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Abstract: Both the mineralogy and geochemistry of coal mine waste presents environmental and
social challenges while simultaneously offering the potential source for recovery of metals, including
critical raw materials (CRMs). Assessing these challenges and opportunities requires effective waste
management strategies and comprehensive material characterization. This study deals with the
integration of analytical data obtained from various portable sensor technologies. Infrared reflection
spectroscopy (covering a wide wavelength range of 0.4 to 15 µm), and geochemical x-ray fluorescence
(XRF) were utilized to differentiate between samples belonging to various geological lithologies and
quantify elements of interest. Therefore, we developed a methodological framework that encompasses
data integration and machine learning techniques. The model developed using the infrared data
predicts the Sr concentration with a model accuracy of R2 = 0.77 for the testing dataset; however, the
model performances decreased for predicting other elements such as Pb, Zn, Y, and Th. Despite these
limitations, the approach demonstrates better performance in discriminating materials based on both
mineralogical and geochemical compositions. Overall, the developed methodology, enables rapid
and in-situ determination of coal mine waste composition, providing insights into waste composition
that are directly linked to potential environmental impact, and the possible recovery of economically
valuable metals.

Keywords: mine waste; sensor technology; material characterization; infrared spectroscopy;
geochemical analysis

1. Introduction

The long-term exploitation of coal in East Germany resulted in mine waste dumps
with associated geotechnical and geochemical safety risks. The mineralogy or geochemistry
of the coal- or sedimentary layers within the mines could be of environmental concern due
to soil and water contamination, such as acid mine drainage or heavy metal leaching into
the groundwater [1–3]. However, besides the environmental concerns, the waste could
provide an opportunity for secondary mining for metals of economic interest [4].

The heterogeneous nature of waste dumps complicates the geochemical and miner-
alogical characterization [1]. Due to the processing and mixing after the extraction, the
material lacks geological context and spatial coherence, which complicates spatial or volu-
metric analysis. Also, external conditions could cause alteration or leaching resulting in
local compositional differences within the waste dump.

Because of these challenges of mine waste, the characterization or monitoring of mine
waste requires innovative methods of sampling, measuring and analyzing. The challenge
of sampling is to obtain representative samples from a heterogeneous waste dump. For
the measurements, there are many options of various sensor technologies that can be used
on various platforms such as satellites, drones and airplanes [5,6], and on the ground for
sorting applications [7]. Each system and platform has its advantages and disadvantages
regarding, measurement accuracy, processing time, and spatial coverage.
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The present study argues that comprehensive monitoring and analysis of mine waste
requires multiple sensors in combination with data integration. Therefore, we will use
multiple handheld sensors such as a portable X-ray fluorescence (pXRF) device to measure
the geochemistry, and two handheld infrared spectrometers to analyze the mineralogy.
The results will be validated through laboratory measurements using Inductively Coupled
Plasma (ICP) and X-ray diffraction (XRD). Previous studies used these sensors individually
for mine waste analysis, but not as an integrated system.

It is aimed to investigate the usability of wide wavelength range infrared spectroscopy,
from visible to longwave infrared wavelengths, and geochemical analysis coupled with data
analysis to characterize the lignite coal mine waste in East Germany. Here, we only consider
the environmental impact associated with the mineralogical and geochemical composition
of mine waste. Other environmental concerns associated with lignite mine waste, such
as methane emissions, which are typically related to gas within the coals, are outside the
detection capabilities of our sensors. The first objective is to study the capabilities of each
sensor for describing the mine waste. The second objective is to assess whether the infrared
reflection data can be used for the semi-quantification of target elements in coal mine waste.
With this novel combination of the use of sensor technologies and integration, we provide
new insights into how mineralogy and geochemistry are linked in this specific mining
area. These results are discussed regarding what sensor technologies can best be used
for mine waste monitoring or analysis to study its environmental impact or potential for
secondary recovery.

2. Geological and Analytical Background Information
2.1. Geological Setting

The lignite mines studied for this study are between the river Saale in the west and
river Elbe in the east, just south of Leipzig, Saxony, Central Germany. The locations of the
study sites are presented in Figure 1. In total, there are two open pit mines, Schleenhain
and Profen, both exploited by Tagebau Vereinigtes Schleenhain. The annual production of
these open mine pit sites is annually 8.5 million tons of raw lignite and an overburden of
30–38 million cubic meters per year [8]. Figure 1 outlines the current open pit in brown and
the reclamation areas in dark green.

The geological history of this area is best described in the overview papers by Eiss-
mann [9,10] on, respectively, the Quaternary and Tertiary geology. The geology of both
mines is characterized by a pre-Tertiary basin, covered by Tertiary fluviatile and estuarine
deposits, including the lignite deposits, and a Quaternary sedimentary overburden [9–11].

The coal layers are formed in the Cenozoic, in a fluviatile environment [10]. A trans-
gressive epicontinental sea is the cause of a complex sedimentary system in which the coal
layers are found as lenses interlayered between the other sedimentary rocks with varying
seam thicknesses of tens of meters [10,11]. The sedimentary rocks vary from clays to coarse
sands [10]. The overburden is Quaternary and consists of sedimentary sand, clay and silt
layers [9].

The coal in the area is classified as lignite, which has 25–35% carbon and is the lowest
rank coal [12]. Besides the organic matter, the coal can be associated with syngenetic
minerals such as pyrite, formed by chemical processes in accumulated organic matter, and
detrital minerals such as clay and silicate minerals that are deposited in the same swamp
environment [12]. Among these minerals, pyrite is a considerable environmental concern,
since its oxidation promotes acid mine drainage and therefore requires special reclamation
actions [13–15].

