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Abstract

Background Postoperative junctional ectopic tachycardia (JET) is an arrhythmia associated
with increased morbidity and mortality rates in children with congenital heart disease. Devel-
oping an automated detection algorithm could aid in early identification and timely treatment
of JET.
Methods A retrospective study was conducted using monitor electrocardiogram (ECG) data
of pediatric patients who experienced JET during their admission to the pediatric intensive
care unit. A manual decision tree was developed that aimed to differentiate between JET
and sinus rhythm based on distinctive characteristics. These features were derived using sig-
nal analysis on both two-dimensional vectorcardiograms and ECG data. For the latter, ECG
metrics were detected in a fictive lead that was created in the direction with the highest
amplitudes. Metrics were identified within adaptive intervals that were dependent on ECG
morphology rather than relying on fixed time intervals.
Results A classification performance was achieved with a sensitivity of 96.3%, specificity of
71.4%, positive predictive value (PPV) of 86.7% and an accuracy of 87.8%. R peaks, Q peaks,
S peaks, T peaks and P waves were detected with an accuracy of respectively 99.9%, 95.7%,
89.7%, 98.1% and 54.8%. The computational time of the classification of 41 minutes of data
was 4 minutes and 48 seconds.
Conclusion A manual decision tree algorithm for JET detection was developed, using signal
analysis for feature extraction based on JET characteristics. This method with a low com-
putational time and a high sensitivity and PPV holds potential for clinical application as a
bedside tool. Implementing this proposed algorithm would allow for treatment in an earlier
phase, thereby potentially reducing JET associated morbidity and mortality rates.
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List of abbreviations

AV atrioventricular
ECG electrocardiogram
HR heart rate
JET junctional ectopic tachycardia
PICU pediatric intensive care unit
PPV positive predictive value
SA sinoatrial
SD standard deviation
SR sinus rhythm
VCG vectorcardiogram

1 Introduction

Junctional ectopic tachycardia (JET) is an arrhythmia that is either congenital or occurs
following congenital heart disease surgery. [1, 2] During JET, rapid electrical impulses originate
from the atrioventricular (AV) junction, leading to tachycardia with AV dissociation. [2–4] This
tachycardia in combination with suboptimal synchronization of the atria and ventricles can cause
the heart to generate cardiac output ineffectively, which may induce hemodynamic instability.
[5–8] Moreover, JET is associated with an increased risk of morbidity and mortality. [1, 7]
Patients with JET usually require a longer admission to the pediatric intensive care unit (PICU)
and are often dependent on cardiovascular support and mechanical ventilation for an extended
period of time. [4] Mortality rates of patients developing JET after cardiac surgery are as high as
14%, highlighting the importance of effective treatment. [1]

Whereas the congenital variant is rare (less than 1% of pediatric arrhythmias), postoperative
JET is considered as the ’most frequent hemodynamically significant tachycardia in the
postoperative setting’. [1, 7, 8] After cardiac surgery, 5-11% of the pediatric patients develop
JET, mostly within 24 hours. [1, 2, 4, 9, 10] The exact mechanism of JET development remains
unknown, but it is hypothesized that JET may be triggered by mechanical trauma, direct tissue
damage or hemorrhages around the AV node and His bundle during surgery. [2, 11] Several risk
factors have been identified, including young age, the duration of cardiopulmonary bypass, aortic
cross-clamp time, preoperative electrolyte imbalances, the use of inotropes, development of fever,
and the specific type of surgery performed (e.g. Tetralogy of Fallot or AV canal defect
correction). [1, 3, 6, 7, 11–15]

Although JET is typically self-limiting, various methods are available to restore hemodynamic
stability. [6, 7] Treatment is focused on the reduction of automaticity. [15] Cooling of the patient
is a critical first step because scientific evidence supports that hypothermia suppresses
automaticity and reduces tachycardia. [8] Other essential measures include providing sedation
and minimising the use of exogenous catecholamines, as catecholamines are known to increase
both heart rate (HR) and automaticity. [1, 3, 10, 13, 16] Administering magnesium sulphate is
recommended to stabilise the membrane potential, which reduces automaticity. [16] When this
therapy is not effective, antiarrhythmic drugs can be added to the treatment. Possible options
are amiodarone and ivabradine. [2, 3, 17, 18] Despite these efforts, treating JET remains
challenging, as not all patients respond to these therapies. [2, 4]

Delayed treatment increases the likelihood of an extended period of hemodynamic instability,
leading to a higher risk of complications. [19] Thus, early recognition of JET is of great importance.

However, early identification of JET in clinical practice is challenging for multiple reasons.
For medical professionals it is impractical to continuously observe the monitor. Moreover, even if
constant observation of the monitor were possible, subtle changes in the electrocardiogram (ECG)
are easy to miss on visual inspection. Yet with the implementation of an automated detection
algorithm, it could be possible to identify JET at an earlier stage. Such an algorithm can tirelessly
analyse the ECG signal and enables activation of an alert immediately upon detection of the
arrhythmia. An algorithm may enhance the ability to observe subtle changes in the signal. An
additional benefit of a JET detection algorithm would be the ability to assess the duration of
JET episodes over an unlimited amount of time, which is not achievable manually. In this way,
medication effects can be monitored by analysing the frequency and duration of JET episodes.

For these reasons, the aim of this study is to create an algorithm capable of detecting JET based
on bedside ECG monitoring at the PICU, using signal analysis to derive relevant characteristics.
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2 Background

A normal heart rhythm originates in the sinoatrial (SA) node, with electrical activation of the
atrium representing the P wave on the ECG, as shown in Figure 2a. Subsequently, as the
ventricles are activated, the QRS complex is created. Finally, the repolarization phase
corresponds to the T wave.
In JET, accelerated automaticity originates from the AV bundle. This leads to direct stimulation
of the ventricles, causing AV dissociation and resulting in a dissociated P wave, which is visible in
Figure 2b.

Figure 1: Heart conduction system

(a) SR

(b) JET

Figure 2: Examples of ECGs during SR and JET
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While little research on JET detection has been conducted, Waugh et al.(2022) have attempted
to develop an approach for this detection. [19, 20] However, their algorithm is less effective in
case of a tachycardia, which is the prevailing circumstance within JET. Therefore, there is a need
for a novel method which is not restricted to slower heart rates. This approach will be based on
the typical characteristics of JET that are detectable on bedside monitor data, which may consist
of a limited number of leads. However, besides features obtained from regular ECG leads,
multiple leads can be combined in order to create a two-dimensional vectorcardiogram (VCG),
which could be used to gain more insight into the direction of the electrical activity for each
cardiac cycle. This combination of ECG and VCG characteristics will allow for the creation of a
manual decision tree algorithm (not to be confused with the machine learning classifier) that can
distinguish JET from sinus rhythm (SR).
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3 Methods

A visual representation of the step-by-step process is provided in Figure 3. These steps will be
addressed in detail in the following subsections.

