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INTELLIGIBILITY ENHANCEMENT BASED ON MUTUAL INFORMATION

Seyran Khademi, Richard C. Hendriks and W. Bastiaan Kleijn

Faculty of Electrical Engineering, Mathematics and Computer Science, TU Delft
e-mail:{s.khademi, r.c.hendriks, w.b.kleijn}@tudelft.nl.

ABSTRACT

The processing required for the global maximization of the intel-
ligibility of speech acquired by multiple microphones and rendered
by a single loudspeaker, is considered in this paper. The intelligi-
bility is quantized, based on the mutual information rate between
the message spoken by the talker and the message as interpreted by
the listener. We prove that then, in each of a set of narrow-band
channels, the processing can be decomposed into a minimum vari-
ance distortionless response (MVDR) beamforming operation that
reduces the noise in the talker environment, followed by a gain op-
eration that, given the far-end noise and beamforming operation, ac-
counts for the noise at the listener end. Our experiments confirm that
both processing steps are necessary for the effective conveyance of a
message and, importantly, that the second step must be awareof the
first step.

Index Terms— Speech intelligibility enhancement, mutual
information, minimum variance distortionless response (MVDR)
beamformer, multi-microphone.

1. INTRODUCTION

It is common that noise sources at the far-end of a communication
system are recorded together with the target signal, leading to re-
duced intelligibility when the signal is finally played backat the
near-end. In addition, acoustical noise sources in the near-end en-
vironment degrade the intelligibility even more. These twocauses
have always been considered separately in the literature. To handle
the presence of noise at the far-end, standard approaches are single
or multi-microphone noise reduction algorithms operatingat the far-
end (seee.g., [1–4]), although methods operating at the near-end to
remove far-end noise do exist [5].

The conventional approach is to pre-process the speech thatis
received from the far-end, such that when played out in the near-
end environment, the intelligibility is improved or maintained see
e.g. [6–16]. Among these near-end speech enhancement methods,
there are roughly two different ways to approach the problem. The
first class consists of algorithms that are based mainly on empir-
ical considerations, and employ for example the fact that conso-
nants and high frequencies are important for speech intelligibility,
seee.g., [7, 8, 17]. The second class optimizes more formal math-
ematical models of speech intelligibility to obtain improved speech
intelligibility, see e.g., [16] for an overview. Typically, these op-
timization procedures are carried out under an energy constraint,
which can be used to satisfy average loudspeaker power constraints
or to overcome hearing discomfort due to loud sounds.

Examples of classical measures that have been developed to
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predict intelligibility of speech in noise are the articulation index
(AI) [18, 19] and the speech intelligibility index (SII) [20]. Within
the near-end intelligibility enhancement context, the SIIhas been
optimized in [10, 11]. Recently, the approximated SII (ASII) was
proposed in [14] to make constrained optimization of the SIImore
tractable. Other metrics that have recently been used to optimize the
intelligibility of speech in noise are [13,21–23]

Another approach to quantifying speech intelligibility isto use
information theory to describe the amount of information that can
be transmitted through a speech communication channel. Examples
of speech intelligibility predictors based on mutual information (MI)
can be found in [24–27]. In [27] an effective model of human com-
munication based on MI was derived. This model takes the noise
inherent in the speech production process and the speech interpre-
tation process into account. The resulting intelligibility predictor
resembles heuristically derived classical measures of intelligibility
such as the AI and the SII. The MI based measure of [27] was shown
to be effective for near-end speech intelligibility enhancement.

All the existing speech intelligibility techniques treat the far-end
noise reduction and near-end enhancement as two separate problems.
However, optimizing intelligibility in a jointly optimal way by tak-
ing both the disturbances at the near-end and the far-end into account
can exploit that a finite far-end signal-to-noise ratio (SNR) influences
the effectiveness with which the intelligibility can be improved at
the near-end. More specifically, depending on the far-end SNR (af-
ter far-end processing), the environmental noise at the near-end may
be negligible compared to the far-end noise already presentin the
signal. Then increasing the near-end channel quality by boosting the
power is of little benefit; it is then likely more beneficial toboost the
power of channels with a high far-end SNR.

In this paper we use the MI-based model of [27] as a start-
ing point and propose a comprehensive model accounting jointly
for both noise at the far-end as well as noise at the near-end.The
proposed formulation considers the presence of a microphone array
at the far-end. Although the original joint problem is non-convex
with respect to the beamformer variable, we prove that, within a fre-
quency channel, the optimization problem can be decomposedinto
the well-known minimum variance distortionless response (MVDR)
beamformer, and a scalar factor that is determined by solving a
convex fractional problem through the Karush-Kuhn-Tucker(KKT)
conditions. Importantly, while the processing can be done sepa-
rately, the computation of the scalar factor requires knowledge of
far-end noise level and the far-end processing.