Both the coal and overburden material could have a geochemical composition with
environmental implication [16,17]. The overburden fluviatile sediments have source in
the polymetallic area in the southeast, bordering the Czech Republic [18,19]. A study on
sediments and soils in nearby sedimentary basins indicates geogenic enrichment of metals
such as Cd, Co, Cu, V, Cr, Pb, Hg, Ni and Zn [16]. Various other trace elements can be
associated with coal in either organic, or inorganic sulfide and non-sulfide fractions [20].
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Figure 1. Overview map of open pit mines, MIBRAG. Edited from MIBRAG (2020). Zoom box
shows the location of drill cores presented on the Google Earth base map (Google earth V 7.3.6.9796.)
(22 February 2024). Breunsdorf, Germany. 51◦08′16.48′ ′ N, 12◦23′47.37′ ′ E, Eye altitude 142 m.
Landsat/Copernicus. https://earth.google.com/web/@0,-3.4221001,0a,22251752.77375655d,35y,
0h,0t,0r/data=OgMKATA?authuser=0 [8 September 2021].

2.2. Infrared Spectroscopy

Infrared spectroscopy is the term used for the technique of analyzing spectral features
in the infrared wavelength range that can be associated with material properties, such
as mineral composition. This technique is becoming more conventional in mining and
environmental studies due to the diverse range of measuring platforms, such as satellites,
aircrafts, and handheld devices. In mining, these sensors are commonly used for example
for ore and waste sorting, exploration geology and mine process monitoring [21–24].

In the literature, the infrared region of the electromagnetic spectrum is subdivided
into different wavelength ranges [25]. In this work, wavelength ranges were defined as
follows: visible near–infrared—VNIR (0.5–1 µm), shortwave–infrared—SWIR (1.3–2.5 µm),
midwave–infrared—MWIR (2.6–5.5 µm), and longwave–infrared—LWIR (5.5–15 µm). In
these wavelength ranges, different minerals produce diagnostic spectral features that can
be used to identify the minerals. For example, the VNIR regions can be used for the
identification of iron oxides and the SWIR for clays and carbonates [26]. The way that light
scatters on a material surface varies with wavelength. Specifically, shorter wavelengths such
as those in the SWIR and MWIR wavelength ranges are characterized by volume scattering,
while longer wavelengths such as LWIR are dominated by surface scattering. This variation
in scattering results in different spectral features across the measured wavelength range. In

https://earth.google.com/web/@0,-3.4221001,0a,22251752.77375655d,35y,0h,0t,0r/data=OgMKATA?authuser=0
https://earth.google.com/web/@0,-3.4221001,0a,22251752.77375655d,35y,0h,0t,0r/data=OgMKATA?authuser=0
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case of volume scattering, the spectra are characterized by absorption features. When the
sample surface scattered the light, spectral features are exhibited that can be interpreted for
mineralogy. Additionally, grain size influences the scattering type. As a consequence, the
same mineral could contain spectral variations in spectral characteristics [25].

The diagnostic spectral features in the VNIR wavelength range are caused by electronic
absorption features of transition metals and rare earth elements [27]. The sSWIR contains
mainly features associated with water and hydroxyl but also carbonates. Most spectral
features are within the wavelength range from 2 to 2.5 µm, causing overlapping features
that complicate the mineral identification [28]. Spectral shifts can occur due to the cation
that is bonded to the OH group, and thereby the mineral chemistry can be interpreted
from the spectral features [29]. The MWIR range defines the transition from volumetric-
to surface-dominated scattering [25]. Both the MWIR and LWIR contain a diverse range
of infrared functional groups such as borate, carbonate, sulfate, phosphate, and hydroxyl
bonds [25,26]. The LWIR region is dominated by specular reflectance and therefore more
sensitive to grain size [25].

Similarly to inorganic compounds like minerals, specific organic molecular bonds,
such as those present in lignite coal, show unique spectral absorption features within the
specified wavelength ranges. For example, the ammonia and carbon–hydrogen bonds
have specific spectral absorption features in the SWIR, MWIR and LWIR wavelength
regions [30–33].

3. Methods
3.1. Location and Sampling

Three sampling campaigns were conducted to collect samples from the mine pits:
namely, Peres, Schleenhain, and Profen. The locations of these mine pits are presented in
Figure 1 as brown polygons for current operational areas and in dark green reclamation
areas. Impression of the locations of where samples are taken in the different sampling
campaigns is shown in Figure 2. Unfortunately, we did not have access to samples from
other lignite mines for comparison.

Figure 2. Images from the various sampling campaigns. (a) Samples of the Profen dataset, lithology-
specific; (b) samples of the Schleenhain-lithology dataset; (c) drill core of the Schleenhain-waste;
(d) samples of the Profen dataset, local dump site; and (e) drill campaign for Schleenhain-waste.
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In the first sampling campaigns, samples were collected from distinctive lithologies
from both the Peres and Schleenhain open pits. In this study, the dataset obtained from the
first sampling campaign is named Schleenhain-lithology. The dataset consists of 30 sam-
ples in total of which 12 samples were gathered from Schleenhain, representing Tertiary
sands, clays and coal seams. Likewise, in the Peres mine, 18 samples were collected from
lithologies similar to those in Schleenhain, along with Quaternary gravel, clays, moraine,
meltwater sand, loess, loam, and dump material.

In the second field campaign, two drill cores each with 50 m depth were used to
sample the mine waste from both Schleenhain and Peres open pits. The locations are
indicated within the zoom box in Figure 1, with a Google Earth map as the base. Drill
core 1 is located in an area with relatively fresh mine waste, dumped a year before the
drilling campaign (which is on 9 May 2022). Unlike drill core 1, the waste of the second
drill core is older and deposited approximately 8 years prior to the sampling campaign.
This is evident from the vegetation density in the Google Earth satellite image. Using these
drill core samples, a total of 107 measurements were obtained. The measurements were
taken approximately every 1 m, depending on the material variability—visually observed
based on color and texture—within the drill cores. The data collected from these sample
sets are referred to as Schleenhain-waste.

