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to traditional free stoves, leaving the residence with 
minimal electrical appliances: 

" Mostly, I cook with a traditional stove burning 
free straw and firewood. Annual electric bills might be 
around 200 yuan a year." 

Residence OLA-10, occupied by a 73-year-old 
woman, exhibits an indoor thermal environment 
trend very similar to OLA-09 but with a slightly longer 
thermal lag, indicating better insulation properties of 
the building. Although financially supported by her 
children, who pay for her energy and communication 
expenses, she retains a habit of frugality, refraining 
from using air conditioning even when feeling hot: 

"At night, if it's too hot to sleep, I turn on the 
electric fan." 

The juxtaposition of the living experiences in OLA-
09 and OLA-10 provides a poignant glimpse into the 
lives of the solitary older living. While OLA-09 exhibits 
a more hands-on and traditional approach to 
maintaining a suitable indoor climate, OLA-10, 
despite having financial support, shows a preference 
for passive cooling methods. Both instances underline 
a broader narrative of independence, with a 
propensity towards conserving energy and enduring 
higher temperatures without resorting to modern 
cooling technology. This behaviour is a testament to 
the resilience and adaptability of the older 
generation, who balance their physical comfort with 
financial considerations and personal habits shaped 
by a lifetime of experiences. 

 
4. CONCLUSION 

Research on the occupant behaviour of China’s 
rural residents shows that, although rural buildings 
have the highest energy use intensity, they still fail to 
meet the thermal comfort requirements of occupants 
[16]. Through the implementation of surveys, 
interviews, and observations, this study evaluated 
five types of elderly households to understand their 
indoor environmental conditions and daily 
behaviours. Employing a mixed-method approach, 
both quantitative and qualitative, the research 
explored the environmental factors and socio-
economic variables affecting the daily energy 
consumption behaviours of different types of elderly 
inhabitants in low-income rural areas of Shandong, 
China. This investigation provides insights for future 
rural housing designs that should be energy-efficient, 
cost-effective, and climate-adaptive, thereby 
improving the living conditions of the elderly. 
Additionally, it emphasizes the importance of 
considering household dynamics, individual habits, 
and architectural characteristics in the formulation of 
strategies for energy usage and thermal comfort. 
Such an approach has the potential to address the 
high energy consumption of rural residential 
buildings. 
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ABSTRACT: This paper describes a data driven urban canopy model that can be coupled with detailed building 
energy models. The data driven model is used to assess the outdoor air temperature and humidity in a street 
canyon considering as inputs weather conditions at the atmospheric layer, the surface temperature of surrounding 
building facades and the street, and the heat released from the use of air-conditioning. Predictions made by the 
model were tested using measurements of the outdoor air temperature and humidity collected between April and 
August 2019 in Singapore. Results show that the model estimates the outdoor air temperature with a similar 
accuracy than others that were validated using the same input and test data, while providing estimates with a 
higher temporal resolution and considering urban morphology with a higher fidelity. They also demonstrate that 
the model can predict the impact of waste heat releases and cool pavement on the outdoor air temperature and 
building energy consumption. In the future, vegetation could be considered as an input of the model if the land 
surface temperature is measured using an infrared thermal camera. Another improvement would be to define 
weather conditions at the atmospheric layer from rooftop measurements or a climate model. 
KEYWORDS: Urban heat island,  Urban canopy modelling,  Building energy modelling,  Machine learning, 
Mitigation strategies 

1. INTRODUCTION
For the last three centuries, most cities in the world 

have considerably expanded to accommodate their 
inhabitants. By 2050, it is expected that almost two 
thirds of the world’s population will live in urban areas 
[1]. This trend in urbanization is the cause of several 
climatic hazards, including Urban Heat Islands (UHIs). 
UHIs primarily result from the heat accumulated in 
cities and the wind breeze obstructed by buildings. 
They provoke serious thermal discomfort in the 
outdoor environment and increases in the energy 
consumed in indoor spaces. The former consequence 
of UHIs has been declared a major threat to public 
health since the heat wave episodes of the summer 
2023 in various parts of the world [2]. 