2. SIGNAL MODEL AND ASSUMPTIONS

The communication model presented in [27] is extended to also in-
clude the far-end noise that is present in the environment ofthe mi-
crophones. In Sec. 3, we further extend the model for multiple mi-
crophones.



The speech processS is assumed to be a sequence of complex
random vectors, with each coefficientSk,i describing either a criti-
cal band [27] or simply a DFT time-frequency bin. Although other
speech representations may exist that better characterizeintelligibil-
ity and perception, we adopt this approach for the sake of mathemat-
ical tractability.

Throughout this paper we use bold upper case and lower case
symbols to indicate matrices and vectors, respectively, and regular
symbols (lower and upper case) for scalars. The conjugate transpose
and inverse of a matrixX are denoted asXH andX−1, respectively.
As the distinctions are clear from the context, our notationdoes not
distinguish between random variables and processes and their real-
izations.

2.1. Markov Chain Model for Intelligibility

The communication model from [27] takes the natural variation of
communication messages (speech in the current application) into ac-
count. It is modeled by the production noiseVk,i. The acoustic sig-
nal produced at time-frequency point(k, i) is given by

Tk,i = Sk,i + Vk,i. (1)

The variations in speech production are to a large extent independent
of the presentation level. As an important consequence, thespeech
production SNR,σ2

Sk
/σ2

Vk
, remains constant.

In this work we assume that noise is present in both the near-
end (listener-side) and far-end (talker-side) environments. Let the
far-end noise be denoted byUk,i. The complex coefficients of the
recorded signal are

Xk,i = Tk,i + Uk,i. (2)

Prior to rendering in the noisy near-end environment the recorded
signals are processed to optimize a mutual information ratebetween
the spoken and interpreted message under a power-preservation con-
straint. (Without the constraint play-back levels generally will in-
crease.) The modified coefficients are denoted by·̃. The signals as
received by the observer in the near-end environment are

Yk,i = X̃k,i +Nk,i, (3)

whereNk,i is the near-end environmental noise.
Finally, the symbols are received by the human observer, where

internal noise, the absolute hearing threshold and an increased hear-
ing threshold can be modeled by an additional noise source, that is,

Zk,i = Yk,i +Wk,i, (4)

whereWk,i is the interpretation noise. Similarly as for the produc-
tion noise, it was argued in [27] that this noise scales with the sig-
nal, and this is consistent with the notion of instantaneousmasking
(e.g., [28]). As a consequence, the interpretation SNRσ2

Yk
/σ2

Wk
,

remains constant as well.
The above signal model constitutes a Markov chain, that is,

S → T → X → X̃ → Y → Z. Let Si and Zi denote
K-dimensional stacked vectors of spectral coefficients in one time
framei. The mutual information rate between the originalSi and the
receivedZi describes the effectiveness of the communication pro-
cess. Under the assumption that the processes are memoryless, the
mutual information rate is equal to the mutual informationI(Si;Zi).
We furthermore assume that the individual component signals of the
vectorsSi andZi are independent. We can then write

I(Si;Zi) =
∑

k

I(Sk,i;Zk,i). (5)

The relation at each Markov step is described by the correlation
coefficient between the corresponding variables. Using theMarkov
chain property we can write

ρSk,iZk,i
= ρSk,iTk,i

ρTk,iX̃k,i
ρX̃k,iYk,i

ρYk,iZk,i
.

The fixed production and interpretation SNR imply that the cor-
responding correlation coefficientsρSk,iTk,i

andρYk,iZk,i
are fixed

numbers on[0, 1]. In addition to the production and interpretation
noise, we have also introduced far-end noise into the communication
model. The SNR between the far-end noise and the speech recorded
at the far-end is given byσ2

Tk
/σ2

Uk
and the corresponding correla-

tion coefficient isρTkXk
. (The SNR at the near-end varies with the

processing performed.)
In the following, we will assume that enhancement is performed

by a linear time-invariant operator, which implies thatρTk,iX̃k,i
=

ρTk,iXk,i
. We furthermore make the assumptions that all processes

are jointly Gaussian, stationary, and memoryless. It is then natural
to omit the time-frame indexi for notational convenience. Defining
ρ0,k = ρSkTk

