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Joint Embedding Predictive Architecture for
Self-supervised Pretraining on Polymer Molecular

Graphs

Abstract

Recent advancements in machine learning (ML) have shown promise in accelerating polymer discovery by
aiding in tasks such as virtual screening via property prediction, and the design of new polymer materials with
desired chemical properties. However, progress in polymer ML is hampered by the scarcity of high-quality,
labelled datasets, which are necessary for training supervised ML models. In this work, we study the use
of the very recent ’Joint Embedding Predictive Architecture’ (JEPA) type for self-supervised learning (SSL)
on polymer molecular graphs, to understand whether pretraining with the proposed SSL strategy improves
downstream performance when labelled data is scarce. By doing so, this study aims to shed light on this new
family of architectures in the molecular graph domain and provide insights and directions for future research
on JEPAs. Our experimental results indicate that JEPA self-supervised pretraining enhances downstream
performance, particularly when labelled data is very scarce, achieving improvements across all tested datasets.

1 Introduction

Synthetic polymers are one of the most widespread
classes of materials, constituting an essential compo-
nent of numerous commodities in everyday life and in
industry [2, 36, 37, 84]. The ubiquity of polymers is
due to their low-cost processing and chemical stabil-
ity [25] and to their broad diversity in their chemistry
and structure, leading to a wide variety of distinctive
properties [12, 36].
The large diversity of the polymer chemical space pro-
vides the opportunity for designing polymers whose
properties match the application demands [37, 57].
Yet, the high number of combinations of chemical
compositions, chain structures, and synthesis meth-
ods, bring challenges in the effective browsing of this
large search space [37, 84]. In recent years, machine
learning (ML) has shown potential in new material
(i.e. polymer) discovery [47, 73]. ML methods are
increasingly applied in all steps of the materials de-
velopment cycle: from virtual screening and discov-
ering candidate materials using property prediction,
to inverse materials design [12, 52, 57] to create new
materials with desired properties.
However, the field of polymer ML is still in its
early stages, primarily hindered by the scarcity
of high-quality, large, publicly-available, labelled
datasets, due to limitations and costs associated with

laboratory-derived data [1, 47, 84]. The majority of
current studies operate on relatively small labelled
datasets, which constrains the potential of the meth-
ods developed.
To overcome the labelled data scarcity problem, sev-
eral strategies have been proposed, via transfer learn-
ing [72, 80], multitask learning [25, 36, 49] and self-
supervised learning (SSL) [22, 37, 71, 80]. The lat-
ter approach is of particular relevance, as it achieved
notable successes in other fields, including computer
vision [11, 13, 28, 63], natural language processing
[17, 50], and more recently, on graphs [34, 45, 70],
with successful examples also in the small molecules
domain [61]. While SSL has received significant at-
tention for small molecules, particularly in drug dis-
covery, there has been limited exploration for large
molecules, especially polymers. The inherent struc-
tural characteristics of polymers distinguish them
from small molecules, making the direct application
of small molecule SSL techniques not well suited.
Only recently have some initial works emerged for
SSL on polymers (Section 2.2).
In this thesis work, we will study a new architecture
family, called Joint Embedding Predictive Architec-
ture (JEPA) [39] for self-supervised pretraining on
polymer graphs (for an extensive discussion of JEPAs
and their advantages refer to Section 2). In essence,
our study focuses on two objectives: firstly, devising

1



a new self-supervised pretraining strategy based on
JEPA, for polymer molecular graphs, to improve the
accuracy in downstream tasks (e.g. property predic-
tion). This would be achieved by pretraining the ML
model with the proposed method, and then finetun-
ing the model on the labelled data available.
Secondly, the study offers comprehensive insights into
the utilization of JEPAs within the graph domain, to
shed light on this new architecture type and provide
directions for future work with JEPAs. Our research
focuses on polymer molecular graphs. While some as-
pects of our analysis apply broadly to JEPAs across
various types of graphs (i.e. in different domains)
and extend the study of JEPAs for graphs initiated
in [58], other results and experiments are specific to
JEPAs in the molecular graph domain, specifically
for polymers. This makes our study the first of its
kind in this specific area.
The results, discussed in Section 4, show that our
pretraining strategy noticeably improves downstream
performance, especially in data-scarce scenarios (less
than 1000 datapoints), showing significant improve-
ments also when finetuning on a dataset spanning a
polymer chemical space very different from the one
employed for pretraining. Moreover, our ablation
studies on JEPA model design and training strate-
gies, provide new insights into JEPAs for graphs and
their effective training.

2 Problem definition

2.1 Self-supervised learning
Defined by Yann LeCun as ’the dark matter of intel-
ligence’ [40], SSL is a ML technique where the model
learns from the data itself without relying on exter-
nal labels, by auto-generating labels from the data
and hence creating a supervised task. This can be
achieved in different ways (Figure 1.A), for instance
by predicting missing (masked) parts of the input
data [17, 28, 31] or generating data transformations
and teaching the model to be invariant to them [14].
In both cases, the model is forced to learn the under-
lying patterns and structures within the data. An-
other approach to SSL involves leveraging pseudola-
bels, namely, some properties of the input that can
be automatically derived from the data.
When labelled data is scarce, a model can be pre-
trained in a SSL fashion, and then finetuned on the
limited labelled dataset available, as visible in Figure
1.B. The goal is to improve performance when the
model is initialized with the parameters (i.e. knowl-
edge) learned throughout the pretraining stage.

SSL has achieved notable successes in computer vi-
sion [11, 13, 28, 63], natural language processing
[17, 50], and more recently, on graphs [34, 45, 70],
with successful examples also in the small molecules
domain [54, 59, 61, 65, 76]. The field is considered
one of the most promising for new advancements in
ML [40], as it allows to leverage not only the labelled
data, but also the unlabelled one, where the available
size of the latter is significantly larger compared to
the one of the former.

2.2 SSL for polymers
SSL remains largely unexplored for polymers. In
[37, 71, 80] the authors exploit Large Language Mod-
els (LLMs) for SSL pretraining, obtaining encourag-
ing results. In particular, polyBERT [37] is based
on the DeBERTa model [29], and pretrained through
masked language modeling (MLM) on approximately
80M polymer strings, generated from about 13,800
original polymers. During finetuning, the pretrained
transformer weights are frozen and used to provide
polymer embeddings to input to a multi-layer percep-
tron (MLP) for multitask property prediction. Trans-
Polymer [71] is based on RoBERTa [44] and also uti-
lizes MLM, but on a relatively smaller dataset of
around five million polymers augmented from PI1M
[46]. Finally, SML-MT [80] is based on BERT [17].
Differently from the previous two models, it exploits
also small molecules for pretraining, and not only
polymers, leveraging a larger dataset of around one
billion molecules. The three aforementioned papers
work in a relatively similar manner and obtain sim-
ilar performance, as nicely reported in [80]. How-
ever, these studies suffer from a simplified input poly-
mer representation via PSMILES language, specify-
ing only the repeating unit of the polymer and ne-
glecting important polymer structural information
such as chain architecture, stoichiometry, and bond-
ing between monomers’ atoms in copolymers, which
influence the polymers’ properties [80].
In [22] (under review), the authors successfully apply
SSL on molecular graphs for polymers for the first
time, using the polymer graph representation and
dataset from [2] (which we will also use and describe
in Sections 3.1 and 3.2.1). In their work, they improve
property prediction performance in data-scarce sce-
narios by pretraining the model in a self-supervised
fashion. The authors propose three self-supervised
tasks, based on reconstructing masked nodes and
masked edges, and a third based on the creation of a
pseudolabel, namely the ensemble polymer molecular
weight, derived from the polymers’ monomers. Nev-
ertheless, the reconstruction-based (generative) tasks
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used in [22] have shown limited efficacy for Graph
Neural Network (GNN) pretraining over the years
[26, p. 71] [43, 64], being outperformed by invariance-
based methods [8, 13, 64, 69, 75, 78].

2.3 Joint Embedding Architecture
Invariance-based pretraining is usually associated
with Joint Embedding Architectures (JEAs) (Figure
1.C.I), also called Siamese Neural Networks [10, 15],
given their joint pair of encoders. JEAs learn to out-
put similar embeddings for compatible inputs x and
y, and dissimilar embeddings for incompatible inputs,
where compatible inputs are usually obtained via pos-
itive data augmentations. Invariance-based methods
are trained either in a contrastive [13, 27, 64, 75, 85]
or in a non-contrastive fashion [8, 15, 23, 62, 77]. Con-
trastive methods explicitly push apart embeddings of
negative examples and pull together embeddings of
positive examples. Non-contrastive training, which
uses only positive augmentations, can be done for in-
stance by maximizing the information content of the
learned embeddings [8, 77] or via tricks such as stop-
gradient [14] momentum update [23], asymmetries
between the two encoder architectures [14, 23] and
batch-wise or feature-wise normalization [14, 23, 77].
While the end goal of contrastive and non-contrastive
training is the same, namely learning meaningful rep-
resentation invariant to augmentations, they differ in
how they prevent representation collapse. When the
model collapses, the two encoders output always the
same constant regardless of the input, hence bringing
the loss to zero, but learning meaningless representa-
tions.
These invariance-based approaches have gained more
popularity also in the molecular domain [68], exem-
plified by the work done in [61, 66]. The major
limitation of the current invariance-based SSL ap-
proaches is the heavy reliance on data augmentations
[4, 67], crucial for model performance, as they impose
priors on which data transformations maintain the
same semantic content. Meaningful data augmenta-
tions have been particularly challenging to create for
graphs [18, 41, 45, 70, 83]. This difficulty is evident
for molecules, where the slightest alteration, such as
removing a single node or edge to create a positive
augmentation, can result in a different molecule with
different properties [61], hence leading to false pos-
itives. When trained in a contrastive fashion, this
can also lead to the opposite case, false negatives
[18]. Current approaches for molecular data aug-
mentations rely on trial and error, extensive domain
knowledge, and learning augmentations, all of which
are resource-intensive [68]. Furthermore, it is also

shown that performance on downstream tasks highly
depends on which augmentation techniques were uti-
lized for pretraining [41]. In [67], the authors avoid
augmentations by using as one of the two encoders,
a perturbed version of the other encoder, to obtain
similar embeddings, and they achieve good results.
In AFGRL [41], they avoid augmentations by discov-
ering, for each node in the original graph, nodes that
can serve as positive samples via k-nearest-neighbour.
Another possible way to prevent and ease the need
for complex data augmentations, is to utilize a
’Joint Embedding Predictive Architecture’ [39] (Fig-
ure 1.C.II) to perform a reconstruction task in the
latent space. This approach will be the focus of this
study.

2.4 Joint Embedding Predictive Ar-
chitecture

The ’JEPA’ term, coined for the first time in [39], in-
cludes a spectrum of different models, that share the
fundamental feature of having joint encoders process-
ing inputs x and y in parallel, and a predictor that
predicts (in the latent space) the embedding sy from
the embedding sx (the outputs of the encoders), po-
tentially, but not necessarily conditioned on a latent
variable z. A JEPA model, similarly to JEAs, can
be trained to be invariant to a set of hand-crafted
augmentations, (with notable examples being Sim-
Siam [15] and BYOL [23], and BGRL [62] for graphs),
hence not solving the data augmentation issue. In
this scenario, the objective is the same as the one for
JEAs, and the difference between the two architec-
ture types lies only in the model design, namely the
use of the predictor model component, which creates
an asymmetry between the two joint networks. The
addition of the predictor module is deemed advan-
tageous for training purposes [15, 23, 62]. However,
JEPAs can also be trained in a different fashion, with-
out requiring data augmentations, exemplified by the
very recent work in [4, 7, 9, 21, 24, 55, 58] in domains
that span from image [4] and video [7] to optic flow
estimation [9], audio signal [21], EEG signal process-
ing [24], point clouds [55] and graphs [58]. From now
on, in this paper the term JEPA will always refer
exclusively to those JEPAs trained with this second
modality which does not require data augmentations.
In this case, instead of learning invariance to data
augmentations, the model learns to reconstruct, in
the latent space, a signal y (target) from a compati-
ble signal x (context), using a predictor network con-
ditioned on an additional latent variable z (e.g. po-
sitional information about y) to facilitate the recon-
struction task [4]. One common approach to obtain
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compatible signals, that are predictive of each other,
is via masking part of the input and learning to re-
construct the masked part y from the unmasked part
x. This reconstruction task is conceptually similar to
the one utilized in Generative Architectures (GAs)
[28, 31] (Figure 1.C.III). However, a crucial differ-
ence between JEPAs and GAs, is that in JEPAs (as
in JEAs) the loss function is applied in the latent
space, not the input space. Differently from JEAs,
JEPAs do not seek representations invariant to a set
of hand-crafted data augmentations. Instead, JEPAs
aim for representations that are predictive of each
other in the latent space, when conditioned on addi-
tional information [4]. Hence, JEPAs act as a bridge
between JEAs and GAs, taking the best from both
methods: predicting in the latent space facilitates the
learning of semantically-rich representations, avoid-
ing the need to predict and reconstruct every (poten-
tially noisy) detail of the input space, leading often to
overfitting [39, 58]. At the same time, JEPAs avoid
the need for complex data augmentations, needed for
JEAs. Figure 1.C shows the three different architec-
tures. The idea of a reconstruction task in the latent
space, used with JEPAs, was introduced in data2vec
[5] and later adapted to various domains under the
name JEPA, as described earlier.