Given the influence of urbanization on UHIs, urban 
planning plays a major role to improve outdoor 
thermal comfort and minimize building energy 
consumption [3, 4]. To determine benefits of 
mitigations strategies to UHIs before their 
implementation, urban planners can now count on 
virtual replicates or digital twins of a city. City Digital 
Twins (CDTs) essentially consist of 3D city models to 
display the geometry of buildings, sensor data to 
monitor the indoor and outdoor built environment, 
and models to predict or prevent undesirable events 
that might occur in the city [5-7]. Whatever model is 
integrated into a CDT, it must meet certain 
requirements. One of them is to consider the urban 
morphology with the Level of Detail (LoD) expressed in 
the 3D city model [8]. Another one is that simulations 

using the model can be performed with low 
computational efforts. The latter requirement is 
particularly relevant for urban planners to make quick 
decisions on the strategies to adopt for mitigating 
UHIs. 

To study UHIs through a CDT, it is necessary to 
include models that can perform simulations of 
interactions between buildings and their outdoor 
environment at the neighbourhood or city scale. The 
reason is the heat transferred from the envelope of 
buildings to the outdoor air is an important factor of 
UHIs [9]. In return, the outdoor air temperature and 
humidity strongly affect the energy consumed by 
buildings to maintain an appropriate level of thermal 
comfort [10]. Every increase in the energy consumed 
by buildings for cooling their respective indoor space 
is translated into an augmentation of waste heat 
releases, another important factor of UHIs. 

Interactions between buildings and their outdoor 
environment are simulated using two coupled models: 
the Building Energy Model (BEM) and the Urban 
Microclimate Model (UMM) [11]. The former 
component assesses the energy consumed by a 
building, while the latter estimates outdoor conditions 
at the urban microscale, that is within a range of less 
than one kilometre. When the two components are 
coupled, the outputs obtained from one are iteratively 
used to define boundary conditions of the other until 
the end of simulations. 

A first category of UMM, known as physically-
based Urban Canopy Models (UCMs), predicts outdoor 
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temperature and humidity within a street canyon 
using a sensible and latent heat balance, respectively 
[12]. The heat balances describe time variations of the 
outdoor air temperature and humidity within the 
street canyon with respect to heat fluxes coming from 
surrounding surfaces and anthropogenic heat sources. 
The street canyon is either considered as a single air 
volume or a stack of multiple air volumes. In either 
case, physically-based UCMs assume that buildings are 
cubes with similar dimensions which are separated by 
streets of equal widths. It means they consider the 
urban morphology with a low level of detail, which is a 
major limitation to integrate them in a CDT. 

To estimate outdoor conditions at the 
neighbourhood scale, while considering the urban 
morphology with a higher level of detail, studies have 
used computational fluid dynamics to approximate the 
wind flow and outdoor air temperature within a 
neighbourhood [13]. In addition to performing 
simulations using complex urban morphologies, this 
physically-based method provides estimates of 
outdoor conditions with a high spatial resolution. The 
temporal resolution, however, remains limited due to 
tremendous computational efforts that are required 
to perform simulations. 

A recent review published by Wang et al. [14] 
demonstrates that the outdoor air temperature in the 
urban canopy layer can be assessed with a high 
temporal resolution using Data Driven Models 
(DDMs). These DDMs take as inputs land surface 
measurements collected by remote sensing and 
atmospheric weather conditions obtained by 
simulations. Both remote sensed data and weather 
simulated data are given at the mesoscale. In the 
majority of studies, these input data, together with 
measurements of the outdoor air temperature, are 
used to train and test two kinds of regression models, 
namely tree based models or artificial neural 
networks. The former type of DDMs usually fail in 
predicting the extreme values for the outdoor air 
temperature, while the latter model requires a large 
dataset and high computational efforts to be trained 
and tested. Whether a tree based model or artificial 
neural network is used as a DDM, it does not take into 
account how the outdoor air temperature at a specific 
point is affected by surrounding physical entities at the 
urban microscale, in particular buildings.  

