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Introduction

The air transportation sector is an important factor in the world economy, as the airline industry alone spend
in 2023 an amount corresponding to almost 1% of the globe’s gross domestic product (GDP) [2]. This impor-
tant sector of the economy, at the same time, operates on slim profit margins of less than 3%. In order to
improve these results, operators are keen in finding ways to reduce costs and increase revenue, while keeping
the safe records that aviation has established in recent times.

In order to maintain air transportation working smoothly and safely, all aircraft go through strict and ex-
tensive maintenance procedures. When considering aircraft engine maintenance, one of the most significant
processes is the Engine Shop Visit (ESV), which is defined by [32] as:

An engine removal, regardless of failure responsibility or maintenance category (scheduled
or unscheduled), is classified as a shop visit whenever the subsequent engine maintenance
performed prior to re-installation entails: a.) separation of pairs of major mating flanges,
or b.) removal of a disk hub or spool.

In this context, the European airline TUI Fly, belonging to the leisure, travel and tourism company TUI
Group, perceived the ESV scheduling process as a suitable point for operations optimization. The airline’s
data science department suggested the investigation of different approaches to this optimization problem.
With access to experts in engine shop visit procedures, scheduling processes, data analysis, and machine
learning, as well as to the airline’s database, a deeper understanding of the process and possibilities was
made viable.

In conjunction with the team, after mapping the current state of art for scheduling processes, it was de-
cided to take an innovative approach of using reinforcement learning. Although reinforcement learning has
been used to optimize the scheduling of many maintenance processes, it has never been used to schedule
ESVs while considering the entire fleet of aircraft, pool of engines and the life-cycle of the engines in one
formulation.

This thesis report is divided into two parts. In Part I, the scientific paper depicting the problem intro-
duction and formulation, the solving methodology and the results is presented. Part II contains the relevant
Literature Study that supports the research.
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Engine Shop Visit Scheduling: A Reinforcement Learning
Optimization Approach

Nicolas Winckler Musskopf,∗

Delft University of Technology, Delft, The Netherlands

Abstract

The scheduling of engine shop visits quickly becomes a complex problem to solve as the number of
aircraft and engines increases. In recent times, different approaches have been used to tackle this problem
and optimize schedules, reducing costs and increasing revenue. This paper formulates the ESV scheduling
problem as a Markov Decision Process and develops a reinforcement learning model that includes parameters
such as engine performance and life limited parts status, maintenance constraints, and temporal factors. A
prioritization algorithm is presented to optimize the learning process and allow for the scheduling of larger
fleets. The results show a slight better performance in comparison to a greedy policy when evaluating aircraft
availability, flexibility to the initial parameters and reduction in use of spare engines. On the other hand,
the reinforcement learning provided lower scores and higher number of removals of aircraft from operations.
In conclusion, the methodology proved that reinforcement learning is a viably way to optimize the ESV
scheduling process, however a fine tuning of parameters might be necessary to approximate scores to a real
revenue and cost relation, and reduce the number of aircraft interventions.

1 Introduction

Aircraft engines are complex and expensive sys-
tems, corresponding to up to 50% of an aircraft’s price
and 43% of an airline’s Maintenance, Repair and Over-
haul (MRO) costs [IATA, 2022]. Simultaneously, MRO
costs correspond to about 11% of an airline’s opera-
tional costs, thus reducing costs related to engine main-
tenance has the potential to generate a significant im-
pact on the overall airline’s operating costs.

For maintenance scheduling, three maintenance
policies are mostly considered [Kumar et al., 2000],
them being: Failure-Based Maintenance (FBM); Time-
Based Maintenance (TBM); and Condition-Based
Maintenance (CBM). In aviation, however, most items
rely on the TBM policy [Kinnison and Siddiqui, 2013],
where maintenance tasks are performed at fixed inter-
vals based on the expected life-cycle of the part and
by the operator’s experience. TMBs might lead to an
increase on unnecessary tasks and a consequential in-
crease on costs with labor and parts, as the condition
of the part is not taken into consideration. The CBM is
a technique that tries to overcome the presented TBM
disadvantages. It is based on diagnostics and prognos-
tics, that is, on current observations of the system, us-
ing visual inspections, sensor monitoring among other
methods, and estimates of the Remaining Useful Life
(RUL) or of the failure probability at a determined fu-
ture moment. In more recent years, prognostics has
been further explored, encouraged by the growth in
available data and data-driven methodologies to esti-

mate future conditions. It reduces stub life, the waste
of RUL for an item being replaced before its limit is
reached, at the same time that avoids unexpected fail-
ures. It requires, however, that the item can be in-
spected, examined and/or monitored.

Aircraft are complex machines, and operators use
the Maintenance Program Document (MPD) as a guide
to understand the specific maintenance rules, sched-
ules, and procedures for each part and system of the
plane. This includes the engine subsystem, which con-
sists of parts that each have their own maintenance re-
quirements and intervals. This can lead to frequent in-
terruptions in operation, as each component reaches its
maintenance threshold. For minor maintenance tasks,
the engines can stay attached to the wings, however
more in-depth maintenance requires removing the en-
gines and sending them to a Maintenance, Repair, and
Overhaul (MRO) facility. There, a comprehensive en-
gine inspection and repair process, known as an Engine
Shop Visit (ESV), is performed.

Removing an engine from an aircraft will result in
keeping the aircraft out of operations for the necessary
time to remove the engine and replace it with a spare
one. This process results in costs related to both the
actual shop visit (SV) and the aircraft grounding, as
well as also cause disruption in the airline’s operations.
This becomes an optimization process where the goal is
to increase the use of engine’s parts life to their maxi-
mum, and, simultaneously, reduce the number of times
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an aircraft is removed from operation for maintenance
tasks, while also reducing the number of spare engines
required to retain the fleet in operation. In case of
fleets with a low number of aircraft and engines, this
type of optimization can be performed manually. In
fact, many airlines still rely on manual solutions, us-
ing regular spreadsheets and personal experience from
scheduling teams to obtain a feasible solution, which
might be far from the most cost-efficient schedule [La-
gos et al., 2020]. Newer optimization techniques, how-
ever, are being increasingly used by airlines to con-
sider all factors involved in ESVs and reduce their total
maintenance costs by more optimally scheduling their
procedures, while also fulfilling all maintenance regu-
latory requirements.

Among the new optimization techniques, the use
of reinforcement learning (RL) has been increasingly
explored for maintenance scheduling of complex sys-
tems. In this paper, the ESV scheduling problem is
formulated as a Markov Decision Process (MDP) and a
novel approach using reinforcement learning for its op-
timization process is proposed, presented and tested.
The methodology consists of creating a schedule by
optimally defining what every engine will be doing, in
the form of actions, at every time step for the evalu-
ated period. The proposed model embrace a broader
scope, considering not just the timing of ESVs but also
the strategic allocation of engines across different air-
craft, storage, and maintenance activities. Different
workscopes of maintenance activities are also consid-
ered, where each workscope represents a different type
of engine shop visit, with different effects on the en-
gine’s conditions after the action. The aim is to achieve
a globally optimized solution for the fleet over the eval-
uation period, balancing factors such as operational ef-
ficiency, maintenance costs, and aircraft downtime.

In Section 2 a literature review from the main and
most recent methods to produce and optimize ESVs
schedules is presented. The problem is then presented,
including its parameters, constraints and dynamics, in
order to be mathematically formulated in Section 3.
Section 4 presents the proposed methodology to solve
the ESV scheduling problem in an optimal, or close to
optimal, manner. The results for the proposed method
are presented and discussed in Section 5, followed by
the concluding remarks, as well as suggestions for fu-
ture research, in Section 6.

2 Literature Review
When dealing with scheduling maintenance for com-
plex machines, as for the case of aircraft engines, a gen-
eral maintenance policy for the entire system is usually
not applicable, as its different parts will have different
inspection and replacement periods. This type of sys-
tems might lead to a higher number of disruptions in
operations, as the process has to be stopped every time
a part reaches its threshold. To solve this problem, one
of the initial solutions was introduced through the con-
cept of "opportunistic replacement", by [Jorgenson and

Radner, 1960]. In it, a maintenance period required by
one of the system’s parts can be used as an opportu-
nity to also replace or restore a secondary part that
has not yet reached its end-of-life or has failed, thus
avoiding a future operational disruption for that part’s
replacement. The optimal schedule will balance the
trade-off between the waste of remaining useful life in
the secondary part and the gain resulted from avoiding
a higher downtime for the machine.

The ESV scheduling process began to be optimized
with the development of operational research, espe-
cially with the use of linear programming. This type
of problem requires many assumptions and simplifica-
tions in order to allow it to be mathematically modeled
in a linear program or mixed-integer linear program
(MILP), frequently implying in an unrealistic solution,
as was first observed by [Boere, 1977]. In it, the author
argues that not only the solution might be unrealistic,
but the high unpredictability of an airline’s operations
might render a previously found optimal solution un-
feasible. Their conclusion was that finding the opti-
mal solution might be less valuable than finding a sub-
optimal solution, while good and robust. This was the
base of many of the future research done in this field,
aiming at providing good decision-support tools for the
operators.

More recently, [Sun et al., 2023] created a decision-
support tool with a discrete event simulation tool, us-
ing operational data such as engine deterioration status
and degradation patterns, overhaul turn-around time
and Life-Limited Parts (LLPs) to determine an initial
set of possible ESV dates for a single engine’s entire
life-cycle span. LLPs are measured by the amount
of flight cycles remaining up to its end-of-life point,
where each flight cycle consist of a take-off proceeded
by a landing. The engine’s performance degradation
status is measured by the engine’s exhaust gas tem-
perature margin (EGTM), that is, the margin between
the maximum operational exhaust temperature for the
engine, defined by the engine’s manufacturer, and the
actual measured exhaust temperature. In addition to
the EGTM and LLP status, the authors also consider
different engine parts that could provoke failures, es-
timating a random failure probability. A similar ap-
proach is seen in the research presented by [Mayor-
domo et al., 2010], using operational and contractual
data as inputs for the prediction of when an ESV will
be required, as well as estimate the maintenance costs.
With this information, it generates different scenar-
ios through an iterative algorithm, considering differ-
ent thrust settings and shop visit workscopes. Both
approaches aim at providing the operator’s scheduling
agent an easier method to consider all factors and es-
timate costs and end of life dates, without trying to
optimize it.