ρYkZk
andρ1,k = ρTkXk

, it can be shown that

I(Sk;Zk) = −
1

2
log(1− ρ20,kρ

2
1,kρ

2
X̃kYk

). (6)

2.2. Relation to Classical Measures of Intelligibility

We now place our intelligibility measure (6) in the context of clas-
sical measures of intelligibility. For the case with no enhancement,

the overall channel SNRξk =
σ2
Tk

σ2
Nk

+σ2
Uk

can be used to write (6) as

I(S;Z) = −
∑

k

1

2
log

(

(1− ρ20,k)ξk + 1

ξk + 1

)

. (7)

It can be seen that (7) is closely related to the classical intelligibility
measures AI [18,19], SII [20] and ASII [14] if we write it as

I(S;Z) =
∑

k

IkAk(ξk), (8)

with Ak(ξk) = log
(1−ρ20,k)ξk+1

ξk+1
/ log(1 − ρ20,k) and Ik =

− 1
2
log(1−ρ20,k). Comparing our measure to the classical measures,

we can identifyIk as theunnormalized band-importance function
and Ak(ξk) as the weighting function. The unnormalized band-
importance function is simplythe information rate transmitted in a
band when no environmental noise is present. This happens when
ρ21,kρ

2
X̃k,Yk

= 1 and, hence,ξk is infinite. The conventional,nor-
malized band-importance function is obtained by dividingIk by the
overall mutual information rateI(S;Z). The importance of a band
for speech intelligibility (its maximum information rate)decreases
with an increase in its interpretation and production noise.

A good intelligibility measure should have well-defined upper
and lower bounds when the environmental noise is varied, to reflect
that intelligibility cannot be increased below and above certain lev-
els. The additive terms in (7) are naturally limited by the band impor-
tance valueIk and by zero (as mutual information is nonnegative).

To illustrate the relation of our measure based on mutual infor-
mation to existing measures of intelligibility, we show in Fig. 1 the
weighting functions for the different measures. We show thecurves
Ak(ξk) for various values ofρ20,k. From Fig. 1 it follows that the
shape of the proposed weighting function approaches the shape of
the ASII and AI weighting function for specific value ofρ20,k. For
ρ20,k ↓ 0, Ak(ξk) approachesAASII

k (ξk) and forρ20,k = 1 it ap-
proachesAAI

k (ξk). Moreover, we see that theASII
k (ξk) appears as a

linearization of the proposedAk(ξk) andAASII
k (ξk). Also note that

the proposedAk(ξk) are concave functions of the linearξk, whereas
AAI

k (ξk) andASII
k (ξk) are not.
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Fig. 1. Comparison of weighting functions.

3. MULTI-MICROPHONE PROBLEM FORMULATION

We aim to find, for each time-frequency bin, a linear multi-
microphone processorz that maximizes the mutual information rate,
taking both far-end and near-end noise into account. This directly
follows from the model in Sec. 2.

Let dk,i,m denote the acoustic transfer function from source to
microphonem and let us use writedk,i = [dk,i,1, ..., dk,i,M ]T . We
denote the far-end noise recorded by the microphones by the vector
uk,i. The processed noisy microphone data can then be written as

X̃k,i = v
H
k dk,iTk,i + v

H
k uk,i, (9)

with Tk,i the speech time-frequency coefficient at the source loca-
tion andv the multi-microphone processor. (9) generalizes (2) but
includes the modification operator; (3) and (4) remain unchanged.

We can now formulate the problem of finding the processorv

that maximizes the mutual information betweenSk andZk under a
constraint on the average power:

sup
∑

k I(Sk;Zk)
{vk} ∈ C

M

subject to
∑

k v
H
k dkd

H
k vkσ

2
Tk

=
∑

k σ
2
Tk

,
(10)

where the mutual information betweenSk andZk is given by

I(Sk;Zk) = −
1

2
log









1− ρ20,k
1

1 +
vH
k

RUk
vk+σ2

Nk

vH
k

dkd
H
k

vkσ2
Tk









(11)

with RUk
= E{ukuk

H}. Expression (11) is obtained from (6) by
realizing that, in the multi-microphone case,

ρ21,k = 1

1+
vH
k

RUk
vk

vH
k

dkdH
k

vkσ2
Tk

andρ2
X̃,Y

= 1

1+
σ2
Nk

vH
k

(dkdH
k

σ2
Tk

+RUk
)vk

.