To consider buildings while predicting the outdoor 
air temperature at a specific location with a high 
temporal resolution, this paper describes a DDM that 
can be coupled with detailed BEMs. As most models 
shown in the literature, the DDM also considers as 
inputs atmospheric weather conditions and the land 
surface temperature. However, the land surface 
temperature is assumed to be obtained from a contact 
surface sensor or a thermal camera, which enable 

capturing the microscale effect of the street surface 
more accurately than a satellite. 

Using the coupling between detailed BEMs and the 
DDM, the purpose of this study is to show that (1) 
outdoor air temperature and humidity in a street 
canyon can be predicted with a high temporal 
resolution and acceptable accuracy, (2) observations 
can be made on the impact of waste heat releases on 
the outdoor air temperature and the building energy 
use, and (3) it is possible to see how the outdoor 
environment and the building consumption are 
affected by cool pavement. 
 
2. METHODOLOGY  
2.1 The data-driven urban canopy model 

The most important contribution of this work lies 
in a DMM that can predict outdoor air temperature 
and humidity in a street canyon with a high level of 
detail. The DDM is trained and tested using data 
collected by a series of weather stations in the street 
canyon. The weather stations should at least measure 
the outdoor air temperature, relative humidity, and 
pressure, so that  the average outdoor air temperature 
(𝑇̅𝑇𝑐𝑐𝑐𝑐𝑐𝑐) and specific humidity (𝑞̅𝑞𝑐𝑐𝑐𝑐𝑐𝑐) at each time (𝑡𝑡) in 
the street canyon can be observed and predicted. 

Assuming the street canyon as a single layer, that 
is an air volume with uniform temperature and 
humidity, 𝑇̅𝑇𝑐𝑐𝑐𝑐𝑐𝑐 and  𝑞̅𝑞𝑐𝑐𝑐𝑐𝑐𝑐 are governed by sensible and 
latent heat balances, which can be expressed as: 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝜌𝜌 𝑑𝑑𝑇̅𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 = ∑ ℎ𝑚𝑚𝐴𝐴𝑚𝑚(𝑇̅𝑇𝑚𝑚 − 𝑇̅𝑇𝑐𝑐𝑐𝑐𝑐𝑐)

𝑀𝑀

𝑚𝑚=1
+ ∑ 𝐻𝐻𝑛𝑛

𝑁𝑁

𝑛𝑛=1
  ( 1 ) 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝜌𝜌 𝑑𝑑𝑞̅𝑞𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 = ∑ ℎ𝑝𝑝𝐴𝐴𝑝𝑝(𝑞̅𝑞𝑝𝑝 − 𝑞̅𝑞𝑐𝑐𝑐𝑐𝑐𝑐)

𝑃𝑃

𝑝𝑝=1
+

𝑐𝑐𝑝𝑝
𝐿𝐿 ∑ 𝐿𝐿𝐿𝐿𝑞𝑞

𝑄𝑄

𝑞𝑞=1
 ( 2 ) 

where 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 is the air volume of the street canyon (in 
m3), 𝑐𝑐𝑝𝑝 the specific heat capacity of dry air (in J/kg-K), 𝜌𝜌 its 
density (in kg/m3), 𝐿𝐿 the latent heat of water vaporization (in 
J/kg),  𝑇̅𝑇𝑚𝑚  the average temperature either of 
surrounding building facades, atmospheric layer, 
pavement, or vegetation (in oC), ℎ𝑚𝑚  or ℎ𝑝𝑝  their 
convective heat transfer coefficient (in W/m2-K), 𝐴𝐴𝑚𝑚 or 
𝐴𝐴𝑝𝑝 their surface area (in m2),  𝑞̅𝑞𝑝𝑝 their average specific 
humidity (in kg/kg), 𝐻𝐻𝑛𝑛  the sensible heat released 
either from surrounding buildings or traffic (in W), 𝐸𝐸𝑞𝑞  
their rate of evaporation (in kg/s), 𝑚𝑚 and 𝑝𝑝 indices of 
thermal nodes, and 𝑛𝑛  and 𝑞𝑞  indices of sensible and 
latent heat sources. Equations ( 1 ) and ( 2 ) can be 
formulated as a linear state space model, such that: 

𝒙̇𝒙 = 𝑨𝑨 ⋅ 𝒙𝒙 + 𝑩𝑩 ⋅ 𝒖𝒖 ( 3 ) 

