )
t , ˜Σ

(Mt )
t

)

are found by Gaussian

moment matching (Lauritzen 1992; Minka 2001),

μ̃
(Mt )
t =

∑

Mt−1

P(Mt−1|Mt ) × μ̂
(Mt ,Mt−1)
t (17)

˜Σ
(Mt )
t =

∑

Mt−1

P(Mt−1|Mt ) ×
[

̂Σ
(Mt ,Mt−1)
t

+
(

μ̂
(Mt ,Mt−1)
t − μ̃

(Mt )
t

)

·
(

μ̂
(Mt ,Mt−1)
t − μ̃

(Mt )
t

)�]

.

(18)

3.3 Context for VRUMotion

Until now the use of context in a SLDS has been described
in general terms, but for VRU path prediction we distin-
guish a four binary context cues, Zt = {ZDYN

t , ZSTAT
t , ZACT

t ,

ZACTED
t }, which affect the probability of switching dynam-

ics:

ZDYN
0

ZACT
0

ZACTED
0

M0

ZSTAT
0

X0

EDYN
0 EACT

0 Y0 ESTAT
0

ZDYN
1

ZACT
1

ZACTED
1

M1

ZSTAT
1

X1

EDYN
1 EACT

1 Y1 ESTAT
1

Fig. 5 DBN with context cues for VRU path prediction, unrolled
for two time slices. Discrete/continuous/observed nodes are rectan-
gular/circular/shaded. The binary context nodes represent interaction
with the dynamic environment ZDYN

t , relation to the static environment
ZSTAT
t , and object behavior (i.e. how VRU acts, ZACT

t , or has acted,
ZACTED
t )

– Dynamic environment context: the presence of other traf-
fic participants can deter the VRU to move too closely. In
our experimentsweonly consider the presence of the ego-
vehicle. Context indicator ZDYN

t thus refers to a possible
collision course, and therefore if the situation is poten-
tially critical.

– Static environment context: the location of the VRU in
the scene relative to the main infrastructure. ZSTAT

t is
true iff the VRU is at the location where change typically
occurs.

– Object context: ZACT
t indicates if the VRU’s current

actions provide insight in the VRU’s intention (e.g. sig-
naling direction), or awareness (e.g. line of gaze). The
related context ZACTED

t captures whether the VRU per-
formed the relevant actions in the past.

These cues are present in both the pedestrian and the
cyclist scenario. The temporal transition of the context in Z
is now factorized in several discrete transition probabilities,

P(Zt |Zt−1) = P
(

ZSTAT
t |ZSTAT

t−1

)

× P
(

ZDYN
t |ZDYN

t−1

)

× P
(

ZACTED
t |ZACTED

t−1 , ZACT
t

)

× P
(

ZACT
t |ZACT

t−1

)

.

(19)

The graphical model of the DBN obtained through this con-
text factorization is shown in Fig. 5.

The latent object behavior variable, ZACT, indicates
whether the VRU is currently exhibiting behavior that sig-
nals a future change in dynamics. The related object context
ZACTED acts as a memory, and indicates whether the behav-
ior has occurred in the past. For instance, the behavior of a
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crossing pedestrian is affected by the pedestrian’s awareness,
i.e. whether the pedestrian has seen the vehicle approach at
any moment in the past, ZACT

t ′ = true for some t ′ ≤ t . The
transition probability of ZACTED

t encodes simply a logical
OR between the Boolean ZACTED

t−1 and ZACT
t nodes:

P
(

ZACTED
t |ZACTED

t−1 , ZACT
t

)

=
{

true iff
(

ZACTED
t−1 ∨ ZACT

t

)

false otherwise.
(20)

The context states have observables associated to them,
except ZACTED which is conditioned on the ZACT state only.
Hence, there are only three types of context observables,
E = {

EDYN, ESTAT, EACT
}

, which are assumed to be con-
ditionally independent distributed given the context states.
This yields the following factorization,

P(Et |Zt ) = P
(

EDYN
t |ZDYN

t

)

× P
(

ESTAT
t |ZSTAT

t

)

× P
(

EACT
t |ZACT

t

)

. (21)

3.4 VRU Path Prediction

The goal of probabilistic path prediction is to provide a useful
distribution Ptp |t on the future target position,

Ptp |t (Xt+tp ) ≡ P(Xt+tp |Y1:t ). (22)

Here tp is the prediction horizon, which defines how many
time steps are predicted ahead from the current time t . This
formulation can reuse the steps from approximate online
inference of Sect. 3.2, treating the unknown observations
of the future time steps as ‘missing’ observations. Iterative
application of these steps creates a predictive distribution of
each moment in the future path, until the desired prediction
horizon is reached.

However, the static environment context ZSTAT exploits
the relation between VRU’s position and the static environ-
ment. Since the expected position is readily available during
path prediction, we can estimate the future influence of the
static environment on the predicted continuous state of the
VRU. For instance, while predicting a walking pedestrian’s
path,we can also predict the decreasing distance of the pedes-
trian to the static curbside.

Accordingly, to obtain prediction P(Xt+tp |Y1:t ) at time
t for tp time steps in the future, we use the current filtered
state distribution and iteratively apply the Predict, Update
and Collapse steps as before. However, the Update step now
only includesmeasurements for the future static environment
context using the expected VRU position. It does not have
measurements for the object and dynamic environment indi-
cators, thereby effectively skipping these context cues. Thus,
to predicting future time steps, we replace Eq. (11) by

̂Pt (Mt , Mt−1, Zt , Zt−1) ∝
P

(

ESTAT
t |ZSTAT

t

)

× Pt (Mt , Mt−1, Zt , Zt−1). (23)

This enables the method to predict when the change in
dynamics will occur, if the VRU is inclined to do so.

4 VRU Scenarios

The previous section explained the general approach of using
a DBN to incorporate context cues, infer current and future
use of dynamics, and ultimately perform future path predic-
tion. This section now specifies the dynamics and context
used for the two VRU scenarios of interest.

4.1 Crossing Pedestrian

Thefirst scenario concerns the pedestrianwanting to cross the
road, and approaching the curb from the right, as illustrated
in Fig. 1a.

Motion Dynamics In this scenario, we consider that the
pedestrian can exhibit at any moment one of two motion
types, walking (Mt = mw) and standing (Mt = ms). While
the velocity of any standing person is zero, different peo-
ple can have different walking velocities, i.e. some people
move faster than others. Let xt denote a person’s lateral posi-
tion at time t (after vehicle ego-motion compensation) and
ẋt the corresponding velocity. Furthermore, ẋmw is the pre-
ferredwalking speedof this particular pedestrian. Themotion
dynamics over a period Δt can then be described as,

xt = xt−Δt + ẋtΔt + εtΔt ẋt =
{

0 iff Mt = ms

ẋmw iff Mt = mw

(24)

Here εt ∼ N (0, Q) is zero-mean process noise that allows
for deviations of the fixed velocity assumption. We will
assume fixed time-intervals, and from here on set Δt = 1.