In the third field campaign, 28 samples were collected from the Profen area, which is
found east of the Schleenhain open pit. These samples consist of a mix of lithology-specific
samples and material from mine waste dump sites. The Profen dataset is utilized to assess
the consistency between the lithology and mine waste samples from both Schleenhain and
Profen mine pits. Although these open mine pit sites contain similar lithologies, spatial
variation may lead to differences in geochemistry or mineralogy.

3.2. Instrumentation

Multiple handheld portable sensors, namely the Analytical Spectral Device (ASD)
Fieldspec4, and Agilent Fourier Transform Infrared (FTIR) spectrometers and Niton XL5
portable X-ray fluorescence were used to acquire data using the collected samples. The
instruments are shown in Figure 3. The technologies are described in the subsequent
subsections. Figure 4 shows the general workflow including the sample type and the in-
strument used. FTIR and pXRF measurements are taken from all samples from the different
sample locations. The ASD sensor was only available to be used for the Schleenhain-
lithology datasets.

Figure 3. Portable sensors used in this study. Infrared spectrometers to analyze the mineralogy,
(a) ASD FieldSpec4 and (b) Agilent FTIR. pXRF for the geochemistry, (c) Niton XL5.
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Figure 4. The suggested workflow for regression modelling.

3.2.1. Wide Range Infrared Spectroscopy Techniques

In this study, two infrared spectrometers, that operate over a combined spectral
wavelength from 0.35 to 15.4 µm, were used to acquire infrared spectral data using the
collected samples. In this study, the light frequency will be presented in wavelengths,
rather than wavenumber, to stay consistent and ensure a good comparison between the
spectra obtained with the ASD and FTIR.

The ASD FieldSpec4 from Malvern Panalytical is used to measure the visible and
shortwave–infrared wavelength ranges from 0.35 to 2.5 µm with a spectral resolution of 3
and 8 nm in the VNIR and SWIR, respectively. When exporting the data, the spectrum is
resampled to a resolution of 1 nm. The picture of the instrument is presented in Figure 3.
The system is used in combination with a contact probe with a 10 mm spot size, which
integrates both the optical cable and light source. The white reference calibration is carried
out using a spectralon tablet. After each sample measurement, the white reference was
checked and when it deviated, the sensor was recalibrated. Each measurement takes ten
spectra that are later averaged in the processing of the data.

The FTIR handheld spectrometer was used to record the MWIR and LWIR data.
The instrument is presented in Figure 3. The measurements were performed using the
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diffuse reflectance sample interface, covering a wavelength range of 650 and 5000 cm−1

(2.5–15.4 µm) with a 4 cm spectral resolution and a spot size of ~2 mm diameter. The
standard coarse-grained silver tablet is used for calibration and reference material. We have
set the measurement settings such that every 15 min, a new calibration measurement needs
to be taken.

Both the ASD and FTIR sensors are portable, allowing us to measure samples directly.
Given the inhomogeneity of the samples, we conducted multiple measurements to cap-
ture the compositional variance as accurately as possible. We performed approximately
3–5 measurements at different locations for each sensor, selecting sites based on our visual
assessment of the compositional variability. We tried to match the measurement positions
of the samples with both sensors.

3.2.2. X-ray Fluorescence

Geochemical data was obtained from the collected samples, at the same locations
as the ASD and FTIR measurements, using the Niton XL5 Plus Handheld XRF analyzer
from Thermo Scientific. The sensor has a 5 W Ag anode X-ray tube and an 8 mm spot
size. The X-ray beam excites electrons from the shell of an atom. The filling of the vacant
electron spot causes the release of fluorescent X-rays with an energy that can be used for
geochemical quantification. The fluorescent X-ray of lighter elements is too low to either
reach the detector or be recognizable compared to the background noise of the detector [34].
Therefore, the detection limit is different per element and higher for lighter elements.

Before the XRF data are analyzed, the element concentrations are compared to those
of the ICP-MS validation dataset. The measured concentrations including the standard
error of XRF data are plotted together. Only the elements with a coherent linear positive
correlation between XRF and ICP are used for further analysis. For these elements it is
concluded that the XRF measurements represent the actual sample composition.

3.2.3. Inductively Coupled Plasma Analysis

The conventional geochemical technique, inductively coupled plasma mass spectrome-
try (ICP-MS), was used to obtain the data that were employed in the validation of elemental
prediction. ICP-MS is a well-established laboratory technique for elemental analysis, that
can detect a wide array of elements from the periodic table at parts per million (ppm)
levels. The analysis was carried out at the laboratory facility of the Utrecht University.
Since ICP-MS is a lab-based analysis technique, we needed to subsample our samples.
We aimed to obtain a representative sample, but given the inhomogeneous nature of the
samples, achieving this was challenging. ICP-MS validation was only available for the
Schleenhain-waste and Profen datasets.

3.2.4. X-ray Diffraction

The mineralogical composition of 28 samples (10 Profen, 18 Schleenhain-waste) were
analyzed using the X-ray diffraction (XRD) technique. The measurements were performed
at the Faculty ITC at the University of Twente using a Bruker D2 Phaser. The mineral
interpretation is performed semi-quantitively using the DIFFRAC.EVA software version
6 and the corresponding spectral library. XRD, in combination with the Rietveld method,
is the most reliable and frequently used method for mineral identification [35]. Similar to
ICP-MS, XRD is a lab-based technique that also requires subsampling for analysis.

3.3. Exploratory Analysis
3.3.1. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an exploratory analysis technique for data
dimension reduction in a multivariable dataset. The algorithm defines new axes in the
dataset, where the first axis explains the most variance in the data. The projection of the
data points on these new axes are named score values. The contribution of the variable, in
our case the individual wavelengths, are referred to as the loading values [36].
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3.3.2. Correlation Matrix

In a correlation matrix, the covariance between variables defined by the Pearsons
correlation coefficient is analyzed [37]. In this study, it is used to assess the relation between
the various geochemical elemental concentrations within the three datasets and to test for
correlation between the XRF and ICP-MS datasets.