2.4.1 JEPAs for graphs

The high-level idea of JEPAs for graphs is to mask
a part of the graph (i.e. a subgraph) and predict
the embedding of the masked part (the target sub-
graph), from the embedding of another larger part of
the graph (the context subgraph), as visible in Figure
1.D. A variation of this strategy has already been im-
plemented in LaGraph [69], where latent graph pre-
diction is also performed via masking. However, dif-
ferently from our work, in [69] they operate at the
node level, they mask the features but not the topol-
ogy, they do not employ a predictor module, and
they optimize an additional objective based on the
reconstruction of the input space, similarly to au-
toencoders. A similar study [18] improves on La-
Graph by predicting the masked nodes with extended
contexts that enable nodes of smaller importance, to
have more weight. In [58], the authors propose for the
first time a JEPA tailored for graphs, Graph-JEPA,
introducing an initial study. The method builds upon
the work done in [4] for images and addresses some
of the challenges present when working in the graph
domain. However, several parts of their methodolo-
gies are left partially unexplored, leaving room for
further exploration and experimentation with JEPAs
in the graph domain, even more so for molecular

graphs. Sections 3.4 and 3.5 of Methodology will de-
tail and motivate the novelty of our proposed JEPA
and how it differs from [58]. The changes span most
of the components necessary for the architecture, in-
cluding spatial partitioning techniques, sizes of sub-
graphs, the specific choice of the encoder types, and
training settings (e.g. via regularization). While
some changes are more general and regard broadly
all JEPAs for graphs, others are tailored for polymer
molecular graphs.
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Figure 1: A: A simplified overview of different approaches to SSL, for a more complete taxonomy refer to
[45, 70]. B: A simplified illustration of how SSL is used, and the knowledge transfer step via initializing the
finetune model’s (red rectangle) weights with those learned throughout pretraining. C: Common architec-
tures for SSL and the corresponding inputs in the polymer graph domain (Section 3.1). I: Joint Embedding
Architectures learn to output similar embeddings (from positive data augmentations) for compatible inputs
x, y and dissimilar embeddings for incompatible inputs. II: Joint Embedding Predictive Architectures can
be used both with invariance-based and reconstruction-based SSL approaches. In the former case, they work
similarly to JEAs, in the latter case, they learn to reconstruct the embedding of a signal y from a compatible
signal x, using a predictor network that is conditioned on an additional variable z to facilitate prediction.
III: Generative Architectures learn to directly reconstruct in the input space a signal y from a compatible
signal x, using a decoder network, conditioned on an additional latent variable z to facilitate reconstruction.
D: An overview of JEPA with a reconstruction task, described in Section 2.4 and more thoroughly in Section
3.5. The inputs are polymer graphs. The latent variable z is the positional encoding of the target subgraph
(see Section 3.5.3). 5



3 Methodology
This section introduces the methods employed
throughout the work. Firstly, the graph representa-
tion of polymers (Section 3.1) and the datasets (Sec-
tion 3.2) are introduced. Secondly, the graph neu-
ral network message passing mechanism utilized is
discussed in Section 3.3. Subsequently, the specific
pretraining method and the architecture used are de-
scribed in Sections 3.4 and 3.5. Finally, Section 3.6
details the training procedure.

3.1 Polymer graphs
Polymers are large molecules composed of repeating
units called monomers. The material properties of
polymers, such as mechanical properties including
tensile strength and elasticity, depend on different
structural characteristics of polymers. These char-
acteristics include the monomer chemistries, namely
the atoms and bonds constituting the monomer, the
monomer stoichiometry, representing the ratio in
which one monomer is present in the polymer, in case
multiple monomers are present, and chain architec-
ture (e.g. alternating, random, block). Figures 2 and
3 provide an intuition of these structural features.
Furthermore, the stochastic nature of polymerization
reactions usually leads to a polymer material consist-
ing of an ensemble of macromolecules (i.e. polymers)
with varying chain lengths.
Given the recurrent chain-like structure of polymers
and the stochastic nature of the reactions that create
them, representing polymers as graphs constitutes a
significant challenge. Merely representing them via
their single monomer units, would neglect important
structural characteristics, such as their chain archi-
tecture, which can significantly alter the material
properties of the polymer. In [2], Aldeghi and Co-
ley propose a novel graph representation, capable of
capturing both the monomers’ chemistry and struc-
tural information, exemplified in Figure 2. Specifi-
cally, it represents the monomer units’ chemistry of
a polymer p with a graph G, where the nodes (V )
and edges (E) represent the atoms and bonds respec-
tively. Each node v and each edge evu (connecting
node v to node u) are associated with feature vec-
tors, describing the atom and bond characteristics:
fv and fevu

where fv ∈ F V and fevu
∈ F E , with F V

and F E being the node and edge feature space of the
graph, respectively. Tables 1 and 2 show the full list
of the features used.
The polymer stoichiometry is represented via node
weights: each node v has a weight wv, where wv ∈
W V and wv ∈ (0, 1], that reflects in which ratio the

monomer to which the node belongs to, is present
in the full polymer. Finally, the chain architecture is
represented via stochastic edges, namely edge weights
(W E), describing the average structure of the re-
peating unit, capable of discriminating between alter-
nating, block, and random chain structures. Hence,
each edge evu is associated with a weight wvu with
wvu ∈ (0, 1] indicating the probability of a bond be-
ing present, between node v and node u, in each re-
peating unit. The edges are directed, to represent a
wider range of polymers, including graft copolymers
and polymers with terminal ends. From the descrip-
tion provided above we can define the polymer graph
as G(p) = {V, E, F V , F E , W V , W E}.

Figure 2: Graph representations of selected polymer
topologies are shown, with stochastic edges depicted
by dashed lines. Different bead colors indicate vari-
ous atom types. Below each graph, an example poly-
mer sequence for each topology is provided as text,
where A and B represent two distinct monomers.
Homopolymers, as well as alternating, random, and
block copolymers, can be described as undirected
graphs with some stochastic edges, where the prob-
ability of the edge reflects the frequency with which
the bond is present in the polymer chain. However,
following [2], we use directed edges to potentially rep-
resent other polymer types (e.g., oligomers with ter-
mini, graft copolymers) that are not present in the
datasets considered. In the figure, we have omitted
directed edges for simplicity.

3.2 Data

3.2.1 Aldeghi and Coley Dataset

The dataset utilized for pretraining is the one from
[2], built upon the polymer space defined in [6], de-
picted in Figure 3, representing conjugated poly-
mers as photocatalysts for hydrogen production. The
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Table 1: Node features: all encoded as one-hot vectors except for atom mass. Chiral Tag, Degree, Hybridiza-
tion, Charge, and #Hs include an additional category for uncommon values.

Node feature Description Feature Size
Atom Type Type of atom 101
Chiral Tag Type of chirality 5
Degree Number of neighbours 7
Is Aromatic Whether the atom is in an aromatic system 1
Hybridization Type of hybridization, i.e. sp, sp2 6
Charge Formal charge of the atom 6
#Hs Number of bonded hydrogen atoms 6
Mass Atom mass 1

Table 2: Edge features: all encoded as one-hot vectors. Stereo has an extra category for uncommon values.

Edge feature Description Feature Size
Bond Type single, double, triple, or aromatic 4
Conjugated Whether the bond is conjugated 1
Is in Ring Whether the bond is part of a ring 1
Stereo Stereochemistry: none, any, E/Z, or cis/trans 7
No Bond For robustness, should always be 0 1

dataset contains 42,966 polymers, composed of nine
A monomers and 862 B monomers. The polymers are
classified according to three distinct chain architec-
tures: alternating, random, and block. Additionally,
they are further distinguished by three stoichiometry
ratios: 1:1, 1:3, and 3:1. The dataset considers all
possible combinations between A and B monomers,
and the different stoichiometries and architectures.
For random and block copolymers, all stoichiometry
ratios were considered, while for alternating copoly-
mers only the 1:1 ratio. The dataset includes elec-
tron affinity (EA) and ionization potential (IP) as
molecular properties, used as labels for the property
prediction task. EA measures a polymer’s ability to
accept electrons, and IP measures its ability to release
electrons. Both are important for using polymers as
photocatalysts in hydrogen production. The dataset
is divided into three parts: one part (40%) is used for
self-supervised pretraining, where the labels are not
utilized. The second part (40%) is kept for supervised
finetuning (downstream task), although smaller sub-
sets (e.g. 0.4%) are used for testing data-scarce sce-
narios (Section 4). This split emulates a realistic sce-
nario where pretraining and finetuning do not occur
on the same data, as usually pretraining data lacks
labels. The remaining 20% of the dataset is used for
validation, both for pretraining and finetuning, when
finetuning on this dataset. 5-fold cross-validation [60]
is used to validate the results.

3.2.2 Diblock Copolymers dataset

Given the constrained polymer chemical space repre-
sented by the dataset described in Section 3.2.1, the
simplicity of the prediction tasks related to the na-
ture of the predicted properties and the similarities
between pretrain and finetune datasets, the model
was tested also on a more complex downstream task.
For this scope, the Diblock Copolymers dataset [3]
was utilized. The dataset, used also in [2], provides
the phase behavior of 49 diblock copolymers (Figure
4). It details the observed copolymer phases (lamel-
lae, hexagonal-packed cylinders, body-centred cubic
spheres, a cubic gyroid, or disordered) across various
relative volume fractions and molar masses, totaling
4780 entries. Since each entry might correspond to
multiple phases, the task is framed as a multi-label
classification problem with five labels, corresponding
to the phases that can be observed. For this scenario,
pretraining occurred on 80% of the Aldeghi and Coley
dataset (with 5-fold cross-validation), and finetuning
was then performed on the Diblock dataset, consid-
ering different dataset sizes. Given that some phases
are more common than others, resulting in the five
labels being imbalanced, we use stratified sampling
to maintain the same label distribution across train
and test splits, specifically the stratification is based
on the distribution of the first phase of each polymer,
as done in [2].
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Figure 3: The Aldeghi and Coley dataset comprises 42,966 copolymers characterized by various building
blocks, chain architectures, and stoichiometries. There are nine monomers classified into group A, all of
which are also included in group B. Each monomer is represented by a distinct bead color in the figure, with
each bead being a monomer. The figure is adapted from [2].

Figure 4: The Diblock Copolymers dataset represents 4780 diblock copolymers, where each block consists
of one or multiple monomers, ranging from one to four. Different chain architectures and irregular stoi-
chiometries are considered. The prediction task is a multi-label classification that predicts the self-assembly
behavior (phase) of the polymers, specifically how the diblock copolymers fold and shape in certain environ-
mental conditions.