Since the latent ẋmw is constant over the duration of a
single track, ẋmw

t = ẋmw

t−1. Still, it varies between pedestrians.
We include the velocity ẋmw in the state of an SLDS together
with the position xt such that we can filter both. The prior on
ẋmw

0 represent walking speed variations between pedestrians.
By filtering, the posterior on ẋmw

t converges to the preferred
walking speed of the current track.

The switching state Mt selects the appropriate linear state
transformation A(Mt ), and the matrices from Eq. (1) become

Xt =
[

xt
ẋmw
t

]

, A(ms ) =
[

1 0
0 1

]

, A(mw) =
[

1 1
0 1

]

, B =
[

1
0

]

.

(25)

123



International Journal of Computer Vision

!

(a) Minimum distance of approach, Dmin

225

270

315
0

45

90

135
180

90º0º 180º 270º
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Fig. 6 Context observables used in the crossing pedestrian scenario. a The closest distance between pedestrian and the ego-vehicle. bThe pedestrian
head orientation. c The distance to the curb

The observations Yt ∈ R fromEq. (2) are the observed lateral
position. The observationmatrix is defined asC = [1 0]. The
initial distribution on the state X0 and both the process and
measurements noise are estimated from the training data (see
Sec. 5.4).

Context Following the study on driver perception (Schmidt
and Färber 2009), the context cues in the pedestrian scenario
are collision risk, pedestrian head orientation, and where
the pedestrian is relative to the curb. The context obser-
vations Et for this scenario are illustrated in Fig. 6. The
related Fig. 7 shows the empirical distributions of the con-
text observations estimated on annotated training data from
a pedestrian dataset. The dataset will be discussed in more
detail in Sect. 5.1.

Thedynamic environment context ZDYN indicateswhether
the current trajectories of the ego-vehicle and pedestrian cre-
ates a critical situation. Namely, if there is a possible collision
when both pedestrian and vehicle continue with their current
velocities. For the interaction cue, we consider the minimum
distance Dmin between the pedestrian and vehicle if their
paths would be extrapolated in time with fixed velocity (Pel-
legrini et al. 2009), see Fig. 6a. While this indicator makes
naive assumptions about the vehicle and pedestrian motion,
it is still informative as a measure of how critical the situa-
tion is. As part of our model, will thereby assist to make path
prediction more accurate. We define a Gamma distribution
over Dmin conditioned on the latent interaction state ZDYN,
parametrized by shape a and scale b,

P
(

EDYN
t |ZDYN

t = z
)

= Γ (Dmin
t |az, bz). (26)

This distribution is illustrated in Fig. 7a.
The object behavior context ZACT describes if the pedes-

trian is seeing the approaching vehicle. ZACTED indicates
whether this was the case at any moment in the past, i.e. if
the pedestrian did see the vehicle. It therefore indicates the
pedestrian’s awareness: a pedestrian will likely stop when he
is aware of the fact that it is dangerous to cross. The Head-
Orientation observableHOt serves as evidence EACT

t for the
behavior. A head orientation estimator is applied to the head
image region. It consists of multiple classifiers, each trained

to detect the head in a particular looking direction, and HOt

is then a vector with the classifier responses, see Fig. 6b. The
values in this vector form different unnormalized distribu-
tions over the classes, depending onwhether the pedestrian is
looking at the vehicle or not, see Fig. 7b. However, if the head
is not clearly observed (e.g. it is too far, or in the shadow), all
values are typically low, and the observed class distribution
provides little evidence of the true head orientation.We there-
fore modelHOt as a sample from a Multinomial distribution
conditioned on ZACT

t , thus with parameter vectors ptrue and
pfalse for ZACT = true and ZACT = false respectively,

P
(

EACT
t |ZACT

t = z
)

= Mult(HOt |pz). (27)

As such, higher classifier outputs count as stronger evidence
for the presence of that class in the observation. In the other
limit of all zero classifier outputs, HOt will have equal like-
lihood for any value of ZACT

t .
The static environment context ZSTAT indicates if the

pedestrian is currently at the position next to the curb where
a person would normally stop if they wait for traffic before
crossing the road. The relative position of the pedestrian with
respect to the curbside therefore serves as observable for
this cue. As shown in Fig. 6c, we detect the curb ridge in
the image. It is then projected to world coordinates with the
stereo disparity to measure its lateral position near the pedes-
trian. These noisy measurements are filtered with a constant
position Kalman filter with zero process noise, such that
we obtain an accurate estimate of the expected curb posi-
tion, xcurbt . Distance-To-Curb, DTCt , is then calculated as
the difference between the expected filtered position of the
pedestrian, E[xt ], and of the curb, E[xcurbt ]. Note that for
path prediction we can estimate DTC even at future time
steps, using predicted pedestrian positions. The distribution
overDTCt given ZSTAT is modeled as a Normal distribution,
see Fig. 7c,

P
(

ESTAT
t |ZSTAT

t = z
)

= N (DTCt |μz, σz). (28)
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Fig. 7 Histograms and the fitted distributions of the context observa-
tions Et for the pedestrian scenario, conditioned on their GT context
states Zt : a the minimum future distance between pedestrian and ego-
vehicle, conditioned on ZDYN

t (critical vs non-critical situation). b The

head orientation conditioned on ZACT
t (pedestrians sees vs does not see

the ego-vehicle). c The pedestrian’s distance to the curb, conditioned
on conditioned on ZSTAT

t (not at curb vs at the curb)
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Fig. 8 Context observables used in the cyclist scenario. a The extrap-
olated time till ego-vehicle reaches cyclist. b Detection of the cyclist’s
raised arm. c An static environment map is built offline through SLAM.

The map’s coordinate system is aligned with the intersection center.
By projecting tracked cyclist positions to this coordinate system, their
longitudinal distance to the intersection is obtained
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Fig. 9 Histograms and the fitted distributions of the context observa-
tions Et for the cyclist scenario, conditioned on their GT context states
Zt : a the time until the ego-vehicle would approach the cyclist, if both
kept moving at the same speed, conditioned on ZDYN (critical vs non-

critical). bThe arm detector’s confidence conditioned on ZACT (cyclists
has arm up vs arm down). c The cyclists’ longitudinal position condi-
tioned on ZSTAT (cyclist not at intersection vs at intersection)

4.2 Cyclist Approaching Intersection

The second scenario concerns the ego-vehicle driving behind
a cyclist, and approaching an intersection. As illustrated in
Fig. 1b, the cyclistmay ormay not turn left at the intersection,
but can indicate intent to turn by raising an arm in advance.
In our training data, the cyclist always does this when turn-
ing in a critical situation where the ego-vehicle is quickly
approaching. But in non-critical situations, cyclists may turn
even without raising an arm. The context observables of this
scenario are illustrated in Figs. 8, and 9 shows the empirical

distributions of the observables on the cyclist dataset that will
be presented later in Sect. 5.2.