𝒚𝒚 = 𝑪𝑪 ⋅ 𝒙𝒙 + 𝑫𝑫 ⋅ 𝒖𝒖 ( 4 ) 

where 𝒖𝒖 = [𝑇̅𝑇1, … , 𝑇̅𝑇𝑀𝑀, 𝐻𝐻1, … , 𝐻𝐻𝑁𝑁, 𝑞̅𝑞1, … , 𝑞̅𝑞𝑃𝑃, 𝐸𝐸1, … , 𝐸𝐸𝑄𝑄 ]𝑇𝑇 
and 𝒙𝒙 = [𝑇̅𝑇𝑐𝑐𝑐𝑐𝑐𝑐, 𝑞̅𝑞𝑐𝑐𝑐𝑐𝑐𝑐]𝑇𝑇. From this formulation of sensible 
and latent heat balances, the DDM uses either a 
explicit or implicit time discretization scheme to 
predict state variables 𝒙𝒙𝑘𝑘  at different time steps 𝑡𝑡𝑘𝑘 =
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𝑡𝑡0 + 𝑘𝑘Δ𝑡𝑡  as shown in Figure 1. Matrices 𝑨𝑨𝒅𝒅 , 𝑩𝑩𝒅𝒅 , 𝑪𝑪𝒅𝒅 , 
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Figure 1. Discrete linear state space model used to predict 
outdoor air temperature and humidity in a street canyon. 

Using the discrete linear state space model, the 
training phase of the DDM consists of finding the 
vector 𝒉𝒉 of convective heat transfer coefficients that 
minimizes the discrepancy between estimates of 𝑇̅𝑇𝑐𝑐𝑐𝑐𝑐𝑐 
and  𝑞̅𝑞𝑐𝑐𝑐𝑐𝑐𝑐 and their measurements. The training phase 
is thus expressed as a constrained multi-objective 
optimization so that: 

argmin
𝒉𝒉

𝑙𝑙2 (𝑇̅𝑇𝑒𝑒
𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐) , 𝑙𝑙2(𝑞̅𝑞𝑒𝑒
𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑞̅𝑞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐) 

ℎ𝑙𝑙𝑙𝑙 ≤ ℎ𝑚𝑚 ≤ ℎ𝑢𝑢𝑢𝑢 
( 5 ) 

where 𝑙𝑙2 is the root mean square error with respect to 
the time discretization of the linear state space model, 
𝑇̅𝑇𝑒𝑒

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑒𝑒
𝑐𝑐𝑐𝑐𝑐𝑐  estimates of the outdoor air 

temperature and humidity by the discrete linear state 
space model, respectively, 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐  their 

measurements by weather stations in the street 
canyon, and ℎ𝑙𝑙𝑙𝑙  and ℎ𝑢𝑢𝑢𝑢 the lower and upper bounds 
of convective heat transfer coefficients. 
        
2.2 Coupling with detailed building energy models 

The input vector (𝒖𝒖𝑘𝑘) of the discrete linear state 
space model is iteratively evaluated at each timestep 
(𝑘𝑘) from different sources of information. Firstly, 𝒖𝒖𝑘𝑘 
consists of air temperature and humidity at the 
atmospheric level, which can be obtained either from 
measurements of a rural weather station or simulated 
data resulting from a climate model. Secondly, it 
consists of information measured or estimated at the 
street level. The surface temperature and humidity of 
pavement and vegetation, for instance, is assumed to 
be measured by a contact surface sensor or an infrared 
thermal camera. On the other hand, the sensible and 
latent heat released by traffic is usually assessed from 
an empirical model as in Grimmond [15]. Lastly, 𝒖𝒖𝑘𝑘 is 
primarily composed of information that is simulated 
by detailed building energy models. It includes the 
surface temperature of surrounding facades and the 
waste heat releases. 