3.3 Node-centred Weighted Directed
Message Passing Neural Network

Weighted Directed Message Passing Neural Network
(WDMPNN) is a type of graph neural network, intro-
duced by Aldeghi and Coley in [2], based on DMPNN
[74], to effectively learn on the polymer graphs de-
scribed in Section 3.1. In this work, we devise and
utilize a variant of the WDMPNN based on node-
centred message passing, instead of the original edge-
centred one. The node-centred model achieves the
same performance as the edge-centred one, but it is
more intuitive, more efficient, and less cumbersome

to implement and work with. A full comparison and
motivation behind this design choice can be found in
Appendix A.
Similarly to common GNNs, the core mechanism of
the network is based on localized node-centred convo-
lutions, namely message passing between neighbour-
ing nodes, with messages being the outputs of nonlin-
ear functions (transformations) that take the nodes
and edges features as input. Hence, the node fea-
tures are iteratively transformed and updated based
on the received messages, resulting in learned node
embeddings. A representation of the full graph (i.e.
polymer) is then obtained by pooling (e.g. average)
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Figure 5: The four steps to learn polymer representation via the node-centred WDMPNN. Figure adapted
from [2].

all nodes (i.e. atoms) embeddings. Figure 5 shows
the four steps to learn polymer representations (also
called fingerprints) via the node-centred WDMPNN.
In the first step, considering a node v, its initial em-
bedding h0

v is computed as shown in Equation (1):

h0
v = τ

(
Wi cat

(
fv,

∑
k∈N(v)

wkvfekv
)
))

(1)

where N(v) represents the neighbours of v, and the∑
summation takes a weighted average of the incom-

ing edge features, based on the edge weights wkv of
the edges arriving in v from the respective neighbour-
ing k node. ’cat’ denotes feature concatenation, Wi
is a learnable weight matrix, and τ is a non-linear ac-
tivation function. Concatenating node features and
incoming edge features leads to an expressive initial
representation h0

v. In the next step (Equation (2)),
the node message passing mechanism is performed:

ht+1
v = τ

(
h0

v + Wh
∑

k∈N(v)

wkvht
k

)
(2)

with Wh being a learnable weight matrix. The
∑

summation takes a weighted average of the neigh-
bouring nodes features, based on the edge weights
wkv of the edges arriving in v from the respective k
node. A residual connection adds the initial embed-
ding (h0

v) to maintain important original information
of the node. The operation is repeated T times, where
T represents the number of message passing layers.
The final node embedding hv is obtained as shown in

Equation (3):

hv = τ

(
Wo cat

(
fv,

∑
k∈N(v)

wkvht
k)

))
(3)

with Wo being a learnable weight matrix.
Considering Equation (3) as an additional and final
message passing step, the actual total number of mes-
sage passing layers is T +1. Finally, the graph embed-
ding h, representing the polymer in the latent space,
is obtained via a weighted mean of the node embed-
dings, as shown in Equation (4):

h = 1
|V |

∑
v∈G

wvhv (4)

where |V | represents the total number of nodes in the
graph, and wv weights each node based on the ratio
(stoichiometry) of its monomer in the polymer. Sub-
sequently, the learned polymer representation h, can
be utilized as input for any downstream task, for in-
stance as input to a multi-layer perceptron that can
be trained in a supervised fashion to predict a prop-
erty.
In Appendix B, we will describe in full the hyperpa-
rameters utilized for the WDMPNN.
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3.4 Spatial partitioning for JEPA
To find the input x and y, namely the context
and target subgraphs, for the JEPA model, it is
necessary to partition the graph G into subgraphs
{G1, G2, . . . , Gn}. Subgraphing is an essential com-
ponent of JEPAs. We discuss it in detail in this
section before describing JEPA itself, along with all
other components and design choices, in Section 3.5.
Splitting the graph into patches (i.e. subgraphs) can
be done in different ways, via a subgraphing function
P. In Graph-JEPA [58], the authors propose sub-
graphing based on METIS [35] (see Section 3.4.2),
and random subgraphing. They do not focus on any
domain- or graph-specific technique, leaving room for
future work. Based on intuition and previous studies,
we devise a list of requirements to be respected when
subgraphing on polymer graphs:

1. In the case of a copolymer, the context subgraph
should include elements from both monomers:
predicting a part of monomer B, if monomer B
is missing from the context is not possible,

2. Every edge and every node should be in at least
one subgraph [30, 58] to include full global infor-
mation and full input representation,

3. The context patch (subgraph) should be larger,
hence more informative, than the targets patches
(subgraphs) we are trying to predict from the
context [4],

4. The target subgraphs should have minimal over-
lap with the context subgraph [4, 58] to make
the prediction task less trivial,

5. The context and targets subgraphs should
change at every training loop to prevent over-
fitting [4, 58],

6. For every directed edge evu in a subgraph,
include also the edge euv, to comply with
WDMPNN (described in Section 3.3).

Based on these principles the following spatial par-
titioning methods are proposed:

3.4.1 Motif-based subgraphing

A specialized subgraphing approach tailored to the
chemical domain, can generate subgraphs that rep-
resent chemical fragments, for example functional
groups or small molecular subunits. This partitioning
method ensures that the subgraphs carry meaning-
ful chemical information, potentially enhancing the

model’s understanding of chemical patterns, inter-
node relationships, and structural motifs.
Several methods are available to partition a graph
into motifs, the most commonly used being BRICS
(Breaking of Retrosynthetically Interesting Chemical
Substructures) [16]. BRICS is an algorithm designed
to decompose chemical compounds into smaller, syn-
thetically relevant fragments by focusing on func-
tional groups and other key substructures. It sys-
tematically breaks bonds to generate fragments that
retain specific chemical functionalities. Other meth-
ods include RECAP [42], various methods based on
BRICS to find smaller motifs [76, 79, 82], and meth-
ods based on motifs learning [81].
To generate valid motifs, we need to work at the
monomer level, as the stochastic edges in the polymer
graphs make those graphs invalid molecules and they
cannot be processed by software like RDKIT to find
the motifs with the aforementioned methods. Given
that monomers have a limited number of atoms, it
is necessary to utilize a method that fragments the
molecule in very small motifs, to avoid having a sin-
gle motif representing the full monomer, as this would
not comply with the subgraphing requirements listed
before. After testing different methods, we found that
the approach used in [82] is the most suitable for our
use case. Their method further improves BRICS by
adding two additional rules:

1. breaking the bond where one end atom is in a
ring while the other end not

2. selecting non-ring atoms with three or more
neighbouring atoms as new motifs and breaking
the neighbouring bonds.

The first rule reduces the number of ring variants and
the second rule breaks the side chains [82].
Empirical tests showed that the algorithm avoids
edge loss by producing subgraphs with minimal over-
lap. The only case when edge loss occurs is when the
algorithm yields subgraphs made of a single node,
in that case, a 1-hop expansion is performed. After
finding motifs, some motifs are joined to form the
context subgraph. In particular, to ensure Require-
ment 1, we form the context by joining two subgraphs
that belong to different monomers and are connected
by an intermonomer bond. Then, the context is po-
tentially randomly expanded with other subgraphs,
to respect the size requirements. The remaining mo-
tifs are available as possible targets. If the remaining
number of motifs is smaller than the number of re-
quired targets, we create new subgraphs by randomly
selecting a non-context node and including it and its
1-hop neighbours in a new subgraph. The frequency
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of this operation depends on the sizes of subgraphs,
and the number of targets. This is done also for all
the other subgraphing methods (Sections 3.4.2 and
3.4.3) if necessary.

3.4.2 METIS subgraphing

METIS is a popular subgraphing algorithm [35], uti-
lized also in [30, 58]. METIS works by partitioning
a graph into a predefined number of clusters p while
minimizing the edge cut between these clusters and
maximizing the within-cluster links. Its widespread
use is due to its low computational cost and the qual-
ity of the produced subgraphs.
METIS produces non-overlapping partitions. To
avoid the loss of edge information, we perform a 1-
hop expansion on each partition. This expansion re-
sults in larger subgraphs and increased overlap be-
tween them. The procedure would also comply with
the requirements listed in Section 3.4, so it would re-
quire randomly joining subgraphs into a unique con-
text subgraph based on the size requirements, and on
the monomer they belong to. The number p of clus-
ters for the METIS algorithm is a hyperparameter, on
which the sizes and number of the clusters depend.
Through empirical experimentations, we found seven
to be an optimal choice for p.
This method, as the one based on random walks
(RWs) (Section 3.4.3), potentially produces sub-
graphs that are not meaningful from a chemical per-
spective, potentially limiting their semantic content.

3.4.3 Random-walk subgraphing

To compare the usefulness of using domain knowl-
edge (Section 3.4.1) and a proper clustering algo-
rithm (Section 3.4.2), we propose to test a random-
walk-based method, suited for the polymer graphs
described in Section 3.1. Random walks allow more
flexibility, more control over subgraph sizes, and tend
to produce more diverse subgraphs at each iteration,
given their non-deterministic nature, hence perfectly
complying with Requirement 5.
The method begins by creating the context sub-
graph with an edge connecting atoms from different
monomers. In a random-walk fashion, it then itera-
tively adds elements, alternating between monomers.
For the target subgraphs, it starts random walks from
the non-context nodes, without constraints on which
monomer the nodes added belong to. To avoid edge
loss we do a 1-hop expansion of the target subgraphs.

3.5 Joint Embedding Predictive Ar-
chitecture for graphs

The high-level idea of JEPAs for graphs is to par-
tition the graphs into patches (i.e. subgraphs) and
predict (reconstruct) the embedding sy of a masked
patch (y) of the graph, the target subgraph, from the
embedding sx of another, larger, part of the graph,
the context subgraph (x).
The first step required is to divide the graph into
subgraphs, which we thoroughly discussed in Section
3.4. The following steps are described in detail in the
next sections, starting from a discussion on the sizes
of subgraphs in Section 3.5.1.

3.5.1 Subgraph sizes

In addition to the method by which subgraphs are
obtained, it is important to focus on the sizes of the
context and target subgraphs. In I-JEPA [4], the au-
thors show the importance of the context and target
image patch sizes, showing a significant difference in
performance for different sizes. While Graph-JEPA
[58] does not consider the subgraph sizes, we explore
this aspect of methodology for JEPAs in the graph
domain. The importance of subgraph sizes is evi-
dent also from an intuitive perspective: for the con-
text to predict the target, the context should contain
enough information to make the prediction possible,
with additional (i.e. positional) information about
the target provided by the latent variable z. This is
stated clearly also in the original JEPA paper [39],
mentioning how sy should be easily predictable from
sx. This cannot be achieved if the context subgraph
is too small and consequently non-informative. For
instance, if the context contains only three carbon
atoms of the full polymer, predicting a specific target
(e.g. a functional group) is very complex since three
carbon atoms represent very general, non-specific in-
formation, that does not allow to precisely predict a
missing part. This agrees with Requirements 1 and 3
of Section 3.4. In the experiments, we will extensively
investigate the role of subgraph sizes, by testing the
model with context subgraph sizes ranging from 20%
to 95% of the full graph. For the target subgraphs,
sizes will span from 5% to 20%. The results are re-
ported in Sections 4.1.1 and 4.1.2.
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3.5.2 Models

We devise two different versions of the model, visi-
ble in Figure 6a and Figure 6b. While the end goal
of the architectures is the same, they differ in the
way the context and target embeddings sx and sy

are obtained. Each of the two architectures presents
advantages and disadvantages:

I

The structure of the first model (Figure 6a), is rel-
atively similar to the one utilized in Graph-JEPA
[58], itself based on the work of [30], for the way
they obtain the graph representation in the latent
space. An initial GNN, in our case the WDMPNN,
takes separately as input all the subgraphs found
by the subgraphing algorithm, plus the context sub-
graph formed by joining some of those subgraphs.
The GNN produces subgraph embeddings by pooling
the learned subgraph’s node embeddings. All sub-
graph embeddings (including those of the subgraphs
used to form the context subgraph, but excluding
the context subgraph), are subsequently fed to the
target encoder, Etarget, implemented with a trans-
former block. The output of the transformer is new
subgraph embeddings, incorporating not only local
information, but also global one, obtained from the
other subgraphs, via the self-attention mechanism of
the transformer. Some of the new subgraph embed-
dings are used as targets, hence we call them target
embeddings.
When the model is trained with momentum update,
the Etarget parameters need to be updated via an
exponential moving average (EMA) of the Econtext

parameters. Therefore, the context subgraph em-
bedding is also fed to a transformer context encoder
Econtext to produce a new context subgraph embed-
ding. The context encoder is necessary only to main-
tain an exact symmetry between the two encoders.
This is also the case if we use vicReg with weight
sharing (Section 3.5.6). The input of Econtext is the
single context subgraph embedding, hence, the self-
attention mechanism of the transformer is not attend-
ing any other subgraph embeddings. It is important
that the context subgraph does not ’see’ the other
masked parts (i.e. targets) of the graph, otherwise
the prediction task would be trivial.
To maintain positional information while working on
subgraphs, we utilize two different positional embed-
dings, described in detail in Section 3.5.3.
At this stage, we obtained the context and target em-
beddings, and we can utilize the predictor network
hφ, to predict the target embedding sy from the con-

text embedding sx. We will describe this step in Sec-
tion 3.5.4 since it is the same for both model versions.
The target subgraphs are selected randomly from the
pool of all subgraphs. The number of targets is arbi-
trary and is the subject of the experiment in Section
4.1.3. Importantly, the subgraphs utilized to create
the context subgraph cannot be picked as targets, to
avoid the prediction task to be trivial. Regarding
the architecture, it is important to note two key dif-
ferences between ours and Graph-JEPA. Firstly, the
choice of GNN, in which we utilize the WDMPNN
for polymer graphs. Secondly, in our model, the tar-
get encoder takes as input all subgraphs (spanning
the full graph nodes and edges) found by the sub-
graphing algorithm, including the subgraphs utilized
to form the context subgraph. Differently, in Graph-
JEPA only the subgraphs selected as targets are given
as input. Since the target subgraphs are a (relatively
small) subset of all subgraphs, this hinders the ex-
change of global information, since the target encoder
is missing a major part of that global information (i.e.
the full graph) from the input it is given. In data2vec
[5], one of the seminal works for JEPAs, the authors
extensively discuss the importance of the exchange of
global information, defined in the paper as ’contex-
tualization’ of the targets. Contextualization makes
predicting the target from the context more feasible
since the targets will contain more unique, polymer-
specific global information. As described in Section
3.5.1, making the prediction task feasible, is crucial
to effectively train JEPAs [39]. In the successful I-
JEPA [4], the authors also contextualize the targets,
by feeding all the image patches to the target encoder,
not only the image patches selected as targets.