Motion Dynamics The cyclist can switch between themotion
types cycling straight, mst , and turning left, mtu . Since a
turning cyclist changes velocity in both lateral x and longi-
tudinal y direction, we now include both spatial dimensions
in the cyclist’s dynamic state. While the pedestrian model
included only a latent velocity for the preferred walking
speed, our cyclist models includes latent velocities for both
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motion types. The matrices from Eq. (1) are as follows:

Xt = [

xt yt ẋ
mtu
t ẏmtu

t ẋmst
t ẏmst

t
]�

A(mtu) =
⎡

⎣

I I 0
0 I 0
0 0 I

⎤

⎦ A(mst ) =
⎡

⎣

I 0 I
0 I 0
0 0 I

⎤

⎦ B =
⎡

⎣

I
0
0

⎤

⎦ .

(29)

Here, I defines as a 2×2 identity matrix, and 0 represents
a 2 × 2 matrix of zeros. The observations Yt ∈ R

2 from
Eq. (2) are the observed lateral and longitudinal positionwith
observation matrix C = [I 0 0].

Context In this scenario, the dynamic environment context
ZDYN indicates whether a situation would be critical if the
cyclist would decide to turn left at that moment. Here we
consider time Tmin it would take for the vehicle to reach
the cyclist, if both the vehicle and the cyclist would keep
moving at the same speed. This is represented schematically
in Fig. 8a. This is not a perfect prediction of the criticality of
the situation, because the speed of the cyclist is not constant
when turning left. But, similar as the pedestrian case, it still
conveys useful information and will therefore improve the
prediction. Figure 9a shows that the empirical distribution
over Tmin has multiple modes.We therefore define amixture
of m Gaussians over Tmin , conditioned the dynamic context
state ZDYN. From the data we find that m = 3 for ZDYN =
true (the situation is critical), and that m = 2 for ZDYN =
false. The Gaussianmixture is parametrized bymeansμ

(k)
zdyn ,

covariances σ
(k)
zdyn and the mixture weights φ

(k)
zdyn ,

P
(

EDYN
t |ZDYN

t = z
)

=
m

∑

k=1

φ
(k)
zdynN

(

Tmin
t |μ(k)

zdyn, σ
(k)
zdyn

)

.

(30)

The object context ZACT captures whether the cyclist
raises an arm to indicate intent to turn left, or not (see Fig. 8b).
Accordingly, ZACTED represents whether the cyclist did raise
an arm in the past. For evidence EACT, an Arm-Detector pro-
vides a classification score ADt in the [0, 1] range, where a
high score is indicative of a raised arm. The Beta distribution
is a suitable likelihood function for this domain, see Fig. 9b.
The distribution is parameterized by αz and βz ,

P
(

EACT
t |ZACT

t = z
)

= Beta(ADt |αz, βz). (31)

The static environment context ZSTAT represents if the
cyclist has reached the region around the intersection where
turning becomes possible. Figure 8c shows that cyclist tracks
have some variance in their turn angle and the location of
onset. Rather than an exact spot, this region is a bounded
range on the relative longitudinal distance of the cyclist to the

center of the intersection. The dashed lines in the figure mark
this region. We rely on map information and ego-vehicle
localization to estimate the longitudinal distance of the cyclist
to the next intersection, the Distance-To-Intersection, DTIt .
As shown in Fig. 9c, the distribution over DTIt given ZSTAT

is also modeled as a mixture of m Gaussians, using m = 1
for ZSTAT = true, and m = 2 for ZSTAT = false:

P
(

ESTAT
t |ZSTAT

t = z
)

=
m

∑

k=1

φ
(k)
zstatN

(

DTIt |μ(k)
zstat , σ

(k)
zstat

)

.

(32)

For path prediction we can estimateDTIt using the predicted
cyclist positions and static map information.

5 Datasets and Feature Extraction

The experiments in this paper used two stereo-camera
datasets of VRU encounters recorded from a moving vehi-
cle, one for the crossing pedestrian and one for the cyclist
at intersection scenario. Due to the focus on potentially
critical situations, both driver and pedestrian/cyclist were
instructed during recording sessions. A sufficient safety dis-
tance between vehicle and VRU was applied in all scenarios
recorded. In the following sections, ‘critical situation’ thus
refers to a theoretic outcome where both the approaching
vehicle and pedestrian would not stop.

5.1 Pedestrian Dataset

For pedestrian path prediction, we use a dataset (c.f. Kooij
et al. 2014a) consisting of 58 sequences recorded using a
stereo camera mounted behind the windshield of a vehicle
(baseline 22cm, 16 fps, 1176×640 12-bit color images). All
sequences involve single pedestrians with the intention to
cross the street, but feature different interactions (Critical vs.
Non-critical), pedestrian situational awareness (Vehicle seen
vs. Vehicle not seen) and pedestrian behavior (Stopping at
the curbside vs. Crossing). The dataset contains four different
male pedestrians and eight different locations. Each sequence
lasts several seconds (min / max / mean: 2.5s / 13.3s / 7.2 s),
andpedestrians are generally unoccluded, thoughbrief occlu-
sions by poles or trees occur in three sequences.

Positional ground truth (GT) is obtained by manual label-
ing of the pedestrian bounding boxes and computing the
median disparity over the upper pedestrian body area using
dense stereo (Hirschmüller 2008). These positions are then
corrected for vehicle ego-motion provided by GPS and IMU,
and projected to world coordinates. From this correction we
obtain the pedestrian’s GT lateral position, and use the tem-
poral difference as the GT lateral speed.
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Table 1 Breakdown of the number of tracks in the pedestrian dataset
(c.f. Kooij et al. 2014a) for the four normal sub-scenarios (above the
line), and in the anomalous one (below the line)

Pedestrian scenario (58 tracks)
Sub-scenario Occurences

Non-critical Vehicle not seen Crossing 9

Non-critical Vehicle seen Crossing 14

Critical Vehicle not seen Crossing 11

Critical Vehicle seen Stopping 14

Critical Vehicle seen Crossing 10

Table 2 Breakdown of the number of tracks in the cyclist dataset for the
normal (above the line) and anomalous (below the line) sub-scenarios

Cyclist scenario (42 tracks)
Sub-scenario Occurrences

Non-critical Arm not raised Straight/Turn 6/6

Non-critical Arm raised Turn 6

Critical Arm not raised Straight 10

Critical Arm raised Turn 7

Critical Arm not raised Turn 7

The GT for context observations is obtained by labeling
the head orientation of each pedestrian. The 16 labeled dis-
crete orientation classes were reduced to 8 GT orientation
bins by merging three neighbored orientation classes (c.f.
Flohr et al. 2015) together.

