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INTELLIGIBILITY ENHANCEMENT BASED ON MUTUAL INFORMATION
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Faculty of Electrical Engineering, Mathematics and Corep&cience, TU Delft
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ABSTRACT

The processing required for the global maximization of tteli
ligibility of speech acquired by multiple microphones aetdered
by a single loudspeaker, is considered in this paper. Thedligit
bility is quantized, based on the mutual information rateneen
the message spoken by the talker and the message as irgdrpyet
the listener. We prove that then, in each of a set of narrawdtba

channels, the processing can be decomposed into a minimem va

ance distortionless response (MVDR) beamforming operatiat
reduces the noise in the talker environment, followed byia gp-
eration that, given the far-end noise and beamforming ¢jpereac-
counts for the noise at the listener end. Our experimentiroothat
both processing steps are necessary for the effective gange of a
message and, importantly, that the second step must be afte
first step.

Index Terms— Speech intelligibility enhancement, mutual
information, minimum variance distortionless responseVDR)
beamformer, multi-microphone.

1. INTRODUCTION

It is common that noise sources at the far-end of a commuoitat
system are recorded together with the target signal, lgamdirre-
duced intelligibility when the signal is finally played baek the
near-end. In addition, acoustical noise sources in the-eéren-
vironment degrade the intelligibility even more. These wenises
have always been considered separately in the literaturdafidle
the presence of noise at the far-end, standard approachsmgte
or multi-microphone noise reduction algorithms operatihthe far-

end (seee.g., [1-4]), although methods operating at the near-end ta

remove far-end noise do exist [5].

The conventional approach is to pre-process the speeclisthat

received from the far-end, such that when played out in the-ne
end environment, the intelligibility is improved or maiirtad see

eg. [6-16]. Among these near-end speech enhancement metho

there are roughly two different ways to approach the probl@ire
first class consists of algorithms that are based mainly opirem
ical considerations, and employ for example the fact thatsce
nants and high frequencies are important for speech igitaility,

seeeg., [7,8,17]. The second class optimizes more formal math

ematical models of speech intelligibility to obtain impeavspeech
intelligibility, see e.g., [16] for an overview. Typically, these op-
timization procedures are carried out under an energy @nst
which can be used to satisfy average loudspeaker powerraonst
or to overcome hearing discomfort due to loud sounds.

predict intelligibility of speech in noise are the articiite index
(Al) [18, 19] and the speech intelligibility index (SlII) [20Within
the near-end intelligibility enhancement context, the & been
optimized in [10, 11]. Recently, the approximated Sl (ASAMas
proposed in [14] to make constrained optimization of ther&dre
tractable. Other metrics that have recently been used imizgtthe
intelligibility of speech in noise are [13,21-23]

Another approach to quantifying speech intelligibilitytesuse
information theory to describe the amount of informatioattban
be transmitted through a speech communication channemplea
of speech intelligibility predictors based on mutual imf@tion (MI)
can be found in [24-27]. In [27] an effective model of humameo
munication based on MI was derived. This model takes theenois
inherent in the speech production process and the speemipriet
tation process into account. The resulting intelligililgredictor
resembles heuristically derived classical measures efligibility
such as the Al and the SlI. The MI based measure of [27] wasshow
to be effective for near-end speech intelligibility enhement.

All the existing speech intelligibility techniques trehetfar-end
noise reduction and near-end enhancement as two sepahlernps.
However, optimizing intelligibility in a jointly optimal &y by tak-
ing both the disturbances at the near-end and the far-emdd@cbunt
can exploit that a finite far-end signal-to-noise ratio (9NRuences
the effectiveness with which the intelligibility can be inoped at
the near-end. More specifically, depending on the far-eng it
ter far-end processing), the environmental noise at the em@amay
be negligible compared to the far-end noise already prdsettie
signal. Then increasing the near-end channel quality bgtirggpthe
power is of little benefit; it is then likely more beneficialltoost the
power of channels with a high far-end SNR.