3.4. Geochemical Modelling

The spectral measurements of a broad wavelength range coming from both infrared
sensors are used to predict elemental concentrations measured with the pXRF. The gen-
eral workflow of the methodological approach developed in this study is presented in
Figure 4. The support vector machine regression (SVR) models were developed using
the Schleenhain-lithology dataset as the training dataset and tested for Schleenhain-waste
and Profen. For the Schleenhain-waste and Profen datasets, no VNIR and SWIR data are
available, so only models including the FTIR wavelength range were tested on the other
datasets. The blue, red and green colors indicate the colors used for the plots in the results.

3.4.1. Data Preparation

The geochemical modelling is done iteratively with changing pre-processing steps
and testing for different wavelength ranges. The spectral data of the ASD and FTIR
were combined and considered as the fused infrared wavelength range. Different models
were developed to compare model performances when they were applied to the fused
infrared range and individual VNIR, SWIR, MWIR and LWIR wavelength ranges. The
corresponding wavelengths are defined in Background Information—Infrared Spectroscopy
Section 2.2.

The pre-processing of the spectra involves averaging the measurements obtained for
the same sample. For both ASD, FTIR, and pXRF, this includes the 3–5 measurements
per sample. Additionally, for ASD, 10 repetitions per measurement are also averaged.
For FTIR data specifically, the wavelength range between 4.15 and 4.5 µm is masked,
as this range sometimes contains spectral peaks that are considered artifacts rather than
mineralogical features.

For the geochemical modelling, the model performances were compared between
spectra without additional spectral pre-processing and mean-centered spectra. Mean
centering is a processing technique that subtracts the mean reflectance of the spectra from
the spectral reflectance values.

The models are trained on the geochemical information of the XRF sensor for the
seven elements: Fe (iron), Pb (lead), Th (thorium), Ti (titanium), Sr (strontium), Rb (rubid-
ium), Y (yttrium) and Zn (zinc). In Results Section 5.1, the selection of these elements is
explained. For each element, a separate model was developed, and model performances
were compared by applying standard scaling, or logarithmic scaling data pre-processing
techniques. Standard scaling means that the average element concentration is subtracted
and divided by its standard deviation. For logarithmic scaling, we have calculated the
base ten logarithm of the element concentration. This is a commonly used technique to
deal with a skewed dataset. No data values are in the pXRF data, because these are the
instrument detection limit and are not considered in the model.

3.4.2. Regression Modelling

The prediction models were developed using SVR. Other methods such as partial
least squares regression and random forest regression were tested in earlier stages of this
research; however, the models yielded lower performance and they were excluded from
further analysis.

To evaluate the model performances, the Schleenhain-lithology dataset was first split
into a training and testing dataset. A total of 33% of the data were allocated to the testing
group, utilizing a group-based shuffle split methodology to ensure that measurements from
the same sample did not appear in both the training and testing groups. Cross validation is
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used when developing the models. The training dataset is split into 5 random groups, again
making sure that samples from the same group end up in different cross validation groups.

The coefficient of determination (R2) is used as a score value to assess the model
performances. A minor difference in the formula is that in the Total Sum of Squares (TSS),
we subtract the mean of the training dataset, and not the mean of the dataset. This was
chosen because it better represents the goodness of fit of the data in the general prediction.

For the modelling we have used hyperparameter tuning to find the optimal parameters
for the SVR model. The parameters that can be tuned for SVR are its kernel, regulation
parameter (C) and the epsilon-tube (epsilon). The corresponding hyperparameter values
can be found in the flowchart of Figure 4.

4. Results
4.1. Geochemical Analysis

Before we tested the integration of infrared and geochemical data, we performed some
exploratory analyses of the geochemical dataset. First, the ICP measurements are used as
a validation dataset to test whether the XRF measurements represent the actual sample
geochemistry. These ICP measurements are only taken on a selection of samples from
the Schleenhain-waste (23 out of 107 samples) and Profen datasets (13 out of 28 samples).
Selection of these samples was based on initial geochemical analysis of sample variability
based on the XRF data. The results are presented in Figure 5 indicating the R2 values
between XRF and ICP-MS measured concentrations. Based on this plot, we have chosen to
focus this study on the elements, Sr, Pb, Fe, Rb, Ti, Zn, Y and Th, for further analysis and
modelling. For the other elements it was concluded that because of the negative R2, the
XRF measurements might not present the actual element concentration. For the elements
with a positive R2, the data are visualized as a scatter plot with XRF data on the x-axis
and ICP data on the y-axis. The error bars present the 1.5 standard deviation given as the
output of the XRF measurements.

Element concentrations for the considered elements are shown in Figure 6 for all
the datasets: Profen, two drill cores of Schleenhain-waste and the Schleenhain-lithology.
Samples with values below the detection limit are considered as not a value and are
therefore not plotted in the figure. The elements Pb and Zn are discussed in Tóth et al. [38]
regarding their environmental impact. However, the measured concentrations do not
exceed the 60 and 200 ppm threshold values for Pb and Zn, respectively. The n-number
under the sample group name indicates the number of measurements in the plot. The
other samples had values below the threshold values of the XRF and could therefore not be
measured. For the elements Sr, Pb, Rb, and Th, the Peres dataset has higher concentrations
compared to the Schleenhain and Profen samples. Both drill core datasets of Schleenhain
and the Profen dataset have a similar elemental concentration for the considered elements.