Some approaches also explored the possibility of
finding an optimized schedule by modeling the prob-
lem through MILP or MDP, and using a variety of
optimization methods to solve it. In the case of [Alm-
gren et al., 2012], the opportunistic replacement con-
cept is used as base for its method, considering only

2



the status of LLPs, the cost of the parts replacement
and a maintenance base cost, which is irrespective of
the workscope of the maintenance performed. Through
six different constraints the problem is modeled, and
new constraints are derived through Chvátal–Gomory
rounding, so that the feasible region can be defined
with a convex hull and, thus, an optimal solution can
be obtained. The solution obtained with a commer-
cial MILP solver achieved a 70% reduction in main-
tenance occasions and 34% reduction in total mainte-
nance costs. Meanwhile, [Cai et al., 2016] considers
both LLP status and EGTM degradation, modeling
the LLP as having a normal distribution with very
small variance. They explore the concept of just-in-
time (JIT), where both engines may be restored while
using only one spare engine and only three operational
disruptions, by removing the second engine as soon as
the first returns from its shop visit and swapping the
spare engine’s wing. The ideal moment to start this
sequence of actions is determined using a mathemati-
cal model considering the maximum acceptable failure
risk probability for the first engine and the maximum
permissible probability of shortage for the second en-
gine, where the permissible shortage probability is the
probability that the second engine will require some
type of maintenance while the first is still on its shop
visit, thus forcing the use of an urgent spare engine,
that might lead to higher leasing costs.

MDPs, however, may represent the problem more
faithfully, as many of the problem’s parameters are not
linear and/or deterministic, as for example the failure
probability, the EGTM degradation pattern and the
number of flight cycles performed in a certain period.
Through them, a state vector can then be used to repre-
sent the entire system, which can then be used to base
the decision process. In [Li et al., 2019], the probability
of failure of the engine’s parts is correlated to the en-
gine’s performance, considering different LLPs and the
EGTM, combining the optimization of maintenance in-
tervals with the decision of the maintenance workscope
for every shop visit opportunity. This is then opti-
mized using reinforcement learning with a Gauss-Seidel
value iteration algorithm, exploring different schedules
with different workscopes, iterating over different poli-
cies in search of a sequence that reduces total main-
tenance costs, also considering the benefits of oppor-
tunistic replacement. The failure probability is also
considered by [Camci, 2009], in conjunction with the
inventory levels, focusing on these two parameters in-
stead of the parts and performance threshold prognos-
tics. In it, a binary string is used to represent the
schedule, that is then used to calculate the total main-
tenance risk, where the maintenance risk is mathemat-
ically defined considering a sum of failure costs and
losses due to maintenance processes. The optimization
process uses genetic algorithms to iterate over different
strings, seeking to reduce the total maintenance risk.
When compared to the implementation of the FBM,
TBM and CBM methods separately, using genetic al-
gorithms to reduce maintenance risk provided a bet-
ter result, showing the potential for alternative poli-

cies to the traditional methods. Similarly, [Hsu et al.,
2010] also uses genetic algorithms, however using the
chromosomes to present the number of flight cycles re-
maining for two life limited parts and the workscope of
the corresponding shop visit, considering four different
possible maintenance actions. In this case, the genetic
algorithm is used to search for a solution where the to-
tal maintenance cost per flight cycle is reduced, thus
also considering the impact of waste of remaining life
when replacing an engine part. For these three meth-
ods, the optimal policy is obtained while considering a
single engine.

Methods like genetic algorithms and reinforcement
learning are also the state of art for the scheduling
optimization of different maintenance processes, as is
the case for aircraft maintenance, for example. This
can be seen in the research of [van der Weide et al.,
2022] and [Andrade et al., 2021], which try to solve
the problem originally presented by [Deng et al., 2020]
with genetic algorithms and reinforcement learning, re-
spectively. [Deng et al., 2020] proposes a dynamic pro-
gramming method to optimize the long-term planning
of C checks to reduce the number of maintenance occa-
sions and increase aircraft availability. [van der Weide
et al., 2022] tries to reformulate this problem as an in-
teger linear programming problem and solve it by us-
ing a chromosomic representation for each aircraft by
displaying the number of time steps to its next main-
tenance procedure. Genetic algorithm is used, instead
of a commercial MILP solver, due to the size of the
problem. As for [Andrade et al., 2021], the original dy-
namic programming model is explored with a Deep Q-
learning reinforcement learning process. Both methods
reach better results then the original dynamic program-
ming model. In particular, the reinforcement learning
method, although requiring a long training process, is
able to reach a solution for different initial scenarios
within seconds, being thus flexible to produce a new
schedule if unexpected operational situations arise. To
the best of the authors knowledge, the use of reinforce-
ment learning to achieve a flexible optimization policy
for engine shop visit scheduling considering an entire
fleet was not previously explored.

3 Problem formulation
The engine shop visit scheduling problem was defined
through a problem introduction, the costs factors in-
fluencing the scheduling process, a mathematical for-
mulation of the problems in terms of a MDP, including
the definition of parameters, the action space, the state
space the state transition functions and all constraints.

3.1 Problem introduction
The ESV scheduling optimization problem can be de-
fined as follows: Considering the fleet of a major airline,
where each aircraft requires a number Q of engines to
be operational, how can operational costs be reduced
by optimizing the schedule and workscope definition
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for all ESVs, considering all the operational and safety
restrains?

Lets consider an entire fleet of aircraft, where each
aircraft has Q engines. Once any of the engines reaches
the performance deterioration threshold, in terms of
EGTM, or one of its LLPs has reached the end of its
useful life, defined in the MPD, it has to be removed
from operations and be stored or sent to maintenance,
where the part will be replaced or restored. Engines,
however, can also be sent to a shop visit before reaching
any threshold, if this is for some reason deemed benefi-
cial, as in the case of opportunistic replacement for ex-
ample. Furthermore, they can also undergo additional
maintenance procedures, along with the restoration of
the ESV triggering factor, through different shop visit
workscopes. The scheduling must thus be defined by
selecting the ESV dates and workscopes through a de-
cision policy that takes into consideration all of the
engine’s parameters. A strategic decision policy that
uses this information to reduce the maintenance costs
will then generate an optimal schedule, which may then
be introduced by the operator.

Engine shop visits can have multiple workscopes,
where each is defined by a combination of parts that
will be replaced or restored. Workscopes vary in size
and complexity, as they could refer only to the parts
related to the triggering factor, up to a complete over-
haul, that is, for both performance and LLP items.
Consequently, each workscope also has different costs
and turn around times, in direct correlation to the pro-
cedure’s complexity. A defined number of maintenance
slots are available for simultaneous shop visits at any
given time. Once an engine returns from a maintenance
process, it can be reinstalled at the aircraft where it
previously was, in a different aircraft, or left in stor-
age, awaiting for a better installation opportunity.

Aircraft and engines are usually leased (or bought)
together. The original aircraft from an engine is named
its titled aircraft, and the corresponding engines to an
aircraft are called its titled engines. At the end of an
aircraft’s leasing period, it has to be returned with its
titled engines. Furthermore, engines might have other
contractual requirements, as for example requiring a
certain EGTM or a certain amount of remaining life
on all LLPs from the engines.

Taking into account the ability to interchange en-
gines between aircraft of the same fleet type, the pos-
sibility of synchronizing the grounding of several air-
craft to facilitate this swap, and the fact that each
engine exhibits unique patterns of degradation, oper-
ational expenses, and leasing agreements, it becomes
evident that the complexity of the problem escalates
rapidly. Noticeably, however, engines will rarely be
directly swapped among aircraft in real operations,
mostly going to a different aircraft only once it returns
from a shop visit. Engines returning from a shop visit
might also be stored, in case it is not advantageous to
return it to its previous aircraft at that point of time,
or used as a spare engine for another aircraft, in case
no other spare engine is available.

In order to optimize the scheduling of ESVs, it is

essential to understand the factors that trigger the ne-
cessity of one. Generally, five factors are their most
common causes [Ackert, 2015]:

1. Expiration of a Life-Limited Part (LLP);

2. Performance deterioration;

3. Service bullet in compliance;

4. Emergency Airworthiness Directives;

5. Unexpected engine anomaly.

Items four and five, however, are reactive measures
and cannot be predicted, thus not participating in the
ESV scheduling process. Service bulletins generally do
not require immediate action, giving the operator the
flexibility to choose an appropriate time to do any nec-
essary actions. The first two items, however, are the
most frequent triggers and are the base for the long-
term planning of ESVs. Performance deterioration is
most commonly measured by the EGTM, thus requir-
ing a data-driven CBM process. Life-Limited Parts,
on the other hand, have defined number of flight cy-
cles before they have to be replaced, requiring thus a
version of the TBM policy.

3.2 Scheduling cost factors
During the optimization of the ESV schedule, the op-
erator’s main goal is to reduce costs to a minimum
while maintaining safety levels and fulfilling all regula-
tory requirements. The main factors that will generate
costs and have to be considered during the scheduling
process are:

• Operational costs: Operational disturbances
may be caused from both scheduled and unsched-
uled maintenance actions. If engines are allowed
to operate closer to their operational threshold
and their parts life limits, the operational relia-
bility is reduced. Unscheduled maintenance ac-
tions generate a higher impact on the airline’s
operations, as flights might be canceled and/or
delayed, generating costs in relocation, compen-
sations and leasing of another aircraft. Scheduled
maintenance will also impact the airline’s oper-
ations, however the operator will have time to
reschedule passengers and reroute airplanes, thus
reducing extra costs. It is thus essential to sched-
ule engine shop visits considering the impact of
scheduled and unscheduled maintenance process,
increasing the operational robustness to maintain
the fleet available for an extended period of time.

• Parts utilization: The interval between sched-
uled ESVs determine the frequency that engine
parts or components are replaced or maintained.
By increasing the frequency of shop visits, the
exploitation of the life time from parts can be
increased, at the cost of also increasing the num-
ber of operational disturbances. Furthermore,
the frequency of ESV also define the reliability
of the engines. Extending the exploitation of
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the life time of parts can reduce the reliability
of the engines and increase unscheduled mainte-
nance costs.

• Shop visit workscope decision: When
scheduling shop visits, airlines usually have a
large number of different options on workscopes
for the process. Engines might go through per-
formance restoration processes, improving the
EGTM, as well as replacing different life limited
parts. Not all life limited parts on an engine have
the same life span, meaning they might reach
their limit at different time points. Shop visit
costs are influenced by the number of tasks per-
formed, as well as by fixed costs that do not vary
with amount of tasks. Therefore, the cost per
task per shop visit decreases as more tasks are
undertaken at once. Using less broad workscopes
will also lead to more frequent shop visits, which
in turn will require for airplanes to be more fre-
quently removed from regular operations. The
airline has thus to decide if the reduction in costs
per task, observed when performing a broader
workscope, in conjunction with the reduction in
the number of times the aircraft has to leave regu-
lar operations for an engine change, compensates
for the wasted stub life on these parts that would
not yet require replacement.

• Contractual penalties: The leasing of air-
craft engines will very often come with obliga-
tions and penalties that will directly impact the
ESV scheduling process, as well as the engine’s
life cycle maintenance costs. Lessors might, for
example, require compensation if their engines
performance are below a certain threshold. They
might also require LLPs replacement if an engine
goes to a shop visit for any another reason and it
is close to its leasing end. These situations might
lead to a high stub life, as they will be replaced
regardless of how close they are to their life limit.
As engines face a limited number of shop visits
during their life cycles, the restrictions on an end
of leasing shop visit will have an impact on the
decisions taken in the previous shop visits, im-
pacting their combined costs.