II

The second architecture (Figure 6b) proposed, com-
pared to the first, removes the initial GNN (i.e.
WDMPNN) encoder and substitutes the transformer
blocks utilized for the context and target encoders,
with two GNNs (i.e. WDMPNNs) respectively. The
changes make the model less complex and less pa-
rameterized, compared to the first one, hence making
Model II computationally more efficient. The input
of the context encoder remains the context subgraph,
while the input of the target encoder is the full graph.
This contrasts with Model I, where the target en-
coder receives as input all the subgraphs found by
the partitioning algorithm. Subgraph-level training
(e.g. with a transformer) is used mostly to tackle
problems such as over-squashing in large graphs [30].
Additionally, in the case of JEPAs, training on sub-
graphs with a transformer as Etarget, allows full tar-
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get contextualization, since all subgraphs attend each
other. However, given the modest size of the poly-
mer graphs (20-30 nodes), we hypothesize that the
model can contextualize the targets also via a mes-
sage passing mechanism (i.e. WDMPNN), which sub-
stitutes self-attention (i.e. transformer). This is pos-
sible if the number T of message passing layers is
large enough, allowing each node to exchange infor-
mation with nodes T -hop apart. We also consider
the over-squashing problem not particularly relevant
in the molecular domain, given the small graph sizes.
Additionally, training Etarget on the full graph, al-
lows to maintain positional information more easily.
The changes in Model II, remove the need for an in-
termediate subgraph embedding (the one produced
by the initial GNN in Model I), and reduces signifi-
cantly the number of parameters of the model. As for
Model I, Econtext outputs the context subgraph em-
bedding sx. To obtain a target subgraph embedding,
sy, we pool the node embeddings learned by Etarget

on the full graph, for the nodes that belong to that
target subgraph. Similarly to Model I, the subgraphs
utilized to form the context subgraph cannot be used
as targets to be predicted.
The next step regards predicting the target subgraph,
which we explain in 3.5.4, but first we describe how
we include positional information in the next section.

3.5.3 Positional information

We employed two types of positional encoding (PE):
at the node level and at the subgraph (patch) level.
The node-level PE increases the expressiveness of
the model. The goal is to maintain node positional
information when working with subgraphs. It is
especially useful for Model I where we work with
subgraphs for the target encoder. The second type
of PE is via subgraph (patch) level positional tokens
used by the predictor to ease the prediction of the
targets from the context, by providing the context
subgraph with positional information of the target.

Node PE. To include node PE, we linearly
transform the original node features and sum it with
a PE vector, itself obtained via a linear transforma-
tion of the original PE features. The original PE
features are obtained via random-walk structural
encoding (RWSE) [19], as done in [30], originally
used by [51]. The RWSE for a node v is defined as:

pv = (Mii, M2
ii, . . . , Mk

ii), pv ∈ Rk, (5)

where Mk = (D−1A)k is the random-walk diffusion
matrix of order k and i is the index of node v in

the adjacency matrix. Mk
ii represents the probability

of node v returning to itself after a k-step random
walk. RWSE ensures a unique node representation
by considering each node’s distinct k-hop topological
neighbourhood. It captures how nodes are embed-
ded within the larger graph topology, indicating the
likelihood of a node reconnecting with itself over mul-
tiple steps, reflecting its position in the overall graph.
By doing so, the position is expressed in a global and
consistent manner for each node. We set k equal to
20, as done in [30, 58]. The feature vector for v is:

hv = pvT + fvU (6)

with T ∈ Rk×d and U ∈ Rf×d being learnable
matrices.

Patch PE. Patch PE is used as the variable z
to help the predictor hφ (Section 3.5.4) predict the
target embedding from the context embedding by
giving to the context information about the target.
We compute the patch PE from the original graph
adjacency matrix A ∈ RN×N (with N the number
of nodes) and the subgraphs {V1, . . . , VP } extracted
by the subgraphing algorithm (Section 3.4), as done
in [30]. Specifically, we obtain relative positional
information via the coarsened adjacency matrix
AP ∈ RP ×P over the subgraphs, with P being the
number of subgraphs, and APij

defined as:

APij
= |Vi ∩ Vj | = Cut(Vi, Vj), (7)

where Cut(Vi, Vj) =
∑

k∈Vi

∑
l∈Vj

Akl is the graph
cut operator that counts the number of connecting
edges between subgraph Vi and subgraph Vj . The
positional encoding p̃i ∈ Rk̃ at the subgraph level, is
then extracted similarly to the node-level one, namely
via RWSE over the coarsened adjacency matrix AP .
We set k̃ equal to 20, as done in [30].

3.5.4 Predictor

Given the output of the context encoder, sx, we wish
to predict the m target subgraphs representations
sy(1), . . . , sy(m). To that end, for a given target sub-
graph embedding sy(i), the predictor hφ takes as in-
put sx summed with the linearly transformed target
subgraph positional token p̃i:

ŝy(i) = hφ

(
sx + p̃iT̃

)
(8)

with T̃ ∈ Rk̃×d. The predictor outputs the predicted
target embedding ŝy(i). Since we wish to make pre-
dictions for m target blocks, we apply our predictor
m times, obtaining predictions ŝy(1), . . . , ŝy(m). In
practice, the predictor hφ is implemented via a MLP
(see Appendix B for details on the hyperparameters).
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(a) Model version I

(b) Model version II

Figure 6: The two JEPA model versions proposed. An in-depth description of the models can be found
from Section 3.5.2 to Section 3.5.5. In Figure (a), we illustrate the subgraphing process on the left. This
process also occurs for Model II (Figure (b)), but it is not shown due to space limitations. For Model I, we
represent the subgraphs using only the subgraph nodes, whereas for Model II, we depict the nodes and edges
not belonging to subgraphs as faded (transparent). Both representations convey the same information and
are used according to the available space.
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3.5.5 Loss

For each entry, the loss is the average L2 distance
(Mean Square Error (MSE)) between the m predicted
target subgraph representations and the m true tar-
get subgraph representations:

MSE = 1
m

m∑
i=1

(̂sy(i) − sy(i))2 (9)

The parameters of the predictor hφ, and context
encoder Econtext, are learned through mini-batch
stochastic gradient descent (SGD), via backpropaga-
tion. The parameters of the target encoder, Etarget,
are updated via an exponential moving average of the
context encoder parameters. This is done to prevent
representation collapse, as discussed in Section 2.3.
To avoid backpropagation on Etarget we utilize the
stop-gradient operation. Updating Etarget parame-
ters with Econtext ones, requires the two encoders to
have identical structure. We also experiment with
a different learning strategy based on regularization,
described in the next section 3.5.6.

3.5.6 Regularization with vicReg

We decided to compare our JEPA trained with stop-
gradient and momentum update, with another non-
contrastive training strategy based on regularization
via vicReg [8] to prevent collapse. VicReg, short
for variance-invariance-covariance regularization, is a
regularization method that can be utilized to train
JEAs and JEPAs to prevent collapse, by maximizing
the amount of information in the embeddings pro-
duced by the encoders. The way collapse is prevented
is more efficient than using a contrastive method,
which requires large batch sizes to contain many neg-
ative augmentions. It is also more elegant and intu-
itive than the tricks utilized in other non-contrastive
methods like momentum update, stop-gradient, and
batch- or layer normalization, whose functioning is
still not fully understood. Differently from strate-
gies like momentum update, it does not require the
encoders to share weights, nor the inputs to be the
same, hence potentially allowing multimodal learning
[8]. However, for our work the inputs are both graphs,
and we share weights, as it performed better, as well
as in [8]. As the name mentions, the loss is com-
posed of three components, the first being invariance
s(Ŝy, Sy), where we denote Ŝy = [̂sy1

, . . . , ŝyn ] and
Sy = [sy1

, . . . , syn ] as the two batches composed of
n vectors of dimension d, representing the predicted
and true target embeddings respectively. Ŝy is ob-
tained as Ŝy = hφ(Sx, P̃y) where hφ represents the
predictor network (Section 3.5.4), Sx = [sx1

, . . . , sxn
]

the context embeddings, and P̃y = [p̃y1
, . . . , p̃yn ]

the target patches positional information as described
earlier. For simplicity, we assume that m, the number
of targets, is one, so that the number of targets and
context match, however this can be different (Section
3.5.4). The invariance loss term accounts for the pre-
diction precision in predicting the target embedding,
from the context one. Mathematically, it is the MSE
loss defined in Equation (9). In addition to the invari-
ance loss, we have a variance loss term, implemented
via a hinge loss that allows to maintain the standard
deviation (over a batch) of each variable (i.e. feature
dimension) of the embedding above a given threshold.
This term forces the embedding vectors of samples
within a batch to be different. It is important to use
the standard deviation and not directly the variance.
If we use S(x) = V ar(x) in the hinge function, the
gradient of S with respect to x becomes close to 0
when x is close to x̄ [8]. Mathematically the variance
loss v for x is shown in Equation (10):

v(Zx) = 1
d

d∑
j=1

max(0, γ − S(zj
x, ε)), (10)

importantly we do not apply the loss directly on Sx

and Sy, but on Zx and Zy where Zx = fθ(Sx), with
fθ representing an expander function (see Figure 7).
In Equation (10), zj

x represents the vector composed
of each value at dimension j in all vectors in Zx, λ
is a constant target value for the standard deviation,
we fix it to one as in [8], and S is the regularized
standard deviation:

S(x, ε) =
√

Var(x) + ε (11)

where ε is a small scalar preventing numerical insta-
bilities. Finally, the covariance loss term attracts the
covariances (over a batch) between every pair of (cen-
tred) embedding variables (i.e. feature dimensions)
towards zero. This term decorrelates the variables of
each embedding and prevents an informational col-
lapse in which the variables would vary together or
be highly correlated. We define the covariance matrix
of Zx as:

C(Zx) = 1
n − 1

n∑
i=1

(zx
i

− z̄x)(zx
i

− z̄x)T , (12)

where z̄x = 1
n

∑n
i=1 zx

i
, then the the covariance loss

is obtained via:

c(Zx) = 1
d

∑
i 6=j

[C(Zx)]2i,j (13)
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The final loss is the weighted sum of the three terms:

L(Ŝy, Sy, Zx, Zy) = λs(Ŝy, Sy) +
µ[v(Zx) + v(Zy)] +
ν[c(Zx) + c(Zy)]

(14)

with λ, µ, and ν being hyperparameters set to 25,
25, and one respectively, as suggested in [8].

Figure 7: The vicReg objective.

3.5.7 Pseudolabel objective

In [22], namely the first study working on SSL for
polymer graphs, as described in Section 2.2, the au-
thors also work with the graph representation intro-
duced in [2] and consequently with the WDMPNN.
In their work, they observe significantly better per-
formance when transferring not only the pretrained
weights of the WDMPNN encoder but also the
weights of the predictor (i.e. MLP) used for pre-
dicting the polymer molecular weight in a pseudola-
bel task. The pseudolabel predictor weights are later
transferred to the predictor used for the downstream
task, for instance the EA molecular property in the
Aldeghi and Coley dataset. Motivated by these re-
sults, we decided to experiment with the pseudolabel
objective also with our architecture for the Aldeghi
and Coley dataset. We achieve that by predicting
the molecular weight from the polymer fingerprint
learned through the target encoder, as visible in Fig-
ure 8. The molecular weight is defined as:

Mw = wmono1Mmono1 + wmono2Mmono2 (15)

with Mw being the polymer molecular weight,
Mmono1 and Mmono2 being the molecular weights of
the monomers, and wmono1 and wmono2 being the sto-
ichiometry ratios. We utilize the MSE loss between
the predicted molecular weight M̂w and the true one
Mw. Differently from [22], the pseudolabel task is
done simultaneously with the JEPA training, not sub-
sequently (as they do after the node-level task). We

tested different weights α and β for the two losses
(target embedding prediction and pseudolabel pre-
diction, respectively), and we found α = β = 1 to be
optimal. We discuss and show the results of the ex-
periment in Section 4.6, specifically in 4.6.1. The idea
of utilizing an additional pseudolabel objective is in
line with the idea of biasing a JEPA towards learning
’useful’ representations, discussed in [39]. The idea is
to bias the system towards representations that con-
tain information that is relevant for the downstream
task, via predicting a variable that can easily be de-
rived from the data and is relevant to the task.