The Schleenhain-lithology datasets are sampled at specific geological layers, which
enables us to test the element distribution for the following lithologies: coal, gravel, sand,
loam, clay and mixtures (see Figure 7). The highest element concentrations are in the clay
and coal lithologies. The elements Pb, Ti, Rb, and Th are particularly high for clay samples.
Zn concentrations are high for a few coal samples, and Sr and Y have high concentrations
for both coal and clay samples. There is quite a large distribution within these lithologies
so not all coal or clay samples have a similar concentration of particular elements.

There were geochemical differences between the different datasets (see Figure 6), there
are also differences in correlation between elements for the different datasets (Figure 8).
For example, between Sr and Rb, the Schleenhain-waste and Profen datasets have a high
correlation (>0.8) while the Schleenhain-lithology only has a correlation coefficient of 0.39.
The samples that do not fit in the general trend between these elements are a few coal
samples from the Schleenhain-lithology dataset. Pb and Th are the only elements that have
a high correlation among all the datasets.
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Figure 5. R2 values indicating correlation between XRF and ICP-MS data for the Schleenhain-waste (red)
and Profen (green) datasets. For elements with a positive R2, the scatter plots show the measurement
results of both sensors with error bars indicating the 1.5 sigma standard deviation of the XRF.

Figure 6. Measured metal content in mine waste for both the Profen and Schleenhain mines. The
n-number indicates the number of samples with values above the XRF detection limit.
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Figure 7. Element concentration grouped by lithology of the Schleenhain-lithology dataset.

Figure 8. Correlation matrix based on the available XRF data from the different datasets.
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4.2. Spectral Analysis

The spectral datasets consist of reflectance data measured in different wavelength
ranges. The visible and shortwave–infrared wavelength ranges were only measured for the
Schleenhain-lithology dataset and the midwave and longwave for all datasets. Therefore,
the compositional differences between datasets are based on the FTIR data (Section 4.2.1)
and the spectral differences between wavelength ranges are only based on the Schleenhain-
lithology dataset (Section 4.2.2). PCA has been used to reduce the dimensions of the data
and indicate the most variance within the datasets (Figures 9 and 10). Specific samples that
seem unique or characteristic based on the PCA and visual comparison are highlighted in
the plots and their spectra are presented in Figure 11. With grey boxes and dashed lines,
specific spectral features are highlighted.

Figure 9. PCA score plots for all datasets. The numbers indicate the score values of specific samples
plotted in the spectral plot in Figure 11.

Figure 10. PCA score plots for the Schleenhain-lithology. Left: FTIR, right: ASD. The numbers
indicate the score values of specific samples plotted in the spectral plot in Figure 11.

4.2.1. Spectral Difference Datasets

The PCA score plots show that most of the variance (component 1) is between the
samples from the three datasets. The first component explains over 88% of the variance
and shows the highest score values for the Profen samples and the lowest values for the
samples from the Schleenhain-waste. The Schleenhain-lithology plots are in between with
some overlap between both of the datasets. Some individual samples have extremer score
values for the other components.
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Figure 11. Specific spectra from the three datasets. Numbers correspond with numbers in the PCA
plots in Figures 9 and 10. These numbers are not the sample numbers used in the datasets, colors of
lines are used for clarity and do not contain any additional information. The x-axis on the bottom
presents the wavelength, and the x-axis on the top presents the wavenumber.

4.2.2. Spectral Differences Wavelength Ranges

When the PCA score plots of both the FTIR and ASD data are compared, it can be
noticed that especially the lithologies coal, clay and sand can best be distinguished in the
FTIR dataset. In the PCA score plots based on FTIR data, component 2 separates the coal
and sand samples. The clay overlaps with both lithologies. The PCA using the ASD data
shows much more overlap between the lithologies. Some separation between sand and
coal is visible for component 3 but it is not as distinct as with the FTIR. In all components,
the clay samples overlap with both the sand and coal lithologies.

4.2.3. Mineralogical Interpretation

Based on the spectral features of the ASD and FTIR datasets, they are interpreted
to be related to quartz, kaolinite, montmorillonite, gypsum, quartz and organics from
the coal. The minerals are also confirmed by the XRD validation dataset, and only illite
and pyrite are found with XRD but are not recognized in the spectral datasets. Pyrite
is a metal sulfide, which is spectrally featureless in the measured wavelength range and
so would be difficult to identify [39]. The lack of spectral features for some of the coals
could indicate the presence of pyrite but more data are required to confirm this. Illite has
characteristic absorption features near 2.35 and 2.44 µm which are not recognized in neither
of the spectra. In the longer wavelengths, illite and montmorillonite are hard to distinguish,
especially because it seems that in our samples, the samples that might be related to either
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of the minerals are in combination with very dominant quartz features. Kaolinite, however,
has clear spectral features such as the double feature near 2.16 and 2.21 µm and the clear
spectral peaks near 9.5, 9.9 and 11 µm, which makes it easy to recognize spectrally. Based
on the spectra, it seems to be low crystalline kaolinite since the feature near 2.165 µm is
shallow compared to the 2.21 µm feature [40].

The coal samples are besides a double feature near 3.5 µm featureless in the longer
wavelength ranges. In the ASD data, it contains a broad spectral feature near 1.7 µm and a
double feature near 2.3 and 2.35 µm. Studies such as the one authored by Langa et al. [33]
show that coals with higher organic content have flatter spectra.

4.3. Geochemical Modelling

Proceeding the geochemical exploration, we will focus on the infrared and geochemical
data integration by developing various models, using different wavelength ranges. As
described in the Methodology section, we used support vector machine regression in
combination with different pre-processing techniques and hyperparameter tuning to find
the optimal models. The many repetitions in the models yielded many results and are
therefore presented in Appendix A, and only the R2 scores of the testing dataset, for the
best model for each element, are presented in Figure 12. The plots in Appendix A, show
the R2 for the testing dataset (blank bars) and the average and standard deviations of the
cross-validation repetitions presented in colored bars with corresponding error bars. For
some elements, such as Sr, the choice of best model was obvious. The best model has
the highest score values for both the training and testing dataset, with small error bars.
However, for elements such as Fe, the differences between the models are smaller, scores
of training and testing data are not always related, and the cross-validation scores have
large standard deviations. These aspects are discussed in Discussion Section 5.3 regarding
the model performance. The scatterplots corresponding to the models indicated in the
bar diagram of Figure 12 are presented in Figure 13 with the original concentration on
the x-axis and the predicted concentration on the y-axis. Since most of the SVR models
are non-linear, except for the model of Ti, the model cannot be presented with regression
coefficients as a mathematical function.