The scheduling of an ESV for one engine might also
be affected by the scheduling of maintenance for other
engines. Although the number of engines that can be
at an ESV at the same time depends on the capacity of
the MRO provider, if more engines are going through
a shop visit than there are spare engines, some aircraft
will have to stay out of operations, resulting in loss of
possible revenue. On the other hand, buying or leasing
more spare engines will also incur in high costs, thus
a balance between the operational flexibility generated
by extra spare engines and the costs that they generate
has to be achieved.

The relation between different engines during the
ESV scheduling process is also observed in other sit-
uations. As there is usually more then one engine in-

stalled on an aircraft, and the removal of an aircraft
from operations incur operational costs, the decision
of performing a shop visit in one engine might also cre-
ate the opportunity of costs savings by performing a
shop visit in the aircraft’s other engine.

Lets consider, for example, that an aircraft is
grounded for the removal and shipping of engine num-
ber one for an ESV, a spare engine will have to be
installed on its place. Once the removed engine is re-
turned from the shop visit, it is possible to reinstall
engine number one and remove engine number two, re-
placing it with the same spare engine that was used
as spare for engine one. This sequence is visualized
in Figure 1. In this case, operational disruptions in
the aircraft are reduced, as the aircraft only has to be
removed from operations once to perform both the in-
stallation of engine one and the removal of engine two.
The returned engine could also be installed on another
aircraft, using it as a spare engine. In both cases, only
one spare engine is used for the maintenance of two
engines, being examples of opportunistic replacement
that lead to reduced operational costs and reduction in
the number of spare engines.

Figure 1: ESV opportunistic replacement sequence.

At last, flight regulations mandate that an aircraft
undergoing simultaneous installation of two engines
must undergo flight tests before resuming commercial
service. This requirement does not apply when only
one engine is replaced. These mandatory flight tests
incur additional costs for crew and fuel and extend the
period during which the aircraft is unavailable for com-
mercial operations.

3.3 Formulation parameters
In this section the ESV scheduling problem is formu-
lated using a finite-state and finite-action Markov de-
cision process (MDP) framework, in order to be later
easily implemented into a reinforcement learning algo-
rithm.

3.3.1 Aircraft parameters

Aircraft require engines to be operational, and any en-
gine may be assigned to any aircraft, as long as they
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are from the same type. Aircraft are represented by an
index p, going from one to n, where n is the size of the
fleet. The set of all aircraft is the set P .

The number of engines assigned to an aircraft p
at any given moment t is represented by the engine
counter variable kp,t. Another aircraft parameter is the
aircraft on ground (AOG) indicator Θp,t. The AOG in-
dicator is a binary variable where one indicates that,
at the current time step, aircraft p is going through an
engine removal or installation, so it has to be removed
from regular operations.

3.3.2 Engine parameters

Each aircraft p has a number Q of engines. In this
paper, Q is always equal to two. Engines are repre-
sented by the index e, going from the number one to
the number m, where m is the total number of engines
available. The combination of all titled engines and
spare engines constitutes the set E. The titled aircraft
of an engine is identified by the parameter ze.

As each engine has a defined leasing period, the
progress of the leasing is observed in variable le,t as
a proportional value in decimal representation, where
zero indicated the starting time point of the leasing
and one its end. The leasing progress variable is in-
cremented by a value ∆le every time there is a time
step progression. The increment ∆le corresponds to
the ratio of one time step to the length of the leasing
contract ιe for engine e, as seen in Equations 1.

∆le =
1

ιe
(1)

Engines have two parameters that define their de-
terioration status, one regarding LLPs LSe,t and one
regarding EGTM PSe,t. For LLPs, LSe,t indicates the
state of the engine in terms of remaining useful life.
The state of deterioration is represented by a propor-
tional value in decimal representation, being zero the
worst possible deterioration status, meaning zero flight
cycles remaining on the critical LLP of the engine.

The deterioration of the LLP status LSe,t depends
on the average number of flight cycles between two time
steps γ. Aircraft do not perform the same number of
flight cycles each day and, furthermore, as their sched-
ule is only defined a few months before operations, it
is not possible to determine the exact number of flight
cycles that will be performed by the engine during its
entire life-cycle, being possible only an estimation of
it, using previous operations data. In this paper an
average number of flight cycles between two time steps
will be calculated and considered deterministic.

The average of flight cycles between two time steps
can be calculated from the airline’s data by evaluating
the flight history of the airline, firstly calculating the
average number of flight cycles between two time steps
(υ) for the entire data set. For the purposes of this
research, seasonal and yearly variations are not con-
sidered, being used a general average for the entirety
of the flight history set. The average LLP status decay
rate γ can then be calculated in terms of proportional

value in decimal representation of the remaining useful
life of a new LLP (LSmax), as indicated in Equation 2.

γ =
υ

LSmax
(2)

The performance status PSe,t is represented by the
ratio between the EGTM at any given time step t to the
maximum EGTM observed on the engine. This maxi-
mum EGTM is observed when the engine is new, when
it will thus have the value of one, decreasing with time
as the operation of the engine slowly deteriorates its
internal parts, consequently reducing the performance
efficiency until a EGTM of zero, where PSe,t will also
be zero.

Figure 2: TSFC degradation and effect of engine wash
for flight cycles.[Chen and Sun, 2018]

The exhaust gas temperature (EGT) is usually at
its highest point during take-off, it is at this moment
that the EGTM is recorded for each cycle. The EGTM
decay presents a higher complexity problem, as many
different factors impact the engine’s EGTM degrada-
tion pattern. Among these factors are:

• Flight environment: The ingestion of sus-
pended particles like dust, dirt, sand and others
will provoke fouling and erosion of the engine’s
internal components, that will have as effect the
deterioration of the engine’s performance [Giorgi
et al., 2018]. Consequently, flying in conditions
with a higher concentration of particles, as for
example in desert conditions [Ryder et al., 2023],
will increase the rate of degradation.

• External temperature: The intake air tem-
perature significantly affects the EGTM in air-
craft engines, as a higher intake temperature
leads to an increase in the overall temperature
during the engine’s operating cycle, accelerating
wear and tear of internal parts and thus, increas-
ing the deterioration rate.

• Flight settings: Factors such as take-off run-
way length, weather conditions and airline’s stra-
tegy (through cost index) will impact on the con-
figuration of the engine for each take-off and its
flight performance. Furthermore, engines of the
same type can be configured to different thrust
settings. Changing the thrust setting requires
small interventions in the engine that cannot be
performed for each flight. Increase in thrust
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is accompanied by increase in internal tempera-
tures and pressures, factors that increase internal
degradation and, consequently, performance de-
terioration. Engines with a higher thrust setting
and operating more often in constrained environ-
ments (with shorter runways, higher airport alti-
tudes, higher take off temperatures, etc) will thus
have a higher deterioration rate.

• Engine Washes: The frequency of engine
washes will directly influence the EGTM, as the
cleaning process will reduce the effect of fouling in
the engine. Scheduling them optimally, however,
presents a challenge of its own. When an en-
gine accumulates a high number of flight cycles,
the impact of erosion becomes significant enough
that an engine wash alone is no longer sufficient
to substantially improve its performance [Chen
and Sun, 2018]. Figure 2 exemplifies this pat-
tern with the Thrust Specific Fuel Consump-
tion (TSFC), that can be directly correlated to
EGTM [Chen and Sun, 2018].

• Engine age: The degradation pattern is in re-
ality not linear, having a higher rate at the begin-
ning of the engine’s life and a lower rate towards
its end, as can be also seen in Figure 2. For the
purpose of this research, this effect is disregarded.

The engine degradation is consequently a stochas-
tic process when evaluating its progression over each
cycle. It will, however, have a long term rate that is
measurable and uniform among the fleet, as long as the
entire fleet faces similar engine wash policies and opera-
tional environments. This assumption can be observed
as realistic when plotting real EGTM data from a ma-
jor European airline, as seen in Figure 3, where the
short term impact of engine washes and shop visits are
clearly visible, as well as the long term deterioration
pattern between shop visits. As the ESV scheduling
process is a long-term problem, the short-term fluctua-
tions can be ignored and the EGTM deterioration per
time step can be considered deterministic. The airline
has to model this parameter in order to more precisely
represent the pattern seen by its operations.

Figure 3: Real life example of EGTM deterioration with flight cycles.

The EGTM decay per time step σ is thus a vari-
able that depends on each airline’s historical data and
will be unique for each operator. It can be calculated
by firstly using a linear interpolation of the EGTM for
each engine for the period between shop visits, and
then calculating the average of rates ζ for all engines
of the same type. σ can then be be calculated as a pro-
portion from the average EGTM decay per time step
to the maximum EGTM for a new engine PSmax, as
calculated in Equation 3.

σ =
ζ · υ

max(PSmax)
(3)

The average rate of decay for both LLP and EGTM
deterioration statuses, λe,t and ξe,t respectively, are

also computed considering the last 5 time steps. They
are responsible to represent the pattern of deterioration
of any engine at any given time.

From the LLP and EGTM deterioration statuses, a
prediction for each engine’s future critical status is rep-
resented by variable CSe,t. The factor with the highest
degradation will be considered as critical and a linear
interpolation is performed to predict the future state
of this value. The objective of this variable is to allow,
during the scheduling process, to evaluate if an engine
will likely reach one of its thresholds during the sum-
mer period, which would require temporarily removing
the aircraft from operation for the engine replacement.
As the summer period is an interval of high demand,
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removing an aircraft from operation to send an engine
for a shop visit during this time will have a larger im-
pact on revenue, in comparison to doing so on other
periods.

The airline also has to define at which degradation
point it wants to stop the engine from staying in opera-
tions. As the real deterioration per cycle is stochastic,
it might be desired to limit the minimum predicted
degradation to a value slightly higher than the regula-
tions minimum. This is done in order to avoid unsched-
uled removals, caused by an engine that had a higher
than expected decay. This limit is defined by param-
eters LSmin and PSmin, for LLP and EGTM statuses
respectively.

3.3.3 Temporal parameters

A few parameters depend only on time, where the cur-
rent time step is indicated by the variable t. For exam-
ple, airlines have agreements with MRO providers that
define the maximum number of engines that may go to
a shop visit at the same time. Based on the number of
engines assigned to an ESV in the current time step,
the available capacity variable Me,t is calculated and
expressed as a proportional value, being zero maximum
capacity and one no available slots.

