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Data-driven turbulence modeling for wind turbine

wakes under neutral conditions

Julia Steiner, Richard Dwight, Axelle Viré
Wind energy research group, Aerospace faculty, Kluyverweg 1, 2629 HS Delft, Netherlands

E-mail: j.steiner@tudelft.nl

Abstract. Currently, the state of the art in wind farm flow physics modeling are Large Eddy
Simulations (LES) which resolve a large part of the spectra of the turbulent fluctuations. But
this type of model requires extensive computational resources. One wind speed and direction
simulation of the Lillgrund wind farm can take between 160k and 3000k processor hours
depending on how the turbines are modeled [1, 2]. The next-fidelity model types are Reynolds-
Averaged Navier-Stokes (RANS) models which resolve only the mean quantities and model the
effect of turbulence fluctuations. These models require about two orders of magnitude less
computational time, but generally do not produce accurate predictions of the mean flow field.
Proposed modifications made to these models so far do not generalize well and there is room for
improvement. Hence, we present the first steps towards using a data-driven approach to aid in
deriving new RANS models that generalize well to different turbine types, varying atmospheric
stability, and farm layouts. To do so, time-averaged LES data is used to derive corrections to
existing RANS models. The approach uses a deterministic symbolic regression method to infer
algebraic correction terms to the RANS turbulence transport equations. Optimal correction
terms to the RANS equations are derived using a frozen approach where time-averaged flow fields
from LES are injected into the RANS equations. The potential of the approach is demonstrated
under neutral conditions for multi-turbine constellations at wind-tunnel scale. The results show
promise, but more work is necessary to realize the full potential of the approach.

1. Introduction
Offshore wind farms have the potential to become the sustainable future power plants of North-
Western Europe. The Dutch government projects a growth towards 11.5 GW of installed offshore
capacity in 2030, entailing that a large part of the North Sea will be filled with wind farms.

Accurate wind turbine wake models are important, because they can help optimize energy
yield and turbine loading during the design and operational phase of a wind farm. There exist
a multitude of models that attempt to model wake effects varying in physical fidelity, accuracy
and computational cost, ranging from simple engineering models to complex computational
fluid dynamics codes [3]. Generally, engineering models are not accurate enough especially if
wake interaction is present. Current, state of the art are Large Eddy Simulations (LES) which
is a high fidelity Computational Fluid Dynamics (CFD) method where most of the turbulent
scales are resolved with the remaining ones modeled. Reynolds-Averaged Navier-Stokes (RANS)
models are much faster because they model all scales resulting in coarser meshes and direct
equations for the mean quantities without a need for time-averaging of the simulation. Of
course, sometimes also transient quantities are of interest and the atmospheric boundary layer
is inherently transient, but RANS models can still provide useful information for time-averaged



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062051

IOP Publishing

doi:10.1088/1742-6596/1618/6/062051

2

quantities over short intervals. For both RANS and LES the range of scales present, ranging
from the boundary layer on the turbine blades to the height of the atmospheric boundary layer,
is too large to be fully resolved. Generally, actuator models are used to model the presence of
the wind turbines [4].

In this paper, we aim to further extend the capabilities of RANS turbulence models for wind
turbines under (quasi) steady conditions. Currently, the most commonly used RANS model,
namely the k-ε model, has crippling structural shortcomings: It overpredicts the eddy viscosity
in the near wake which leads to an overprediction of the wake recovery and it fails to model
the anisotropy of the turbulence quantities [4]. There are two main reasons why the model does
not perform well in the near wake: because (i) the eddy viscosity assumption is not valid in
the near wake region and (ii) the effect of the turbine on the turbulence mean quantities is not
considered in the transport equations of the turbulence model [5]. Several modifications to the
baseline k-ε model have been proposed in the literature. Most approaches aim at extending
the baseline Linear Eddy Viscosity Model (LEVM) by either adding additional terms to the
transport equations or by directly adding an eddy viscosity limiter in the momentum equation.
El Kasmi and Masson used [6] a modified version of the k-ε model which introduces new source
terms in the transport equations of the turbulence model. They argue that the source term
in the dissipation rate equation suppresses the overproduction of turbulent kinetic energy in
the near wake where strong shear gradients are present. Prospathopoulos et al. [7] apply an
eddy viscosity limiter (Durbin limiter) based on a realizability constraint. Réthoré [5] used two
different eddy viscosity limiters based on a realizability constraint, and the adverse pressure
gradient in the near wake region. Van der Laan et al. [8] developed a model named the k-ε-fP
model with a limiter that reduces the eddy viscosity in regions with high-velocity gradients. The
limiter is a simplified version of a cubic nonlinear EVM and is applied directly in the relation
for the eddy viscosity. In a follow-up publication, van der Laan et al. [9] compare this eddy
viscosity limiter to the one from Shih and Durbin, all for the k-ε model. They recommend the
use of either the fP or the Shih limiter since the Durbin limiter is very sensitive to ambient
turbulence levels.