Figure 12. Model accuracies and parameters for each element trained on Schleenhain-lithology and
tested on Schleenhain-waste and Profen datasets.
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Figure 13. Scatter plots indicating the actual (x-axis) vs. predicted (y-axis) values.

Regarding the model parameters, it can be seen that for most elements the FTIR data
are best to predict the element concentration. Only Ti performs best when only using the
ASD data, and for Fe, the full wavelength range shows the best results.
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Most models are based on radial basis function (rbf) kernels, and only for Ti was
the linear model the best model. For the pre-processing, all models except the one for
Zn performed best when the spectral data were centered, i.e., mean subtracted. For the
pre-processing of the element concentration, most models performed best when the data
were standard-scaled (i.e., subtract the mean and divide by the standard deviation), and
only the models for Pb, Y and Th showed higher accuracies when the concentration had a
logarithmic scale.

5. Discussion
5.1. Compositional Analysis
5.1.1. Geochemistry

As described in the results, only for eight elements were the pXRF element concen-
trations considered representative for the actual rock chemistry based on the geochemical
validation data from the ICP-MS (Figure 5). The geochemical analysis reveals compositional
differences between the Schleenhain-lithology and the two waste sites, with higher content
for the elements, Pb, Sr, Rb, Zn, and Th in the Schleenhain-lithology. These geochemical
compositional differences are also evident in the correlation matrix (Figure 8) where certain
element ratios, such as Th/Ti and Sr/Rb, show high correlation within the waste samples
but no correlation for the lithology dataset. Also, we did not observe geochemical differ-
ences between the two mine waste drill cores, indicating similar geochemical differences
between the ‘fresh’ and older mine waste.

The elemental composition compared for each lithology (Figure 7) shows that these five
elements, with the highest content in Schleenhain-lithology, have the highest concentrations
for the coal and clay lithologies. Given that coal is the product mined for, its presence in
the waste is minor. Therefore, the low coal content in the waste could account for reduced
element concentrations in the waste. Different from coal, clay is not of economic interest for
this mine and is therefore expected in both the lithology and waste datasets. Because some
elements such as Sr, Rb, and Th have higher concentrations for the Schleenhain-lithology
clay samples compared to waste samples, compositional differences between clay samples
in the different datasets is expected. Spectral interpretations, which will be discussed in
the next section (Section 5.1.2—Mineralogy), can provide further clarification on these
compositional differences.

According to Malvadkar et al. [12], the presence of inorganics in coal can be explained
by multiple processes. The inorganics might have naturally existed before coal formation,
or incorporated through cation exchange, or introduced by filtration. Additionally, minerals
associated with coal, such as sulfides, which contain metals in their structure, could also be
responsible for the high element content. The elevated metal concentrations for clays can
be explained by either adsorption or ion exchange [41,42].

5.1.2. Mineralogy

Although the mineralogy itself poses no direct environment concern, its presence
can influence conditions such as soil stability, metal mobility, and potential acid mine
drainage. Therefore, understanding the mineralogical composition is crucial for assessing
possible environmental impacts guiding remediation efforts, and recognizing potential sec-
ondary resources for recovery. This section discusses the exploratory analysis and spectral
information related to the mineral composition and their potential environmental impact.

The spectral differences between the three datasets can best be analyzed using the
PCA based on FTIR data (Figure 9). Component 1, in particular, indicates significant
spectral differences among the three datasets. Further analysis of the PCA results and
visual comparison of the spectra reveal that the variance explained is due to higher spectral
reflectance in the 3–5 µm wavelength range for the Profen and Schleenhain-lithology
relative to the Schleenhain-waste spectra (see for example differences in spectra 1 and 11 in
Figure 11). This spectral difference could be attributed to sample moisture or grain size [43],
but also other aspects such as matrix effect and instrumental factors cannot be excluded.



Mining 2024, 4 604

The PCA of the Schleenhain-lithology dataset only reveals that, for both the FTIR and
ASD data, most spectral variance is observed between the lithologies coal and sand, which
both overlap with the clay samples. This suggest that spectral features associated with clay
minerals can be observed in the coal and sand samples.

The geochemical analysis revealed compositional differences within the clay samples
from Schleenhain-lithology. To determine whether these compositional differences are
also reflected in mineralogy, the spectra were analyzed in detail for clay identification.
Based on the ASD data, the minerals kaolinite and montmorillonite were identified, and
this was further validated using the XRD data. Although XRD analysis indicated the
presence of illite in some of the samples, its diagnostic features were not interpreted in
the spectra. Kaolinite typically exhibits a double feature near 2.16 and 2.21 µm, with the
dominance of the 2.16 µm feature depends on the mineral’s crystallinity. In the analyzed
samples, however, the 2.16 µm is not very dominant (see spectra 5 and 8 in Figure 11),
indicating a poor crystalline kaolinite. Spectra such as 4, 6 and 9 in Figure 11, show a
broad 2.2 µm feature characteristic of either illite or montmorillonite. As the spectra lack
the two diagnostic features of illite near 2.347 and 2.44 µm, a broad spectral feature near
2.2 µm is most likely montmorillonite. Comparing the FTIR spectra of these samples shows
that spectrum 6 also contains silica features similar to kaolinite, spectrum 4 has mainly
quartz features and spectrum 9 had additional features other than quartz which could be
attributed to montmorillonite.