In this paper we use the Ml-based model of [27] as a start-
Ing point and propose a comprehensive model accountinglyjoin
for both noise at the far-end as well as noise at the near-&hd.
proposed formulation considers the presence of a micraphamy

at the far-end. Although the original joint problem is nameex

%/ti)th respect to the beamformer variable, we prove that,iwifre-

ency channel, the optimization problem can be decomposed
the well-known minimum variance distortionless respofd¥DR)
beamformer, and a scalar factor that is determined by splain
convex fractional problem through the Karush-Kuhn-Tugqk&(T)
conditions. Importantly, while the processing can be doggas
rately, the computation of the scalar factor requires kedgé of
far-end noise level and the far-end processing.

2. SIGNAL MODEL AND ASSUMPTIONS

Examples of classical measures that have been developed I¢'¢ communication model presented in [27] is extended wials

This work was supported in part by the Dutch Technology Fatind
STW and Bosch Security Systems B.V.

clude the far-end noise that is present in the environmetiteofmi-
crophones. In Sec. 3, we further extend the model for meltipi-
crophones.



The speech processis assumed to be a sequence of complex

random vectors, with each coefficiefit ; describing either a criti-
cal band [27] or simply a DFT time-frequency bin. Althougthet
speech representations may exist that better charachetétigibil-
ity and perception, we adopt this approach for the sake dfiemaat-
ical tractability.

Throughout this paper we use bold upper case and lower ca
symbols to indicate matrices and vectors, respectivelg, ragular
symbols (lower and upper case) for scalars. The conjugatsjipse
and inverse of a matriX are denoted aX* andX !, respectively.
As the distinctions are clear from the context, our notatloes not
distinguish between random variables and processes amdehke
izations.

2.1. Markov Chain Model for Intelligibility

The communication model from [27] takes the natural vasraf
communication messages (speech in the current appligatimrac-
count. It is modeled by the production noigg ;. The acoustic sig-
nal produced at time-frequency poifit, 7) is given by

Ty = Skyi + Vi 1

The variations in speech production are to a large exteepiaddent
of the presentation level. As an important consequencesgbech
production SNR¢3, /o7, , remains constant.

In this work we assume that noise is present in both the neathe overall channel SN, = —

end (listener-side) and far-end (talker-side) environtseret the
far-end noise be denoted [y, ;. The complex coefficients of the
recorded signal are

Xy =Thyi + Ug,i. 2)

Prior to rendering in the noisy near-end environment thendzd
signals are processed to optimize a mutual informationtrateeen
the spoken and interpreted message under a power-présenvain-
straint. (Without the constraint play-back levels gergralill in-
crease.) The modified coefficients are denoted. bjhe signals as
received by the observer in the near-end environment are

Yii = Xk,i + Ny,

whereN;, ; is the near-end environmental noise.

Finally, the symbols are received by the human observerravhe
internal noise, the absolute hearing threshold and anaserehear-
ing threshold can be modeled by an additional noise souregid,

Zryi = Yii +Wei, (4)

whereWy, ; is the interpretation noise. Similarly as for the produc-
tion noise, it was argued in [27] that this noise scales withgig-
nal, and this is consistent with the notion of instantanenasking
(e.g., [28]). As a consequence, the interpretation SNR/o7y, ,
remains constant as well.

The above signal model constitutes a Markov chain, that is
S - T > X - X - Y — Z LetS; andZ; denote
K-dimensional stacked vectors of spectral coefficients ia time
frame:. The mutual information rate between the origiSaknd the
receivedZ; describes the effectiveness of the communication pro
cess. Under the assumption that the processes are mensotyies
mutual information rate is equal to the mutual informatig8;; Z;).
We furthermore assume that the individual component sigoiathe
vectorsS,; andZ; are independent. We can then write

I1(Si;Z;) = Z I(Sk,i; Zrs).
&

®)

(©)

se

The relation at each Markov step is described by the coioelat
coefficient between the corresponding variables. Usindvtagkov
chain property we can write

PSk.iZki = PSk,iTh,i PTy, ;X ;PR Y, i PYk,i %k i

The fixed production and interpretation SNR imply that the- co
responding correlation coefficients;, , 7, ,andpy, ,z, ,are fixed
humbers or{0, 1]. In addition to the production and interpretation
noise, we have also introduced far-end noise into the coruation
model. The SNR between the far-end noise and the speeclueecor
at the far-end is given by%k /afjk and the corresponding correla-
tion coefficient ispr, x,.. (The SNR at the near-end varies with the
processing performed.)