Outputs (𝒚𝒚𝑘𝑘) provided by the discrete linear state 
space model after training and testing phases are used 
to specify boundary conditions of detailed BEMs. By 
default, boundary conditions of detailed BEMs are 
defined from typical meteorological data collected 

from a rural weather station. These meteorological 
data are iteratively replaced by 𝒚𝒚𝑘𝑘 until a convergence 
criteria is achieved. The convergence criteria is 
established using the average sensible ( 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠 ) and 
latent (𝐿𝐿𝐿𝐿̅̅̅̅ 𝑠𝑠𝑠𝑠𝑠𝑠)  load of surrounding buildings so that: 

𝑙𝑙2 (𝐻̅𝐻𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛+1 − 𝐻̅𝐻𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛 ) ≤ 𝜀𝜀𝐻̅𝐻𝑠𝑠𝑠𝑠𝑠𝑠  and 

 𝑙𝑙2 (𝐿𝐿𝐿𝐿̅̅ ̅̅ 𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛+1 − 𝐿𝐿𝐿𝐿̅̅ ̅̅ 𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛 )  ≤ 𝜀𝜀𝐿𝐿𝐿𝐿̅̅ ̅̅ 𝑠𝑠𝑠𝑠𝑠𝑠  
( 6 ) 

where 𝐻̅𝐻𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛  and  𝐿𝐿𝐿𝐿̅̅ ̅̅ 𝑠𝑠𝑠𝑠𝑠𝑠

𝑛𝑛  are the average sensible and 
latent loads estimated by detailed BEMs at the n-th 
iteration of the one-time-step dynamic coupling with 
the DDM. Figure 2 illustrates the coupled scheme 
between detailed BEMs and the DDM. 

 
Figure 2. Coupling between detailed BEMs and the DDM. 

2.3 Cool pavement 
Cool pavement is a countermeasure to UHIs, 

whose effect on the outdoor air temperature and 
building energy consumption can be considered by the 
coupled scheme. The effect of cool pavement is 
assessed by modifying the surface temperature of the 
pavement (𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝), so that: 

𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝 − cos(𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠) ⋅ Δ𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ( 7 ) 

where 𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the surface temperature of cool 

pavement, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠  the zenith angle of the sun (in Deg), 
and Δ𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  the maximum temperature decrease it can 
be achieved by the cool pavement. 
 
3. CASE STUDY 
3.1 Studied area 

The coupled scheme was trained and tested using 
data collected by Miguel et al. [16] during a field 
experiment between April and August 2019 in a 
university campus of Singapore. The field experiment 
was primarily aimed at measuring weather conditions 
at four vertical heights of a single position within a 
street canyon. The street canyon is surrounded by four 
buildings and is only paved with asphalt. 
 
3.2 Weather conditions and surface temperature 

Measurements taken by Miguel et al. [16] at 3, 6, 
9, and 12 meters on a flux tower were used to evaluate 
𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐  in the street canyon. In contrast 
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with 𝑇̅𝑇𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐  is not directly measured on the 

flux tower. It was assessed from the relative humidity 
measured at the four levels and the pressure at 3 
meters. Both 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐  were collected every 
10 seconds. The mean over a 5-minute time frame was 
retained as measurement of 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 . 
Measurements between June 6 and August 19 2019 
were used to train and test the DDM. It means that the 
DDM was trained and tested on a dataset of 10368 
samples of 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 . The same amount of 
samples was used to specify 𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝. 𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝 was collected 
using a contact surface sensor. 
  
3.3 Surrounding buildings 

The street canyon where Miguel et al. [16] 
collected measurements of weather conditions is 
surrounded by four buildings: A, B, C, and D (see Figure 
3). Their height varies from 15 to 24 meters, while the 
street canyon has a width of 10 meters. 

 
Figure 3. Buildings being modelled using EnergyPlus. 

Buildings A, B, C, and D were modelled using 
EnergyPlus. Using this building energy simulation tool, 
it was possible to model buildings with LoD 1.2 as 
stated by Biljecki et al. [8]. Materials and internal heat 
gains were assigned from the Sketchup OpenStudio 
database (https://openstudio.net/) as those of typical 
office buildings in the tropics. An ideal load model was 
used to assess the amount of fresh air needed to keep 
the indoor temperature of buildings at 24 degrees 
Celsius and the relative humidity at 60%. 
 