Alternatively, Gomez-Elvira et al. [16] and van der Laan et al. [22] also used non-linear
eddy viscosity models (NLEVM) which yielded improved predictions of velocity and Reynolds
stresses. However, the models they used were not robust and showed convergence issues for
high turbulence intensity and fine meshes. Cabezon et al. [11] also used a Reynolds Stress
Model (RSM) which again improved predictions but the model was not numerically robust.
Additionally, RSM models are also more expensive, because seven transport equations have to
be solved.

While all of these models offer some improvements over the standard k-ε model, the
improvements are test-case dependent, some of them require tuning parameters, are not
numerically robust and at this point, the influence of atmospheric stratification is not considered.
Further, while most of these models aim at improving the shortcomings of the eddy viscosity
assumption, they do not directly consider the effect of actuator forcing on the turbulence
equations.

In this publication we take a different approach, namely, this work contains the first step
towards a data-driven general and robust RANS model for wind farm applications. As such
an improved model, trained on time-averaged LES data, is presented for several multi-turbine
constellations at wind tunnel scale under neutral conditions. From an application point of view,
this is a limited dataset. However, given that data-driven turbulence models are a relatively
new development in the fluid dynamics community and their merit has only been shown for
fundamental cases, this publication aims at applying this methodology to more industrially
relevant flows [15]. The only examples of data-driven turbulence modeling for wind farms that
are known to the authors are Adcock et al. [10] and King et al. [17]. Both papers employ similar
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techniques but do not present results that go beyond a two-dimensional setup.

2. Methodology
This section will describe the entire data-driven turbulence modeling approach: data generation
with LES, correction to the RANS baseline turbulence model and finally, the data-driven
approach to train a closure model. This section is kept brief, but references to more detailed
descriptions are given.

2.1. Setup case database
The first step in the proposed methodology is to set up a database of cases that can be used
to both train and validate the correction terms. For this publication, the database consisted of
three different cases. The same surface roughness and hub height velocity were used for all the
cases, but the turbine constellation was changed, as visualized in Figure 2. The turbine and
inflow properties correspond to the wind tunnel experiment from Chamorro and Porté-Agel [12],
the most important parameters are listed in Figure 2.

−1 0 1 2 3 4 5 6

−4

−3

−2

−1

0

1

2

Case A

Case B

Case C

Figure 1. Case constellation,
turbine diameter is to scale.

Turbine

Diameter D = 0.15m
Hub height hhub = 0.125m
Rotation speed Ω = 1190rpm

Inflow boundary layer

Velocity U (hhub) = 2.2m/s
Turbulence intensity σU (hhub) = 0.09%

Mesh

Domain size 5.4× 1.8× 0.46m3

Resolution 288× 48× 64

Figure 2. Turbine and inflow
parameters

For the CFD model, OpenFOAM-6.0 is used in conjunction with the SOWFA-6 toolbox [13].
For the RANS solver, a modified k-ε model is used and for the LES solver, the Wale model is used
to model the unresolved scales [14, 19]. A validation of both turbulence models is carried out
on the benchmark case from Chamorro and Porte-Agél. Additionally, Xie and Archer’s results
are used to determine an appropriate mesh resolution for the LES simulations [21]. SOWFA’s
actuator disk model with the same parameters is used in both the RANS and LES simulations.
For simplicity and to avoid interpolation errors, the same mesh resolution was used for both
RANS and LES, even though the RANS simulations would be able to run with a lower resolution
than the LES ones.