While the geochemical analysis indicated compositional differences between coal
samples, the spectra in the MWIR and LWIR regions do not exhibit spectral features
except a double feature near 3.5 µm due to CH2 bonds. This spectral feature overlaps
with the OH double feature common to some hydrated minerals [25], complicating the
identification of coal in a mixed spectrum of coal and clay. In the SWIR range, the coal
can be identified based on the 1.7 µm and double feature near 2.4 µm. More spectral
features due to aromatic and aliphatic functional groups were expected in the MWIR and
LWIR wavelength ranges [30]. Low grade coals, such as our lignite samples, are known to
have shallower absorption features [30]; however, the study of Cepus et al. [31] on lignite
samples did characterize more spectral features which could be linked to the H/C ratio
of coal. However, that study used transmission spectroscopy focused on coal samples
specifically including sophisticated sample preparation.

5.2. Infrared Spectroscopy as a Geochemical Indicator

For a comprehensive coal mine waste characterization, the geochemical and infrared
spectral data were integrated. This integration uses infrared spectra for semi-quantitative
analysis of element concentrations through machine learning methods. The results demon-
strate that the model accuracies vary significantly depending on the modelled element,
with higher accuracies (R2 for the testing data), 0.77 and 0.70, for Sr and Rb, respectively.
Conversely, elements like Zn, Th, Y and Pb have the lowest accuracies with an R2 below 0.4.

This approach is advantageous for simultaneous analysis of chemistry and mineralogy
and offers new insights into the integration of portable sensor technologies for future mine
waste analysis. It is important to note that correlation does not imply causation in the
context of the interpretation of the modelling results. Therefore, the ability to model a
specific element using a particular wavelength or spectral feature does not necessarily
mean that the element is hosted in the mineral associated with that feature or range.
Instead, it may indicate that the element and mineral are formed or deposited under similar
geological conditions.

The models for Sr and Rb perform best in the longer wavelength ranges, specifically
the MWIR and LWIR, while showing very low performance, particularly for Sr, in the
VNIR and SWIR ranges. This indicates that the longer wavelengths are more effective for
quantifying the geochemical variation. Analysis of the spectra of samples with high Sr and
Rb content reveals that both elements show elevated concentrations in samples that were
identified as montmorillonite. Sr and Rb are both not expected in the mineral structure
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itself, as noted by [44]. This suggests that these elements are secondary and adsorbed
by montmorillonite.

Although the models for Ti and Fe are not among the best in terms of accuracy, they
are of particular interest because they perform best when the ASD wavelength range is
included. Specifically for Ti, the models using the SWIR and ASD wavelength ranges
outperform those using other wavelength ranges (see Appendix B). For Fe, only the VNIR
range explains some of the geochemical variance, as the SWIR has low R2 values, indicating
that it does not explain any of the geochemical variance.

Examining the spectral features in these ranges for samples with high and low Ti
content reveals a slight trend related to the dominance of the 2.156 µm feature of kaolinite.
The depth of this feature compared to kaolinite feature near 2.21 µm serves as a proxy for
its crystallinity [40]. Based on these analyses, it is hypothesized that Ti is substituted for Al
in kaolinite, reducing its crystallinity [45].

With R2 values lower than 0.4 and high standard errors for the calibration data, the
models for Th, Pb, Y and Zn underperform compared to the models for the other elements.
It is possible that the element concentration is not related to any mineralogy or that the
specific mineral could not be measured with the infrared technology. Such a mineral could
be sulfide which has little features in the wavelength range considered in this study but is
an important mineral due to its metal sulfide bond.

5.3. Integration of Wide Wavelength Range Infrared Data

The different exploratory and modelling analysis demonstrate the benefit of combin-
ing both the ASD and FTIR sensors for mine waste characterization. The PCA results based
on FTIR and ASD wavelength ranges show that both wavelength ranges were able to dis-
tinguish the coal, clay and sand lithologies of the Schleenhain-lithology dataset. However,
there is more overlap between especially the coal and sand lithologies in the PCA plots
using the ASD data compared to those generated using only the FTIR data.

The combined wavelength range has proven especially useful for the mineral in-
terpretations. For example, spectrum 5 in Figure 11 is relatively featureless in the FTIR
wavelength range but shows identifiable kaolinite features in the SWIR range. This sug-
gests that the ASD sensor is better suited to identify minor clay content in the samples.
Conversely, quartz (spectrum 7 in Figure 11) appears featureless in the ASD range but
exhibits prominent features in the FTIR range, specifically the silica features between 8
and 11 µm. This observation aligns with the fact that SWIR technology is effective for
identifying hydrated weathering or alteration minerals, while FTIR is more suited for
identifying rock-forming minerals, such as silicates [25].

The model performances vary significantly across the different wavelength ranges
considered. Often, the best geochemical model is achieved using a specific wavelength
range, indicating that no single wavelength range is universally optimal for geochemical
modelling. Instead, the most effective wavelength range depends on the specific element
being analyzed.

5.4. Opportunities, Limitations and Recommendations

In this study, a methodological framework was developed to assess the use of sen-
sor technologies for characterization of lignite mine waste. This research explored the
opportunities and limitations associated with sampling strategies, sensor technologies
and data analysis methods for comprehensive mineralogical and geochemical lignite mine
waste characterization.

The exploratory and modelling results indicate the most effective wavelength ranges
for spectral analysis and geochemical modelling. These results can inform future mine
waste sorting or monitoring efforts and be scaled up to other infrared sensor platforms,
such as those on conveyor belts or remote sensing systems. Integrating geochemical and
infrared sensor technologies has provided valuable insights into the relationship between
element concentrations and mineralogy.
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For elements such as Sr (and to lesser extent, Rb), the model performances were
sufficient to conclude that long-wavelength infrared data could be suitable for at least
preliminary material sorting. The low regression model performances for elements Th,
Zn, and Pb indicate that infrared technology is not capable of capturing their geochemical
variance effectively. Therefore, for these elements, geochemical sensor technologies remain
the primary sensor for geochemical assessment.