(12)

4. PROPOSED SOLUTION

We now solve the problem stated in (10). The objective function
includes a sum of non-linear fractional terms which, in general, can
not be transformed into standard convex programming framework
[29]. To find an optimizer for (10), we therefore introduce slack
variablesαk and an additional constraintvH

k dkd
H
k vk = αk:

sup − 1
2

∑

k log

(

1−
ρ20,kαkσ

2
Tk

αkσ
2
Tk

+vH
k

RUk
vk+σ2

Nk

)

vk ∈ C
M , αk ∈ R+

subject to
∑

k αk σ
2
Tk

=
∑

k σ
2
Tk

v
H
k dkd

H
k vk = αk, ∀k.

(13)

By also introducing new vectorswk such thatvk = α
1/2
k wk, the

last constraint can be rephrased irrespective ofαk and the objective
function can be rewritten in terms ofwk:

I(αk,wk) = −
1

2

∑

k

log

(

1−
ρ20,kαkσ

2
Tk

αkσ2
Tk

+ αkw
H
k RUk

wk + σ2
Nk

)

.

Problem (13) is then transformed into

sup I(αk,wk)
wk ∈ C

M , αk ∈ R+

subject to C1 :
∑

k αk σ
2
Tk

=
∑

k σ
2
Tk

C2 : wH
k dk = 1, ∀k.

(14)

The constraintsC1 andC2 are now independent. Using the fact that in
general supx,y f(x, y) = supxsupyf(x, y) (see also [29, p. 133]),
(14) can be rephrased as

sup sup I(αk,wk).
αk ∈ R+, C1 wk ∈ C

M , C2
(15)

In combination with the independence of the constraints, this allows
us to solve the optimization problem.

The inner maximization problem in (15) overwk is the standard
MVDR beamforming problem,e.g., [3]. Its solution is given by

w
∗

k =
R

−1
Uk

dk

dH
k R

−1
Uk

dk

, ∀k.

Usingw∗

k, the outer maximization in (15) overαk is

sup − 1
2

∑

k log

(

1− ρ20,k
αkσ

2
Tk

αkσ
2
Tk

+αkσ
2
Mk

+σ2
Nk

)

αk ∈ R+

subject to
∑

k αk σ
2
Tk

=
∑

k σ
2
Tk

(16)

whereσ2
Mk

= w
∗

k
H
RUk

w
∗

k is the far-end noise that remains af-
ter processing by the MVDR beamformer. Problem (16) is a con-
vex problem that is of the same form as the problem for the single-
microphone case in (7).

Letλ andµk be two Lagrangian multipliers that are non-positive
and non-negative, respectively. The Lagrangian is then given by

L(αk, λ, µk) =−
1

2

∑

k

log

(

1− ρ20,k
αkσ

2
Tk

αkσ2
Tk

+ αkσ2
Mk

+ σ2
Nk

)

+ λαkσ
2
Tk

+ µkαk.

The map to the solution is described in [27]; here we only redefine
the parameters that are changed due to the presence of the far-end
noise. The optimalαk are found by differentiation of the Lagrangian
and setting the result to zero to find the stationary points. This leads
to a quadratic equation to be solved, that is,

aα2
k + bαk + c = 0 (17)

where

a = (σ2
Tk

+ σ2
Mk

)((1− ρ20,k)σ
2
Tk

+ σ2
Mk

)(λσ2
Tk

+ µk) (18)
b = (σ2

Tk
(2− ρ20,k) + 2σ2

Mk
))(λσ2

Tk
+ µk)σ

2
N,k (19)

c =
1

2
ρ20,kσ

2
N,kσ

2
Tk

+ σ4
N,k(λσ

2
Tk

+ µk). (20)

Under gaussianity assumptions and with MI as the objective,our
analysis shows that an enhancement algorithm based on a linear fil-
tering of a multi-microphone signal for rendering over a single loud-
speaker in a noisy environment naturally decomposes into a spatial
processor to reduce far-end noise, followed by a post-processor to
increase the speech intelligibility with respect to the near-end noise.
The optimal spatial processor is a standard MVDR beamformer. Our



result is comparable to the well-known result for far-end noise reduc-
tion that the optimal multi-channel noise reduction algorithm decom-
poses into a spatial processor and a single-channel post-processor,
see, e.g., [30].

Our result on decomposition of the optimal preprocessor into
MVDR and near-end linear processor, is not surprising in light
of the result of [30] that the output of the MVDR beamformer,
say Gk,i, is a sufficient statistic forSk,i with respect to the
microphone observationsdk,ITk,i. Mathematically this implies
p(dk,ITk,i|Sk,i, Gk,i) = p(dk,ITk,i|Gk,i), wherep(·|·) denotes
a conditional density. It then follows thatI(Sk,i;dk,ITk,i) =
I(Sk,i;Gk,i), suggesting that a spatial processor consisting of an
MVDR beamforming is optimal.