Figure 3 shows the validation of the models on the benchmark case in terms of velocity and
turbulence intensity. As expected RANS tends to overpredict turbulence intensity and wake
recovery as compared to LES. Nevertheless, neither one of the models perfectly matches the
experiment, possibly also due to the low Reynolds number of the Wind Tunnel setup since the
wall functions and the RANS turbulence model are derived for larger Reynolds numbers. Hence,
the authors would like to stress that the aim of this publication is not to perfectly reproduce
the experiments, but to showcase the potential of a methodology that can help to systematically
improve RANS based predictions, also at full scale.
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Figure 3. Validation of case setup and turbulence models through vertical and horizontal slices
of the flow field up and downstream of the rotor plane in terms of velocity and turbulence
intensity, solid line corresponds to LES, dash dotted line corresponds to RANS, and dots belong
to experimental results

2.2. Derivation of optimal correction terms
The first step in improving RANS predictions is to find an optimal way to correct the RANS
equations such that they match the time-averaged LES results in terms of mean velocity and
turbulence intensity. The approach presented here was developed by Schmelzer et al. [20]. The
turbulence equations of the RANS model are solved with the frozen time-averaged LES fields

for velocity uLES , turbulent kinetic energy k
LES

and Reynolds stresses τLESij . Where both the
resolved and modeled turbulent quantities are used. Two correction terms are added to the
transport equations for k and ε: A correction of the anisotropy tensor b∆ij and a correction for

the turbulent kinetic energy production P∆
k . These correction terms are embedded in the two

transport equations as follows

Dk̂

Dt
= P̂k + P∆

k − ε+
∂

∂xj

[
(ν + σkνt) k̂

]
, (1)

Dε

Dt
=
[
Cε1

(
P̂k + P∆

k

)
− Cε2ε

]
· ε
k̂

+
∂

∂xj
[(ν + σενt) ε] (2)

with the production term

P̂k = 2k̂b̂ij
∂ûi
∂xj

by definition of b̂ij =
1

2k̂

(
b̂ij +

1

3
δij

)
= −νt

k̂
Ŝij + b∆ij . (3)

where frozen terms obtained from LES are marked with x̂ = xLES . The two correction
terms and the turbulent dissipation are obtained through iterative solving of the two transport
equations.

2.3. Learning of correction terms
Once the optimal correction terms P∆

k and b∆ij are known, a generalized expression for the
correction terms is inferred using a deterministic symbolic regression method similar to the one
presented in Schmelzer et al. [20]. For this a generalized nonlinear eddy viscosity formulation
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as proposed by Pope [18] is used. The normalized anisotropic part of the Reynolds stress tensor

can then be modelled as a linear combination of ten basis tensor T
(n)
ij and functional expressions

αn dependent on five invariants In:

b∆ij (Sij ,Ωij) =

10∑
n=1

T
(n)
ij αn (I1, . . . , I5)↔ b∆ij

(
Snij ,Ω

n
ij

)
= CΘ. (4)

where both the tensors as well as the invariants are constructed based on the strain rate
Sij = 1

2 (∂jUi + ∂iUj) and the rotation rate tensor Ωij = 1
2 (∂jUi − ∂iUj).The entire equation

can be rewritten into a linear system of equations with coefficients Θ and system matrix C.
A similar approach is taken for the production correction term P∆

k

P∆
k (Sij ,Ωij) = 2k

N=10∑
n=1

T
(n)
ij αRn (I1, . . . , I5)

∂ui
∂xj
↔ P∆

k

(
Snij ,Ω

n
ij

)
= CRΘR. (5)

The task of the machine learning algorithm is then to find a suitable formulation for the
functions αn, based on a linear combination of a library of candidate functions. In principle,
then a least-squares approach can be used to find the optimal coefficients Θ. However, Schmelzer
et al. [20] argue that this yields unnecessarily complex models that may be overfitting the data.
Further, due to multi-collinearity in the input data, large differences in the magnitude of the
coefficients may result. Yet, such models are unsuitable for implementation in CFD models as
they may produce numerically stiff systems. Hence, a different sparsity promoting approach is
used here. The outline of the procedure is:

(i) Model discovery using Lasso regression to identify important terms. The end result is an
array of models with different complexity obtained by varying the regularization parameters
λ and ρ. The parameters have to be varied because their optimal values are not known a
priori.

Θ = min
Θ̂

[∥∥∥CΘ̂− b∆ij
∥∥∥2

2
+ λρ

∥∥∥Θ̂
∥∥∥

1
+ 0.5λ(1− ρ)

∥∥∥Θ̂
∥∥∥2

2

]
(6)

(ii) Remove unnecessary entries from library C → C̃ and Θ→ Θ̃.

(iii) Model calibration using Ridge regression to identify magnitude of model coefficients for
all the previously derived array of corrections. Again a regularization parameter λR is used
to ensure that the magnitude difference between the differenct coefficients is not too large.

Θ̃ = min
Θ̂

[∥∥∥C̃Θ̂− b∆ij
∥∥∥2

2
+ λr

∥∥∥Θ̂
∥∥∥2

2

]
(7)

For a more detailed description of the approach see Schmelzer et al. [20].
Finally, since the models give explicit expressions for the correction terms, they can be

directly integrated into the RANS model. Practically speaking, usually, some under-relaxation
is necessary, especially for the anisotropy correction.