Achieving these results presents several challenges in this study, particularly regarding
sampling and data acquisition processes. Sampling and measurements were conducted
under various conditions, including in the field, laboratory settings, either directly on fresh
drill cores or on preprocessed samples. The difference in sampling and data collection
approaches could introduce limitations for mine waste characterization when using FTIR,
ASD and pXRF sensor technologies. Furthermore, the varying point size of different
sensors poses difficulties, especially given the heterogenous nature of mine waste samples.
Without additional sample preparation, such as homogenization, obtaining corresponding
measurements with different sensors has proven to be complex.

The comparison of XRF and ICP-MS measurements underscores the significance of
validation data when conducting geochemical analysis with portable XRF instruments. In
this study, portable XRF was employed under conditions similar to how it would be used
in the field, so with minimal sample preparation. The paper of Lemiere [34] evaluates the
potential and limitations of portable XRF technology, emphasizing the impact of factors such
as sample heterogeneity, granularity, porosity or moisture on the measurement accuracy.

Based on our findings, it remains unclear to what extent the measuring conditions
contributed to the low measurement accuracy for some of the elements. Consequently,
it is uncertain whether additional sample preparations would enhance the measurement
accuracy. Some elements exhibit low correlation with the ICP-MS data due to concentrations
nearing the sensor’s detection limits (e.g., arsenic), or high standard errors in measurements
(e.g., chromium). These factors must also be considered when evaluating the geochemical
models. The model performance will decrease when the input data does not represent the
actual sample geochemistry. Therefore, only seven of the elements measured by the XRF
are included in the data analysis of this paper.

The infrared data has inherent limitations, as not all minerals exhibit spectral features
within the used wavelength range. Despite integrating both ASD and FTIR in our approach
to cover an extensive range, certain minerals such as sulfides remain largely featureless in
this spectral range. Therefore, lower model accuracy may result because the mineralogy
associated with the element content is not captured by either of the infrared sensors. Addi-
tionally, overlapping spectral features present another challenge. Section 5.1.2 addresses
some examples of challenges in mineral interpretations, including cases where spectral
features may be entirely obscured by others.

For future work, it is advisable to expand the dataset to encompass the mineralogical
and geochemical variation in the area. This approach would facilitate the development of a
more comprehensive and robust predictive model. Additionally, it is crucial to consider
sample preparation as a key aspect of future work. Proper sample preparation can help
mitigate the effects of external influences such as sample inhomogeneity, soil moisture, and
differences in grain size, thus improving the accuracy and reliability of the analyses.

6. Conclusions

• This paper presents a methodological approach for data integration of a wide wave-
length range of an infrared spectral dataset and pXRF geochemical data for a compre-
hensive characterization of coal mine waste, using ASD, FTIR and pXRF data. These
datasets were analyzed using exploratory data-analysis strategies and the geochem-
istry is quantitatively modelled using support vector machine regression.

• For both the mineralogical and geochemical analysis, the most variance between the
samples was found between the coal, clay and sand samples.

• Geochemically there was large compositional variance between the coal and clay samples.



Mining 2024, 4 607

• The spectra did confirm compositional differences for clay, related to kaolinite and
montmorillonite; however, there were little spectral differences between the coals.

• The additional value of using a broad wavelength range of infrared spectroscopy is
most clear in the geochemical modelling results. Especially for the model of Sr since
there are significant differences in model performances between the models trained
on the different wavelength ranges.

• The wavelength ranges measured with the FTIR seems best to capture the presence
of certain minerals. The ASD data are able to capture minor clay and coal contents
and small spectral differences of clay minerals that can be linked to, for example, the
crystallinity of the mineral.

• The results show the importance of representative sampling, due to the heterogeneous
nature of mine waste material and the different point size of the sensors.

• Based on our exploratory and data integration analysis, it can be concluded that there is
no single method nor sensor that fully captures all compositional variance, and thereby
this emphasizes the need for sensor integration for comprehensive characterization of
the waste.
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Appendix A

Figure A1. Modeling results for strontium (Sr) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.
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Figure A2. Modeling results for rubidium (Rb) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.

Figure A3. Modeling results for iron (Fe) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.

Figure A4. Modeling results for thorium (Th) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.
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Figure A5. Modeling results for lead (Pb) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.

Figure A6. Modeling results for zinc (Zn) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.

Figure A7. Modeling results for yttrium (Y) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.
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Figure A8. Modeling results for titanium (Ti) across all repetitions, showing the impact on model
accuracies of various wavelength and pre-processing steps.

Appendix B

Table A1. XRD results from the Schleenhain-waste dataset.

Sample Mineral 1 Mineral 2 Mineral 3 Mineral 4 Mineral 5 Mineral 6

1-01-2 Quartz Kaolinite
1-03-1 Quartz Illite Kaolinite
1-06-1 Quartz Illite
1-07-1 Quartz
1-08-1 Montmorillonite Illite Kaolinite Pyrite Arsenopyrite Titanite
1-10-1 Montmorillonite Illite Kaolinite Pyrite
1-11-1 Illite Montmorillonite Kaolinite
1-12-1 Quartz Illite Montmorillonite Kaolinite
1-14-1 Quartz Illite Kaolinite
1-16-1 Illite Kaolinite
1-19-1 Illite Quartz Kaolinite
1-20-1 Quartz Illite Kaolinite
1-22-1 Quartz Illite Kaolinite
1-23-1 Illite Kaolinite
1-26-1 Quartz Illite Kaolinite
1-27-1 Quartz Kaolinite
1-30-1 Quartz Kaolinite
1-34-1 Quartz
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