Figure 3: Workflow overview

3.1 Data aquisition

This single-center retrospective study was conducted at the Erasmus MC Sophia Children’s Hos-
pital, using ECG data of children who experienced JET during their PICU admission between
2018 and 2023. From these patients, eight were randomly chosen, and multiple fragments were
selected to ensure that at least one episode of SR and at least one episode of JET were available
for each patient. A waiver for ethical approval was obtained for data collection using standard
of care bedside monitoring (MEC-2021-0937). A minimum of three ECG leads were continuously
recorded at 200 Hz and stored on a digital server, after which it was analysed in Python version
3.11. Appendix A and Appendix B provide an overview of both the code and the libraries that
were used, respectively. From all of the time fragments, ranging between several hours up to one
day, random segments of one minute were annotated by a pediatric intensivist. In this way, a gold
standard was created, indicating whether the patient had SR or JET. Lead aVL, AVR, and aVF
were calculated using the following equations:

aV L =
1

2
(I − III) (1)

aV R = −1

2
(I + II) (2)

aV F = −1

2
(II + III) (3)

3.2 Data analysis

3.2.1 Classification based on features

To construct a manual decision tree algorithm, it is necessary to extract relevant features from
the ECG data that can serve as an input. Using JET characteristics, it should be possible to
differentiate between JET and SR. The specific features that were obtained are described in the
following paragraphs.

VCG

The vectorcardiogram is a visualisation method which combines multiple ECG leads in order to
gain more insight into the direction and magnitude of the electrical activity of the heart. [21]
Usually, the VCG is reconstructed from 12-lead ECG data, but as monitor data often consists of
three or five leads, in this case the X-axis was represented by lead I and the Y-axis was
represented by lead AVF. This concept is illustrated in Figure 4.

As the initial 50 ms of the QRS complex have the most consistent direction and magnitude in a
beat-to-beat comparison of a normal ECG, the standard deviation (SD) of the vector length
within this interval was calculated and used as a distinctive feature. [22]
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Figure 4: Cardiac axis visualisation

ECG

ECG features that were used for classification are:

• RR interval duration

• PR interval SD

• Fraction of detected P waves

Typical characteristics of JET are AV dissociation and tachycardia. [2–4] This is why RR
interval duration and PR interval SD are considered distinctive features. In the case of AV
dissociation, the P wave can be displaced, which reduces the amount of detectable P waves. [19]
For this reason, another feature is the fraction of P waves that is detected within all of the
searched intervals.

For each of the features mentioned in Section 3.2.1, multiple cutoff values and orders were tested.
Given that sensitivity was considered as the most crucial performance metric, the decision tree
displayed in Figure 5 was finally selected.

For the features to be obtained, accurate detection of the QRS complex and P peak is essential.
Section 3.2.2 contains a description of the methods used for these detections.
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Figure 5: Overview of the selected decision tree. n = number.

3.2.2 Detection of ECG metrics

The detection of every ECG metric requires both a signal and a defined interval for locating that
specific metric. Figure 6 presents an overview of every step in the detection process and the signals
and metrics that were used as an input.
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Figure 6: Flowchart detection of ECG metrics

R peak detection

To maximise the likelihood of accurate detection, peaks should be identified in the lead
anticipated to have the highest peak amplitudes. However, as the available data is restricted to
six leads, a fictive lead was generated within the angle corresponding to this highest amplitude.
The cardiac axis was again recreated with lead I representing the X-axis and lead aVF the
Y-axis. Using this coordinate system, where lead I represents an angle of 0 degrees and lead aVF
an angle of 90 degrees, a vector was created for each time point. Subsequently, the length of each
vector (|⃗b|) was calculated using the following equation[23]:

|⃗b| =
√
I2 + aV F 2. (4)

In the entire signal, the maximum vector length was searched for, as it is assumed that the
maximum vector length is obtained during an R peak. At each time point the fictive lead,
represented by the component of the signal along the maximum vector (compa⃗b⃗), was computed
using the following equation:

compa⃗b⃗ =
a⃗ · b⃗
|⃗a|

, (5)

where a⃗ is the vector at the maximum angle, b⃗ is the vector at each time point, and |⃗a| the length
of the maximum vector. [23]
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Figure 7: Scalar projection

The first ECG metric to be detected in this fictive lead was the R peak, because it is the most
prominent characteristic and detection of other ECG metrics is based on the location of the R
peaks. If the minimum amplitude of the signal was larger than the maximum amplitude of the
signal, the signal was inverted in order to be able to search for positive peaks only. Automatic
detection of possible R peaks involved the identification of local maxima, followed by determining
the prominences of the detected peaks. This prominence depends on the absolute height of the
peak and how much a peak stands out from the surrounding baseline of the signal. [24] To be
able to distinguish between R peaks and other detected peaks, the prominences were plotted in a
histogram. A curve was fitted over this histogram. Anticipating a bimodal distribution
characterised by one peak in the histogram representing R peaks and another representing non-R
peaks, the two largest peaks of the curve were identified. Subsequently, the minimum between
these two peaks was found and set as the limit of the prominence. This prominence value was
then used as a threshold to perform R peak detection.

Q and S peak detection

The Q and S peak were detected in the same fictive lead as used for the R peak detection.
Physiologically the the Q and S peak will always occur before and after the R peak, respectively.
The maximum duration of a normal QRS interval is 120 ms, which is equivalent to 24 time
samples (0, 12 · Fs = 0, 12 · 200 = 24). [25] Assuming that the Q and S peaks are approximately
symmetrically distributed around the R peak, the Q peak was searched for in an interval from 12
samples before the R peak until the R peak, and the S peak was searched for in an interval from
the R peak up to 12 samples from the R peak. Peaks were searched for in the vertical direction
opposite to the R peak. If there were multiple possible Q peaks detected, the last one occuring
was selected. If there were multiple possible S peaks detected, the one with the lowest value was
selected. If no possible peak was found for either, the point with the lowest value within the
interval was selected as a peak. In this way, every R peak has a corresponding Q and S peak
available at the approximately correct location.

T peak detection

After baseline correction of the original signal, the QRS complex was subtracted by setting the
amplitudes within the QRS interval to the baseline value. Then, a new fictive lead was created
for T wave detection using the same method employed for R peak detection. Subsequently, the
highest amplitude within each S-Q interval was marked as the peak of the T wave.

Q start and T end detection

For the detection of the start of the Q wave and the end of the T wave, a similar method was
used. This ’trapezium’s area approach’, as proposed by Vázquez-Seisdedo et al.(2011) involves
selecting two points, denoted as m and r, and computing the area of each trapezium formed by
connecting these two points with a mobile point i, as depicted in Figure 8. [26] The area A is
calculated using the following formula:

A = 0.5(ym − yi)(2xr − xi − xm), (6)

where:

• m = the point with the highest absolute derivative within the descending slope of the T
wave;

• r = a random point located on the isoelectric segment;

• i = a mobile point on the ECG signal positioned between points m and r.
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The end of the T wave is then defined as the location with the maximum area A. For Q start
detection, the same principle was applied, but with mirrored points for m and r, and searching
from the Q peak in the opposite direction.