In the following, we will assume that enhancement is perfem
by a linear time-invariant operator, which implies thgt ¢ = =
PT.. Xy, We furthermore make the assumptions that all processes
are jointly Gaussian, stationary, and memoryless. It is thetural
to omit the time-frame indexfor notational convenience. Defining
POk = PS, Ty, Py 2, @NAp1 i = p1y, x,., it AN be shown that

1
I(Sk; Zx) = ~3 log(1 — pp k1 kPZ, v, )- (6)

2.2. Relation to Classical Measures of Intelligibility

We now place our intelligibility measure (6) in the contektctas-
sical measures of intelligibility. For the case with no emtement,
02
i’; — can be used to write (6) as

Uk
1 (1—pox)ér +1
1(8;72) =— —log | ————=——]. 7
(S:2) Ekj 5 log ( for1 ™

It can be seen that (7) is closely related to the classicalligibility
measures Al [18,19], SII [20] and ASII [14] if we write it as

1(S;2) = ZIkAk(&eL

N

®)

. 1—p2 1
with Ax(€) = log T 10g(1 — 42 ,) and I,

—% log(l—pak). Comparing our measure to the classical measures,
we can identifyl; as theunnormalized band-importance function
and Ay (&) as the weighting function. The unnormalized band-
importance function is simplthe information rate transmitted in a
band when no environmental noise is present. This happens when

ikpi?k,yk = 1 and, hence¢,, is infinite. The conventionakor-
malized band-importance function is obtained by dividihgby the
overall mutual information raté(.S; Z). The importance of a band
for speech intelligibility (its maximum information ratelecreases
with an increase in its interpretation and production noise

A good intelligibility measure should have well-defined app

and lower bounds when the environmental noise is variedfteat
that intelligibility cannot be increased below and aboveaie lev-
els. The additive terms in (7) are naturally limited by thadbampor-
tance valud}, and by zero (as mutual information is nonnegative).
" Toillustrate the relation of our measure based on mutuakinf
mation to existing measures of intelligibility, we show ifgFl the
weighting functions for the different measures. We showcilnwes
Ay (&) for various values opj .. From Fig. 1 it follows that the

shape of the proposed weighting function approaches thgesbia
the ASII and Al weighting function for specific value pﬁ’k. For
Pk + 0, Ax(&) approachesA; '’ (&) and forpg , = 1 it ap-
proachesA;! (¢). Moreover, we see that thé 7 (&,,) appears as a
linearization of the proposed,, (¢, ) andA;*%! (¢,). Also note that
the proposedi (&) are concave functions of the line@y, whereas
A (&) and AT (g,,) are not.
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Fig. 1. Comparison of weighting functions.

3. MULTI-MICROPHONE PROBLEM FORMULATION

We aim to find, for each time-frequency bin, a linear multi-
microphone processarthat maximizes the mutual information rate,

taking both far-end and near-end noise into account. Thesctly
follows from the model in Sec. 2.

Let dx,;,m denote the acoustic transfer function from source to

microphonem and let us use writdy ; = [dk,i 1, .., dk,i,M]T. We
denote the far-end noise recorded by the microphones byettterv

uy,;. The processed noisy microphone data can then be written as

S H H
X = Vi di,i Tk + Vi Uk,

9)

with T}, ; the speech time-frequency coefficient at the source loca-
tion andv the multi-microphone processor. (9) generalizes (2) but

includes the modification operator; (3) and (4) remain unged.