This dataset is divided into five sub-scenarios, listed in
Table 1. Four sub-scenarios represent ‘normal’ pedestrian
behaviors (e.g. the pedestrian stops if he is aware of a critical
situation and crosses otherwise). The fifth sub-scenario is
‘anomalous’ with respect to the normal sub-scenarios, since
the pedestrian crosses even though he is aware of the critical
situation.

5.2 Cyclist Dataset

A new dataset was collected for the cyclist scenario, in a
similar fashion to the pedestrian dataset. This new dataset
contains 42 sequences with another stereo camera setup in
the vehicle (baseline 21cm, 16 fps, 2048×1024 12-bit color
images). The cyclist and vehicle are driving on the same
road, such that the cyclist is observed from the back, and
they approach an intersection with an opportunity for the
cyclist to turn left.

The cyclist GT positions are obtained similarly to the
pedestrian scenario from stereo vision. To obtain informa-
tion about the road layout further ahead, intelligent vehicles
can rely on map information and self-localization. Since
the cyclist scenario was collected in a confined road area,
we use Stereo ORB-SLAM2 (Mur-Artal and Tardós 2017)

on all collected stereo video to build a 3D map of the
environment for our experiments. This results in a fixed
world coordinate system shared by all tracks. The spatial
layout of the crossing (road width and intersection point)
is expressed in these world coordinates, and the detected
cyclist positions can be projected to this global coordinate
system too. In a pre-processing step GT cyclist tracks are
smoothed to compensate for the estimation noise for stereo
vision, which especially affects the longitudinal position.
The aligned road layout and cyclist tracks are shown in
Fig. 8c.

This dataset is also divided into several sub-scenarios,
with the number of recordings for each sub-scenario listed
in Table 2. We consider that initially the cyclist intent is
unknown, i.e. whether he will turn or go straight at the
intersection. By raising an arm, he can give a visual indi-
cation of the intent to turn left. However, the cyclist might
not always properly raise an arm in non-critical situations.
Therefore, in non-critical situations without raising an arm,
our data contains an equal number of tracks with turning and
going straight. In summary, the normal sub-scenarios reflect
situations where the cyclist must indicate intent in critical sit-
uations with the approaching ego-vehicle, but could neglect
to do this in non-critical cases. The additional anomalous
sub-scenario contains a turning cyclist in a critical situation,
without having raised an arm.

5.3 Feature Extraction

Both cyclist and pedestrian are detected by using neural net-
works with local receptive fields (Wöhler and Anlauf 1999),
given region-of-interests supplied by an obstacle detection
component using dense stereo data. The resulting bounding
boxes are used to calculate a median disparity over the upper
pedestrian body area. The vehicle ego-motion compensated
position inworld coordinates is then used as positional obser-
vation Yt .

For an estimation of the pedestrian head orientation HOt ,
the method described in Flohr et al. (2015) is used. The
angular domain of [0◦, 360◦) is split into eight discrete ori-
entation classes of 0◦, 45◦, · · · , 315◦. We trained a detector
for each class, i.e. f0, · · · , f315, using again neural net-
works with local receptive fields. The detector response
fo(It ) is the strength for the evidence that the observed
image region It contains the head in orientation class o.
We used a separate training set with 9300 manually con-
tour labeled head samples from 6389 gray-value images
with a min./max./mean pedestrian height of 69/344/122 pix-
els (c.f. Flohr et al. 2015). For additional training data,
head samples were mirrored and shifted, and 22109 non-
head samples were generated in areas around heads and
from false positive pedestrian detections. For detection,
we generate candidate head regions in the upper pedes-
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trian detection bounding box from disparity based image
segmentation. The most likely head image region I � is
selected from all candidates based on disparity information
and detector responses. Before classification, head image
patches are rescaled to 16 × 16 px . The head observation
HOt = [ f0(I �

t ), · · · , f315(I �
t )] contains the orientation con-

fidences of the selected region.
The expected minimum distance Dmin between pedes-

trian and vehicle is calculated as in Pellegrini et al. (2009)
for each time step based on current position and velocity.
Vehicle speed is provided by on-board sensors, for pedes-
trians the first order derivative is used and averaged over
the last 10 frames. For DTC, the curbside is detected with a
basic Hough transform (Duda and Hart 1972). Though other
approaches are available, e.g. stereo (Oniga et al. 2008) or
scene segmentation (Cordts et al. 2016), this simple approach
was already sufficient for our experiments. The image region
of interest is determined by the specified accuracy of the vehi-
cle localization using typical on-board sensors (GPS+INS)
and map data (Schreiber et al. 2013). Y curb

t is then the mean
lateral position of the detected line back-projected to world
coordinates.

To determine whether the cyclist raises an arm (ADt = 1),
or not (ADt = 0), we apply the chamfer matching approach
from Gavrila and Giebel (2002). First, a binary foreground
segmentation of the cyclist is generated from the disparity
values in the tracked cyclist bounding box r . The fore-
ground consists of all pixels with a disparity in the range of
[d̃r−ε, d̃r+ε]. Here d̃r is themedian disparity value in region
r .We set εD = 1.5 to account for disparity errors. The binary
segmentation is then matched against multiple rectangular
contour templates near the expected shoulder location in the
bounding box. These arm templates vary in length, width and
angle. The armdetectorADt is the output of aNaiveBayesian
Classifier which integrates several likelihood terms over all
templates: a Gamma distribution for the chamfer matching
score, and a Gaussian mixture for both the intensity and dis-
parity values in the segmented foreground. This classifier
uses a uniform prior.

5.4 Parameter Estimation

Estimating the parameters of the conditional distributions
is straightforward, if the values of the latent variables are
known. We have therefore annotated the dataset with ground
truth (GT) labels for all latent variables in the sequences.Dur-
ing training, the distributions are then fitted on the training
data usingmaximum likelihood estimation. TheExpectation-
Maximization (Dempster et al. 1977) algorithm is used to fit
the Gaussian mixtures. We now explain for both scenarios
how the GT labels were obtained.

5.4.1 Pedestrian Scenario

Sequences where potentially critical situations occur, i.e.
when either pedestrian or vehicle should stop to avoid a col-
lision, have been labeled as critical. Sequences are further
labeled with event tags and time-to-event (TTE, in frames)
values. For stopping pedestrians, TTE = 0 is when the last
foot is placed on the ground at the curbside, and for cross-
ing pedestrians at the closest point to the curbside (before
entering the roadway). Frames before/after an event have
negative/positive TTE values. For stopping sequences, the
GT switching state is defined as Mt = ms at moments with
TTE ≥ 0, and as Mt = mw at all other moments, crossing
sequences always have Mt = mw.

Considering head observationHO, we assume pedestrians
recognize an approaching vehicle (GT label ZACT

t = true)
when the GT head direction is in a range of ±45◦ around
angle 0◦ (head is pointing towards the camera), and do not
see the vehicle (ZACT

t = false) for angles outside this range
(future human studies could allow a more precise thresh-
old, or provide an angle distribution, the study in Hamaoka
et al. (2013) only reported the frequency of head turning).
For each ground truth label sv, we estimate the orientation
class distributions psv by averaging the class weights in the
corresponding head measurements.