Figure 8: Pretraining with the additional pseudolabel
objective that predicts the molecular weight from the
polymer representation obtained via Etarget.

3.6 Training procedure
The pretraining phase entails training the JEPA (Sec-
tion 3.5). During this phase, the model is trained on
40% (17186 entries) of the Aldeghi and Coley dataset.
After pretraining, the target encoder is utilized to
obtain the polymer graph representation. This pro-
cess uses self-supervised representations to capture
the structural and chemical features of polymer
molecules. For the downstream task (e.g. poly-
mer property prediction), an MLP is employed on
top of the target encoder (that outputs the polymer
graph representations). Finetuning is done end-to-
end, wherein not only the MLP but also the target
encoder weights are updated during the optimization
process. This allows the polymer graph represen-
tations to also finetune to the specific downstream
task. For finetuning, we consider the two datasets de-
scribed in Sections 3.2.1 and 3.2.2. For both datasets,
we tested on different finetune data sizes to verify the
pretraining effectiveness in different data availability
scenarios (see Section 4.5). In Appendix B, we pro-
vide the implementation details and the hyperparam-
eters used for JEPA and the finetuning MLP.
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4 Results and Discussion

In this section, we discuss the results obtained from
our experiments. We begin by examining subgraph
sizes (Section 4.1) and subgraphing types (Section
4.2), followed by an analysis of different model ar-
chitectures (Section 4.3). Subsequently, we compare
the performance of various training strategies, specif-
ically momentum update with stop-gradient com-
pared to vicReg (Section 4.4). In Section 4.5, we
test our model on the two datasets on the down-
stream task, testing different finetune data availabil-
ity scenarios. In Section 4.6, we compare our pro-
posed approach against existing methodologies (i.e.
[22]). Finally, we compare our pretrained model per-
formance against the one of a simpler model (i.e. ran-
dom forest) in low-data scenarios (Section 4.7). We
measure the efficacy of the pretraining strategy and
certain model components or design choices by as-
sessing the performance in a downstream task, where
the model utilized for finetuning is initialized with
the weights learned during pretraining. Each result
reported is the averaged numerical result obtained
by conducting 5-fold cross-validation (i.e. five runs).
Each run featured a random finetune dataset, ensur-
ing consistency across experiment settings by using
the same five random seeds, hence testing each con-
figuration on the same five finetune datasets. Each
experiment regarding the model design, architecture,
and subgraphing (Sections 4.1, 4.2, 4.3, 4.4) was con-
ducted on 0.4% of the Aldeghi and Coley dataset,
corresponding to 192 datapoints. The rationale be-
hind this choice is that it represents a realistic sce-
nario where labelled lab-derived data is very scarce
and expensive to obtain. In addition, the pretraining
should show better results in the most data-starving
cases, highlighting the impact of certain model de-
sign choices more clearly. Moreover, finetuning on
a small dataset is computationally more efficient, al-
lowing us to run a greater number of experiments.
Finally, 0.4% is one of the dataset sizes used in in
[22], allowing us to compare our method to theirs
(Section 4.6). We did all the experiments (except the
one in Section 4.3), on Model II since it performed
better, was computationally cheaper, and more novel
compared to Graph-JEPA.
For the Aldeghi and Coley dataset, we report the
same metrics as in [2] and [22], namely the R2 (coef-
ficient of determination) and the Root Mean Square
Error (RMSE) in predicting the property (e.g. EA).
The former metric provides a measure of how well
the observed labels are predicted by the model, based
on the proportion of total variation of outcomes ex-
plained by the model, hence measuring how well the

regression model fits the observed data. R2 ranges
between zero and one, where higher values correspond
to better performance. The RMSE, is calculated by
taking the square root of the mean of the squared dif-
ferences between predicted and observed values, pro-
viding an indication of the average deviation of the
predicted values from the observed ones. For the Di-
block Copolymers dataset, we measure performance
as in [2], via the area under the precision-recall curve
(AUPRC) [56]. AUPRC is a single scalar value that
quantifies the overall performance of a multi-label
classification model. Higher AUPRC values indicate
better model performance, with a maximum value of
one indicating perfect precision-recall balance.

4.1 Subgraph sizes

4.1.1 Context subgraph size

The first study conducted involved an investigation
into the impact of context subgraph sizes. Intuitively,
as described in the Methodology (Section 3.5.1), we
hypothesize that the context should be large (i.e.
informative) enough to make the prediction of the
target possible, but if too large, it would largely
overlap with the target, hence making the predic-
tion task easier. The experiment utilized momentum
update and stop-gradient, three target subgraphs,
we used random-walk subgraphing, and target sub-
graphs sized approximately 15% of the total graph.
We chose random-walk subgraphing because differ-
ently from motif- or metis-based subgraphing, allows
us to control more precisely the subgraph sizes.
The results (Table 3), firstly show that pretrain-
ing consistently enhanced performance, irrespective
of the specific context size scenario. Notably, pre-
training contributed to increased stability and ro-
bustness of results, evident in the standard deviation
metrics, thereby highlighting its efficacy in mitigat-
ing the influence of the specific distribution of the
finetune training dataset. Furthermore, we find that
a context size of 60% (relative to the full graph size)
seems to be optimal, confirming our initial hypothe-
sis. However, the model seems to be relatively robust
to context sizes, as shown by the small performance
gap between different context sizes. The most signif-
icant decline in performance is noticeable with a con-
text size of 20%. Notably, a very small context size
makes the target prediction task considerably more
challenging, hindering the capability of the model to
learn. We speculate that this observation is valid not
only for polymers but broadly applies also to small
molecules and other graph-based structures. Similar
trends were observed in the image domain in [4], mak-
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ing the size of the context an important element for
JEPA training (see Section 3.5.1), irrespective of the
input type. While we cannot assert that 60% is the
optimal context size universally for all input types
and molecule sizes, we are confident that an interval
of 50% to 75% is effective. We hypothesize that larger
molecule sizes might require slightly more context in-
formation due to the greater number of atoms and
substructures and the potentially increased distance
between the context and target subgraphs. However,
as stated in Section 3.5.2, contextualizing the targets
should help ease the prediction task and mitigate the
issue of distance between context and target, thereby
limiting the necessary increase in context size.

Table 3: Results of the experiments on the context
subgraph size, on the Aldeghi and Coley dataset, pre-
dicting the EA property. 60% results the optimal size
for the context subgraph, corresponding to around
10-15 atoms of the full molecule (20 - 25 atoms).

Context size R2 ↑ RMSE ↓
No pretrain 0 .46 ± 0 .15 0 .44 ± 0 .06

20% 0.56 ± 0.07 0.39 ± 0.03
40% 0.60 ± 0.06 0.37 ± 0.03
60% 0.65 ± 0.03 0.35 ± 0.02
80% 0.62 ± 0.07 0.37 ± 0.03
95% 0.61 ± 0.05 0.37 ± 0.02

4.1.2 Target subgraph size

Similar to the investigation into context sizes, we also
explored the impact of different target subgraph sizes.
Employing the same experimental setup as detailed
in the context size analysis (Section 4.1.1), we used a
context size of 60%, identified as optimal.
The results (Table 4) indicate that the model exhibits
robustness to changes in target subgraph sizes, with
performance remaining relatively stable across differ-
ent size scenarios. However, there seems to be an op-
timal range between 10% to 15%. We speculate that
subgraph sizes outside of this range may potentially
impede the prediction task, either by oversimplifying
or overly complicating it, depending on the extent of
overlap between the context and target subgraphs, as
well as the specific characteristics of the atom embed-
dings being predicted. Similarly to the suppositions
made in Section 4.1.1, we believe that this conclusion
also holds true for small molecules. As previously ob-
served (see also Section 3.5.1), the size of the patches
(i.e., subgraphs) is an important factor for effective
JEPA training across various domains and similar re-
sults were reported in [4] in the image domain. In

particular, we hypothesize that a target size range of
10% to 20% should be effective across different molec-
ular sizes and input types. For smaller molecules, the
target size might lean towards the higher end of this
range, while for larger molecules, it might be closer
to 10%. This should avoid the extreme cases where
the target is either too small (a single node) or too
large (several molecular substructures together).

Table 4: Results of the experiments on the target
subgraph size, on the Aldeghi and Coley dataset, pre-
dicting the EA property. 10% results as the optimal
size for the target subgraph, corresponding to around
2-3 atoms of the full molecule (20 - 25 atoms).

Target size R2 ↑ RMSE ↓
No pretrain 0 .46 ± 0 .15 0 .44 ± 0 .06

5% 0.61 ± 0.07 0.37 ± 0.03
10% 0.66 ± 0.02 0.35 ± 0.01
15% 0.65 ± 0.03 0.35 ± 0.02
20% 0.63 ± 0.03 0.36 ± 0.02

4.1.3 Number of targets

Finally, we explored the impact of the number of tar-
gets being predicted, utilizing the same experimen-
tal setup as for the context and target subgraph size
experiments, with the optimal configuration found:
60% context size and 10% target size. The results
(Table 5) demonstrate that the model is not highly
sensitive to the number of targets. While no clear
trend is discernible, likely due to the stochastic na-
ture of the training process, we find that a single tar-
get yields the best performance and stability.
Having a lower number of targets increases the like-
lihood of encountering different target subgraphs at
each epoch, which can enhance model generalization.
Conversely, a higher number of targets may lead to
the model predicting the same or very similar targets
at each iteration, potentially resulting in overfitting.

Table 5: Experimental results for the number of tar-
gets, on the Aldeghi and Coley dataset, for EA.

n. targets R2 ↑ RMSE ↓

No pretrain 0 .46 ± 0 .15 0 .44 ± 0 .06
1 0.67 ± 0.01 0.34 ± 0.01
2 0.64 ± 0.03 0.36 ± 0.01
3 0.66 ± 0.02 0.35 ± 0.01
4 0.65 ± 0.05 0.35 ± 0.02
5 0.61 ± 0.04 0.37 ± 0.02
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4.2 Subgraphing type
Utilizing the same experimental settings, with the
optimal configuration identified as 60% context size,
10% target size, and a single target predicted, we
evaluated the impact of different subgraphing strate-
gies, described in detail in Section 3.4.
We observed (Table 6) that they all perform similarly,
with a slight advantage for the random-walk one,
demonstrating the best performance and stability.
Interestingly, the motif-based method, which lever-
ages domain knowledge to produce chemically mean-
ingful subgraphs, exhibits slightly lower performance.
We hypothesize that each subgraphing method car-
ries its own set of advantages. While motif-based sub-
graphing generates chemically meaningful subgraphs,
it tends to produce a relatively small number of sub-
graphs, in a deterministic fashion, potentially limit-
ing model generalization by increasing the likelihood
of encountering similar or identical subgraphs (both
context and target ones) throughout training. On the
other hand, the METIS algorithm, while also produc-
ing consistent subgraphs at each epoch, generates on
average a higher number of subgraphs compared to
the motif-based approach, introducing more variabil-
ity across epochs. Finally, random-walk subgraphing
generates different subgraphs at every epoch, thanks
to the stochastic nature of the subgraphing process.
Moreover, it allows for greater control over subgraph
sizes, a factor previously highlighted as relatively in-
fluential in model performance. In conclusion, we find
that variations in subgraphs and subgraph sizes play
a more crucial role in determining model performance
than the chemical meaningfulness of the subgraphs
themselves.

Table 6: Results of the experiments on the subgraph-
ing type, on the Aldeghi and Coley dataset, predict-
ing the EA property.