We can now formulate the problem of finding the processor
that maximizes the mutual information betwegnand Z;, under a
constraint on the average power:

sup Zk I(Sk,Zk)
{vi}ecM (10)
subjectto Y, vi'dedf vio7, =3, 07,
where the mutual information betweéh and 7y is given by
1(S; Z) = =2 log | 1= pi.s . (12)
) 2 , ka"’l:lU,C 2 +UZ2Vk

1+

H H 2
v dpdy VKO,

with Ry, = E{u,u,?}. Expression (11) is obtained from (6) by
realizing that, in the multi-microphone case,

2 1 2 _ 1
Pk = IRy Vi andpy , = 2
g 1+
kadkdkHvkn%k ka(dkdkHU%k Ry, IV

(12)
4. PROPOSED SOLUTION

We now solve the problem stated in (10). The objective fuomcti
includes a sum of non-linear fractional terms which, in gahean
not be transformed into standard convex programming fraoriew
[29]. To find an optimizer for (10), we therefore introducaci
variablesoy, and an additional constraint’ d,d v, = oy

1 PY e TF,
-3 Splog (11— -

Su
p ka%k +vaUk Vk;+aj2vki

vi € CM oy € Ry
subject to Dok Ok U%C =2 U%k
vildpdivi = ag, k.

(13)

By also introducing new vectorsr, such thatv, = o,/ *wy, the
last constraint can be rephrased irrespective0fnd the objective
function can be rewritten in terms ofy:

pg,kakg %k )

1
I(ak,wg) = —= log | 1—
(o, W) 2 zk: s < ooy, + axwi Ry, wi + 0%

Problem (13) is then transformed into

sup I(ou, wy)
wi € CM oy, € Ry (14)
subject to Ci:), o U?r,c =2 O-%k

Co:wld, =1, Vk.

The constraint§; andC» are now independent. Using the fact that in
general sup, f(z,y) = sup,sup, f(x,y) (see also [29, p. 133]),
(14) can be rephrased as

sup sup
o € R+,C1 Wi € (C]M,Cz

I(ok, wi). (15)

In combination with the independence of the constraints,atows
us to solve the optimization problem.

The inner maximization problem in (15) over; is the standard
MVDR beamforming probleme.g., [3]. Its solution is given by
R, 'dy

——k V.
df'R; dy

*
Wi =

Usingwj}, the outer maximization in (15) over;, is

2
QRO

sup  —13, log <1 — Pk
ak € Ry
subject toy , ax U%C =2 "?Fk

) (16)

wherecr?wk = wi? Ry, wj is the far-end noise that remains af-
ter processing by the MVDR beamformer. Problem (16) is a con-
vex problem that is of the same form as the problem for thelesing
microphone case in (7).

Let A anduy, be two Lagrangian multipliers that are non-positive
and non-negative, respectively. The Lagrangian is theengby

2 2 2
akUTk +akUMk +0Nk

1
Lok, A, pir) = 3 Zlog <1 — Dok
%

+ )\OékO'TQFk + prag.

akUTk
2 2 2
ak(er + ozkchk =+ TNy

The map to the solution is described in [27]; here we only fiade
the parameters that are changed due to the presence of thedfar
noise. The optimal, are found by differentiation of the Lagrangian
and setting the result to zero to find the stationary poinkss Teads
to a quadratic equation to be solved, that is,

aci +bap +c=0 17)

where
a = (o7, + 0, ) (1= pos)or, +oir) (Ao, + k) (18)
b= (U%k (2- Pg,k) + 2012%,6))()\‘7%,c + :U‘k)UIQV,k (19)
c= §Pg,k012v,k0%k + U?V,k()‘a%k + px). (20)

Under gaussianity assumptions and with Ml as the objeatie,
analysis shows that an enhancement algorithm based oraa fihe
tering of a multi-microphone signal for rendering over agéroud-
speaker in a noisy environment naturally decomposes inpatas
processor to reduce far-end noise, followed by a post-gsmeto
increase the speech intelligibility with respect to therrerad noise.
The optimal spatial processor is a standard MVDR beamfor@er



result is comparable to the well-known result for far-ensaseduc-
tion that the optimal multi-channel noise reduction altiori decom-
poses into a spatial processor and a single-channel postgsor,
see, e.g., [30].

Our result on decomposition of the optimal preprocessar int
MVDR and near-end linear processor, is not surprising itntlig
of the result of [30] that the output of the MVDR beamformer,
say G, is a sufficient statistic forSy ; with respect to the
microphone observationdy, ;7%,;. Mathematically this implies
p(dk,ITk7i|Sk,i,Gk7i) = p(dk,ITk7i|Gk7i), Wherep(~|~) denotes
a conditional density. It then follows that(Sk,:;dwk,1Tk:) =
I1(Sk,:; Gk,:), suggesting that a spatial processor consisting of ai
MVDR beamforming is optimal.