As the summer period is a cyclical period that is
of importance during the scheduling process, two vari-
ables indicate the relation of the current time step t
to the summer period. The summer approach vari-
able τt indicates how close t is to the start of the next
summer period, being a proportional value where zero
indicates the first time step after the summer period
ending point, and one the beginning of summer. ∆τ
corresponds to the increase in one time step in rela-
tion to the amount of time steps between the end of a
summer period tend1

and the beginning of the next one
tstart2 , as calculated in Equation 4.

∆τ =
1

tstart2 − tend1

(4)

The summer progress variable ρt indicates how
close t is to the summer end, once it has started. It is a
percentage value that stays null for most of the period,
linearly increasing from zero to one during the summer
period and returning to 0 once it has ended. ∆ρ cor-
responds to the increase in one time step in relation
to the length of a summer period ∆ts, as calculated in
Equation 5.

∆ρ =
1

∆ts
(5)

The airline also has to define a few constant pa-
rameters. Firstly, is has to evaluate, based on their
contracts and historical data, what is the average turn
around time ϕ required to receive back an engine, once
it has been sent to a shop visit. The airline also has to
define the point at which the engine degradation pre-
diction has to be evaluated. This is indicated in terms
of the summer approach variable and presented as τSV .
At this point, engines that are predicted to trigger the

necessity of an ESV during the summer have to be re-
placed, in order to avoid summer disruptions.

3.3.4 Transitional parameters

A few parameters must be calculated only for the tran-
sition of states for certain actions. These parameters
are not explicitly presented in the state space, but have
an impact on how it is updated.

As observable effect of an engine that undergoes an
ESV with a workscope focused on performance restora-
tion is its EGTM increase. A shop visit, however, will
not fully recover the engine’s performance to the same
level as from a new one. The performance status of the
engine after shop visit will thus not be the maximum
value of one, rather being a slightly lower value.

This recovered status value RPS has to be stochas-
tically modeled using the data of EGTM values ob-
served right after shop visits. As the EGTM is a prod-
uct of many different factors, evaluating what is the ex-
act impact of the shop visit only based on the EGTM
observed directly after it will lead to misleading results.
Consequently, it is necessary to use a sequence of data
points after an ESV.

Once an average of EGTM after a shop visit is de-
termined for enough shop visits within the same engine
type group, it is necessary to determine the statistical
model that best fit the results distribution. Then, an
estimation method can be used to estimate the model
parameters. For this paper, based on data from a ma-
jor European airline, the recovered status RPS was
expressed following a normal distribution with a low
standard deviation, as seen in Equation 6.

RPS ∼ N (µ, σ2) (6)

This recovery percentage is applied cumulatively to
the last status after a shop visit PSe,t−y, where y is the
number of time steps since the last shop visit. If the
engine has not yet undergone a shop visit, PSe,t−y is
considered as one. Thus, the performance status af-
ter the shop visit being applied at the moment can be
calculated by Equation 7.

PSe,t+ϕ = PSe,t−y ·RPS (7)

The performance recovery rate rpe is based on the
expected performance status at the end of the mainte-
nance process, using the recovery probability distribu-
tion previously defined, and the current performance
status. This rate calculation is necessary to correctly
increase the engine’s performance status up to the re-
covered status in the amount of time steps defined by
the turn around time ϕ.

On the other hand, the LLP status recovery de-
pends upon the number of workscopes available for
LLPs replacements. If there is more than one, as for
example by only replacing some of the parts, then the
status after the shop visit will represent the smallest
RUL of the parts that were not replaced. For this paper
only one type of workscope limited to LLPs is consid-
ered, where the LLP status will be fully restored every
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time the parts are replaced, as expresses by Equation
8.

LSe,t+ϕ = 1 (8)

As the LLP condition when replaced is determin-
istic, the LLP recovery rate rle can be defined by the
ratio between the difference of one and the last LLP
status LSe,t before the start of the ESV and the turn
around time ϕ.

3.4 Action Space

The action space is defined by all possibilities of ac-
tions for an engine. An engine might be in operation
in an aircraft, in storage or in one of the possible shop
visit workscopes. Each aircraft has one corresponding
action in the action space. The number of possible ac-
tions is thus a variable, depending on the number of
aircraft in the environment and the number of differ-
ent shop visits that can be performed. LLP parts in an
engine may have different life spans and, consequently,
there could be a number of different workscopes, one
for each set of parts that can be replaced, as well as the
possible combination of sets. For this paper, however,
only three different shop visit workscopes are consid-
ered, they are respectively:

1. LLP Shop Visit (LPV): In this action, only
the deterioration state correspondent to the LLP
status LSe,t is restored. This action is analogous
to a shop visit which is limited to the replacement
of all LLP parts.

2. Performance Shop Visit (EPV): In this ac-
tion, only the deterioration value correspondent
to the EGTM status LPe,t is restored. This ac-
tion is analogous to a shop visit which is limited
to the procedures for restoration of engine per-
formance.

3. Pair Shop Visit (PSV): In this action, the
degradation values for both LLPs and EGTM
status are recovered. This action is analogous
to a complete shop visit.

Actions are enumerated from the first aircraft to
the last one, followed by the storage action, LLP SV,
Performance SV and, at last, Pair SV. Actions 1 to n
are considered “operational actions” and constitute the
set of actions O, where “n" is the number of aircraft on
set P . Storage actions, in this case represented only
by action n + 1, constitute the set of actions S. At
last, LPVs, EPVs and PSVs are shop visit actions and
constitute the set of actions F . The taken action is
represented by variable ae,t. It is an integer such that
1 ≤ ae,t ≤ n+ 4.

The action space can be visualized by Figure 4.

Figure 4: Numeric formulation for action space.

3.5 State Space
The combination of the statuses for the fleet of aircraft
and pool of engines, in conjunction with the tempo-
ral parameters, represent the state of the scheduling
environment at any given moment. A final schedule
has this combination of parameters defined for all time
steps in the analyzed period.

Parameters are divided into two types, depending
on at which transition point they are updated in the
state space. Variables of ”Type 1" are updated at each
decision step. On the other hand, variables of ”Type
2" are updated only when there is progression from one
time step to the following.

Each engine e on the set of engines is defined by a
state vector sEe,t, where all variables combined indicate
the status of the engine at each time step t, such as:

sEe,t =[le,t, CSe,t, ae,t−1, λe,t, ξe,t, LSe,t, PSe,t︸ ︷︷ ︸
Type 2

,

ae,t︸︷︷︸
Type 1

, ze]
(9)

Each aircraft in the operator’s fleet is also defined
by an aircraft state vector sPp,t at every time step t, con-
taining the engine counter kp,t and the AOG indicator
Θp,t, such that:

sPp,t = [kp,t,Θp,t︸ ︷︷ ︸
Type 1

] (10)

Three variables are only time dependent, consti-
tuting the time state vector sTt . They are: summer
approach τt, summer progress ρt and MRO available
capacity Me,t.

sTt = [ τt, ρt︸ ︷︷ ︸
Type 2

, Me,t︸︷︷︸
Type 1

] (11)

The state space vector st can then be defined by the
concatenation of the engine state sEe,t for all engines at
time t, aircraft state sPp,t for all aircraft at time t and
time state sTt at time t, as seen in Equation 12.
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st =
[
sE1,t, s

E
2,t, . . . , s

E
e,t, s

P
1,t, s

P
2,t, . . . , s

P
p,t, s

T
t

]
(12)

All sets required for the definition of the environ-
ment are presented by Table 16 in Appendix A. All
individual parameters are presented by Table 15 in Ap-
pendix A.

3.6 State transition
The application of an action ae,t to an engine e might
have different consequences in the state space, depend-
ing on the type of action. Once an action is chosen,
the new state space is defined through a state transi-
tion function. The state space is updated every time
that an action is chosen for one of the engines.

The decision-making process in which a single ac-
tion is selected for each engine at every time step in-
troduces a new layer of complexity. While the num-
ber of potential actions remains fixed at each step, the
impact of a selected action on the state space is de-
pendent upon the engine that is receiving that action.
This ”active engine", however, is not explicitly observ-
able in the state space. It is always represented by the
leftmost action with a null value inside the engine state
part of the state space.

"If the action ae,t for an engine is operational, or
if the preceding action ae,t−1 was operational and the
current action ae,t is not, the aircraft where the engine
currently operates (or was last operational) is desig-
nated as the active aircraft αp."

3.6.1 Type 1 parameters

Type one parameters require an update after each de-
cision step. Firstly, as soon as an action is decided for
an engine e, the action variable ae,t receives its value.
Once ae,t is updated, the engine counter is also up-
dated for the active aircraft αp, as seen in Equation
13.

kαp,t =
∑
i∈E

I (ai,t = αp) (13)

The AOG indicator Θp,t is set as one for the active
aircraft αp if the active engine was previously not in
operation and at the current time step is. In this case
the active aircraft is also included into the set of air-
craft with engine installations Lit for the current time
step t. The AOG indicator will also be set as one if
the engine was in operation at the previous time step
and is not at the current one. In this case the engine is
included into the set of aircraft with engine removals
Lrt. The value of Θp,t can thus be represented by:

Θαp,t =


1 if ae,t−1 ≤ n and aαe,t > n,

1 if ae,t−1 > n and aαe,t ≤ n,

0 otherwise.
(14)

The MRO available capacity Me,t is calculated after
every step as for Equation 15.

Me,t =
1

Mmax

∑
e∈E

I(ae,t ∈ F ) (15)

where Mmax is the MRO provider maximum capac-
ity.

Once all type one parameters go through their tran-
sition functions, the active engine is interchanged to
the next engine in the set of engines E, up to the last
engine, of number m. In case the active engine e is the
last engine, all type two parameters go through their
state transition function.

3.6.2 Type 2 parameters

Type two variables are only updated when there is a
change on the time step t. The leasing progress le,t,
the summer approach τt, and the summer progress ρt
are independent from actions assigned to the engines.

le,t is recalculated for every engine e taking into
consideration its previous value and the time step in-
crease ∆le, as seen in Equation 16.

le,t+1 = le,t +∆le (16)
The summer approach τt, and the summer progress

ρt depend only on their previous status. If τt indicates
that summer has not yet started, then it is increased
by the amount ∆τ . Else, it remains at the same value
of one, indicating that the current time step is in a
summer period, unless the summer progress variable
indicates the end of the summer at the current time
step, in which case the summer approach variable is
reset to zero:

τt+1 =


τt if τt = 1 and ρt ̸= 1,

0 if τt = 1 and ρt = 1,

τt +∆τ otherwise.
(17)

Similarly, the summer progress ρt is zero up to the
point where the variable τt indicated the start of sum-
mer, increasing in value by ∆ρ up to the end of the
summer period, when it is reset to 0:

ρt+1 =

{
ρt +∆ρ if τt = 1 and ρt ̸= 1,

0 otherwise.
(18)

The remaining type two variables depend on the
taken action. The parameter ae,t−1 is updated with
the action taken in ae,t. Action variable ae,t+1 is reset
to zero for all engines e.