Subgraphing R2 ↑ RMSE ↓
No pretrain 0 .46 ± 0 .15 0 .44 ± 0 .06
Motif-based 0.63 ± 0.05 0.36 ± 0.02
Metis 0.67 ± 0.04 0.34 ± 0.02
RW 0.67 ± 0.01 0.34 ± 0.01

4.3 Model type
We compared the two model versions proposed, uti-
lizing the best configuration identified: 60% context
size, 10% target size, one target subgraph predicted,
and random-walk subgraphing. The key finding (Ta-
ble 7) is that pretraining significantly enhances per-

formance and stability for both model versions, as
evidenced by an increase of more than 0.20 in the
R2 metric value in both cases. Model I demonstrates
notably poorer performance compared to Model II.
There are several potential reasons for this discrep-
ancy. Firstly, all previous experiments were opti-
mized for Model II, including subgraph sizes, the
number of targets, and subgraphing type, potentially
giving it an advantage. Additionally, Model I is in-
herently more complex, featuring a combination of a
WDMPNN initial encoder and transformers encoders
(see Section 3.5.2). This complexity may require
more data to effectively learn, particularly in the con-
text of the very data-scarce scenario (192 graphs)
tested here. Another factor to consider is that Model
I trains the target encoder on small subgraphs, po-
tentially not aligning well with the polymer dataset
utilized, which consists of copolymers made up of dif-
ferent monomer units. This approach could lead to
a loss of positional information crucial for accurate
predictions. In contrast, Model II does not encounter
this issue as it trains the target encoder on the full
original polymer graph.

Table 7: Results of the experiments on the model
type, on the Aldeghi and Coley dataset, predicting
the EA property.

Model R2 - No pretrain ↑ R2 - Pretrain ↑

I 0.27 ± 0.22 0.52 ± 0.03
II 0.46 ± 0.15 0.67 ± 0.01

4.4 Effects of regularization
We conducted a comparison of different training
strategies aimed at preventing representation col-
lapse, specifically exploring momentum update with
stop-gradient (i.e. EMA) and vicReg regularization.
These evaluations were conducted under the opti-
mal settings of 60% context size, 10% target size,
one target subgraph predicted, and random-walk sub-
graphing. Our findings, summarized in Table 8 and
Table 9, indicate that the two strategies perform
similarly. In particular, on the Aldeghy and Coley
dataset, EMA demonstrates slightly better perfor-
mance and stability. For the Diblock dataset, vicReg
shows a slight advantage. Both approaches prove to
be very effective in preventing representation collapse
and improving performance. One point against EMA
is that all hyperparameter optimizations conducted
thus far were carried out with EMA, suggesting that
the model was finetuned specifically for EMA train-
ing. By examining the representation space of the
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polymers (Figure 9), we observe that vicReg is able
to achieve better clustering, especially when color-
ing by monomer A. This improvement in clustering
can be attributed to vicReg’s regularization objec-
tive, which aims to maximize the information content
of the learned polymer representations. However,
the improved clustering in the representation space
does not directly translate into significantly better
downstream performance for the datasets considered,
indicating that there is no simple direct correspon-
dence between clustering quality and predictive per-
formance.

Table 8: Results of the experiments on the training
strategy, comparing regularization (with vicReg) and
momentum update (i.e. EMA). Comparison on the
Aldeghi and Coley dataset, predicting the EA prop-
erty.

Training R2 ↑ RMSE ↓
No pretrain 0 .46 ± 0 .15 0 .44 ± 0 .06
VicReg 0.65 ± 0.05 0.35 ± 0.02
EMA 0.67 ± 0.01 0.34 ± 0.01

Table 9: Results of the experiments on the training
strategy, comparing regularization (with vicReg) and
momentum update (i.e. EMA). Comparison on the
Diblock dataset (4% of the dataset (191 graphs)).

Training AUPRC ↑
No pretrain 0 .36 ± 0 .03
VicReg 0.41 ± 0.04
EMA 0.40 ± 0.02

4.5 Downstream tasks
Thus far, our experiments focused on finding opti-
mal design choices, and model components. With
the best configuration found, we evaluated the pre-
training effectiveness in different finetune data avail-
ability scenarios. We hypothesize that the utility of
pretraining diminishes as supervised training data in-
creases, although this relationship is contingent upon
the dataset and downstream task. Figures 10 and
11 present the performance results for the Aldeghi
and Coley datasets, respectively, concerning the pre-
diction tasks of Electron Affinity and Ionization Po-
tential. We test from a data scenario of 0.4% (192
datapoints) to a scenario of 24% (10.311 datapoints).
Consistent with our hypothesis, the pretrained model

demonstrated performance improvements in scenar-
ios with the most limited data availability. This en-
hancement was particularly evident up to a data size
of 2.4% (1,031 datapoints). However, beyond this
threshold, the benefits of pretraining plateaued and,
in some cases, led to negative transfer, as observed
in EA prediction for data sizes of 3.2% and 4%. For
this reason and for clearer visualization, in Figures 10
and 11 we report results only up to the 4% scenario.
This suggests that the supervised data available is
sufficient for learning, rendering the transferred pre-
training knowledge redundant or potentially noisy. In
practice, a small change in the R2 value (e.g. ±0.01)
does not significantly impact molecular design tasks,
such as property prediction. However, in cases where
the R2 increase is higher (i.e. 0.4% and 0.8% scenar-
ios), the improvement does have a meaningful effect
on the task.
We also conducted experiments on different data sce-
narios for the Diblock dataset, as visible in Figure 12.
We tested from a training data scenario of 191 dat-
apoints (4%) to 3.824 datapoints (80%). The latter
scenario corresponds to training on the full dataset,
retaining 20% for testing, as done in [2]. The re-
sults consistently demonstrated an improvement in
performance in the pretrained scenario, even for the
more data-rich scenarios. This underscores the ef-
fectiveness of the proposed pretraining strategy and
its capability to generalize outside of the training
distribution. In fact, the pretraining dataset repre-
sents a different polymer chemical space compared
to the finetuning dataset, suggesting that the knowl-
edge acquired during pretraining is not overfitting or
memorizing the training distribution (i.e. chemical
space) but rather learning valuable chemical knowl-
edge. Furthermore, the observation that pretrain-
ing enhances performance even in the full dataset
scenario indicates the strategy’s potential utility for
knowledge transfer purposes in scenarios where data
is more abundant.

4.6 Comparison to other SSL tasks
We compared the effectiveness of our pretraining
strategy to the only other SSL pretraining method
[22] designed for the polymer graphs we use, working
on the same dataset [2]. In their work [22], they em-
ploy two SSL tasks: one at the node level, masking
nodes and edges and learning to predict them, and
the other at the graph level, predicting a pseudolabel
corresponding to the molecular weight of the poly-
mer, derived from the monomers’ weights. They test
both tasks separately and together, and they discover
that pretraining via both tasks proves to be the most
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Figure 9: The t-SNE visualization of the embedding space learned for the polymers via vicReg (left) and
EMA (right), colored (from top to bottom) by monomer A, chain architecture, and stoichiometry. Despite
both approaches achieve good clustering, vicReg clustering is stronger, especially for monomer A. For Chain
Architecture and Stoichiometry, both training strategies cluster effectively. The clustering by ’Alternating’
chain architecture is very strong, given that it is only associated to the 1:1 stoichiometry, while block and
random chain architectures have a larger variety of three different stoichiometries.
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Figure 10: Effectiveness of our pretraining strategy
on the Aldeghi and Coley dataset, for different fine-
tune dataset sizes, predicting the EA property.

Figure 11: Effectiveness of our pretraining strategy
on the Aldeghi and Coley dataset, for different fine-
tune dataset sizes, predicting the IP property.

effective. This result aligns with findings in the lit-
erature [32] that SSL on graphs works better when
using both node-level and graph-level tasks together.
Figure 13 shows the result of the experiment. As vis-
ible, their pretraining strategy seems more effective,
yielding better performance. However, some experi-
mental factors differed between our experiments and
theirs, particularly in our use of different pretrain-
ing and finetuning datasets at every run, utilizing
cross-validation. In contrast, the other study always
uses the same datasets across runs. Additionally, we
use node-centred message passing (Section 3.3), while
they utilize the original edge-centred method. Inter-
estingly, their method achieves a significant perfor-
mance boost when also transferring the weights of the
fully connected layers used to predict the molecular
weight. This suggests that the knowledge obtained
while learning to predict the weight is particularly
relevant. However, this relevance might be specific to
the downstream task considered (i.e. the properties
being predicted), in our case the Aldeghi and Coley
dataset for EA prediction.

Figure 12: Effectiveness of our pretraining strategy
on the Diblock dataset for different finetune dataset
sizes.

4.6.1 Pseudolabel objective

We decided to experiment with the pseudolabel ob-
jective also with our architecture, by predicting
the molecular weight from the polymer fingerprint
learned through the target encoder, as described in
Section 3.5.7. The pseudolabel objective significantly
improves performance, similarly to what was shown
in [22]. We included the results of our model per-
formance with the pseudolabel objective in Figure
13. The improved result via the pseudolabel objec-
tive, is in line with the idea of biasing a JEPA to-
wards learning ’useful’ representations, discussed in
[39]. The idea is to bias the system towards repre-
sentations that contain information that are relevant
for the downstream task, via predicting a variable
that can easily be derived from the data.

Figure 13: Comparison between our pretraining
strategy and the SSL tasks from [22] on the Aldeghi
and Coley dataset, for different finetune dataset sizes,
predicting the EA property. We include both the sce-
narios when only the WDMPNN encoder weights are
transferred, and the scenario when also the pseudola-
bel predictor weights are transferred.
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4.7 Comparison to a simpler model in
low-data regimes

As our pretraining is effective only in low-data
regimes, we compared the performance of the pre-
trained WDMPNN with that of a simpler model, a
random forest. Typically, simpler ML models out-
perform complex ones in data-scarce scenarios. The
WDMPNN generates a polymer representation (fin-
gerprint) through pooling node embeddings learned
during training, which is then used as input for the
MLP predictor. In contrast, the random forest model
utilizes Extended-Connectivity Fingerprints (ECFP)
[53] of size 2048 and radius 2, computed with RD-
Kit [38]. Although this comparison is not entirely
fair since the WDMPNN must learn the represen-
tation from the limited available data, ECFPs re-
main an easily accessible tool that can be utilized
effectively. Furthermore, this experiment evaluates
the pretraining strategy’s capability to learn poly-
mer fingerprints. The results show that the ran-
dom forest model consistently outperforms the pre-
trained WDMPNN in the low-data regimes. This
trend is evident in Figure 14, where the random for-
est model exhibited a clear advantage over the pre-
trained WDMPNN. Notably, in the smallest data
regime (0.4%), the random forest model achieved a
notable increase of 0.20 in the R2 score. This advan-
tage diminishes as the dataset size increases.
Similar trends were observed for the Diblock dataset
(Figure 15). Given that our pretraining strat-
egy demonstrates effectiveness primarily in low-data
regimes, and considering the superior performance of
random forest models in such scenarios, we advise
against the adoption of our proposed method for the
specific datasets analyzed. This recommendation is
based also on the significantly higher training costs
associated with the WDMPNN and JEPA models
compared to the random forest.

5 Conclusion and limitations

In conclusion, we introduced a novel self-supervised
pretraining strategy for polymer molecular graphs,
leveraging JEPAs. Our study stands as one of the
initial efforts in exploring JEPAs for molecular graph-
related tasks, thus enriching the understanding and
analysis of this new architectural family in this do-
main, specifically for polymers. Through our experi-
ments, we demonstrated the efficacy of our pretrain-
ing approach in significantly enhancing performance,
particularly in scenarios where finetune data is very
limited. However, we also showed how other SSL ap-

Figure 14: Comparison between our pretraining
strategy and a random forest model on the Aldeghi
and Coley dataset, predicting the EA property, for
different finetune dataset sizes.