However, we consider a practical linear enhancement aperat
which does not follow the notion aF; ;. being a sufficient statistic.
In fact, the most important outcome of this work is the neitgss a
transparent processor which communicates the output ciightal
beamformer to the near-end pre-processor.

5. SIMULATION RESULTS

The goal of our experimental work was to show that while oaptly
indicated that the optimal linear processor can be impléetthy
two subsequent processors, the second processor must beawa
both the far-end noise and the operation of the first procedsdle
first discuss our experimental setup and then our results.

5.1. Experimental Setup

We simulated a dual microphone setup with a 2 cm spacingima

x 4 m x 3 m room with one target source, three noise sources an
simulated uncorrelated microphone noise at 60 dB SNR. W& 36e
seconds of speech material originating from the Timit-base [31],
sampled at 16 kHz.

The impulse responses were generated using [32]. The tar-en

and near-end noise source consisted of spectrally shapeskiaa
noise, with an overlapping region from 1.5 kHz till 3 kHz tonden-
strate the effect of the different filters. Signals were pesed on
a block-by-block basis by applying a 32 ms Hann analysis aind
with 50 % overlap.

The spatial processor in all experiments was directly aplpid
the complex discrete Fourier transform (DFT) coefficieffitse post-
processors were subsequently applied per critical barttetegatial
processor output. The critical band variances, 4., ai,k_ and
o,
energy over the entire utterance, leading to a time-inaafiker.
5.2. Results

Using simulations, we compare five approaches:

were obtained by taking the sample-mean of the critical band

0% - O O X — %, EQ.(11) w0 % MWF+[27] o2 MVDR+ [27]‘

0
n
=}

—30F

|
A
o

501

Power(dB)

-60

I I C -
3000 4000 5000

Frequency(Hz)

—70L

I I I
1000 2000 6000 7000

Fig. 2. Average spectra for -11.1 dB SNR at the far-end reference
microphone and -10 dB SNR at the near-end.
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Fig. 3. Predicted intelligibility in terms of MI, ASIl and SlI.

Fig. 2 shows the processed speech spectra for the diffdgmt a
rithms, compared to the unprocessed speech spectrum,fat-gned
and near-end noise spectrarf. The use of independent processing
(MVDR+ [27] ) leads to erroneously amplified speech, as the input
to the near-end algorithm is not clean, but processed npisgch.
MWF+ [27] amplifies the far-end noise. Insteqtpposed correctly
applies most amplification in the higher frequency bandsatanot
saturated by the near-end noise.

In Fig. 3 we compare the improvement in speech intelligipili
prediction over the noisy reference microphone for seveoaibi-
nations of far-end and near-end SNR. As speech intelligitpke-
dictors we use the MI, the ASII and the SlI. As expectety/DR
and proposed single microphone perform worst. Proposed consis-
tently obtains the best performance, showing a clear ingmant

1. The system based on our solution of (10)-(11) which is regyerMWF+ [27] andMVDR+ [27] .

ferred to agproposed.

2.
single microphone is denoted jr®posed single microphone.

. A standard time-invariant multi-channel Wiener filter\(KfF)
that accounts for the far-end noise, combined with the-intel
ligibility enhancement algorithm from [27] to account foiet
near-end noiseMWF+ [27] ).

The near-end intelligibility enhancement algorithm a7
applied directly to the output from the MVDR, erroneously
assuming this is noise freM{YDR+ [27] ).

5. The output of the far-end MVDRVVDR).

The system based on our solution of (10)-(11) applied to a

6. CONCLUDING REMARKS

We conclude that conventional independent processingetodise
at the near-end and the far-end is not optimal. Our theorysttoat
the processing can be separated into far-end and near-ecespr
ing. However, the near-end processing must be aware of tise no
and processing performed at the far-end, which is not the tas
conventional systems. Our experimental results cleanfico the
awareness requirement.
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