However, we consider a practical linear enhancement operator
which does not follow the notion ofGi,k being a sufficient statistic.
In fact, the most important outcome of this work is the necessity of a
transparent processor which communicates the output of thespatial
beamformer to the near-end pre-processor.

5. SIMULATION RESULTS

The goal of our experimental work was to show that while our theory
indicated that the optimal linear processor can be implemented by
two subsequent processors, the second processor must be aware of
both the far-end noise and the operation of the first processor. We
first discuss our experimental setup and then our results.

5.1. Experimental Setup

We simulated a dual microphone setup with a 2 cm spacing in a3 m
× 4 m× 3 m room with one target source, three noise sources and
simulated uncorrelated microphone noise at 60 dB SNR. We used 36
seconds of speech material originating from the Timit-database [31],
sampled at 16 kHz.

The impulse responses were generated using [32]. The far-end
and near-end noise source consisted of spectrally shaped Gaussian
noise, with an overlapping region from 1.5 kHz till 3 kHz to demon-
strate the effect of the different filters. Signals were processed on
a block-by-block basis by applying a 32 ms Hann analysis window
with 50 % overlap.

The spatial processor in all experiments was directly applied to
the complex discrete Fourier transform (DFT) coefficients.The post-
processors were subsequently applied per critical band to the spatial
processor output. The critical band variances, e.g.,σ2

Tk
, σ2

Mk
and

σ2
Nk

were obtained by taking the sample-mean of the critical band
energy over the entire utterance, leading to a time-invariant filter.

5.2. Results

Using simulations, we compare five approaches:

1. The system based on our solution of (10)-(11) which is re-
ferred to asproposed.

2. The system based on our solution of (10)-(11) applied to a
single microphone is denoted asproposed single microphone.

3. A standard time-invariant multi-channel Wiener filter (MWF)
that accounts for the far-end noise, combined with the intel-
ligibility enhancement algorithm from [27] to account for the
near-end noise (MWF+ [27] ).

4. The near-end intelligibility enhancement algorithm of [27]
applied directly to the output from the MVDR, erroneously
assuming this is noise free (MVDR+ [27] ).

5. The output of the far-end MVDR (MVDR).
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Fig. 2. Average spectra for -11.1 dB SNR at the far-end reference
microphone and -10 dB SNR at the near-end.

−10 −5 0 5 10
0

0.1

0.2

−10 −5 0 5 10
0

0.2

0.4

 

 

−10 −5 0 5 10
0

0.1

0.2

−10 −5 0 5 10
0

0.2

0.4

−10 −5 0 5 10
0

0.1

0.2

−10 −5 0 5 10
0

0.1

0.2

MVDR output Prop. Eq.(11) Prop.Single mic MWF+ [27] MVDR+ [27]

Im
p

r.
in

S
II

Im
p

r.
in

S
II

Im
p

r.
in

A
S

II

Im
p

r.
in

A
S

II

Im
p

r.
in

M
I(

b
its

)

Im
p

r.
in

M
I(

b
its

)

SNR at near-end(dB)SNR at near-end(dB)

SNR at ref. mic=-21.4352 SNR at ref. mic=-11.4352

Fig. 3. Predicted intelligibility in terms of MI, ASII and SII.

Fig. 2 shows the processed speech spectra for the different algo-
rithms, compared to the unprocessed speech spectrum, at thefar-end
and near-end noise spectrumσ2

N . The use of independent processing
(MVDR+ [27] ) leads to erroneously amplified speech, as the input
to the near-end algorithm is not clean, but processed noisy speech.
MWF+ [27] amplifies the far-end noise. Instead,proposed correctly
applies most amplification in the higher frequency bands that are not
saturated by the near-end noise.

In Fig. 3 we compare the improvement in speech intelligibility
prediction over the noisy reference microphone for severalcombi-
nations of far-end and near-end SNR. As speech intelligibility pre-
dictors we use the MI, the ASII and the SII. As expected,MVDR
andproposed single microphone perform worst. Proposed consis-
tently obtains the best performance, showing a clear improvement
overMWF+ [27] andMVDR+ [27] .

6. CONCLUDING REMARKS

We conclude that conventional independent processing to the noise
at the near-end and the far-end is not optimal. Our theory shows that
the processing can be separated into far-end and near-end process-
ing. However, the near-end processing must be aware of the noise
and processing performed at the far-end, which is not the case in
conventional systems. Our experimental results clearly confirm the
awareness requirement.
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