Figure 15: Comparison between our pretraining
strategy and a random forest model on the Diblock
dataset, for different finetune dataset sizes.

proaches [22] or a simpler model (Section 4.7) out-
perform our method, in the two downstream tasks
considered. Interestingly, our pretraining strategy
exhibits generalization capabilities, as evidenced by
its effectiveness on a dataset representing a differ-
ent chemical space from the one utilized for pre-
training (Section 4.5). While our findings show con-
siderable progress, our work has several limitations.
Firstly, we acknowledge the absence of comparisons
with a broader range of other self-supervised ap-
proaches (benchmarks), which limits the understand-
ing of the effectiveness of our approach. Related to
this, our approach was tested on only two finetune
datasets. These limitations stem from our decision
to work on polymers and utilize the graph represen-
tation introduced by Aldeghi and Coley [2]. Most
self-supervised approaches in the literature require
to be adapted to work with this specific polymer
graph representation. Additionally, very few poly-
mer datasets provide all the necessary information
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(i.e. stoichiometry and chain architectures) required
for the graph representation. Currently, the only SSL
study working on the same dataset is [22], which we
discussed in Section 4.6. For future work, we propose
extending our investigation to include other polymer
datasets for finetuning, for instance by using a sim-
pler graph representation not requiring chain and sto-
ichiometry information. It would also be interesting
to pretrain the model on a larger and more diverse
dataset, compared to the approximately 17,000 poly-
mers used in our study. This dataset is not only rel-
atively small but also limited in chemical diversity,
comprising only nine different atom types and poly-
mers with only nine different A monomers. Addi-
tionally, future work could test the devised method-
ology for small molecules, for instance on the ZINC
dataset [33], to explore its performance in different
chemical contexts. We could also extend testing to
other benchmark datasets representing various do-
mains, providing a more comprehensive evaluation of
the proposed JEPA as a self-supervised approach for
graphs.
Another limitation of our work is the lack of a sys-
tematic and thorough hyperparameter optimization
search, such as a grid search. We empirically tested
various hyperparameter settings and used the best
settings found as a starting point for our experiments.
Some of our experiments, such as those on subgraph
sizes and the number of targets, optimized parame-
ters related to model components and design choices.
However, this greedy optimization led to a finetun-
ing of the model choices for Model II and the other
settings being gradually decided. In the future, more
work, optimization, and testing could be done also
for Model I, which can effectively contextualize the
targets via self-attention and remains a promising
alternative. Finally, for subgraphing, we encourage
future work to explore subgraphing on line graphs
[20], for instance, using METIS. This approach could
prevent edge loss while minimizing subgraph overlap,
thus better satisfying the subgraphing requirements.

References

[1] Roshan A. Patel, Carlos H. Borca, and Michael
A. Webb. Featurization strategies for poly-
mer sequence or composition design by machine
learning. Molecular Systems Design & Engineer-
ing, 7(6):661–676, 2022.

[2] Matteo Aldeghi and Connor W. Coley. A graph
representation of molecular ensembles for poly-
mer property prediction. Chemical Science,
13(35):10486–10498, 2022.

[3] Akash Arora, Tzyy-Shyang Lin, Nathan J Re-
bello, Sarah HM Av-Ron, Hidenobu Mochigase,
and Bradley D Olsen. Random forest predic-
tor for diblock copolymer phase behavior. ACS
Macro Letters, 10(11):1339–1345, 2021.

[4] Mahmoud Assran, Quentin Duval, Ishan Misra,
Piotr Bojanowski, Pascal Vincent, Michael Rab-
bat, Yann LeCun, and Nicolas Ballas. Self-
Supervised Learning from Images with a Joint-
Embedding Predictive Architecture, April 2023.

[5] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu,
Arun Babu, Jiatao Gu, and Michael Auli.
Data2vec: A general framework for self-
supervised learning in speech, vision and lan-
guage. In International Conference on Machine
Learning, pages 1298–1312. PMLR, 2022.

[6] Yang Bai, Liam Wilbraham, Benjamin J
Slater, Martijn A Zwijnenburg, Reiner Sebas-
tian Sprick, and Andrew I Cooper. Accelerated
discovery of organic polymer photocatalysts for
hydrogen evolution from water through the inte-
gration of experiment and theory. Journal of the
American Chemical Society, 141(22):9063–9071,
2019.

[7] Adrien Bardes, Quentin Garrido, Jean Ponce,
Xinlei Chen, Michael Rabbat, Yann LeCun,
Mido Assran, and Nicolas Ballas. V-jepa: Latent
video prediction for visual representation learn-
ing. 2023.

[8] Adrien Bardes, Jean Ponce, and Yann LeCun.
VICReg: Variance-Invariance-Covariance Regu-
larization for Self-Supervised Learning, January
2022.

[9] Adrien Bardes, Jean Ponce, and Yann Le-
Cun. Mc-jepa: A joint-embedding predic-
tive architecture for self-supervised learning of
motion and content features. arXiv preprint
arXiv:2307.12698, 2023.

24



[10] Jane Bromley, Isabelle Guyon, Yann LeCun, Ed-
uard Säckinger, and Roopak Shah. Signature
verification using a” siamese” time delay neural
network. Advances in neural information pro-
cessing systems, 6, 1993.

[11] Mathilde Caron, Hugo Touvron, Ishan Misra,
Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-
supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021.

[12] Lihua Chen, Ghanshyam Pilania, Rohit Ba-
tra, Tran Doan Huan, Chiho Kim, Christopher
Kuenneth, and Rampi Ramprasad. Polymer in-
formatics: Current status and critical next steps.
Materials Science and Engineering: R: Reports,
144:100595, April 2021.

[13] Ting Chen, Simon Kornblith, Mohammad
Norouzi, and Geoffrey Hinton. A Simple Frame-
work for Contrastive Learning of Visual Repre-
sentations. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, pages
1597–1607. PMLR, November 2020.

[14] Xinlei Chen and Kaiming He. Exploring Sim-
ple Siamese Representation Learning, November
2020.

[15] Xinlei Chen and Kaiming He. Exploring simple
siamese representation learning. In Proceedings
of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 15750–15758,
2021.

[16] Jörg Degen, Christof Wegscheid-Gerlach, An-
drea Zaliani, and Matthias Rarey. On
the Art of Compiling and Using ’Drug-Like’
Chemical Fragment Spaces. ChemMedChem,
3(10):1503–1507, 2008.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805,
2018.

[18] Haoran Duan, Cheng Xie, Peng Tang, and
Beibei Yu. Contextual features online prediction
for self-supervised graph representation. Expert
Systems with Applications, 238:122075, 2024.

[19] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas
Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural

and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

[20] Tim S Evans and Renaud Lambiotte. Line
graphs, link partitions, and overlapping commu-
nities. Physical review E, 80(1):016105, 2009.

[21] Zhengcong Fei, Mingyuan Fan, and Junshi
Huang. A-jepa: Joint-embedding predic-
tive architecture can listen. arXiv preprint
arXiv:2311.15830, 2023.

[22] Qinghe Gao, Tammo Dukker, Artur M. Schwei-
dtmann, and Jana M. Weber. Self-supervised
graph neural networks for polymer property pre-
diction. 2024.

[23] Jean-Bastien Grill, Florian Strub, Florent
Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo
Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, koray kavukcuoglu, Remi
Munos, and Michal Valko. Bootstrap Your Own
Latent - A New Approach to Self-Supervised
Learning. In Advances in Neural Informa-
tion Processing Systems, volume 33, pages
21271–21284. Curran Associates, Inc., 2020.

[24] Pierre Guetschel, Thomas Moreau, and Michael
Tangermann. S-jepa: towards seamless cross-
dataset transfer through dynamic spatial atten-
tion. arXiv preprint arXiv:2403.11772, 2024.

[25] Rishi Gurnani, Christopher Kuenneth, Aubrey
Toland, and Rampi Ramprasad. Polymer
Informatics at Scale with Multitask Graph
Neural Networks. Chemistry of Materials,
35(4):1560–1567, February 2023.

[26] William L Hamilton. Graph representation
learning. Morgan & Claypool Publishers, 2020.

[27] Kaveh Hassani and Amir Hosein Khasahmadi.
Contrastive multi-view representation learning
on graphs. In International conference on ma-
chine learning, pages 4116–4126. PMLR, 2020.

[28] Kaiming He, Xinlei Chen, Saining Xie, Yang-
hao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In
Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages
16000–16009, 2022.

[29] Pengcheng He, Xiaodong Liu, Jianfeng Gao,
and Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

25



[30] Xiaoxin He, Bryan Hooi, Thomas Laurent,
Adam Perold, Yann Lecun, and Xavier Bresson.
A Generalization of ViT/MLP-Mixer to Graphs.
In Proceedings of the 40th International Confer-
ence on Machine Learning, pages 12724–12745.
PMLR, July 2023.

[31] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao
Dong, Hongxia Yang, Chunjie Wang, and Jie
Tang. Graphmae: Self-supervised masked graph
autoencoders. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 594–604, 2022.

[32] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka
Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neu-
ral networks. arXiv preprint arXiv:1905.12265,
2019.

[33] John J Irwin and Brian K Shoichet. Zinc- a free
database of commercially available compounds
for virtual screening. Journal of chemical infor-
mation and modeling, 45(1):177–182, 2005.

[34] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang,
Suhang Wang, Zitao Liu, and Jiliang Tang. Self-
supervised Learning on Graphs: Deep Insights
and New Direction, June 2020.

[35] George Karypis and Vipin Kumar. A fast and
high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific
Computing, 20(1):359–392, 1998.

[36] Christopher Kuenneth, Arunkumar Chitteth
Rajan, Huan Tran, Lihua Chen, Chiho Kim, and
Rampi Ramprasad. Polymer informatics with
multi-task learning. Patterns, 2(4):100238, April
2021.

[37] Christopher Kuenneth and Rampi Ramprasad.
polyBERT: A chemical language model to en-
able fully machine-driven ultrafast polymer in-
formatics. Nature Communications, 14(1):4099,
July 2023.

[38] Greg Landrum et al. Rdkit: Open-source chem-
informatics, 2006.

[39] Yann LeCun. A Path Towards Autonomous Ma-
chine Intelligence Version 0.9.2, 2022-06-27.

[40] Yann LeCun and Ishan Misra. Self-supervised
learning: The dark matter of intelligence. http
s://ai.meta.com/blog/self-supervised-l
earning-the-dark-matter-of-intelligenc
e/, 2021. Accessed: December 13, 2023.

[41] Namkyeong Lee, Junseok Lee, and Chanyoung
Park. Augmentation-free self-supervised learn-
ing on graphs. In Proceedings of the AAAI
conference on artificial intelligence, volume 36,
pages 7372–7380, 2022.

[42] Xiao Qing Lewell, Duncan B Judd, Stephen P
Watson, and Michael M Hann. Recap retrosyn-
thetic combinatorial analysis procedure: a pow-
erful new technique for identifying privileged
molecular fragments with useful applications in
combinatorial chemistry. Journal of chemical in-
formation and computer sciences, 38(3):511–522,
1998.

[43] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu
Wang, Li Mian, Jing Zhang, and Jie Tang. Self-
supervised Learning: Generative or Contrastive.
IEEE Transactions on Knowledge and Data En-
gineering, pages 1–1, 2021.

[44] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[45] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou,
Yu Zheng, Feng Xia, and Philip S. Yu. Graph
Self-Supervised Learning: A Survey. IEEE
Transactions on Knowledge and Data Engineer-
ing, 35(6):5879–5900, June 2023.

[46] Ruimin Ma and Tengfei Luo. Pi1m: a bench-
mark database for polymer informatics. Jour-
nal of Chemical Information and Modeling,
60(10):4684–4690, 2020.

[47] Tyler B. Martin and Debra J. Audus. Emerging
Trends in Machine Learning: A Polymer Per-
spective. ACS Polymers Au, 3(3):239–258, June
2023.

[48] Gary C McDonald. Ridge regression. Wiley In-
terdisciplinary Reviews: Computational Statis-
tics, 1(1):93–100, 2009.

[49] Owen Queen, Gavin A. McCarver, Saitheeraj
Thatigotla, Brendan P. Abolins, Cameron L.
Brown, Vasileios Maroulas, and Konstantinos D.
Vogiatzis. Polymer graph neural networks for
multitask property learning. npj Computational
Materials, 9(1):1–10, May 2023.

[50] Alec Radford, Karthik Narasimhan, Tim Sali-
mans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

26

https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.meta.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/


[51] Ladislav Rampášek, Michael Galkin, Vi-
jay Prakash Dwivedi, Anh Tuan Luu, Guy
Wolf, and Dominique Beaini. Recipe for a gen-
eral, powerful, scalable graph transformer. Ad-
vances in Neural Information Processing Sys-
tems, 35:14501–14515, 2022.

[52] Patrick Reiser, Marlen Neubert, André Eber-
hard, Luca Torresi, Chen Zhou, Chen Shao,
Houssam Metni, Clint van Hoesel, Henrik Schop-
mans, Timo Sommer, and Pascal Friederich.
Graph neural networks for materials science
and chemistry. Communications Materials,
3(1):1–18, November 2022.

[53] David Rogers and Mathew Hahn. Extended-
connectivity fingerprints. Journal of chemical
information and modeling, 50(5):742–754, 2010.

[54] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang
Xie, Ying WEI, Wenbing Huang, and Junzhou
Huang. Self-Supervised Graph Transformer on
Large-Scale Molecular Data. In Advances in
Neural Information Processing Systems, vol-
ume 33, pages 12559–12571. Curran Associates,
Inc., 2020.

[55] Ayumu Saito and Jiju Poovvancheri. Point-jepa:
A joint embedding predictive architecture for
self-supervised learning on point cloud. arXiv
preprint arXiv:2404.16432, 2024.