3.4 Baseline and scenarios 

The baseline configuration refers to the original 
parameters of the coupled scheme that are used to 
evaluate increases or decreases in the outdoor air 
temperature or building energy demand caused by 
different scenarios. It was simulated using the Euler 
implicit method to discretize the linear state space 
model of the DDM. The multi-objective function stated 
in Equation ( 5 ) was optimized using the NSGA-2 
method with ℎ𝑙𝑙𝑙𝑙  equal to 0 Watts and ℎ𝑢𝑢𝑢𝑢  equal to 
500 Watts. The convergence criteria was defined with 
𝜀𝜀𝐻̅𝐻𝑠𝑠𝑠𝑠𝑠𝑠  and 𝜀𝜀𝐿𝐿𝐿𝐿̅̅̅̅ 𝑠𝑠𝑠𝑠𝑠𝑠   equal to 0.01 Watts. The weather 
conditions at the atmospheric level were assumed to 

be equal to that recorded over a typical meteorological 
year in Singapore. In contrast with other scenarios, the 
baseline assumes that the outdoor conditions are not 
affected by waste heat releases and the surface 
temperature of the street is equal to measurements.  

Therefore, scenarios aimed at estimating the 
impact of waste heat releases and cool pavement on 
the outdoor air temperature and building energy 
demand at the location where Miguel et al. [16] 
conducted their field experiment. Waste heat releases 
were assumed to be generated at a rate of 1.4 Watts 
per Watt of cooling consumed in buildings A, B, C, and 
D. It was also considered that 100% of them are 
sensible and go into the street canyon. In accordance 
with Anting et al. [17], it was supposed that cool 
pavement can achieve a decrease of 6.5 degrees 
Celsius at the highest exposure of the Sun.    
 
4. RESULTS AND DISCUSSION 
4.1 Simulations 

In Figure 4, the hourly average outdoor air 
temperature as predicted by the DDM is shown in 
comparison to this assessed from measurements 
collected by Miguel et al. [16]. It is observed that the 
discrepancy between predictions and measurements 
is the lowest when the DDM is trained on 80% of 
measurements. It is usually expected that the accuracy 
of a DDM increases with respect to the size of its 
training set. Despite this observation, it is seen that the 
discrepancy between predictions and observations is 
higher at daytime than nighttime, that is when 
variations of the outdoor air temperature are the 
highest. This result certainly originates from the fact 
that 𝒉𝒉 is assumed to be constant over time. From a 
physical point of view, its value is affected by wind 
speed and direction in the street canyon, and 
therefore, should vary over the day. 

 
Figure 4. Average daily cycle of outdoor air temperature as 
measured by weather stations (dot) and as predicted by the 
DDM using different Training Split Ratios (TSR). 

732



 

with 𝑇̅𝑇𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐  is not directly measured on the 

flux tower. It was assessed from the relative humidity 
measured at the four levels and the pressure at 3 
meters. Both 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐  were collected every 
10 seconds. The mean over a 5-minute time frame was 
retained as measurement of 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 . 
Measurements between June 6 and August 19 2019 
were used to train and test the DDM. It means that the 
DDM was trained and tested on a dataset of 10368 
samples of 𝑇̅𝑇𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐  and 𝑞̅𝑞𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 . The same amount of 
samples was used to specify 𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝. 𝑇̅𝑇𝑝𝑝𝑝𝑝𝑝𝑝 was collected 
using a contact surface sensor. 
  
3.3 Surrounding buildings 

The street canyon where Miguel et al. [16] 
collected measurements of weather conditions is 
surrounded by four buildings: A, B, C, and D (see Figure 
3). Their height varies from 15 to 24 meters, while the 
street canyon has a width of 10 meters. 

 
Figure 3. Buildings being modelled using EnergyPlus. 

Buildings A, B, C, and D were modelled using 
EnergyPlus. Using this building energy simulation tool, 
it was possible to model buildings with LoD 1.2 as 
stated by Biljecki et al. [8]. Materials and internal heat 
gains were assigned from the Sketchup OpenStudio 
database (https://openstudio.net/) as those of typical 
office buildings in the tropics. An ideal load model was 
used to assess the amount of fresh air needed to keep 
the indoor temperature of buildings at 24 degrees 
Celsius and the relative humidity at 60%. 
 