3. Results and discussion
This section will show the application of the proposed methodology to the previously described
dataset. Resulting flow fields with the optimal and the learned correction terms are shown and
discrepancies are discussed in detail.
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3.1. Flow field with optimal correction terms
The optimal correction terms are derived for the three cases in the dataset. Subsequently, the
optimal corrections are integrated into to the RANS turbulence models for all the three test
cases. The results obtained from this are referred to as frozen or optimally corrected RANS.
Figures 5 and 6 show the wake development as predicted by the LES, the baseline RANS and the
frozen RANS simulations. The latter ones represent the best-case scenario that can be obtained
when using this methodology. In the next subsection, the generalized models for the correction
terms will introduce additional errors. The results in the figure show that indeed the optimal
correction terms lead to an almost perfect match between LES mean and frozen RANS velocity
and turbulent kinetic energy fields.

3.2. Learning of correction terms
The results presented in the following are based on a merged dataset for the three constellations
presented in Figure 2. The dataset is randomly split into a training and test dataset with 80 %
of the data being used for training and the remainder for testing.

Figure 4. Scatter plot of all the models obtained for both correction terms. Members of the
three-dimensional pareto front with respect to mean and max error, as well as model complexity
are highlighted in black. The coloring of the elements is according to the magnitude of the Ridge
λR penalization parameter and the model complexity nC .

Following the methdology outlined previously, the feature set used to construct a library



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062051

IOP Publishing

doi:10.1088/1742-6596/1618/6/062051

7

of basis functions consists of the first and the second invariant of Pope’s integrity basis
I1 = trace

(
S2
)
, I2 = trace

(
Ω2
)
, and additonally the wall distance based Reynolds number

Rez = min
(

5.0,
√
kz

50ν

)
. The latter one is important for the model to be able to distinguish

between the boundary layer and the shear layer in the wake. Additionally, only the first four
tensors of the integrity basis are used where T (1) = S, T (2) = SΩ − ΩS, T (3) = dev

(
S2
)
,

T (4) = dev
(
Ω2
)

where dev is the deviatoric part of the tensor. The features are then combined
with each other and each other squares to form basis expressions for the scalar functions αn and
αRn .

The three-step regularization methodology is applied to determine, first which coefficients
are important, and second what the magnitude of these coefficients should be. Figure 4 shows
the results of this process for both the anisotropy and the turbulence kinetic energy correction
term. The left side of the figure illustrates the trade-off between the robustness and the model
accuracy by showing the influence of the Ridge regularization parameter λR on the mean and
maximum error of the model on the test data set. The right side of the figure visualizes the
trade-off between the model complexity and the model accuracy by highlighting the number of
terms of the model. But the results are not straight-forward, complex models do not necessarily
give better predictions and while higher regularization does correlate with a higher mean error
it tends to also reduce the maximum error. Because the process generates a lot of models and
it was difficult to pick which models to be used going forward, the three-dimensional Pareto
front in terms of mean error, maximum error, and model complexity is also shown in the figure.
The members of the Pareto front which are highlighted with a star were investigated further in
the following paragraphs. Three different models for the turbulent kinetic energy production
and five for the anisotropy correction term were picked. The chosen models were picked to
have varying degrees of complexity while providing a sufficient amount of accuracy. For both
correction terms also one model each was picked that was obtained with a direct least square
approach to estimate the maximum accuracy that can be reached with the given library.

3.3. Flow field with learned correction terms
Once the models for the correction terms are derived, an intermediate step between implementing
the corrections in the turbulence model is taken: namely, the correction terms are calculated
once based on the LES mean fields for the cases and then injected into the RANS simulations.
Figures 5 and 6 show the resulting flow fields for the baseline model, the frozen case and the
models with a constant correction. All possible combinations between the eight models chosen
in the previous subsection were tested and the spread between the models is shown in the figure.
As can be seen, all corrections yield significant improvement over the baseline model and the
difference between the different corrections terms is much smaller than the overall improvement
as compared to the baseline case.