[56] Takaya Saito and Marc Rehmsmeier. The
precision-recall plot is more informative than the
roc plot when evaluating binary classifiers on
imbalanced datasets. PloS one, 10(3):e0118432,
2015.

[57] Kianoosh Sattari, Yunchao Xie, and Jian Lin.
Data-driven algorithms for inverse design of
polymers. Soft Matter, 17(33):7607–7622, Au-
gust 2021.

[58] Geri Skenderi, Hang Li, Jiliang Tang, and Marco
Cristani. Graph-level Representation Learning
with Joint-Embedding Predictive Architectures,
September 2023.

[59] Hannes Stärk. Self-Supervised learning for small
Molecular Graphs.

[60] Mervyn Stone. Cross-validatory choice and as-
sessment of statistical predictions. Journal of the
royal statistical society: Series B (Methodologi-
cal), 36(2):111–133, 1974.

[61] Mengying Sun, Jing Xing, Huijun Wang, Bin
Chen, and Jiayu Zhou. MoCL: Data-driven
Molecular Fingerprint via Knowledge-aware
Contrastive Learning from Molecular Graph. In
Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery & Data Mining,
pages 3585–3594, Virtual Event Singapore, Au-
gust 2021. ACM.

[62] Shantanu Thakoor, Corentin Tallec, Moham-
mad Gheshlaghi Azar, Rémi Munos, Petar
Veličković, and Michal Valko. Bootstrapped rep-
resentation learning on graphs. In ICLR 2021
Workshop on Geometrical and Topological Rep-
resentation Learning, 2021.

[63] Tobias Uelwer, Jan Robine, Stefan Sylvius Wag-
ner, Marc Höftmann, Eric Upschulte, Sebastian
Konietzny, Maike Behrendt, and Stefan Harmel-
ing. A Survey on Self-Supervised Representation
Learning, August 2023.

[64] Petar Veličković, William Fedus, William L
Hamilton, Pietro Liò, Yoshua Bengio, and R De-
von Hjelm. Deep graph infomax. arXiv preprint
arXiv:1809.10341, 2018.

[65] Yuyang Wang, Zijie Li, and Amir Barati Fari-
mani. Graph Neural Networks for Molecules.
volume 36, pages 21–66. 2023.

[66] Yuyang Wang, Jianren Wang, Zhonglin Cao,
and Amir Barati Farimani. Molecular con-
trastive learning of representations via graph
neural networks. Nature Machine Intelligence,
4(3):279–287, 2022.

[67] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu,
and Stan Z. Li. SimGRACE: A Simple Frame-
work for Graph Contrastive Learning without
Data Augmentation. In Proceedings of the ACM
Web Conference 2022, pages 1070–1079, Virtual
Event, Lyon France, April 2022. ACM.

[68] Jun Xia, Yanqiao Zhu, Yuanqi Du, and
Stan Z Li. Pre-training graph neural networks
for molecular representations: retrospect and
prospect. In ICML 2022 2nd AI for Science
Workshop, 2022.

[69] Yaochen Xie, Zhao Xu, and Shuiwang Ji. Self-
supervised representation learning via latent
graph prediction. In International Conference on
Machine Learning, pages 24460–24477. PMLR,
2022.

27



[70] Yaochen Xie, Zhao Xu, Jingtun Zhang,
Zhengyang Wang, and Shuiwang Ji. Self-
Supervised Learning of Graph Neural Net-
works: A Unified Review. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
45(2):2412–2429, February 2023.

[71] Changwen Xu, Yuyang Wang, and Amir
Barati Farimani. TransPolymer: A Transformer-
based language model for polymer property
predictions. npj Computational Materials,
9(1):1–14, April 2023.

[72] Hironao Yamada, Chang Liu, Stephen Wu, Yuki-
nori Koyama, Shenghong Ju, Junichiro Shiomi,
Junko Morikawa, and Ryo Yoshida. Predict-
ing Materials Properties with Little Data Using
Shotgun Transfer Learning. ACS Central Sci-
ence, 5(10):1717–1730, October 2019.

[73] Cheng Yan and Guoqiang Li. The Rise of Ma-
chine Learning in Polymer Discovery. Advanced
Intelligent Systems, 5(4):2200243, 2023.

[74] Kevin Yang, Kyle Swanson, Wengong Jin, Con-
nor Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Timothy Hopper, Brian Kel-
ley, Miriam Mathea, Andrew Palmer, Volker
Settels, Tommi Jaakkola, Klavs Jensen, and
Regina Barzilay. Analyzing Learned Molec-
ular Representations for Property Prediction.
Journal of Chemical Information and Modeling,
59(8):3370–3388, August 2019.

[75] Yuning You, Tianlong Chen, Yongduo Sui, Ting
Chen, Zhangyang Wang, and Yang Shen. Graph
Contrastive Learning with Augmentations. In
Advances in Neural Information Processing Sys-
tems, volume 33, pages 5812–5823. Curran As-
sociates, Inc., 2020.

[76] Xuan Zang, Xianbing Zhao, and Buzhou Tang.
Hierarchical Molecular Graph Self-Supervised
Learning for property prediction. Communica-
tions Chemistry, 6(1):1–10, February 2023.

[77] Jure Zbontar, Li Jing, Ishan Misra, Yann Le-
Cun, and Stephane Deny. Barlow Twins: Self-
Supervised Learning via Redundancy Reduc-
tion. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, pages
12310–12320. PMLR, July 2021.

[78] Hengrui Zhang, Qitian Wu, Junchi Yan, David
Wipf, and Philip S Yu. From Canonical Corre-
lation Analysis to Self-supervised Graph Neural
Networks. In Advances in Neural Information

Processing Systems, volume 34, pages 76–89.
Curran Associates, Inc., 2021.

[79] Leili Zhang, Vasumitra Rao, and Wendy Cornell.
r-brics–a revised brics module that breaks ring
structures and carbon chains. ChemMedChem,
page e202300202.

[80] Pei Zhang, Logan Kearney, Debsindhu
Bhowmik, Zachary Fox, Amit K. Naskar,
and John Gounley. Transferring a molecu-
lar foundation model for polymer property
predictions, October 2023.

[81] Shichang Zhang, Ziniu Hu, Arjun Subramo-
nian, and Yizhou Sun. Motif-Driven Contrastive
Learning of Graph Representations, April 2021.

[82] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang
Lu, and Chee-Kong Lee. Motif-based Graph
Self-Supervised Learning for Molecular Prop-
erty Prediction. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages
15870–15882. Curran Associates, Inc., 2021.

[83] Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang,
Gang Liu, Stephan Günnemann, Neil Shah, and
Meng Jiang. Graph Data Augmentation for
Graph Machine Learning: A Survey, January
2023.

[84] Yuankai Zhao, Roger J. Mulder, Shadi Housh-
yar, and Tu C. Le. A review on the applica-
tion of molecular descriptors and machine learn-
ing in polymer design. Polymer Chemistry,
14(29):3325–3346, 2023.

[85] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang
Liu, Shu Wu, and Liang Wang. Graph Con-
trastive Learning with Adaptive Augmentation.
In Proceedings of the Web Conference 2021,
pages 2069–2080, Ljubljana Slovenia, April 2021.
ACM.

28



Appendices
A Node-centred and Edge-

centred message passing
with WDMPNN

The choice of edge-centred convolutions differs from
most common GNNs, which use node-centred mes-
sage passing. The motivation behind this design,
explained in [74] is to prevent totters, that is, to
avoid messages being passed along any path of the
form v1v2...vn where vi = vi+2 for some i, which
are thought to introduce noise into the graph repre-
sentation by creating unnecessary loops in the mes-
sage passing trajectory. However, we argue that such
loops are not really relevant for the dataset consid-
ered as the polymer graphs utilized are unlikely to
contain such small cyclic patterns. Working with
edge-centred convolutions requires big and sparse ad-
jacency matrices of shape Ae×e and Ae×n, which
makes the process more cumbersome, complex, and
unintuitive. This is also due to the fact that the
edge-centred operation is not well supported in Py-
torch Geometric, requiring extra work to precompute
the adjacency matrices. This affects the capability to
test on different datasets (i.e. with cross-validation)
as the precomputing stage is computationally expen-
sive. The performance of the two methods on EA
and IP on the Aldeghi and Coley dataset can be seen
in Tables A1 and A2 respectively. The results were
obtained in the scenario where we train on 80% of the
data, and test on 20%. The results refer to the test
set. As visible in the tables, both methods achieve the
same results, making the node-centred convolution a
good solution, given the ease of implementation.

Table A1: Comparing the node-centred and the edge-
centred message passing on the EA property.

WDMPNN R2 ↑ RMSE ↓
Edge-centred 0.998 ± 0.0003 0.029 ± 0.002
Node-centred 0.998 ± 0.0002 0.027 ± 0.001

Table A2: Comparing the node-centred and the edge-
centred message passing on the IP property.

WDMPNN R2 ↑ RMSE ↓
Edge-centred 0.998 ± 0.0007 0.022 ± 0.004
Node-centred 0.997 ± 0.0004 0.025 ± 0.003

B Models hyperparameters
In this section, we list all the hyperparameters uti-
lized for Model I, Model II, the finetune predictor,
and vicReg. We do this to allow other researchers to
be able to reproduce our results.

B.1 JEPA Models

Table B1: Hyperparameters for Model I.

Hyperparamater Value
Batch size 128
Epochs 10
Learning rate 0.0005
WDMPNN Dropout 0.1
WDMPNN hidden size 128
WDMPNN layers 2
MLP (predictor) layers 3
MLP (predictor) hidden size 300
MLP (predictor) normalization Batch Norm
Transformer Dropout 0.35
Transformer hidden size 128
Transformer blocks 2
activation
(WDMPNN & MLP & Transf) Relu
Attention type Hadamard
Optimization algorithm Adam
Pooling Mean
Node PE size 20
Patch PE size 20

Table B2: Hyperparameters for Model II.

Hyperparamater Value
Batch size 128
Epochs 10
Learning rate 0.0005
WDMPNN Dropout 0.1
WDMPNN hidden size 300
WDMPNN layers 4
activation (WDMPNN & MLP) Relu
MLP (predictor) layers 3
MLP (predictor) hidden size 300
MLP (predictor) normalization Batch Norm
Optimization algorithm Adam
Pooling Mean
Node PE size 20
Patch PE size 20
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B.2 Finetune predictor
Here we list the parameters of the MLP trained on
top of the target encoder for finetuning the model
during the downstream task. The pseudolabel pre-
dictor (Section 3.5.7), has the same hidden size and
number of layers as the finetune predictor.

Table B3: Hyperparameters for the MLP predictor.

Hyperparamater Value
Batch size 64
Epochs 100
Learning rate 0.001
Hidden size 50
Layers 3
Optimization algorithm Adam

B.3 VicReg
Here we list the parameters of the MLP trained on
top of the target encoder for finetuning the model
during the downstream task.

Table B4: Hyperparameters for the MLP predictor.

Hyperparamater Value
Share encoders weights True
Invariance loss weight 25
Variance loss weight 25
Covariance loss weight 1
MLP (expander) layers 2
MLP (expander) hidden size 256
MLP (expander) activation function Relu
MLP (expander) normalization Batch Norm

C Linear finetune
In addition to the finetune procedure listed in Sec-
tion 3.6, we tested the effectiveness of our pretrain-
ing strategy in a linear finetune setting. In this case,
the finetune dataset size utilized is larger, namely the
full 40% for the Aldeghi and Coley finetune dataset.
This finetune setting is relatively common when test-
ing SSL approaches, for instance it was done in [58]
for Graph-JEPA. Usually, the pretrain and finetune
data is exactly the same, but in our case it is not.
The goal is to assess the representation learning ca-
pabilities of the SSL method. In fact, when training
a complex, non-linear model on top of the pretrained
model, as we did with a MLP, it is relatively more
difficult to assess the effectiveness of the pretrained
model, as the complex finetune predictor can poten-
tially already learn effectively.
We utilize as linear finetune predictor, the Ridge re-
gressor [48], as done in [58].
In Table C1 we report the results observed for the
Aldeghi and Coley dataset, predicting the EA prop-
erty. The pretrain JEPA model is the best perform-
ing model obtained (Model II). As evidenced by the
results, pretraining effectively improves performance
also in this linear finetune scenario, with considerably
more data available for finetuning.

Table C1: Comparing the non pretrained and the
pretrained model in a linear finetune setting.

R2 (Train) ↑ MAE (Test) ↓
Non pretrained 0.594 ± 0.03 0.287 ± 0.013
Pretrained 0.69 ± 0.02 0.244 ± 0.008
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