3.4 Baseline and scenarios 

The baseline configuration refers to the original 
parameters of the coupled scheme that are used to 
evaluate increases or decreases in the outdoor air 
temperature or building energy demand caused by 
different scenarios. It was simulated using the Euler 
implicit method to discretize the linear state space 
model of the DDM. The multi-objective function stated 
in Equation ( 5 ) was optimized using the NSGA-2 
method with ℎ𝑙𝑙𝑙𝑙  equal to 0 Watts and ℎ𝑢𝑢𝑢𝑢  equal to 
500 Watts. The convergence criteria was defined with 
𝜀𝜀𝐻̅𝐻𝑠𝑠𝑠𝑠𝑠𝑠  and 𝜀𝜀𝐿𝐿𝐿𝐿̅̅̅̅ 𝑠𝑠𝑠𝑠𝑠𝑠   equal to 0.01 Watts. The weather 
conditions at the atmospheric level were assumed to 

be equal to that recorded over a typical meteorological 
year in Singapore. In contrast with other scenarios, the 
baseline assumes that the outdoor conditions are not 
affected by waste heat releases and the surface 
temperature of the street is equal to measurements.  

Therefore, scenarios aimed at estimating the 
impact of waste heat releases and cool pavement on 
the outdoor air temperature and building energy 
demand at the location where Miguel et al. [16] 
conducted their field experiment. Waste heat releases 
were assumed to be generated at a rate of 1.4 Watts 
per Watt of cooling consumed in buildings A, B, C, and 
D. It was also considered that 100% of them are 
sensible and go into the street canyon. In accordance 
with Anting et al. [17], it was supposed that cool 
pavement can achieve a decrease of 6.5 degrees 
Celsius at the highest exposure of the Sun.    
 
4. RESULTS AND DISCUSSION 
4.1 Simulations 

In Figure 4, the hourly average outdoor air 
temperature as predicted by the DDM is shown in 
comparison to this assessed from measurements 
collected by Miguel et al. [16]. It is observed that the 
discrepancy between predictions and measurements 
is the lowest when the DDM is trained on 80% of 
measurements. It is usually expected that the accuracy 
of a DDM increases with respect to the size of its 
training set. Despite this observation, it is seen that the 
discrepancy between predictions and observations is 
higher at daytime than nighttime, that is when 
variations of the outdoor air temperature are the 
highest. This result certainly originates from the fact 
that 𝒉𝒉 is assumed to be constant over time. From a 
physical point of view, its value is affected by wind 
speed and direction in the street canyon, and 
therefore, should vary over the day. 

 
Figure 4. Average daily cycle of outdoor air temperature as 
measured by weather stations (dot) and as predicted by the 
DDM using different Training Split Ratios (TSR). 

 

Although a time-constant 𝒉𝒉  seems to limit the 
accuracy that can be achieved by the coupled scheme 
at daytime, results illustrated Table 1 show that the 
RMSE and MBE of the outdoor air temperature falls 
below 2.5 and 1.0 degrees Celsius, respectively, 
whichever split ratio is used to train the DDM. 
According to Miguel et al. [16], it is an acceptable 
accuracy when typical meteorological data are used to 
specify weather conditions at the atmospheric level. 
The accuracy of the coupled scheme could thus be 
improved if weather conditions at the atmospheric 
level were defined from measurements at the rooftop 
level or from simulations of a climate model. 

 
Table 1. Root Mean Square Error (RMSE) and Mean Bias Error 
(MBE) between predictions and measurements of the 
outdoor air temperature and humidity using different 
Training Split Ratios (TSR). 