In case the previous action ae,t−1 is a shop visit ac-
tion, and it is the initial time step for this task, the
recovery rate rpe

has to be calculated, as seen in Equa-
tion 19.

rpe
=

PSe,t+ϕ − LSe,t

ϕ
(19)

For the case where only one workscope is available
for LLPs, thus representing the replacement of all LLPs
in the engine, the LLP recovery rate rle can be calcu-
lated via:
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rle =
1− LSet

ϕ
(20)

The deterioration statuses LSe,t and PSe,t can then
be calculated as represented in Equations 21 and 22,
respectively.

LSe,t+1 =


LSe,t − γ if ae,t ≤ n,

LSe,t if ae,t = n+ 1 or ae,t = n+ 3,

LSe,t + rle otherwise.
(21)

PSe,t+1 =


LSe,t − σ if ae,t ≤ n,

LSe,t if ae,t = n+ 1 or ae,t = n+ 2,

LSe,t + rle otherwise.
(22)

The average rates of decay λe,t+1 and ξe,t+1 can
then be calculated considering the last 5 time steps, as
seen in Equations 23 and 24 respectively.

λe,t+1 =
1

5

4∑
i=0

(LSe,t−i − LSe,t−i−1) (23)

ξe,t+1 =
1

5

4∑
i=0

(PSe,t−i − PSe,t−i−1) (24)

The critical engine prediction is also calculated. As
the intention of this variable is to estimate if an engine
will have to be removed during a summer period, the
interpolation is calculated for a period corresponding
to the total summer length ∆ts plus the turn around
time ϕ, so that even if it goes to a shop visit, it can be
reinstalled before the beginning of summer. This can
then be calculated through Equation 25.

CSe,t+1 = min[LSe,t − (ϕ+∆ts) · γ,
PSe,t − (ϕ+∆ts) · σ]

(25)

The sets Lit and Lrt also have to be restarted at
each new time step so that they are empty (as no instal-
lations or removals were yet performed in the following
time step), so that:

Lit+1 = {} and Lrt = {} (26)

Once all type two parameters are updated, the cur-
rent engine index e in analysis is set back to one, as
it corresponds to the first engine in the engine set E.
The current time step t is increased by one. This pro-
cess is repeated up to the last engine at the last time
step. The implicit consequence of this process sequence
is that an action decision step does not always corre-
spond to a time step.

3.7 Reward Function
The reward function was formulated with the goal of
accurately representing how the airline perceives the

problem. Shop visits are beneficial in the long term, as
they are necessary to keep aircraft operational (gener-
ating revenue), while producing high costs in the short
term, when they are performed. This dynamic has to
be reproduced by the reward function, so that any for-
mulated schedule has a realistic score representation.

The main source of income for an airline is the op-
eration of its aircraft. This is represented in the reward
function through a positive reward Rv, that is gener-
ated every time an aircraft is in operation. An aircraft
is considered in operation at a time step t whenever
two engines are assigned to it, so that:

ae,t ∈ O =⇒ Rv =

{
1, if kαp,t = 2

0, otherwise
(27)

The result of equation 27 is that a positive reward
is granted exclusively when assigning the second engine
to an aircraft, whereas the first engine receives no re-
ward. To prevent excessive complexity in the fleet mix,
a minor penalty is imposed on an operational aircraft if
one of engines used for its operation is not on its titled
aircraft. This penalty is represented by Equation 28.

kαp,t = 2 =⇒ Pnt =


0.00, if (ae1,t = ze1)∧

(ae,t = ze)

−0.05, otherwise
(28)

where e1 is the other engine also assigned to the
aircraft αp.

Although ESV are desired, they are costly opera-
tions. Not imposing any penalty on shop visits would
result in an excessive number of them. Therefore, it
is necessary to assign a negative reward to shop visits,
as indicated in Equation 29. The variables cl, ce and
cp represent the penalty for each possible shop visit
action. These variables have to be defined by the op-
erator to be proportional to the real revenue and cost
values observed by the airline.

ae,t > n+ 1 =⇒ Pnsv =


−cl, if at,e = n+ 2

−ce, if at,e = n+ 3

−cp, if at,e = n+ 4

(29)
The act of installing or removing an engine gener-

ates a loss of revenue in form of removing the corre-
sponding aircraft from normal operations. However,
as the reward is calculated for each engine and not for
each aircraft, and to allow for the exploration of oppor-
tunistic replacement, only the first engine that requires
the removal of the aircraft from the roster should be
penalized. These operations have a higher revenue im-
pact in case they occur during summer, so the penalty
for AOGs during summer are doubled, so that:

11



Θαp,t = 1 =⇒

PnAOG =


0.0, if (p ∈ Lit) ∧ (p ∈ Lrt)

−ca, else if τt ̸= 1

−cs, otherwise

(30)

Variables ca and cs represent the cost of grounding
an aircraft and doing so in summer, respectively. As
was the case for cl, ce and cp, they are proportional
costs to the revenue generated by an aircraft during
one time step progression and have to be defined by
the operator.

The final reward for the step in execution is the
sum of the reward with all penalties, as in Equation
31.

Rwe,t = Rv+Pnt+Pnsv+Pnsummer+PnAOG (31)

and the total score for the episode is the sum of the
rewards for all engines at all time steps. An episode is
an entire scheduling process, from the first action deci-
sion for the first engine at the first time step up to the
last engine at the last time step. Equation 32 presents
the equation for the episode’s score.

TS =
∑
t∈T

∑
e∈E

Rwe,t (32)

3.8 Constraints
If at each decision point all actions from the action
space are available, regardless of the current state
space, future state spaces could represent scenarios
that are not possible in real life, thus being of no in-
terest in the scheduling process. To maintain any de-
fined schedule within the bounds of real-world feasi-
bility, a set of eleven constraints was defined. These
constraints are applied by selectively removing infeasi-
ble or restricted actions from the set of possible actions
available at each decision point. By doing so, it is en-
sured that the resulting action space reflects realistic
operational boundaries and practical maintenance con-
siderations.

3.8.1 Minimum deterioration threshold

This constraint is introduced to enhance the model’s
alignment with realistic operational scenarios. While
in a real-world scenario the decision of sending an en-
gine with low deterioration statuses to a shop visit is
possible, it would provoke a very high stub life. This
type of decision is thus unlikely and will almost cer-
tainly be far from an optimal schedule. Constraining
shop visit actions from engines that are above a cer-
tain deterioration threshold LSmin and PSmin will in
turn simplify the decision-making landscape, focusing
the model’s attention on more imminent and critical
maintenance decisions. This constraint can be seen by
Equation 33.

(LSe,t ⩾ LSmin) ∧ (PSe,t ⩾ PSmin)

=⇒ ae,t ⩽ n+ 1
(33)

3.8.2 Maximum degradation for operations

While the engine could stay in operations up to the
moment it reaches its threshold for LLP flight cycles
or EGTM, operators will frequently desire to restrain
engines from getting to close to these values, as it de-
creases the engine’s reliability. Operators must there-
fore decide what is the maximum degradation statuses
for performance PSmax and LLP LSmax, at which
point engines have to be removed from operations, as
seen by Equation 34.

(LSe,t ⩽ LSmax ∧ PSe,t ⩽ PSmax) =⇒ ae,t ⩾ n+ 1
(34)

3.8.3 MRO provider capacity

Once the number of engines sent to a shop visit equals
the total amount of available slots agreed between the
airline and the provider, engines are restrained to stay
in operation or stay in storage, as seen in Equation 35.

Me,t = 1 =⇒ ae,t ⩽ n+ 1 (35)

3.8.4 Turn around time constraint

Engines sent to a shop visit will stay at the MRO
provider until they are fit to be returned to the air-
line. During this time, up to its end, no other actions
should be available for the agent. This is represented
by Equation 36.

(ae,t−1 ⩾ n+ 1)∧

(
ϕ∑

i=1

I (at−i,e > n+ 1) ⩾ ϕ

)
=⇒ at,e = at−1,e

(36)

3.8.5 Number of engines constraint

The number of engines assigned to any given aircraft
must not exceed the specified quantity that the aircraft
is designed to accommodate, denoted as Q. This re-
sults in constraining the corresponding actions for all
aircraft that already have Q engines assigned to them,
as an extra installation is impossible. This constraint
is represented by Equation 37.

kp,t = Q =⇒ at,e ̸= p ∀p ∈ P (37)

3.8.6 Summer constraint

Airlines will frequently avoid performing heavy main-
tenance on its aircraft and engines during the peak
demand seasons, particularly during summer, as these
are the most profitable periods. To represent that, only
engines that were in storage at the previous time step
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may have a shop visit action assigned to them during
this period. Equation 38 represents the summer con-
straint.

(ae,t−1 < n+ 1) ∧ (τt = 1) =⇒ ae,t ⩽ n+ 1 (38)

3.8.7 Pre-summer prediction

If it is predicted that an engine will require a shop visit
during the summer period as a result of reaching its op-
erational threshold, the engine has to be removed and
sent to storage or maintenance before the summer be-
gins, avoiding a removal and installation process during
the peak-season period. Equation 39 represents how
this constraint is implemented in the environment.

(τt = τSV ) ∧ (CSe,t ⩽ max[LSmin, PSmin])

=⇒ ae,t ⩾ n+ 1
(39)

3.8.8 Titled aircraft constraint

As previously explained in Subsection 3.1, engines are
most frequently leased together with an aircraft and
will have to be returned with that same aircraft once
its leasing reaches its contractual end. It is thus neces-
sary to guarantee that the engine is on its titled aircraft
once it gets close to the point where it has to be re-
turned. The maximum date on which an engine might
be out of its titled aircraft is defined by the operator,
and is seen in Equation 40 by the parameter llimit.

(le ⩾ llimit) =⇒ ae,t ⩾ n+ 1 or ae,t = ze (40)

3.8.9 Leasing end constraint

Once an engine reaches the end of its leasing period, it
has to be returned to the lessor and cannot be further
used by the airline. This is reproduced by restraining
the engine to stay in storage once its leasing progress
variable reaches the maximum value of one, symboliz-
ing the end of the leasing, as seen in Equation 41.

(le ⩾ 1) =⇒ ae,t = n+ 1 (41)

3.8.10 Double installation constraint

To avoid the additional costs that installing engines at
the same time generate, as stated in Section 3.2, it is
beneficial to restrict the amount of engines installed in
an aircraft to one at a time.

This is done by evaluating if the engine was in stor-
age or maintenance at the previous time step. If it was,
then it cannot be installed on an aircraft that is already
present in the set of aircraft with installed engines Lit,
as seen in Equation 42.

(ae,t−1 ⩾ n+ 1) ∧ (p ∈ Lit) =⇒ ae,t ̸= p ∀p ∈ P
(42)

3.8.11 Engine change constraint

As engines generally are not exchanged among aircraft
without a maintenance process in between, it is benefi-
cial for the training process to constrain the possibility
of directly changing from one operational action to an-
other. Consequently, engines in operation may stay in
operation at the same aircraft, go to a shop visit action
or to storage, as presented by Equation 43.