Figure 8: Trapezium method

P peak detection

Having localised the QRS complex and T wave, the next step involved their exclusion from the
original ECG signal. This was accomplished by setting the interval from the onset of the Q peak
to the end of the T peak to a new baseline. This baseline was defined as the Y-value at the
termination of the T wave. Finally, in this signal, the peak of the P wave was identified using the
same method employed for R peak detection (i.e. a new fictive lead was created and P peaks
were located based on the prominence histogram).

3.3 Descriptive statistics

After classification, descriptive statistics were used to evaluate the performance of the algorithm.
Performance was measured in terms of the following performance metrics:

• Accuracy

• Sensitivity

• Specificity

• Positive predictive value (PPV)
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4 Results

4.1 Research population

The total number of JET patients admitted to the PICU between 2018 and 2023 is 20. Baseline
characteristics of the eight randomly included patients are reported in Table 1.

Median age in days (Q1-Q3) 149 (83-176)
Gender (N) F (1), M (7)
Surgery indications (N) Fallot (4), VSD (3), TGA (1)

Table 1: Baseline characteristics. Q1 = lower quartile, Q3 = upper quartile, Fallot = Tetralogy
of Fallot, VSD = ventricular septal defect, TGA = transposition of the great arteries.

4.2 Data description

From these eight patients, a total of 41 one-minute fragments were selected, resulting in 41 minutes
of data containing a total of 5931 heartbeats. Among these fragments, 14 (34.2%) were annotated
as SR, while 27 were labeled as JET (65.8%). In Figure 14 of Appendix C, an example is depicted
of a fragment in all six leads that were used for annotation. In one fragment, an artifact was
present in lead i, likely caused by poor electrode contact. [27] This is demonstrated in Figure 15
of Appendix C.

4.3 Data analysis

The total processing time for classifying the 41 minutes of data was 4 minutes and 48 seconds.
Figure 9 illustrates a histogram plot of the prominences of detected potential R peaks, which varied
across fragments but typically showed a cluster of R peak prominences on the right side and other
detected peaks on the left. Consequently, the prominence limit varied accordingly. An example of
the effect of the baseline correction that was applied, is depicted in Figure 16 of Appendix C.

In Figure 10, an example of the reconstructed VCG in SR during a single heartbeat is presented.
Here, the largest loop in dark blue corresponds to the QRS complex, the smaller one in light blue
to the T wave, and the smallest magenta loop matches the P wave. Figure 11 displays VCG
comparisons for a patient in both SR and JET across a minute of data, where each loop again
represents one heartbeat. This figure demonstrates a broader direction range for patients during
JET. Figure 12 illustrates a patient who has a rhythm that is alternating between SR and JET.
The rises in heart rate correspond to episodes of JET. The SD of the VCG is increasing at the
same moments in time.

Figure 9: Prominence histogram of R peaks. The dotted line represents the prominence limit.
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Figure 10: VCG during one heartbeat

(a) VCG fragment 3 (JET) (b) VCG fragment 2 (SR)

(c) VCG fragment 8 (JET) (d) VCG fragment 9 (SR)

(e) VCG fragment 47 (JET) (f) VCG fragment 48 (SR)

Figure 11: VCGs patient 2 (11a & 11b), 1 (11c & 11d), and 8 (11e & 11f)
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(a) Heart rate

(b) Mean SD

Figure 12: Comparison HR and SD

4.4 Performance

An overview of the classification performance is provided in the confusion matrix of Table 2 and in
Table 3. Of the 27 JET fragments, 26 were correctly classified, resulting in a sensitivity of 96.3%.
Out of 30 fragments classified as JET, 26 were actually JET fragments, corresponding to a PPV of
86.7%. An example of successful detection in both SR and JET fragments can be found in Figure
13. However, not all detections were accurate, as demonstrated in Table 4, which outlines the
detection accuracy per ECG metric. Furthermore, Figure 17 in Appendix C presents examples of
inaccurate detections for each ECG metric.

Predicted rhythm
Sinus JET Total

A
ct
u
a
l

rh
y
th
m Sinus 10 4 14

JET 1 26 27
Total 11 30 41

Table 2: Confusion matrix

Performance metric Value
Sensitivity 96.3%
Specificity 71.4%
PPV 86.7%
Accuracy 87.8%

Table 3: Performance of classification

15



(a) JET

(b) SR

Figure 13: PQRST detection in fictive lead

ECG metric R peak Q peak S peak T peak Q start T end P wave
% correct 99.9 95.7 89.7 98.1 90.2 76.0 54.8

Table 4: Performance of ECG metric detection
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5 Discussion

5.1 Findings

We developed an algorithm capable of distinguishing JET from SR based on features derived from
one-minute fragments of ECG monitor data. The algorithm achieves a classification performance
with a sensitivity of 96.3%, a specificity of 71.4%, a PPV of 86.7%, and an accuracy of 87.8%.
The high sensitivity indicates that JET detection is feasible with the proposed algorithm, which
was the primary objective of this research. Furthermore, with a PPV of 86.7%, our algorithm
shows promise for clinical application, as this indicates a relatively low false alarm rate. This
PPV suggests that the detection tool would not contribute extensively to alarm fatigue, which is
a well-known issue in ICUs. [28]

However, due to the class imbalance in the training data (more JET than SR) which is opposite
from real-world data, application may still result in frequent alarms. Despite not being directly
suitable for clinical use, the algorithm serves as a solid foundation for the development of an
algorithm that can be integrated into the monitor alarm system. Additionally, the relatively low
processing times further enhance its feasibility for clinical implementation.

Altogether, this research introduces three significant advancements:

1. To our knowledge, this is the first study to use a combination of VCG and ECG features to
detect postoperative JET at the PICU. [20] Inclusion of the VCG enhances the
performance of the algorithm by providing additional information on the direction and
magnitude of electrical activity. Figure 12 shows that the SD of the VCG vector magnitude
within the initial 50 ms of the QRS complex is a distinctive feature, as there is an increase
in SD during JET episodes.

2. This is the first JET detection algorithm that is not restricted to specific heart frequencies,
which is a crucial property given the the elevated HR during JET and the wide ranging
HRs of patients admitted to the PICU in general. Whereas there is one article that
developed a JET detection algorithm using just ECG features, their performance was lower
for patients with higher frequencies, likely due to the fixed intervals used for analysis. [19,
20] Our algorithm overcomes this limitation by employing variable intervals based on ECG
morphology, enabling robust detection of Q, R, S, and T peaks. Nevertheless, accurate
detection of P peaks remains challenging, especially on noisy monitor data.

3. The use of a fictive lead for detection of ECG metrics is an innovative and promising
approach that can be easily adopted by studies that involve detection of ECG metrics,
offering a solution for improved analysis.