For the observation Dmin , we define per trajectory one
value for all ZDYN

t labels (∀t ZDYN
t = true for trajectories

with critical situations, ∀t ZDYN
t = false otherwise), and fit

the distributions Γ (Dmin|asc, bsc).
The distributions N (DTCt |μac, σac) are estimated from

GT curb positions and the spacial ZSTAT
t labels, where

ZSTAT
t = true only at time instances where −1 ≤ TTE ≤ 1

when crossing, and TTE ≥ −1 when stopping.
The histogram of the GT distributions and the estimated

fits can be seen in Fig. 7.

5.4.2 Cyclist Scenario

The turning cyclists haveTTE = 0defined at the framewhere
it is first visible that they are turning. For the cyclists going
straight, TTE = 0 is defined as the first framewhere they pass
the point at which 25% of all turning cyclists have passed
their TTE = 0. For all turning cases, the GT switching state
is defined as Mt = mtu at moments with TTE ≥ 0. All other
moments, and all straight cases have their GT state defined
as Mt = mst These average turning velocity of a track is
estimated on its frames where Mt = mtu . The prior for the
speed of the turning cyclist is estimated on these average
turning velocities.

The GT for ZACT
t is taken from annotated GT arm angles.

When the arm is raised further than 30◦, ZACT
t = true. Below

30◦, the arm is considered down, or ZACT
t = false.
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Wedefine one value for all ZDYN
t labels of a specific track.

It is set as true if the ego-vehicle would overtake the cyclist
in two seconds at TTE = 0, assuming the cyclist has nomore
longitudinal speed. This can be interpreted as the worst-case
scenario, where a cyclist would make an instant 90-degree
turn.

Finally, the spatial extent of the turning region is deter-
mined from smallest and largest longitudinal position of all
turning cyclists at TTE = 0. The GT label for ZSTAT is set
to true whenever the cyclist is in this region.

5.4.3 Both Scenarios

In both scenarios, we compute maximum likelihood esti-
mates of the parameters for the priors and noise distributions
using the GT position and speed profiles. For each pedestrian
track, we take the average speed during the walking motion
type as GT preferred walking speed ẋmw . Similarly, for each
cyclist track we take averages of their GT speeds during each
motion type as GT of the preferred speeds ẋmtu

t , ẏmtu
t , ẋmst

t
and ẏmst

t .
With all continuous states Xt fully defined for all tracks,

we can compute the εt using Eq. (1), i.e. Bεt = Xt −
A(Mt )Xt−1. From these εt the process noise covariance Q
is estimated. Likewise, observation noise covariance R is
estimated from the differences between GT and measured
positions, since ηt = Yt − CXt from Equation(2). Finally,
the mean and covariance parameters of the state priors can
be estimated from the X0 of all training tracks.

The prior and transition probability tables for the discrete
context states ZACT, ZSTAT are obtained by counting and nor-
malizing the occurrences in the GT labels. The same applies
to the dynamic switching state M , conditioned on ZACTED,
ZDYN and ZSTAT. The transition probability for ZACTED is a
logical OR, as described in Sect. 3.3. Since we only got one
ZDYN label per track, we fix the ZDYN transition probability
to 1/100 for changing state.

6 Experiments

In the experiments, we compare the proposed DBNs using
all context cues to variants using less cues, and to baseline
approaches. We also compare the use of visual detections to
using GT annotations as measurements, and we investigate
computational performance.

In all experiments, leave-one-out cross-validation is used
to separate training and test sequences. Sequences from
anomalous sub-scenarios are always excluded from the train-
ing data. For each time t with state Xt , we create a predictive
distribution ˜Ptp |t (Xt+tp ) for prediction horizon tp. Two per-
formance metrics are used to evaluate a sequence, namely
the Euclidean distance between predicted expected position

Yt+tp and GT position Gt+tp , and the log likelihood of G
under the predictive distribution:

error(tp|t) = |E [

˜Ptp |t (Yt+tp )
] − Gt+tp | (33)

predll(tp|t) = log
[

˜Ptp |t (Gt+tp )
]

. (34)

6.1 Pedestrian Scenario

We first investigate the influence of context on the pedestrian
scenario. The proposedDBNwith full context is compared to
model variants that only uses the head orientation, to one that
only uses the minimal distance to the pedestrian, and to one
that combines these two contexts. We refer to these variants
after the usedmeasurements: EACT, EDYN and EDYN+EACT

respectively. We also include a common 2nd-order LDS as
additional baseline. The dynamic process of this LDS for the
lateral pedestrian position can be described as

[

xt
ẋt

]

=
[

1 1
0 1

]

·
[

xt−1

ẋt−1

]

+ εt εt ∼ N
([

0
0

]

, Q

)

. (35)

where the process noise covariance is also estimated from
the GT position and speed.

6.1.1 Comparison of Model Variations

The results in Table 3 show the predictive log likelihood
predll for tp = 16 time steps (∼ 1s) in the future, averaged
over the secondup toTTE=0when the pedestrian reaches the
curb. In the first three normal sub-scenarios, all five SLDS-
based models perform similarly, clearly outperforming the
LDS (which has similar low likelihoods across the board,
i.e. it is unspecific for any sub-scenario). However, in the
fourth sub-scenario (pedestrian sees the vehicle in a critical
situation and stops), the simpler DBNs have low predictive
likelihoods, except for our proposed model. Without the full
context, the other models are not capable to predict if, where
and when the pedestrian will stop.

For the anomalous sub-scenario, only the proposed model
results in lower likelihood than for normal behavior, which
is a useful property for anomaly detection as mentioned in
Sect. 3.1. A future driver warning strategy could benefit from
the more accurate path prediction of our full model in high
likelihood situations, whereas falling back to simpler mod-
els/strategies when anomalies are detected.