(ae,t−1 < n+ 1) =⇒ at,e = at−1,e or at,e ⩾ n+ 1
(43)

4 Methodology
The ESV scheduling problem, being formulated as a
MDP, can then be solved using reinforcement learning.
The implementation of the reinforcement learning opti-
mization is here presented through the definition of the
problem assumptions, training environment, training
optimization tools and the creation of initial scenarios
for each episode. At last, a greedy policy is defined
to be used as base for a comparison to the reinforce-
ment learning results, which is done my evaluation the
different defined key performance indicators.

The methodology for the engine shop visit schedul-
ing and optimization process is summarized by the
flowchart seen in Figure 5.
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Figure 5: Flowchart for the ESV scheduling optimization process through the proposed reinforcement learning
methodology.

4.1 Assumptions
In order to represent the complex real life ESV schedul-
ing process into mathematical models that could be im-
plemented in a virtual environment, a few assumptions
were necessary:

• As the thrust setting is one of the factors that af-
fect performance deterioration, each engine will
remain at their current thrust setting for the re-
minder of their life cycle;

• Each aircraft will remain operating at the same
type of routes and environment for the remainder
of their life cycle;

• As a consequence of the previous assumption, it
is also considered that the EGTM deterioration
rate and the flight cycles per day average can be
defined as constants;

• The shop visit turn around time ϕ is a constant
and will be the same independently of the period
at which the SV happens, the available capacity
at that moment, and the workscope of the main-
tenance;

• Engine deterioration rate is linear and indepen-
dent from engine age;

• The operator will never opt to install two engines
at one aircraft at the same time;

• Random failures are not considered;

• The wing at which an engine is installed (left or
right wing) has no impact on the optimization;

• All aircraft have only two engines spots and need
both to be operational;

4.2 Training environment

The problem formulation was implemented in Python
as an environment using OpenAIs Gym library. Its
structure consists in a main step function, a reset func-
tion, functions for the initial scenario definition, the
reward function and complementary functions used by
the step function to update the state space. A rein-
forcement learning agent is used to interact with the
environment and learn optimal decision-making poli-
cies for the ESV scheduling problem.

The agent interacts with this environment by ob-
serving the state space, which represent various scenar-
ios in engine scheduling, and taking actions within the
possibilities presented by the action space. The conse-
quences of these actions, along with calculated rewards,
are fed back to the agent. The reinforcement learning
agent learns through this iterative process of action and
feedback. The agent’s learning process is driven by the
objective of finding a policy, a set of rules dictating the
best action to take in each state, that maximizes the
cumulative reward over time, thus achieving the most
efficient and effective scheduling outcomes, based on
the episodes final scores.

In this paper, the reinforcement learning approach
was implemented with a Deep Q-network (DQN) learn-
ing algorithm to define the optimal policy. In it, it uses
a deep convolutional artificial neural network to esti-
mate Q-Values for each action, based on the current
state space [Sutton and Barto, 2018]. By doing so,
it is able to deal with larger and more complex state
spaces, as the case for the ESV scheduling problem.

All learning processes and tests were performed us-
ing a computer equipped with a Intel Core i5-7300U
CPU @ 2.60GHz, 16GB or RAM and 256GB of mem-
ory.
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4.2.1 Prioritization

When dealing with large fleets, letting the reinforce-
ment learning agent decide each action for each engine
would lead to a very slow learning process, as each
action has to be passed through the environment and
its consequences back-propagated through the agent’s
neural network. Moreover, as an action has to be de-
cided for every engine at every time step, a higher
number of engines and time steps will lead to larger
episodes, consequently reducing the number of episodes
for the same number of training steps.

As the scheduling problem presents a stable system,
where most of the time engines will stay at their action
for long periods of time, it is not necessary to use the
agent to choose each action for each engine, rather, the
agent should be able to choose an action only for those
engines that present a higher probability of requiring
a change in their current state.

This prioritization process has to use a policy to de-
termine which engines should have their action chosen
by the agent. At each time step progression, a new set
of ”critical engines" Lct has to be defined, these engines
will in turn have an action decided by the agent. The
policy is defined by six different criteria, each criteria
has a maximum number of engines that it can include
to the set of critical engines. The critical definition al-
gorithm has its general logic presented in the way of
pseudo-code in Appendix C. Section 4.2.2 presents the
logic for all criteria.

4.2.2 Critical engines definition

Each of the criteria is defined as follows:

• Back from shop visit:

Once an engine is sent to a shop visit, the state space
for the following Φ time steps for the corresponding
engine are set to reflect that state. As the engine that
has been sent to maintenance will necessarily remain in
the SV action for the entire turn around period, setting
it as a critical engine would not generate any learning
benefits. However, once the engine has returned from
a shop visit it has no default action, as it could go to
storage or be reinstalled in any aircraft. It is thus nec-
essary that all engines returning from a shop visit at
the current time step are considered critical engines.
The maximum number of engines chosen by this cri-
teria is the same as the MRO capacity Me,t, as that
is the maximum number of engines that might return
from a SV at once.

• Non-operational engines in storage:

Once an engine reaches its degradation status thresh-
old, it has to be removed from operations, as seen in
constraint 3.8.2, and put in storage or be sent to a shop
visit. In case it is sent to storage, these engines will not
be able to return to operations unless they are sent to
a shop visit at some point and, thus, it is necessary
that they are among the critical engines. The agent is
then able to send these engines to a shop visit at the

time step it deems optimal. The maximum number of
engines chosen by this criteria, once again, is equal to
the MRO capacity Me,t, as this is the maximum num-
ber of engines that might be sent to maintenance at
any given time step.

• Lease ending:

Engines close to (or at) their leasing end period are sub-
jected to two different constraints that might require a
change on their current action, them being constraint
3.8.8 and 3.8.9. Engines close to the leasing progress
moment at which they have to be at their titled air-
craft must be included in the critical engine list, so that
they have the opportunity to be removed from another
aircraft and reinstalled at their titled aircraft if so nec-
essary. Furthermore, engines that reach their leasing
end have to be removed from operations and sent to
a permanent storage action and, thus, also have to be
in the critical engine list. To do so, all engines within
six time steps from their titled aircraft leasing point
are arranged in order of proximity to the point, and
the four closest (if there are more than four) are se-
lected. Similarly, all engines that are within two time
steps from their leasing end point are arranged in or-
der of proximity to it. Once again, the four closest (if
there are more than four) are selected. Once an engine
reaches its leasing end point and is removed from oper-
ations, it may not be further considered when forming
the critical engines list.

• Best engines in storage

As previously stated, once an aircraft has an engine
removed, a spare engine has to be installed on its place
in order to keep the aircraft operational. The engines
in storage with lowest degradation statuses allow for a
higher flexibility in this replacement, possibly staying
at the aircraft for a longer period if necessary. It is
thus necessary to arrange all engines in storage in or-
der of highest critical status, where the critical status
is the lowest value among the LLP and EGTM sta-
tuses. From this list, the four best engines are selected
as critical engines.

• Worse degradation engines

From all engines, the ones that will most frequently re-
quire a change of action in the following time step are
the ones in operation with low deterioration statuses,
as they will most likely have to be replaced sooner than
others and be sent to storage or maintenance. To ac-
count for these engines, all engines in operation are
arranged in order of lowest critical status. Some crit-
ical engine definition criteria set a maximum limit on
the number of engines to be included in the critical
engine set, without specifying a minimumpotentially
resulting in no engines being added. Given that the
total number of critical engines is a fixed value, the
quantity of engines selected based on the worst degra-
dation criteria is determined by the number needed to
fill the remaining slots in the list to reach its predeter-
mined size. The number of engines in the priority list
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has to be set as a large enough value so that, even if all
other criteria send their maximum number of engines
to the list, the worse degradation criteria still has at
least four engine spots to be added.

4.2.3 Next time step preparation

With prioritization, all engines that are not considered
critical must be updated in the state space considering
that they will remain at their current action. To do
so, at the end of each time step, the new list of critical
engines Lct is determined and the remaining engines
go through an internal step function, updating their
actions and statuses in the state space for the follow-
ing time step in accordance to the transition functions
presented in Section 3.6. The critical engines remain
untouched and can be identified in the state space, af-
ter the internal step for all non-priority engines is exe-
cuted, by having zeroes at their action indicator.

Considering that most of the episode’s score is gen-
erated by the normal operation of aircraft, only eval-
uation critical engines would lead to bad score per-
formance, as these engines will frequently be in ac-
tions that generate penalties, as shop visits, or just
will not generate any positive reward, as while staying
in storage, for example. This situation could hinder
the learning process, as the agent would likely fail to
recognize the long-term benefits of executing a shop
visit. Therefore, this would likely result in the policy
avoiding maintenance actions all together.

To account for the non-priority engines reward
without having the agent to go through them in the
simulation process, a ” ghost engine” was implemented
in conjunction with a ”ghost action”. The ghost engine
is always set as the first engine in the critical engines
list and presents the agent with the updated environ-
ment for the new time step, after all non-priority en-
gines have been updated. The ghost action has no
effect over the state space and all other actions are
masked, so that it is the only possible action for the
ghost engine. For all other engines the ghost engine
is masked and cannot be applied. The reward for the
action of all non-priority engines are summed and sent
to the agent as reward of the ghost engine, so that all
normal operation engines are accounted for.

4.2.4 Action decision

To restrain the agent to only choose actions that re-
spect the set of constraints seen in 3.8, at every deci-
sion step the state space is analyzed and actions that
violate the constraints are removed from the list of pos-
sible actions. Concurrently, their respective Q-Values
are also set to minus infinity.

Actions are decided according to an ϵ-greedy ex-
ploration vs. exploitation balancing strategy. In it,
the epsilon value is a parameter that defines the like-
lihood of the agent taking a random action, instead of
taking the best-known action, identified in the DQN
by having the highest Q-value. The value of ϵ is lin-
early reduced from a defined initial exploration rate

ϵ0, at the beginning of the training process, to a final
exploration rate ϵf at the end of the training process.

4.3 Scenario generation
The learning process requires that different scenarios,
within the bounds of realistic possibilities, are pre-
sented to the agent, so that it is able to observe and
learn from patterns in the state space, actions and re-
ceived rewards. To do so, a random initial scenario
function is used to create a different initial condition
for each episode during the learning process. The
reinforcement learning agent will try to improve the
episode’s final score, thus going through different ini-
tial scenarios allow the agent to avoid overfitting to one
particular combination of parameters.