While R peaks and T peaks are detected with high accuracy, the detection of other ECG metrics
is less reliable. Inaccuracies in identifying S and Q peaks are prevalent in patients with bundle
branch blocks due to narrow search intervals. Errors in T wave end detection often occur when P
waves are mistakenly identified as the end of the T wave, a challenging mistake to avoid utilising
this approach. The most crucial issue is the lack of accuracy in P wave detection. Since this step
is the final one of the detection process, inaccurate detection of other ECG metrics will often
automatically lead to inaccurate P wave detection. Additionally, the low amplitude of the P wave
further complicates its distinction.

Considering baseline characteristics, two observations stand out. Firstly, the age range is
relatively narrow compared to the general PICU population (ranging from 0-18 years), which
aligns with expectations given that congenital heart surgeries are typically performed at a young
age. [29] Additionally, the male-to-female ratio was unevenly distributed. However, as no
inferential statistics were applied, no definitive conclusions can be drawn from this finding. Given
the limited number of included patients and the findings from Waugh et al. (2022), which
reported a male-to-female ratio of 18:22 in a similar patient population, this inequality is likely
due to coincidence. [19]

5.2 Limitations

While the use of adaptive intervals allows for the analysis of fragments covering a wide range
of heart frequencies, it does have a drawback. Given the dependency among all ECG metrics,
an inaccurate detection of one metric is likely to lead to inaccurate detection of others. Being
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retrospective, this study also presents some limitations. Given that the classification is partially
dependent on features in SR, it is crucial to acquire a sinus fragment with minimal noise and
artifacts. In prospective research, extra attention can be paid to electrode placement, and all
twelve leads can be utilised for a baseline sinus ECG. Although patients and fragments were
randomly selected, a small probability remains of selection bias. Certain subgroups, such as age
categories or gender, may be over- or underrepresented in the selection. Lastly, to simplify the
annotation process, only small parts of one-minute fragments were presented to the pediatric
intensivist. While the likelihood is low, there is a possibility of overlooking cases where JET and
sinus are coinciding in one fragment, leading to a classification that lacks coherence.

5.3 Recommendations for future research

Improving current algorithm

For further development of the algorithm, several recommendations can be proposed. Due to
time restrictions, no filtering or artifact detection was conducted in this study. It is advised to
incorporate this step into the process as monitor data typically contains a significant amount of
noise, complicating detection and classification. Another strategy to enhance classification is to
expand the use of the P wave for feature extraction. Currently, the algorithm searches for the P
wave within the T end-Q start interval. Since retrograde P waves are frequently observed in JET,
detecting P waves within the S-T interval could enhance classification. [2] In addition to P wave
location, inclusion of the P prominence median could increase the capability of the algorithm to
differentiate between JET and SR. Waugh et al.(2022) demonstrated that this feature contributes
to JET prediction, as P waves tend to become less distinguishable within the T wave or QRS
complex. [19] However, before implementation, improvement of the existing P wave detection
method is required, as its current performance is insufficient for accurate extraction of the P
prominence. An additional promising feature to incorporate into the decision tree is the central
venous pressure waveform. Tan et al.(2021) demonstrate that integrating this feature into a JET
detection algorithm can improve performance. [30]

VCG analysis

A distinctive aspect of this JET detection approach is the usage of the VCG. The VCG has proven
to be a clarifying means of visualising electrical activity and needs further exploration. CineECG
could serve as a valuable tool for VCG analysis in JET patients. [31] Since strict real-time JET
detection is not critical, utilising VCGs as input for a machine learning algorithm has the potential
to achieve accurate JET detection with a slight delay. To our knowledge, there is no literature
investigating the current extent of treatment delays without a JET warning system. Given that
these delays are estimated to be on the scale of minutes of even hours, a delay of several minutes
may be considered acceptable. The purpose of reducing delays is to initiate treatment sooner,
aiming for an improvement in patient outcomes. However, it is necessary to gain more insight
into the exact impact of the time component on treatment effectiveness to define a more specific
acceptable time delay. Thus, for now, any delay reduction is favourable.

A last potential application of the VCG could be a bedside visualisation tool. VCG anoma-
lies during JET may be more apparent than minor ECG deviations on the monitor. Therefore,
integrating the VCG into a monitoring dashboard could assist in diagnosis.

Clinical application

For the algorithm to be clinically applicable, generalisability must be validated. A prospective
study with a larger dataset is essential for validation. It should involve more patients, including
those developing JET and those who do not, for a more representative sample. Fragments should
be collected frequently to ensure a sufficient number of SR fragments, facilitating comparison of
their features with features from JET fragments. Once the algorithm has been validated, given
its low computational time and high performance on actual PICU monitor data, this detection
approach is suitable for implementation as a bedside tool. This would facilitate early identification
of JET, allowing for timely treatment, with the expectation of enhanced arrhythmia control. Ul-
timately, this could result in lower morbidity and mortality rates, shorter PICU admission times,
and consequently lead to reduced healthcare costs.
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6 Conclusion

An algorithm was developed using a unique method for the bedside detection of JET, achieving
a high sensitivity and PPV. This approach uses JET characteristics derived from both ECG
and VCG data, and has the potential to lead to the development of a clinically applicable JET
detection tool, due to its low computational time and high performance. Implementing this early
recognition method could potentially reduce morbidity and mortality associated with JET episodes
during PICU admissions through timely intervention.
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Appendix A: Python script

1 # -*- coding: utf -8 -*-

2 """

3 Created on Wed Mar 20 12:00:31 2024

4

5 @author: g.raaijmakers

6 """

7

8 ’’’Load libraries ’’’

9 import os

10 import scipy.io

11 import math

12 import numpy as np

13 import pandas as pd

14 from matplotlib import pyplot as plt , dates as md

15 from scipy import signal

16 from scipy.signal import find_peaks

17 from datetime import datetime

18 from sklearn.mixture import GaussianMixture

19 from pybaselines import Baseline

20 import warnings

21 import matplotlib as mpl

22

23 def find_sin(fragment , meta_fragment):

24 ’’’This function finds the first sinus fragment number of the provided patient

’’’

25 patient = meta_fragment.loc[fragment ,’Patient ’]

26 fragment_sin = meta_fragment.query(f’Patient =="{ patient }" and Rhythm ==" Sinus"’)

.index [0]

27 return fragment_sin

28

29 def flatten_data(lead , mat_file):

30 ’’’This function unpacks the data from the provided lead.’’’