6.1.2 Detailed Analysis on a Single Track

Fig. 10 illustrates a sequence from the stopping sub-scenario
(fourth row in Table 3), with a snapshot just before (TTE =
− 20) and after (TTE = − 9) the pedestrian becomes aware
of the critical situation. At TTE = − 20, the predicted dis-
tributions of all models are close together and indicate that
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Table 3 Prediction log likelihood of the GT pedestrian position for tp = 16 frames (∼ 1s) ahead, for different sub-scenarios (rows) and models
(columns), for TTE ∈ [− 15, 0]

Sub-scenario Full model EDYN+EACT EACT EDYN SLDS LDS

Normal Non-critical Vehicle not seen Crossing −0.61 −0.53 −0.52 −0.59 −0.59 −1.90

Non-critical Vehicle seen Crossing −0.53 −0.45 −0.46 −0.47 −0.49 −1.93

Critical Vehicle not seen Crossing −0.48 −0.34 −0.17 −0.59 −0.33 −1.88

Critical Vehicle seen Stopping −0.33 −0.70 −1.13 −0.80 −1.26 −1.88

Over all normal sub-scenarios −0.51 −0.52 −0.58 −0.61 −0.66 −1.90

Anomalous Critical Vehicle seen Crossing −0.90 −0.27 −0.15 −0.25 −0.13 −1.88

The first four sub-scenarios contain “normal” pedestrian behavior. The fifth case is anomalous (lower likelihood is better). Model variations (best
SLDS variant marked in bold): full context, no curb (EDYN+EACT), only head (EACT), only criticality (EDYN), no context (SLDS), KF (LDS)

the pedestrian continues walking (the LDS does so with high
uncertainty). At TTE = −9, themean position predictions of
the LDS are furthest away from the GT (still within one std.
dev. because of high uncertainty). The SLDS-only predic-
tion shows a comparatively low uncertainty, but the predicted

means have a high distance to the GT (not within one std.
dev.). Predictions of the EDYN+EACT model are closer to
the true positions, since it captures the situational awareness
of the pedestrian and therefore assigns a higher probability,
compared to SLDS, to switch to the standing model ms . The

(a) Situation at t = 12 (TTE = −20) (b) Situation at t = 23 (TTE = −9)

Ground truth
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(d) Predicted position at t = 23 (TTE = −9)
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(e) Inferred marginal distributions

Fig. 10 Best viewed in color. Example of a pedestrian stopping at the
curb after becoming aware of a critical situation, see also the marginal
distributions in e. Predictions aremade tp = 16 (∼ 1s) time steps ahead
from different times t . a Pedestrian with head detection bounding box
(white), tracking bounding box (green), collapsed predicted distribution
of the full model (blue ellipses show one and two std. dev.) and curb
detection (blue line). b The pedestrian became aware of the critical situ-
ation. c Predictions [mean and std. dev. (shaded)] made at t = 12 (green
diamond) for the lateral position at time t + tp (red diamond indicates

the GT at t + tp). Vertical black line denotes the event. Black dots indi-
cate position measurements, the black line the GT positions. Colored
lines are predicted positions by different models. d Predictions of the
lateral position at t + tp made from t = 23. e Marginal distributions
of the full model latent variables over time [probabilities range from 0
(black) to 1 (white)]. The dotted green lines are set on the time of the
two snapshots, t = 12 and t = 23. Variable labels are True and False,
and walking and standing
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(a) critical, vehicle not seen, crossing (Stopping probability)
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(b) critical, vehicle not seen, crossing (Prediction error)
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(c) critical, vehicle seen, stopping (Stopping probability)
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(d) critical, vehicle seen, stopping (Prediction error)

Fig. 11 Best viewed in color. Pedestrian scenario: stopping probability
(left) and lateral prediction error (right) when predicting 16 time steps
(∼ 1s) ahead in the two critical sub-scenarios. a, b Pedestrian is not
aware of the critical situation and crosses. c, d Pedestrian is aware of
the critical situation and stops. Shown are mean and standard devia-

tion (shaded) of each measure over all corresponding sequences, for
our proposed full model, an intermediate model without spatial layout
information (EDYN+EACT), the baseline SLDS model without context
cues, and a LDS

Full model PHTM
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Fig. 12 Best viewed in color. Pedestrian scenario: the plots show the
lateral prediction error of our proposed model and the PHTM model in
various sub-scenarios. The lines show the avg. error over all sequences
in a sub-scenario, after aligning the results by their TTE values, and

the shaded region shows the std. dev. of the error. a Non-critical, vehi-
cle seen, crossing. b Critical, vehicle not seen, crossing. c Non-critical,
vehicle not seen, crossing. d Critical, vehicle seen, stopping
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full model makes the best predictions as it also anticipates
where the pedestrian will stop, namely at the curbside.

For instance, at t = 23, ZACTED
t starts to change as it

becomesmore probable that the pedestrian has seen the vehi-
cle, and indeed around t = 29 the pedestrian stops at the curb.

6.1.3 Comparison Over Time

In the context of action classification, Fig. 11 shows for vari-
ous model variations, the standing probability P̃t (Mt = ms),
and the error(tp|t) for predictions made tp = 16 frames
ahead, plotted against the TTE. In the first sub-scenario (top
row), the pedestrian crosses in a critical situation without
seeing the approaching vehicle. All models have a very low
stopping probability (Fig. 11a), but since a few sequences
have ambiguous head observations, our proposedmodel does
not exclude the possibility that the vehicle has been seen.
This translates to a higher stopping probability near the curb,
and to a higher error of the average prediction (Fig. 11b)
for a short while. Still, the model recuperates as the pedes-
trian approaches the curb and shows no sign of slowing
down, which informs the model that the pedestrian did not
see the vehicle (i.e. joint inference also means that observed
motion dynamics can disambiguate low-level head orienta-
tion estimation). In the second sub-scenario (bottom row),
the pedestrian is aware of the critical situation and stops
at the curb. Now, all models show an increasing stopping
probability (Fig. 11c) towards the event point. In a few sce-
narios, the SLDS switches too early to the standing state,
reacting to perceived de-acceleration (noise) of the pedes-
trian walking, hence the high std. dev. of the SLDS over all
sequences early on. However, on average the SLDS assigns
a higher probability to standing (> 0.5) than walking after
the pedestrian has already reached the curb (TTE > 0). It
can only react to changing dynamics, but not anticipate it.
Our proposed model, on the other hand, gives the best action
classification (highest stopping probability at TTE = 0). It
anticipates the change in motion dynamics a few frames ear-
lier as the SLDS, benefiting from the combined knowledge
about pedestrian awareness, interaction, and spatial layout.
Further, the knowledge about the spatial layout helps to
keep the standing probability low while the pedestrian is
still far away from the curb. The model with limited context
information ends up in between proposed model and SLDS.
Accordingly, our proposed model has the lowest prediction
error (Fig. 11d). Averaged over the sequences, it outperforms
the baseline SLDS model by up to 0.39m (at TTE = 1) and
the EDYN+EACT model by up to 0.16m (at TTE = −10).

6.1.4 Idealized Vision Measurements

To investigate how the vision components affect perfor-
mance, we train and test usingGT as idealizedmeasurements

Table 4 Pedestrian scenario. Computational costs for the different
models per frame (avg. per frame, in ms)

Approach Observables State est. & pred. Total

Full model 160 40 200

SLDS 60 10 70

LDS 60 0.4 60

PHTM 70 600 670

for pedestrian location, curb location, and head orientation.
We find that the lateral pedestrian and curbmeasurements are
sufficiently accurate: the use ofGT asmeasurements does not
notably improve the results. Ideal head measurements alter
the five sub-scenario scores of the full model w.r.t. Table 3
to − 0.57, − 1.08, − 0.32, − 0.12 (“normal” cases), and to
− 3.67 (anomalous case). Predictions became more accurate
for critical sub-scenarios. However the second sub-scenario
(Non-critical, Vehicle seen, Crossing) became less accurate,
as some moments were deemed critical, and seeing the vehi-
cle implied stopping, Still, the likelihood of the anomalous
fifth sub-scenario is much lower than all other sub-scenarios.