TSR Temperature Humidity Size test 
samples RMSE 

(K) 
MBE 
(K) 

RMSE 
(g/kg) 

MAE 
(g/kg) 

20% 2.24 0.93 6.80 5.90 8291 
40% 2.24 0.39 4.19 3.67 6219 
60% 2.31 0.80 5.46 4.76 4146 
80% 2.16 0.23 4.42 3.82 2074 

 
4.2 Baseline-scenario analysis 

From results shown in Figure 5, it seems that the 
outdoor air temperature would not be highly affected 
if waste heat was released in the street canyon 
connecting buildings A, B, C, and D. This result can be 
justified by the fact that buildings A, B, C, and D have a 
relatively small volume in comparison to other 
buildings that can be observed in the central business 
district of Singapore. However, it is important to note 
that the building consumption, as well as the waste 
heat releases, are certainly underestimated by the 
DDM in the case of Singapore. The main reason is that 
the 3D city model used to develop detailed BEMs was 
of a LoD 1.2, and thus, had no information about 
dimensions and positions of windows. As a 
consequence, buildings were assumed to be fully 
covered by walls, which neglects the impact of solar 
heat penetration on their cooling consumption. 

Figure 6 illustrates the effect of cool pavement in 
the outdoor air temperature as predicted by the DDM. 
As expected, the highest decrease in the outdoor air 
temperature appears to be achieved between noon 
and 4pm. Although the effect of cool pavement on the 
outdoor air temperature can clearly be observed from 
predictions of the DDM, it should not be the only 
countermeasure to be considered by the coupled 
scheme. In addition to cool pavement, the coupled 
scheme should also be able to evaluate the impact of 
vegetation, another countermeasure to UHIs.  

 

 
Figure 5. Average daily cycle of the outdoor air temperature 
predicted by the DDM with and without considering Waste 
Heat Releases (WHR) of buildings A, B, C, and D. 

 
Figure 6. Average daily cycle of the outdoor air temperature 
predicted by the DDM with and without considering Cool 
Pavement (CP) in the street canyon. 

Table 2 shows the average and highest impact of 
waste heat releases and cool pavement on the 
outdoor air temperature in the street canyon and the 
total sensible cooling load of buildings A, B, C, and D as 
assessed from the baseline. While waste heat releases 
appear to increase both the outdoor air temperature 
and the sensible cooling load, their magnitude looks to 
be reduced by cool pavement. Even though the result 
is consistent with expectation on the impact of waste 
heat releases and cool pavement,  their accuracy could 
have been improved if detailed BEMs had been 
calibrated against measurements of the cooling load. 
Unfortunately, no metered data was collected during 
the experiment conducted by Miguel et al. [16].   

 
Table 2. Average difference (Avg. diff.) and peak difference 
(Peak diff.) between the baseline and scenarios comprising 
Waste Heat Releases (WHR) and Cool Pavement (CP). 

Scenario Air Temperature Sensible cooling load 
Avg. diff. 

(K) 
Peak diff. 

(K) 
Avg. diff. 

(kW) 
Peak diff. 

(kW) 
WHR 0.25 0.67 1.78 4.69 
CP -0.34 -1.15 -3.90 -16.67 
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5. CONCLUSION 
This study explained how interactions between 

buildings and their outdoor conditions can be 
simulated using a coupling between detailed BEMs 
and a data driven UCM. The DDM was trained and 
tested using measurements of outdoor air 
temperature and humidity collected in Singapore by 
Miguel et al. [16]. The DDM was also used to observe 
the impact of waste heat releases and cool pavement 
on the outdoor air temperature of the street canyon 
and the cooling consumption of buildings. 

One result was that the DDM predicts the outdoor 
air temperature with a similar accuracy than the 
physically-based model validated by Miguel et al. [16] 
using the same input and test data. At the same time, 
it was shown that the DDM predicts the outdoor air 
temperature with a higher temporal resolution than 
the physically-based model while considering urban 
morphology with a higher level of detail. It means a 
DDM is certainly a more appropriate solution to 
predict outdoor conditions at the neighbourhood scale 
within a CDT than any physically-based UMM that can 
be coupled with detailed BEMs.  

Another result was that the DDM is capable of 
predicting the impact of waste heat releases and cool 
pavement on outdoor conditions of a street canyon, 
which is a major improvement in comparison to other 
DDMs described in the literature [4]. This 
improvement was possible by defining a DDM that is 
still governed by fundamental principles of heat and 
mass transfer. Using the same principles, the DDM 
could easily consider additional sources of 
anthropogenic heat like traffic or countermeasures to 
UHIs like vegetation.  
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