4.3.1 Initial scenario

The initial state space is created starting by the time
step immediately previous to the starting point, hereby
named time step zero. Inside the engine state, all en-
gines are ordered in sequence of titled aircraft, so that
variables ze are in ascending order, and have their re-
spective action indicator ae,t initially defined as their
respective titled aircraft. Spare engines are assigned
to the storage action or a shop visit action, that be-
ing selected through random chance, as long as there
is MRO capacity available. Based on historical data it
was observed that, for a usual operations day, between
70% and 95% of all engines are installed at their re-
spective titled aircraft. To simulate that, at every ini-
tial scenario generation, the number of engines to have
their positions swapped is randomly selected within the
boundaries seen in the historical data. Once the num-
ber of engines to be swapped is defined, the particular
engines that are to be swapped are also randomly se-
lected and their position are changed accordingly. Con-
sequently, at the first time step, all aircraft are in op-
eration with two engines assigned to them, thus the
engine counter variable kp,t is set as one for all aircraft.

Regarding the LLP and EGTM statuses, every en-
gine is attributed a random deterioration status be-
tween 10% and 95%. Once all engines have a ran-
dom degradation status defined for both parameters,
the previous five time steps are also set, having as base
the defined time step zero. All engines in operation
and in storage will automatically be assigned to the
same action for the previous time steps. For engines
that were defined as being in a shop visit at time step
zero, it has to be defined for how long it has been in
maintenance up to that point, that being decided by
randomly selecting a value between one and ϕ. If time
step zero was defined as being the first day of a shop
visit, then all previous time steps are set as storage
actions. Likewise, statuses for LLP and EGTM are
defined based on the action taken by each engine for
that time step. Engines in operation will restore their
degradation by γ and σ, engines in storage will remain
at the same degradation and engines in a shop visit will
have their degradation statuses calculated based on the
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amount of time steps in maintenance previously defined
and a random degradation status for the time step pre-
vious to the start of the shop visit process. Based on
the defined deterioration statuses for the previous time
steps, the average rates of decay λe,t and ξe,t are calcu-
lated in accordance to Equations 23 and 24. Similarly,
the critical status CSe,t is also calculated based on the
time step zero deterioration statuses in accordance to
Equation

The AOG indicators Θp,t are set to 0, as the engines
have not yet have their action assigned to the current
first time step.

For the progress of leasing period for each engine,
the leasing end point for each engine has to be defined.
For training, all engines have the same leasing period
∆tl, however with a variable ending point. Engines
with the same titled aircraft are assigned the same
leasing ending point. The leasing ending point tlend

is defined through a random variable from a range be-
tween 8 time steps before the last simulation date and
100 time steps after. The leasing progress can than be
then calculated via Equation 44.

le =
∆tl − tlend

∆tl
(44)

Although the time progression between two time
steps can be any period of time, for this paper it is
considered one week. At the start of a new scenario, a
random value between one and 52 is chosen. Based on
this value and an arbitrary assumption that summer
starts at week 27 and has a length of 8 weeks, the sum-
mer approach variable τt and the summer progression
variable ρt can be calculated.

4.3.2 Basic Scenario

As this type of environment, to the best of the au-
thor’s knowledge, has not yet been implemented with
reinforcement learning before, it was gradually imple-
mented in steps. First a basic scenario was defined,
with a reduced number of engines, aircraft, and con-
straints, in order to test if the method was able to
interpret and act upon the suggested structure of state
space and action space.

For the basic case, 2 aircraft and 5 engines were
used, thus having one spare engine. The state space
was reduced, not presenting the titled aircraft, the
AOG indicator, the leasing progress, the summer ap-
proach and summer progress variables. Only the con-
straints strictly necessary to create a realistic basic
schedule were considered, them being constraints 3.8.2,
3.8.3, 3.8.8 and 3.8.5. All parameters were considered
deterministic. The deterioration rate was fixed at 0.01
per day for both LLP and EGTM and the statuses after
restoration for both parameters were set to 1. Further-
more, the recovery during shop visit was not gradual,
being fully restored in the first shop visit time step
and then constant up to the last. It was considered
that the MRO provider took three time steps to return
the engine and that it was capable of only performing

maintenance at one engine at a time. The simulation
time was 80 time steps.

The implemented reward function for the basic
scenario was a simplification of the reward function
presented in Subsection 3.7. In this case, penalties
for not using titled engines (Pnt), summer changes
(Pnsummer) and for AOG (PnAOG) were not consid-
ered. All three shop visit actions were assigned the
same penalty value.

4.4 Greedy Policy

In order to evaluate if the policy reached by the agent
is good, a greedy policy was elaborated for compari-
son. In it, each engine only goes to a shop visit once it
reaches its operational limit and will only perform the
shop visit correspondent to the parameters responsible
for triggering the shop visit. Once the engine comes
back from a shop visit, it can only be assigned to its
titled aircraft. If that aircraft already has two engines
assigned to it, it will be sent to storage, remaining in
that action until the aircraft has a spot available. Spare
engines, if available, will assume the position of any air-
craft without an engine, once all regular engines have
their actions assigned.

As this policy only sends engines to maintenance
due to their deterioration parameters reaching their
operational limits, the realistic action threshold con-
straint 3.8.1 is not required and, thus, not imple-
mented. Furthermore, due to limitations in the algo-
rithm of the policy, the double installation constraint
3.8.10 was also not implemented. At last, as a conse-
quence of the logic of the greedy policy, engines can
only be assigned an operational action if they are in
storage or returning from maintenance and, thus, the
engine change constraint is spontaneously followed.

The algorithm for the greedy policy can be seen in
form of pseudo code in Appendix D.

4.5 Neural Network

The neural network was implemented using the Ten-
sorFlow platform and the Keras API in Python. For
all scenarios, two hidden layers were used using the rec-
tified linear unit (ReLU) activation function, while the
output layer uses the linear activation function. The
state space is flattened into a 1D array before being
sent as input to the neural network. Neurons are fully
connected between layers. The Deep Q-Network was
implemented using the default module from the “keras-
rl" package.

The use of a very large state space has direct im-
pact on the reinforcement learning process. By using
fully connected layers in the neural network, every new
parameter in the state space will generate N1 new con-
nections to the first layer, and thus also N1 new weights
that have to be considered in the network and have a
weight determined through the training process, where
N1 is the number of nodes in the first layer.
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4.6 Key Performance Indicators
When considering the scheduling of engine shop vis-
its, the main performance indicator will be the total
costs for the entire life cycle of a single engine. When
considering multiple engines, with different ages, leas-
ing agreements and performance parameters, calculat-
ing and comparing costs might prove to be complex,
as well as frequently inaccurate. To help in the com-
parison of scenarios, other key performance indicators
(KPIs) might be beneficial, such as:

• Average aircraft operational availability:
As aircraft operations is the main source of rev-
enue for any airline, keeping airplanes operational
as extensively as feasible is a high priority. At ev-
ery time step, after all engines have had an action
assigned to them, all aircraft with Q engines as-
signed to them are considered operational. Air-
craft operational availability is here defined by
the ratio between the number of operational time
steps for an aircraft to the total number of days
analyzed, being thus a value between zero and
one. The average of operational availability for
all aircraft in the fleet is then the average aircraft
operational availability for the analyzed schedule.

• Number of spare engines required: While
spare engines provide flexibility for the airline to
send engines for a shop visit while maintaining
its aircraft operational, their considerable costs
make it unfeasible to keep a large amount of them
in storage, waiting to be used as replacement for
titled engines in maintenance. It is thus ideal to
keep the number of spare engines as low as possi-
ble while keeping aircraft operational availability
as large as possible.

• Average engine utilization: Similarly to the
case for aircraft, the engine utilization provides
the operator with a metric to evaluate how well
their engines are being utilized. If in a defined
schedule the engine utilization is low, that might
indicate that there are too many engines, or that
they are not being utilized optimally. To further
explore these possibilities, two secondary KPIs
are also useful:

◦ Average titled engine utilization:
This KPI provides the operator with a deeper un-
derstanding of how the engines are being utilized.
Generally, titled engines should have a higher uti-
lization rate than spare engines.

◦ Average spare engine utilization: A
low utilization rate of spare engines might indi-
cate that there are too many spare engines avail-
able, and that an optimal solution could be found
with less, reducing leasing costs.

• Number of AOGs: The frequency of an air-
craft’s operational downtime is a key metric for
operators. It allows them to compare different

scheduling solutions and identify which ones min-
imize operational impact. This metric is essen-
tial for balancing maintenance needs with opera-
tional efficiency.

5 Results
Three different types of tests were performed to eval-
uate the reinforcement learning approach to the ESV
scheduling problem.

5.1 Base scenario
In order to verify if the proposed environment is able to
be interpreted by the reinforcement learning agent and
achieve the optimal result for a small case scenario, a
base case was created.

5.1.1 Initial conditions

The initial deterioration conditions for the base sce-
nario was determined with random initial values, ex-
cept for the spare engine, which was manually placed
at a pair shop visit, so that its deterioration parame-
ters were maximal at the start of the simulation. The
scenario followed the structure presented by Sections 3
and 4, however without prioritization. The parameters
for the time step zero are presented in Table 1.

Engine Action LLP Status EGTM Status
1 1 0.63 0.52
2 1 0.88 0.22
3 2 0.38 0.36
4 2 0.63 0.28
5 6 1.00 1.00

Table 1: Base scenario initial parameters

This base scenario was manually optimized by at-
tributing each engine to its previous action, up to
the point where a degradation threshold was reached.
Once this threshold was achieved, the engine was al-
ways assigned to a pair shop visit, as this is the optimal
decision when considering that all shop visit actions
have the same cost for this environment. Once an en-
gine returned from a shop visit, it was kept in storage
as a spare engine. Once another engine reached its
threshold and had to be replaced, the engine is storage
would then be installed. The last engine to reach its
threshold was then kept in storage with its last status,
as the spare engine had enough LLP remaining use-
ful life and EGTM to complete the simulation period.
This was implemented in a spreadsheet in order to eval-
uate all constraints in each time step and calculate the
total score.

The manual optimization reached a total calculated
score of 159.1. This score can be broken down into
the maximum possible score achieved by two aircraft
in eighty time steps, with one point for each aircraft
in operation at each time step, totaling 160, and the
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maintenance penalty for three different maintenance
period, with a TAT of three time steps and a penalty of
0.1 per time step in maintenance, totaling 0.9. When
subtracting the minimal penalty (while guaranteeing
all aircraft operational for 100% of the simulation pe-
riod) from the maximal score, the achieved result is
obtained.

To test the functionality of the virtually imple-
mented problem formulation, evaluating if the actions
provoke the projected consequences, and compare the
manual optimization to the reinforcement learning op-
timization, each action from the defined sequence of
actions was manually set at each decision point into
the environment. The position of all engines can be
seen for each time step through the schedule presented
in Figure 6.

Figure 6: Engine action by time step for manual opti-
mization.