Since the results with the constant correction terms indicate that the simplest proposed
models already yield a significant improvement as compared to the baseline case, the two simplest
correction terms are implemented in the RANS turbulence model such that they are directly
coupled to the RANS flow field. The chosen terms are written out below
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P∆
k = 2k

∂ui
∂xj

(T
(1)
ij · [1.30 · 10−2 + 5.15 · 10−5I1 − 7.35 · 10−6I2 + 1.34 · 10−2m2 + 2.27 · 10−9I1I2m2

+5.72 · 10−10I1I2m
2
2 + 1.05 · 10−7I1m

3
2 + 1.05 · 10−9I2

1m2 + 8.97 · 10−11I2
1m

2
2

+1.11 · 10−6I2m
2
2 − 1.70 · 10−7I2m

3
2 + 1.20 · 10−9I2

2m2 + 1.34 · 10−10I2
2m

2
2

−2.53 · 10−3m2
2]

+T
(3)
ij · [1.09 · 10−3 + 5.40 · 10−3m2 − 1.03 · 10−3m2

2]

+T
(4)
ij · 4.30 · 10−3)

(8)

and

b∆ij = T
(1)
ij · [9.21 · 10−6I2 + 4.14 · 10−5I1]

+T
(2)
ij · [−1.27 · 10−9I1I2 − 1.09 · 10−5I1m

3
3 − 2.50 · 10−6I1m

4
3 − 3.69 · 10−10I2

1

+6.78 · 10−6I2 + 2.04 · 10−9I2
2 − 1.81 · 10−3m3 + 2.79 · 10−3m2

3 + 3.72 · 10−3]

+T
(3)
ij · 1.32 · 10−3

−T
(4)
ij · 6.54 · 10−4

(9)

where m2 = min(Rez, 5.0) and m3 = Rez if Rez < 5.0 and otherwise m3 = 0.
The results obtained with the coupled correction terms are shown in Figures 5 and 6 as well.

Unfortunately, the corrected results now lie closer to the baseline ones than the frozen ones.
There are several reasons for this. The most obvious one being the inaccuracy in the prediction
of the correction terms. Even small errors in the prediction can self-amplify themselves due
to the coupling with the velocity field and the turbine forcing. This holds in particular for
the prediction for the normal components of the anisotropy correction. In fact, the predictions
showed some oscillations near the turbines for the normal components and hence only 70 % of
the anisotropy correction term was imposed, otherwise, the simulations were not stable. That is
why the figure does not only show the results for the model with both learned correction terms,
but also the ones with no correction for the anisotropy and the ones with the optimal anisotropy
correction. As visible from the figure, the model with no anisotropy correction is closer to the
baseline case than the frozen one. The one with the optimal anisotropy correction generally is
close to the frozen one. This shows that the turbulent production correction P∆

k is working well,
but more work is needed for the prediction of the anisotropy correction b∆ij .

Another prominent source for the mediocre results is that the mean of the correction terms
is not zero in the freestream. Hence, even though the same inflow profiles are used as for LES,
in an empty domain the velocity profile will change in the streamwise direction. However, the
regularization used to make the corrections more robust will drive the correction terms to zero
if increased. In future work, this needs to be improved by for example having a preprocessing
step which ensures that the freestream profiles match through the introduction of an additional
uniform correction term.

Lastly, the learned correction terms do not match the optimal ones well close to the rotor.
Possibly, also an improved input feature set that includes the turbine forces, as well as, pressure
terms will improve the predictions.
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Figure 5. Comparison between LES, RANS baseline, frozen RANS and corrected RANS models
via horizontal slices of the velocity field up and downstream of the rotor plane for the second
turbine of case A and the second and third turbines of case C

Figure 6. Comparison between LES, RANS baseline, frozen RANS and corrected RANS models
via horizontal slices of the turbulent kinetic energy field up and downstream of the rotor plane
for the second turbine of case A and the second and third turbines of case C

4. Conclusions
On a limited data set, the proposed frozen k-corrective-frozen-RANS showed potential for
improving the predictions of the mean velocity and turbulent kinetic energy predictions. Based
on time-averaged LES data optimal correction terms to the turbulence transport equation of
the RANS model were determined. This part of the proposed methodology is working very
well, however, learning these terms using a sparse regression approach still needs more work.
In particular, the accuracy of the learned corrections for the anisotropy tensors needs to be
improved through several measures. First by finding a better way to incorporate non-zero mean
values of the optimal correction terms especially when they appear in the freestream. And,
second by defining a larger input feature set that also makes use of the turbine forcing and
the pressure gradient field such that the algorithm can distinguish between the near and the
farfield of the wake. Nevertheless, given that data-driven turbulence models are a relatively new
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development in the fluid dynamics community and so far they have only been applied to very
fundamental cases, the obtained results are already a step in the right direction. Of course, to
apply the methodology to more realistic conditions including atmospheric stratification and real
scale turbines, a lot of work is still necessary.
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