6.1.5 Comparison with PHTM and Computational Cost

Fig. 12 shows a comparison of the mean prediction error of
our proposed model with the state-of-the-art PHTM model
(Keller and Gavrila 2014) which uses optical flow fea-
tures and an exemplar database, on the four “normal”
sub-scenarios. On two of these sub-scenarios (Fig. 12a, b) the
proposedmodel outperforms PHTMslightly, both in terms of
mean and variance, in particular on the arguably most impor-
tant sub-scenario for a pedestrian safety application: Critical,
Vehicle not seen, Crossing. On the other two sub-scenarios
(Fig. 12c, d) PHTM performs slightly better.

The computational costs of the various approaches were
assessed on standard PC hardware (Intel Core i7 X990 CPU
at 3.47GHz), see Table 4. We differentiate between the
computational cost for obtaining the observables and that
for performing state estimation and prediction. In terms
of observables, all approaches used positional information
derived from a dense stereo-based pedestrian detector (about
60ms). The additional observables used in our proposed full
model (e.g. head orientation and curb detection) cost an extra
100ms to compute. PHTM on the other hand requires com-
puting dense optical flowwithin the pedestrian bounding box
(about 10ms). But, as seen in Table 4, the proposed model
is one order of magnitude more efficient than PHTM when
considering only the state estimation and prediction com-
ponent [this even though PHTM implements its trajectory
matching by an efficient hierarchical technique (Keller and
Gavrila 2014)], and it is three times more efficient in total.
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6.2 Cyclist Scenario

To demonstrate that our approach is not specific for the cross-
ing pedestrian scenario, we compare the full model to SLDS
and LDS baselines on the cyclist scenario. Like the pedes-
trian scenario, we use an LDS baseline with the dynamic
model from Eq. (35), except that the state is extended to
[xt , ẋt , yt , ẏt ].

6.2.1 Comparison with Baselines

Unlike stopping pedestrians, turning cyclists remain in the
vehicle’s view and driving corridor for a longer time. Also,
the path during a turn slowly diverges from the straight path.
Therefore, we extend the duration over which we summarize
predictions with 15 time steps (frames). Another difference
between the cyclist and pedestrian scenario is that cyclist’s
predictive distributions are 2Dmultivariate Gaussians for lat-
eral and longitudinal position, instead of 1DGaussians on the
lateral position only. Hence, the reported likelihood values
cannot be compared directly between scenarios, as the under-
lying domains have different dimensions.

The log likelihoods of the one-second-ahead prediction
(16 time steps) are shown in Table 5, averaged over TTE ∈
[− 15, 15], i.e. starting with prediction for the moment when
the cyclist either starts to turn, or keeps moving straight.

Since the cyclist tracks are long, and mostly consist of
moving straight, the LDS predictions reflect the common
behavior of straightmotionwith little variance.As a result, its
predictions are accuratewhen the cyclist indeeddoes not turn.
As expected, this comes at the cost of inaccurate predictions
in normal and anomalous sub-scenarios where the cyclist
does turn.

Compared to the LDS, the switching models demonstrate
the benefit of having separate dynamics for straight and turn-
ing motion, as the predictions for turning sub-scenarios are
considerably more accurate. Furthermore, our model outper-
forms the SLDS in almost all but one normal sub-scenarios.
On the non-critical sub-scenario where there is ambiguity on
whether the cyclist will turn or go straight, the SLDS per-
forms best. Still, the proposed method performs best overall
on all normal sub-scenarios, demonstrating that context does
improve prediction accuracy generally compared to the LDS
and SLDS baselines.

We also note that all models obtain lower predictive like-
lihood for turning than for moving straight. We find that this
is a result from the large variance in how cyclists execute the
turn. The data shows the cyclists vary in when they initiate
the turn, and in used turning speed and angle. This variance
is also reflected in the predictive distributions, which show
larger uncertainty for turning than for moving straight.

During the evaluation period of Table 5 around TTE = 0,
the cyclist is always near to the intersection. We note that our

model outperforms the baselines in all sub-scenarios when
including all earlier predictions (TTE < − 15). When the
cyclists are still far from the intersection, our full model ben-
efits from the static environment context which predicts that
turning is not feasible yet.

The final row of the table illustrates the predictive likeli-
hood for the anomalous sub-scenario where the cyclist turns
in a critical situation without raising an arm. Here, our model
performs more similar to the LDS, as both expect the cyclist
to continue moving straight. The next session will show a
more detailed analysis of all sub-scenarios.

6.2.2 Comparison Over Time

Figure 13 compares the prediction error over time around
TTE = 0 for all normal sub-scenarios. For the critical
sub-scenario where the cyclist maintains its straight path,
Fig. 13a, all models demonstrate low prediction errors. The
LDS shows lowest Euclidean error, but it has larger pre-
diction uncertainty as Table 5 showed. In the critical and
non-critical sub-scenarioswhere the cyclist raises an arm, our
model anticipates the turn, and predicts some lateral motion
to the left as soon as the cyclist is near the intersection. As
a result, the model has slightly larger prediction error than
the baselines before the turn is initiated, but yields lower
errors as soon as turnings starts, see Fig. 13b, c. It keeps an
advantage over SLDS for almost a full second after the turn
started, until approximately TTE = 13. On the critical sub-
scenario, the largest difference in average error of 0.41 m
occurs at TTE = 5. On the non-critical sub-scenario with-
out the cyclist raising an arm, Fig. 13d, the context cannot
uniquely distinguish if the cyclist will turn or continue mov-
ing straight. Indeed, here the SLDS and our model also show
similar performance.

Figure 14 shows the prediction log likelihood for two sub-
scenarioswhere the cyclist turns in critical situations, namely
the normal sub-scenario where the turn happens after raising
an arm (Fig. 14a), and the anomalous sub-scenario where
the turn happens without raising an arm (Fig. 14b). In both
cases, the LDS likelihood drops fast, as it predicts continua-
tion of the past motion instead of turning. Our full model also
expects moving straight in case the armwas not raised, there-
fore its predictive likelihood declines too for the anomaly.
Interestingly, the model does adapt after TTE = 0 when the
turning behavior becomes apparent. Later, at TTE = 10, the
predictive log likelihood of all models drops due to the vari-
ation in turning behavior.