31 data = mat_file[lead][’data’].item().flatten ()

32 return data

33

34 def timeframe(date , time):

35 ’’’Combines date and time for the fragment ’’’

36 return datetime.strptime(f"{date} {time}", "%Y-%m-%d %H:%M:%S")

37

38 meta_fragment = pd.read_excel(’Z:/ECG project TM/Gini/Annotaties.xlsx’, names=[’

Fragment ’,’Rhythm ’,’Patient ’,’File_number ’,’Start_time ’,’End_sec ’,’Raw_folder ’,

’File_name ’,’End_min ’], index_col=’Fragment ’) #Load excel file into dataframe ,

set fragment number as index

39 df_features = pd.DataFrame ({’Rhythm ’:meta_fragment.Rhythm , ’Fragment_sin ’:[ find_sin

(i, meta_fragment) for i in meta_fragment.index], ’mean_HR ’:np.nan , ’VCG_SD ’:np

.nan , ’VCG_SD_sin ’:np.nan ,’frac_ppeaks ’:np.nan ,’frac_ppeaks_sin ’:np.nan ,’PR_SD ’

:np.nan ,’PR_SD_sin ’:np.nan}) #Create a dataframe that can be used for an

overview of all of the extracted features

40

41 ’’’Loop for extracting features for each fragment ’’’

42 for fragment in df_features.index:

43 raw_folder = meta_fragment.Raw_folder[int(fragment)] #Find the folder

corresponding to the selected fragment

44 fragment_path = os.path.join(raw_folder , meta_fragment.File_name[int(fragment)

]) #Find the file path corresponding to the selected fragment

45 mat_file = scipy.io.loadmat(fragment_path) #Load the .mat file

46 meta_file = mat_file[’meta’] #Load metadata of the .mat file

47 date_format = ’%Y/%m/%d %H:%M:%S’

48 start_date_file = datetime.strptime(meta_file.item()[2]. item(), date_format) #

Extract the start date of the file

49 end_date_file = datetime.strptime(meta_file.item()[3]. item(), date_format) #

Extract the end date of the file

50 time_range = pd.date_range(start_date_file , end_date_file , freq=’5ms’) #

Timeframe of the file

51

52

53 #Create necessary leads

54 lead_i = flatten_data(’i’,mat_file)

55 lead_ii = flatten_data(’ii’,mat_file)

56 lead_iii = flatten_data(’iii’,mat_file)

57 lead_aVR = -0.5*( lead_i+lead_ii)

58 lead_aVL = 0.5*( lead_i -lead_iii)

59 lead_aVF = 0.5*( lead_ii+lead_iii)

60
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61 #Create dataframe of complete file

62 df_complete = pd.DataFrame ({’Timestamps ’: time_range [:-1], ’i’: lead_i , ’ii’:

lead_ii , ’iii’: lead_iii ,

63 ’aVR’: lead_aVR , ’aVL’: lead_aVL , ’aVF’: lead_aVF ,

64 ’Pwaves ’: False , ’Qpeaks ’: False , ’Rpeaks ’: False , ’Speaks ’:

False , ’Tpeaks ’: False ,

65 ’RR_inv ’: np.nan , ’HR’: np.nan , ’mean_HR ’: np.nan})

66

67

68 start_time_fragment = meta_fragment.Start_time[int(fragment)]

69 end_time_fragment = meta_fragment.End_min[int(fragment)]

70

71 start_date_fragment = timeframe(start_date_file.date(), start_time_fragment) #

Start date and time of the fragment

72 end_date_fragment = timeframe(start_date_file.date(), end_time_fragment) #End

date and time of the fragment

73

74 df = df_complete [(( df_complete.Timestamps > start_date_fragment) & (df_complete

.Timestamps < end_date_fragment))]. reset_index(drop=True)

75

76 df_frag = df[((df.Timestamps > start_date_fragment) & (df.Timestamps <

end_date_fragment))]. reset_index(drop=True)

77

78 leads = [’i’,’ii’,’iii’,’aVR’,’aVL’,’aVF’]

79

80 x=df_frag.index

81 baseline_fitter = Baseline(x_data=x)

82 df_baseline = pd.DataFrame ([ baseline_fitter.snip(df_frag[y],max_half_window =40,

decreasing=True ,smooth_half_window =20) [0] for y in leads]).T

83 df_baseline.columns = leads

84 df_corrected = pd.DataFrame ([ df_frag[lead]-df_baseline[lead] for lead in leads

]).T

85

86 vector_mag = np.sqrt(( df_frag.i).astype(float)**2 + (df_frag.aVF).astype(float)

**2) #Vector magnitudes at each time point

87 ind_max_mag = vector_mag.argmax () #Time point with the largest vector magnitude

88 amp_max_mag = vector_mag[ind_max_mag] #Corresponding value of the largest

vector magnitude

89 i_max = df_frag.i[ind_max_mag] #Corresponding value along lead i

90 aVF_max = df_frag.aVF[ind_max_mag] #Corresponding value along lead aVF

91

92 #Use the hexaxial reference system to calculate the angle of the vector with

the largest magnitude (aVF = negative y-axis , i = positive x-axis!)

93 #Option 1

94 if i_max >0 and aVF_max >0:

95 alpha = math.atan(aVF_max/i_max)*180/ math.pi

96 #Option 2

97 elif i_max >0 and aVF_max <0:

98 alpha = 360 - math.atan(-aVF_max/i_max)*180/ math.pi

99 #Option 3

100 elif i_max <0 and aVF_max <0:

101 alpha = 180 + math.atan(-aVF_max/-i_max)*180/ math.pi

102 #Option 4

103 elif i_max <0 and aVF_max >0:

104 alpha = 90 + math.atan(-i_max/aVF_max)*180/ math.pi

105

106 dot_prod = np.dot(np.array ([i_max , aVF_max ]), np.array([ df_frag.i, df_frag.aVF

])) #Dot product of max vector and the vectors at each time point

107 df_frag[’fictive_lead ’] = dot_prod/amp_max_mag #Calculate the components of the

max vector along the new fictive lead

108

109 warnings.filterwarnings("ignore", category=UserWarning) #Ignore unfixable

warning

110

111 fictive_lead_original = df_frag.fictive_lead

112

113 if not np.max(fictive_lead_original)>abs(np.min(fictive_lead_original)): #Check

whether R peaks are on positive or negative y-axis

114 fictive_lead = -fictive_lead_original

115 else:

116 fictive_lead = fictive_lead_original

117

118 peaks ,_ = find_peaks(fictive_lead , height =0) #Detect positive peak locations

119 prominences = signal.peak_prominences(fictive_lead , peaks)[0] #Calculate

prominences of positive peaks

120

25



121 gmm = GaussianMixture(n_components =2).fit(prominences.reshape (-1,1)) #Curve

fitting model

122 curve_x = np.linspace(prominences.min(),prominences.max(),len(prominences)).

reshape (-1,1) #Create x-values from the start to end value of prominences

123 curve_y = pd.Series(np.exp(gmm.score_samples(curve_x))) #Score_samples computes

the log -likelihood of each sample --> e^ln(x) = x, with x = likelihood

124

125 prominence_peaks ,_ = find_peaks(curve_y , height =0) #Indices of the peaks in the

prominence curve

126 peaks_sorted = np.argsort(curve_y[prominence_peaks ]) #Indices of the peaks ,

sorted based on corresponding y-values

127

128 if not len(prominence_peaks) >1: #Check whether the prominence curve indeed has

at least two peaks

129 prominence_lim = curve_x[np.argmin(curve_y) ,0]

130 else:

131 two_peaks = peaks_sorted.iloc [-2:]. index #Select indices of two largest

peaks

132 min_index = two_peaks.min() + np.argmin(curve_y[two_peaks.min():two_peaks.

max()]) #Index of minimum between the two peaks

133 prominence_lim = curve_x[min_index ,0] #Corresponding prominence that is set

as limit

134

135 r_peaks ,_ = find_peaks(fictive_lead , height=0, prominence=prominence_lim) #Find

r peaks based on computed prominence limit

136 df_frag.loc[r_peaks ,’Rpeaks ’] = True #Assign ’True’ label on R peak locations

137

138 if len(r_peaks) <90:

139 mean_HR =90

140

141 last_i = 0 #Initialise

142

143 #Remove peaks that are within 40 samples (=300 bpm) of each other

144 for i,ind in enumerate(r_peaks):

145 if i==0:

146 last_i = ind

147 continue

148 else:

149 if (ind -last_i) <40:

150 if fictive_lead[ind]>fictive_lead[last_i ]: #If the second peak is

larger

151 df_frag.loc[last_i ,’Rpeaks ’] = False #Remove the first peak

152 last_i = ind

153 else: #If the first peak is larger

154 df_frag.loc[ind ,’Rpeaks ’] = False #Remove the second peak

155 else:

156 last_i = ind

157 pass

158 r_peaks = df_frag[df_frag[’Rpeaks ’]]. index.tolist ()

159

160 # Q and S and detection based on R location

161 min_q = -12

162 max_q = -1

163

164 min_s = 1

165 max_s = 12

166

167 for r in r_peaks:

168 """Q-peak """

169 start_q = r + min_q

170 if not start_q <0: #Check whether the start Q is within the time frame

171 end_q = r + max_q

172 q_peaks ,_ = find_peaks(-fictive_lead[start_q:end_q]) #Find negative

peaks

173 if q_peaks.any(): #Check whether any peaks were found

174 q_peak = q_peaks [-1] #Select last possible peak

175 else:

176 q_peak = np.argmin(fictive_lead[start_q:end_q]) #Select lowest

point within the time range

177 df_frag.loc[start_q+q_peak ,’Qpeaks ’] = True #Assign ’True’ label on Q

peak locations

178 else:

179 continue

180

181 """S-wave """

182 start_s = r + min_s
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183 end_s = r + max_s

184 if not end_s >len(fictive_lead): #Check whether the last S is within the

time frame

185 s_peaks ,_ = find_peaks(-fictive_lead[start_s:end_s]) #Find negative

peaks

186 if s_peaks.any(): #Check whether any peaks were found

187 s_peak = s_peaks[np.argmin(fictive_lead[start_s+s_peaks ])] #Select

lowest peak

188 else:

189 s_peak = np.argmin(fictive_lead[start_s:end_s])

190 df_frag.loc[start_s+s_peak ,’Speaks ’] = True #Assign ’True’ label on S

peak locations

191 else:

192 continue

193

194 q_peaks = df_frag.Qpeaks[df_frag.Qpeaks ].index

195 s_peaks = df_frag.Speaks[df_frag.Speaks ].index

196

197 # T wave detection

198 signal_without_qrs = df_corrected [[’i’,’aVF’]]. copy()

199 for i,r in enumerate(s_peaks):

200 if len(q_peaks)<len(s_peaks) and i == len(s_peaks) -1:

201 break

202 else:

203 if s_peaks[i]>q_peaks[i]:

204 if i==len(s_peaks) -1:

205 signal_without_qrs.loc[q_peaks[i]-15:len(signal_without_qrs

)]=0

206 else:

207 signal_without_qrs.loc[q_peaks[i]-15: s_peaks[i]+12]=0

208 signal_without_qrs.loc [0: q_peaks [0]]=0

209 else:

210 if len(q_peaks) == len(s_peaks) and i == len(s_peaks) -1:

211 break

212 else:

213 if i==len(s_peaks) -1:

214 signal_without_qrs.loc[q_peaks[len(q_peaks) -1]:len(

signal_without_qrs)]=0

215 else:

216 signal_without_qrs.loc [0: s_peaks [0]+12]=0

217 signal_without_qrs.loc[q_peaks[i]-15: s_peaks[i+1]+12]=0

218

219 vector_t = np.sqrt(( signal_without_qrs.i).astype(float)**2 + (

signal_without_qrs.aVF).astype(float)**2)

220 amp_max_t = vector_t.max()

221 ind_max_t = vector_t.idxmax ()

222 x_vector_t = signal_without_qrs.i[ind_max_t]

223 y_vector_t = signal_without_qrs.aVF[ind_max_t]

224

225 if x_vector_t >0 and y_vector_t >0:

226 alpha_t = math.atan(y_vector_t/x_vector_t)*180/ math.pi

227 elif x_vector_t >0 and y_vector_t <0:

228 alpha_t = 360 - math.atan(-y_vector_t/x_vector_t)*180/ math.pi

229 elif x_vector_t <0 and y_vector_t >0:

230 alpha_t = 90 + math.atan(-x_vector_t/y_vector_t)*180/ math.pi

231 elif x_vector_t <0 and y_vector_t <0:

232 alpha_t = 180 + math.atan(-y_vector_t/-x_vector_t)*180/ math.pi

233

234 dot_prod_t = np.dot(np.array ([x_vector_t , y_vector_t ]), np.array([

signal_without_qrs.i, signal_without_qrs.aVF])) #Dot product of max vector and

the vectors at each time point

235 df_frag[’fictive_lead_t ’] = dot_prod_t/amp_max_t #Calculate the components of

the max vector along the new fictive lead

236

237 fictive_lead_original_t = df_frag.fictive_lead_t

238

239 if not np.max(fictive_lead_original_t)>abs(np.min(fictive_lead_original_t)): #

Check whether R peaks are on positive or negative y-axis

240 fictive_lead_t = -fictive_lead_original_t

241 else:

242 fictive_lead_t = fictive_lead_original_t

243

244 for i,r in enumerate(s_peaks):

245 if len(q_peaks)<len(s_peaks) and i == len(s_peaks) -1:

246 break

247 else:
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248 if q_peaks[i]>s_peaks[i]:

249 t_wave_fict = np.argmax(fictive_lead_t[s_peaks[i]: q_peaks[i]])+

s_peaks[i]

250 else:

251 if len(q_peaks) == len(s_peaks) and i == len(s_peaks) -1:

252 break

253 else:

254 t_wave_fict = np.argmax(fictive_lead_t[s_peaks[i]: q_peaks[i

+1]])+s_peaks[i]

255 t_wave = t_wave_fict

256 df_frag.loc[t_wave ,’Tpeaks ’] = True

257 t_peaks = df_frag.Tpeaks[df_frag.Tpeaks ].index

258

259 from scipy.ndimage import gaussian_filter1d

260 timestamps = df_frag["Timestamps"]

261

262 qpeak_start = []

263 for i,_ in enumerate(t_peaks):

264 if not r_peaks[i+1]> t_peaks[i]:

265 x=timestamps[t_peaks[i]: r_peaks[i+2]]

266 y=df_frag.fictive_lead[t_peaks[i]: r_peaks[i+2]]

267 else:

268 x=timestamps[t_peaks[i]: r_peaks[i+1]]

269 y=df_frag.fictive_lead[t_peaks[i]: r_peaks[i+1]]

270 ysmoothed = pd.Series(gaussian_filter1d(y,sigma =2))

271 derivative = ysmoothed.diff()

272 double = derivative.diff()

273 old_index = q_peaks[i+1]

274 new_index = x.index.get_loc(old_index)

275 x_zoekgebied = x.loc[old_index ::-1]

276 y_zoekgebied = double.loc[new_index ::-1]

277 cross_0 = np.where(np.diff(np.sign(y_zoekgebied)))[0][0]

278 xm = old_index -cross_0 #To be able to subtract (not possible with timeframe

)

279 xm_time = x[xm] #To be able to plot

280 ym = y[xm]

281 xr = x.index [0]

282 xr_time = x[xr]

283 yr = y[xr]

284 oppervlakte = []

285 for j in range(xm,xr ,-1):

286 xi = j

287 yi = y[xi]

288 oppervlakte.append (0.5*(yi-ym)*(xm+xi -(2*xr)))

289 opp_x = list(range(xm ,xr ,-1))

290 opp_peaks ,_ = find_peaks(oppervlakte)

291 if len(opp_peaks)==0:

292 qpeak_start.append(t_peaks[i]+1)

293 else:

294 prominences_opp = signal.peak_prominences(oppervlakte , opp_peaks)[0]

295 peaks_sorted_opp = np.argsort(prominences_opp)

296 two_peaks_opp = np.min(peaks_sorted_opp [-2:])

297 q_start_ind=opp_peaks[two_peaks_opp]

298 qpeak_start.append(xm - q_start_ind)

299

300 from scipy.interpolate import CubicSpline

301 twave_end =[]

302 for i,_ in enumerate(t_peaks):

303 x=timestamps[s_peaks[i]: qpeak_start[i]]

304 y=df_frag.fictive_lead_t[s_peaks[i]: qpeak_start[i]]

305 ysmoothed = pd.Series(gaussian_filter1d(y,sigma =2))

306 derivative = ysmoothed.diff()

307 double = derivative.diff()

308 old_index = t_peaks[i]

309 new_index = x.index.get_loc(old_index)

310 x_zoekgebied = x.loc[old_index ::]

311 y_zoekgebied = double.loc[new_index ::]

312 if not any(np.diff(np.sign(y_zoekgebied))):

313 twave_end.append(t_peaks[i])

314 else:

315 cross_0 = np.where(np.diff(np.sign(y_zoekgebied)))[0][0]

316 xm = old_index+cross_0 #To be able to subtract (not possible with

timeframe)

317 xm_time = x[xm] #To be able to plot

318 ym = y[xm]

319 xr = x.index[-1]
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320 xr_time = x[xr]

321 yr = y[xr]

322 oppervlakte = []

323 for j in range(xm,xr):

324 xi = j

325 yi = y[xi]

326 oppervlakte.append (0.5*(ym-yi)*(2*xr-xi-xm))

327 max_opp = np.argmax(oppervlakte)

328 twave_end.append(xm+max_opp)

329

330 signal_without_qrst = df_corrected [[’i’,’aVF’]]. copy()

331 for i,r in enumerate(twave_end):

332 if len(qpeak_start)<len(twave_end) and i == len(twave_end) -1:

333 break

334 else:

335 if twave_end[i]>qpeak_start[i]:

336 if i == len(twave_end) -1:

337 signal_without_qrst.loc[qpeak_start[i]:len(signal_without_qrst)

]=0

338 else:

339 signal_without_qrst.loc[qpeak_start[i]: twave_end[i]]=0

340 signal_without_qrst.loc [0: qpeak_start [0]]=0

341 else:

342 if len(qpeak_start) == len(twave_end) and i == len(twave_end):

343 break

344 else:

345 if i==len(twave_end) -1:

346 signal_without_qrst.loc[qpeak_start[len(qpeak_start) -1]:len

(signal_without_qrst)]=0

347 else:

348 signal_without_qrst.loc [0: twave_end [0]]=0

349 signal_without_qrst.loc[qpeak_start[i]: twave_end[i+1]]=0

350

351 vector_p = np.sqrt(( signal_without_qrst.i).astype(float)**2 + (

signal_without_qrst.aVF).astype(float)**2)

352 amp_max_p = vector_p.max()

353 ind_max_p = vector_p.idxmax ()

354 x_vector_p = signal_without_qrst.i[ind_max_p]

355 y_vector_p = signal_without_qrst.aVF[ind_max_p]

356

357 if x_vector_p >0 and y_vector_p >0:

358 alpha_p = math.atan(y_vector_p/x_vector_p)*180/ math.pi

359 elif x_vector_p >0 and y_vector_p <0:

360 alpha_p = 360 - math.atan(-y_vector_p/x_vector_p)*180/ math.pi

361 elif x_vector_p <0 and y_vector_p >0:

362 alpha_p = 90 + math.atan(-x_vector_p/y_vector_p)*180/ math.pi

363 elif x_vector_p <0 and y_vector_p <0:

364 alpha_p = 180 + math.atan(-y_vector_p/-x_vector_p)*180/ math.pi

365

366 dot_prod_p = np.dot(np.array ([x_vector_p , y_vector_p ]), np.array([

signal_without_qrst.i, signal_without_qrst.aVF])) #Dot product of max vector

and the vectors at each time point

367 df_frag[’fictive_lead_p ’] = dot_prod_p/amp_max_p #Calculate the components of

the max vector along the new fictive lead

368

369 fictive_lead_original_p = df_frag.fictive_lead_p

370

371 if not np.max(fictive_lead_original_p)>abs(np.min(fictive_lead_original_p)): #

Check whether R peaks are on positive or negative y-axis

372 fictive_lead_p = -fictive_lead_original_p

373 else:

374 fictive_lead_p = fictive_lead_original_p

375

376 warnings.filterwarnings("ignore", category=UserWarning) #Ignore unfixable

warning

377

378 peaks ,_ = find_peaks(fictive_lead_p , height =0) #Detect positive peak locations

379 prominences = signal.peak_prominences(fictive_lead_p , peaks)[0] #Calculate

prominences of positive peaks

380

381 gmm = GaussianMixture(n_components =2).fit(prominences.reshape (-1,1)) #Curve

fitting model

382 curve_x = np.linspace(prominences.min(),prominences.max(),len(prominences)).

reshape (-1,1) #Create x-values from the start to end value of prominences

383 curve_y = pd.Series(np.exp(gmm.score_samples(curve_x))) #Score_samples computes

the log -likelihood of each sample --> e^ln(x) = x, with x = likelihood
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384