Finally, we note that the LDS shows larger errors for the
non-critical sub-scenarios. We observe that in these cases,
where the vehicle is generally further away, the longitudinal
estimates from stereo-vision are more unstable. The LDS is
more sensitive to such noise as it adapts to all observed speed
changes.
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Table 5 Cyclist scenario Sub-scenario Full model SLDS LDS

Normal Critical Arm not raised Straight 0.05 −0.23 0.00

Non-critical Arm raised Turn −2.36 −3.19 − 22.75

Critical Arm raised Turn −2.38 −2.77 − 16.66

Non-critical Arm not raised Straight/Turn −2.28 −2.22 − 14.88

Over all normal sub-scenarios −1.93 −2.22 − 14.60

Anomalous Critical Arm not raised Turn −14.33 −4.62 − 31.91

Log likelihood at 16 time steps (∼ 1 s) into the future for TTE ∈ [− 15, 15]. Below sub-scenarios indicate
the expected behavior of a cyclist. Best model performance are given in bold
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Fig. 13 Cyclist scenario. Prediction error on the normal sub-scenarios when predicting 16 time steps (∼ 1s) ahead. a Critical, arm not raised,
straight. b Critical, arm raised, turn. c Non-critical, arm raised, turn. d Non-critical, arm not raised, straight/turn
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Fig. 14 Best viewed in color. Cyclist scenario: Prediction likelihood when predicting 16 time steps (∼ 1s) ahead on critical sub-scenarios where
the cyclist turns. a Normal sub-scenario where the arm was raised. b Anomalous sub-scenario where the cyclist did not raise an arm to express
intent

123



International Journal of Computer Vision

(a) Situation at t = 67 (TTE = −68) (b) Situation at t = 132 (TTE = −3)
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(d) Predicted position at t = 132 (TTE = −3)
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Fig. 15 Best viewed in color. Example of a cyclist turning in after hold-
ing his arm up, in a non-critical situation. Predictions are made sixteen
time steps (∼ 1s) into the future. a Cyclist with tracking bounding
box (red), arm detection (red line), collapsed predicted distribution of
the full model (green ellipsoid shows one standard deviation), and “at
intersection” region (white dotted line). b the cyclist enters the inter-
section region, which results in a wider predictive distribution shifted

to the left. c Predictions (mean, and shaded std. dev.) made at t = 67
(green diamond) for the lateral position up to 16 time steps into the
future. The red diamond indicates the corresponding future GT posi-
tion. d Predictions made at t = 132, the moment where the cyclist starts
turning. e Marginal posterior distributions of the latent variables in our
full model over time. Probabilities range from 0 (black) to 1 (white).
Variable labels are True and False, and straight and turning

6.2.3 Detailed Analysis on a Single Track

Figure 15 shows two snapshots of the prediction over time for
a cyclist who is turning at the intersection after holding his
arm up while the situation is not critical. Before the cyclist
arrives at the intersection, at t = 67, the prediction of the full
model is very specific. Even though it was already detected
that the cyclist raised his arm, he is expected to keep moving
straight as he is not yet close enough to the intersection to
turn. This prediction is done with less uncertainty than the
baseline LDS because the process noise on the LDS must
also account for the parts where the cyclist is turning left. At
t = 132, when the cyclist is at the intersection, there is an
increased probability that he could turn left. As a result, the
expected future position also shifts left, and the uncertainty
region of the prediction increases. The one standard deviation
area of the prediction reflects the possibility that the cyclist
may still move straight before turning.

7 Discussion

OurDBN provides predictive distributions of the future posi-
tion of the tracked objects, reflecting uncertainty on possible
trajectories. But as our results show, different scenarios give
rise to different sources of uncertainty. For instance, if the
system anticipates a change in dynamics, the future stopping
position near the curb can be determined quite accurately for
the pedestrian scenario.However, in the cyclist scenario there
is more variance in turning behavior than in moving straight
ahead, making accurate path predictions for the anticipated
switch in dynamics more challenging. The available context
may also be insufficient to unambiguously predict the behav-
ior, as was seen in a cyclist sub-scenario. Here, our model’s
performance approximated that of the SLDS baseline.

Another property of our model is that it is not a black box,
but explicitly defines the relation between context observ-
ables, states,motionmodes, and their dynamics. This ensures
that a designer can inspect the system, investigate how it
assesses the context, and determine causes for failure or
success. The explicit formulation also facilitates adding addi-
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tional cues, or improve individual parts (e.g. using different
dynamical models) while keeping existing parts unchanged.
The generic formulation also ensures that many forms of
information can be included, from up-to-date map data, to
past image classification results. Accordingly, our method
and the PHTM approach do not stand directly in competi-
tion, as they use different sources of information that could
conceivably be combined.

Anomalous sub-scenarios contain situations not repre-
sented by the training data. In anomalous sub-scenarios, our
method predicts position with lower likelihood than for the
normal sub-scenarios. Therefore, low-likelihood predictions
can be used to detect anomalous behavior, for instance to
switch to an emergency control strategy of the vehicle. Of
course, anomalous situations are expected to be rare, since
the training data is expected to be representative of ‘normal’
behavior. Larger realistic datasets should therefore provide
better estimates of ‘normal’ behavior, though the principle
demonstrated on our example scenarios should remain the
same.

Futurework involves the incorporation of additional scene
context (e.g. traffic light, pedestrian crossing) and the exten-
sion of the basic motion types of the SLDS (e.g. turning in
different directions). Indeed, initial work has already begun
on extending our earlier conference (Kooij et al. 2014a)
submission, which only considered the pedestrian crossing
scenario. For instance, (Roth et al. 2016) incorporated driver
attention in the same framework, and (Hashimoto et al. 2016)
tackled additional pedestrian scenarios with similar DBNs.

8 Conclusions

This paper investigated the use of DBNs for path predic-
tion of maneuvering objects. As a toy example illustrated,
SLDSs can make good overall predictions, but prediction
accuracy suffers when an actual change in dynamics occurs.
We therefore proposed to condition the switching probabil-
ity on dynamic context variables. Measurements of various
visual cues inform the model if and when changes in dynam-
ics are likely to occur. An efficient approximate inference
method was presented for online path prediction. Parameters
are estimated on annotated training data.

We validated our approach on two use cases of VRU path
prediction in the IV domain, a pedestrian and a cyclist sce-
nario. Combining several context cues proved to improve
overall prediction accuracy, namely the VRU’s interaction
with the ego-vehicle as dynamic environment context, the
VRU’s location in the static environment, and the VRU
behavior indicating awareness or intent. The experiments
demonstrate that the expected benefits of the context also
occurwith real-world vehiclemeasurements, andwhen using
features extracted from vision. Compared to the SLDS,

when predicting up to ∼ 1s ahead, our method improved
up to 0.39m for the pedestrian scenario, and up to 0.41m
for the cyclist scenario. It also slightly outperforms the
PHTM approach at less than a third of computational cost.

We are encouraged that the presented context-based mod-
els can play an important role in saving lives for the future
intelligent vehicles.
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