385 prominence_peaks ,_ = find_peaks(curve_y , height =0) #Indices of the peaks in the

prominence curve

386 peaks_sorted = np.argsort(curve_y[prominence_peaks ]) #Indices of the peaks ,

sorted based on corresponding y-values

387

388 if not len(prominence_peaks) >1: #Check whether the prominence curve indeed has

at least two peaks

389 prominence_lim = curve_x[np.argmin(curve_y) ,0]

390 else:

391 two_peaks = peaks_sorted.iloc [-2:]. index #Select indices of two largest

peaks

392 min_index = two_peaks.min() + np.argmin(curve_y[two_peaks.min():two_peaks.

max()]) #Index of minimum between the two peaks

393 prominence_lim = curve_x[min_index ,0] + 50 #Corresponding prominence that

is set as limit

394

395 p_peaks ,properties = find_peaks(fictive_lead_p , height=0, prominence=

prominence_lim) #Find r peaks based on computed prominence limit

396

397 pr_interval =[]

398 for i,p in enumerate(r_peaks):

399 if i==len(r_peaks) -1:

400 break

401 else:

402 pr = p_peaks [(p_peaks >=p) & (p_peaks <= r_peaks[i+1])]

403 if len(pr)==1:

404 pr_interval.append(r_peaks[i+1]-pr[0])

405 elif len(pr) >1:

406 ind_max_p=np.argmax(fictive_lead_p[pr])

407 del_ppeaks=np.delete(pr,ind_max_p)

408 p_peaks=np.setdiff1d(p_peaks ,del_ppeaks)

409 pr_interval.append(r_peaks[i+1]-pr[ind_max_p ])

410 else:

411 continue

412

413 df_features.loc[fragment ,’PR_SD’] = np.std(pr_interval)

414

415 df_frag.loc[p_peaks ,’Pwaves ’] = True #Assign ’True’ label on R peak locations

416

417 if p_peaks.any():

418 df_features.loc[fragment ,’frac_ppeaks ’] = (len(p_peaks)/len(r_peaks))

419 else:

420 df_features.loc[fragment ,’frac_ppeaks ’] = 0

421 df_features.loc[fragment ,’PR_SD’] = 0

422

423 # Calculate RR interval

424 df_r = df_frag[df_frag[’Rpeaks ’]] #DF with only true R peak rows

425 df_r.loc[:,’RR_inv ’]=df_r.index.diff()

426 df_frag.loc[df_r.index ,’RR_inv ’] = df_r.loc[:,’RR_inv ’]

427

428 fs = 200 #Sample frequency in Hz

429

430 df_frag[’HR’] = fs*60/( df_frag[’RR_inv ’])

431 df_frag[’HR’]. interpolate(method=’linear ’, inplace=True)

432

433 df_features.loc[fragment ,’mean_HR ’] = np.mean(df_frag[’HR’])

434

435 mean_vector = []

436 for peak in q_peaks:

437 mean_vector.append(np.mean(vector_mag[peak:peak +10]))

438 df_features.loc[fragment ,’VCG_SD ’]=np.std(mean_vector)

439

440 for i,row in df_features.iterrows ():

441 df_features.loc[i,’VCG_SD_sin ’] = df_features.VCG_SD[row[’Fragment_sin ’]]

442 df_features.loc[i,’frac_ppeaks_sin ’] = df_features.frac_ppeaks[row[’

Fragment_sin ’]]

443 df_features.loc[i,’PR_SD_sin ’] = df_features.PR_SD[row[’Fragment_sin ’]]

444

445 if row[’mean_HR ’]>170:

446 predicted_rhythm = "JET"

447 else:

448 if row[’VCG_SD ’] >1.5*( row[’VCG_SD_sin ’]):

449 predicted_rhythm = "JET"

450 else:

451 if (row[’frac_ppeaks ’] == 0) or not (row[’frac_ppeaks ’]<row[’
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frac_ppeaks_sin ’]):

452 if row[’PR_SD’]>row[’PR_SD_sin ’]:

453 predicted_rhythm = "JET"

454 else:

455 predicted_rhythm = "Sinus"

456 else:

457 predicted_rhythm = "JET"

458

459 if row[’Rhythm ’] == predicted_rhythm:

460 predicted = 1

461 else:

462 predicted = 0

463

464 filename = ’predictions.xlsx’

465

466 if os.path.exists(filename):

467 predictions = pd.read_excel(filename ,index_col=’Fragment ’)

468 else:

469 predictions = pd.DataFrame(columns =[’Prediction ’,’Real’,’Predicted ’])

470 predictions.index.name = ’Fragment ’

471

472 predictions.loc[int(fragment),’Prediction ’] = predicted

473 predictions.loc[int(fragment),’Real’] = row[’Rhythm ’]

474 predictions.loc[int(fragment),’Predicted ’] = predicted_rhythm

475

476 predictions = predictions.sort_index ()

477 predictions.to_excel(filename)

478

479 true_positive = len(predictions.query(’Prediction ==1 & Predicted ==" JET"’))

480 tp_fn = len(predictions.query(’Real =="JET"’))

481 if tp_fn ==0:

482 print(’No JET patients ’)

483 else:

484 print(f"Sensitivity: {round(true_positive/tp_fn *100 ,2)}%")

485

486 true_negative = len(predictions.query(’Prediction ==1 & Predicted ==" Sinus"’))

487 fp_tn = len(predictions.query(’Real ==" Sinus"’))

488 if fp_tn ==0:

489 print(’No sinus patients ’)

490 else:

491 print(f"Specificity: {round(true_negative/fp_tn *100 ,2)}%") #Percentage van alle

waarschuwingen , dus niet percentage van totaal aantal fragmenten

492

493 tp_fp = len(predictions.query(’Predicted =="JET"’))

494 if tp_fp ==0:

495 print(’No warnings ’)

496 else:

497 print(f"PPV: {round(true_positive/tp_fp *100 ,2)} %") #Perecntage dat ook echt

JET is bij een alarm

498

499 tp_tn = true_positive+true_negative

500 total = len(predictions)

501 if total == 0:

502 print(’No patients ’)

503 else:

504 print(f"Accuracy: {round(tp_tn/total *100 ,2)}%")
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Appendix B: Python libraries

• os

• scipy

• math

• numpy

• pandas

• matplotlib

• datetime

• sklearn

• pybaselines

• warnings
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Appendix C: Supplementary figures

(a) Lead I (b) Lead II

(c) Lead III (d) Lead aVL

(e) Lead aVR (f) Lead aVF

Figure 14: Example of leads I, II, III, aVL, aVR and aVF of a fragment to be annotated
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(a) Lead i (with artifact)

(b) Lead ii (without artifact)

Figure 15: Artifact in lead i of fragment 21

Figure 16: Baseline correction
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(a) Wrong R peak detection (b) Wrong Q peak detection

(c) Wrong s peak detection (d) Wrong t peak detection

(e) Wrong Q start detection (f) Wrong T end detection

(g) Wrong P detection

Figure 17: Examples of wrong detections of ECG metrics
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