From the schedule it is possible to see that aircraft
A and B, respectively represented by action zero and
one, have two engines assigned to them at all times. As
there are only four operational positions, the remain-
ing engine is always seen in the pair shop visit action
(action five) or in the storage action (action two).

The degradation status for each engine is seen in
Figures 7a to 7e. The dotted red lines in the deteriora-
tion plots represent the maximum degradation status
for operational service, which for the base scenario was
set at 10%. It is possible to see that the manually
obtained solution respects constraint 3.8.2, never oper-
ating below the threshold. Furthermore, the pair shop
visit action correctly led to a complete restoration of
LLP and EGTM statuses. Engines in operational ac-
tion with two engines assigned to that action had their
LLP and EGTM statuses continually degraded through
time, at the same pace predicted through the spread-
sheet. When in storage, no degradation is visible, as
expected.

At last, the calculated score for the entire episode
also matched the estimated value in the spreadsheet,
at 159.1, ratifying the reward calculation function.

(a) Engine 0 deterioration. (b) Engine 1 deterioration.

(c) Engine 2 deterioration. (d) Engine 3 deterioration.

(e) Engine 4 deterioration.

Figure 7: Deterioration statuses per time step for all
engines in manual optimization.

5.1.2 Reinforcement Learning Parameters

The parameters to perform the learning process for the
Deep Q-Network were defined through testing, running
the training process with different parameter values
and evaluating their effect on the final results. The
final architecture was defined with two hidden layers
using rectified linear activation functions. All final
learning parameters for the base case scenario are sum-
marized in Table 2.

Parameter Value
Nodes in 1st layer 220
Nodes in 2nd layer 170

Learning rate 2.7 · 10−6

Initial exploration rate ϵ0 0.45
Final exploration rate ϵf 0.02

Target network update frequency 50 steps
Discount factor γ 0.999
Number of steps 200.000

Number of episodes 500

Table 2: Reinforcement learning parameters for base
scenario.

5.1.3 Results

After training, the achieved policy was used to try to
optimize the base scenario, using the same initial pa-
rameters as for the manual optimization. The position
of all engines can be seen for each time step through
the schedule presented in Figure 8.
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Figure 8: Engine action by time step for reinforcement
learning optimization.

The degradation status for each engine is seen in
Figures 9a to 9e.

(a) Engine 0 deterioration. (b) Engine 1 deterioration.

(c) Engine 2 deterioration. (d) Engine 3 deterioration.

(e) Engine 4 deterioration.

Figure 9: Deterioration statuses per time step for all
engines in reinforcement learning optimization.

The total score for the episode was 158.8.
In addition to the training process, a random ac-

tion decision policy was used to compare the advance
on the scores along the training process with the use of
random actions. The random policy, however, was only
able to randomly pick one of the actions available in
the action space after its reduction by the constraints
application. This comparison can be visualized in Fig-
ure 10.

Figure 10: Episodes scores during learning process and
for random actions.

5.1.4 Discussion

Regarding the fine tuning of the reinforcement learn-
ing parameters, the optimization process demonstrated
that a very low learning rate, a high discount factor and
a lower than usual initial exploration rate are required.
This could be explained from the nature of this envi-
ronment, where most engines will remain at the same
action for long periods of time, and only occasionally
will go through different actions. The low initial ex-
ploration rate allows for the agent to observe a more
stable system, and thus closer to normal operations,
for a longer period of time. This increased stability
facilitates the understanding of the individual effects
of different engine actions to the system, as their ef-
fect is correlated. Being a scheduling process with the
goal of reducing overall costs for the entire life-cycle
of engines, using a higher discount factor γ is essential
for the agent to take into consideration the long term
effects of current decisions.

Based on the created schedule and the score com-
parison with random actions, it is noticeable that the
agent is able to perceive through learning how the ac-
tion decision process works, realizing which engine is
currently active. It actively tries to keep engines in op-
eration and send them to maintenance when (or before)
they reach the defined degradation threshold. Further-
more, it is clear the agent is able to understand the long
term benefit of a maintenance procedure, even though
it results in a negative reward at the moment of action.

In terms of optimization, it is observable that the
solution achieved by the agent is slightly higher than
the manual optimization process. Reinforcement learn-
ing, however, will not necessarily lead to optimal solu-
tions, being a good and flexible solution enough. The
solution, however, is close to the theoretical maximum,
using one extra maintenance opportunity. Although
there is no separation of normal engines and spare en-
gines in the state space of this basic scenario, the policy
created by the reinforcement learning process only uses
engine number 4 as a spare engine, quickly returning
the other engines into service once they are back from
a shop visit. This seems to indicate that, although the
policy understand the problem‘s logic, it is not able to
also take into consideration the simulation period, and
how the policy should be affected by its end approach-
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ing. For example, the manual optimization decided not
to perform the shop visit on engine 0 because, for the
simulation period in evaluation, it would not be neces-
sary.

Although all shop visit options are available, the
optimization process is able to come to the same logi-
cal decision of only using pair shop visits, as described
in the manual optimization, as they have the same cost
as the other shop visit processes.

Two optimization actions are noteworthy of atten-
tion. First, engine 3 is sent to a shop visit before it
reaches its threshold. Although it is impossible to know
the the logical process of the trained policy, this action
seems to be correlated to the end of the shop visit ac-
tion of engine number 1, freeing an operational space
at aircraft B that is filled with engine 1 and maintain-
ing engine 4 in aircraft A for longer, reducing by one
the number of necessary interventions and being thus
an example of opportunistic replacement, even though
this action, for this environment, has no impact on the
total score. Secondly, engine 2 is removed from aircraft
B and installed in aircraft A, although this is not nec-
essary in this environment. This might be correlated
to the start of the scenario, where engines 0 and 1 and
2 and 3 are together at the same aircraft and, by doing
so, they also end at the same aircraft. By using the
spare engine, this aircraft change has no effect on the
episode’s score and is in fact a valuable policy, as for
full scenario optimizations this is one of the constraints.

5.2 Full scenario
Once the base scenario test demonstrated the viability
of the method, the method was tested with the com-
plete state space and the entire set set of constraints.

5.2.1 Initial conditions

For a full test of the method, the size of the fleet and
number of engines was increased from the base scenario
to numbers that more closely resemble the values ob-
served in mid-size airlines. The values used for these
parameters for the learning and testing processes are
presented in Table 3. The episode length and the size
of the set of critical engine were decided through trial
and error, exploring different values up to the point
that a good trade-off between training duration and
final results was reached.

Parameter Value
Episode length [time steps] 80

Turn around time - ϕ 5
MRO maximum capacity - Mmax 3

Number of aircraft - n 30
Number of regular engines 60
Number of spare engines 6

Number of critical engines 20

Table 3: Training environment scope parameters.

Other parameters have to be decided from opera-

tional historic data. From the parameters presented in
Table 4, the LLP decay rate γ and the EGTM decay
rate σ are approximations based on data from a major
European airline. The values for the reward and penal-
ties were once again reached through trial and error,
exploring different values that lead to a higher average
score and aircraft utilization rates.

Parameter Value
LLP decay rate - γ 1.05 · 10−3

EGTM decay rate - σ 7 · 10−4

Titled engines reward - Rv 1
LLP ESV penalty - cl 0.05

Performance ESV penalty - ce 0.05
Pair ESV penalty - cp 0.08

Non-titled engine penalty - Pnt 0.05
AOG Penalty - ca 0.2

Summer Penalty - cs 0.2

Table 4: Operational data parameters.

Furthermore, this initial testing scenario was op-
timized multiple times in order to fine tune the rein-
forcement learning parameters. The parameters that
had the best performance are presented in Table 5.

Parameter Value
Nodes in 1st layer 280
Nodes in 2nd layer 220

Learning rate 2 · 10−3

Initial exploration rate ϵ0 0.3
Final exploration rate ϵf 0.0001

Target network update frequency 5500 steps
Discount factor 0.9999
Number of steps 400.000

Number of episodes 238

Table 5: Reinforcement learning training parameters.

5.2.2 Results

The training process took 1 hour and 57 minutes. The
score of each episode during training can be seen in
comparison to random decisions and the greedy policy
in Figure 11.

Figure 11: Episodes scores during learning process and
for random actions for full scenario.
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After training, finding the optimal solution for a
random initial scenario took on average 15 seconds.
The test for all policies was repeated 100 times and the
average results recorded. For the case of the reinforce-
ment learning optimized policy, results are presented
in Table 6.

Parameter Value Std. Dev.
Avg. score 2303.22 26.22

Avg. acft. utilization 99.45% 0.59%
Avg. eng. utilization 90.64% 0.29%
Avg. reg. eng. util. 94.03% 1.08%
Avg. spare eng. uti. 56.74% 9.02%

Avg. numb. of AOGs 52.41 16.50

Table 6: Average results for 80 steps with RL.

When using the greedy policy, the results for the
same number of simulations are presented in Table 7.

Parameter Value Std. Dev.
Avg. score 2336.92 28.07

Avg. acft. utilization 99.17% 0.75%
Avg. eng. utilization 90.49% 0.39%
Avg. reg. eng. util. 94.59% 1.71%

Avg. spare eng. util. 49.37% 14.58%
Avg. numb. of AOGs 16.31 6.15

Table 7: Average results for 80 steps with greedy pol-
icy.

When considering each time step as a week, opti-
mizing a schedule only for the following 80 weeks does
not provide a life-cycle schedule for the engine, as an
engine might stay over 15 years in service. It was thus
tested what is the effect of testing a longer scenario
without retraining the policy. The results for 800 time
steps are presented in Table 8. After training, find-
ing the optimal solution for a random scenario took on
average 154 seconds.

Parameter Value Std. Dev.
Avg. score 22634.38 36.07

Avg. acft. utilization 99.81% 0.13%
Avg. eng. utilization 90.82% 0.07%

Avg. reg. eng. utilization 95.97% 0.54%
Avg. spare eng. utilization 39.30% 5.29%

Avg. numb. of AOGs 495.47 22.06

Table 8: Average results for 800 steps with RL.

In Table 9 the results for 800 time steps using the
greedy policy are presented.

Parameter Value Std. Dev.
Avg. score 23330.02 303.73

Avg. acft. utilization 98.62% 1.02%
Avg. eng. utilization 90.28% 0.46%

Avg. reg. eng. utilization 91.96% 1.46%
Avg. spare eng. utilization 73.53% 10.83%

Avg. numb. of AOGs 197.69 14.25

Table 9: Average results for 800 steps with greedy pol-
icy.

5.2.3 Discussion

By analyzing the progress of the score during training
and comparing it to the random decision policy, it is
clear that the agent is once again able to understand
the dynamics of the environment, including the long
term benefits of shop visits, even with the prioritiza-
tion system implemented. The fluctuations noticeable
in the scores are expected, as each episode is performed
with different initial conditions that might be more or
less favorable to a good final score.

Although it is possible to see a clear increase on the
score for the last quarter of the training process, part
of it is expected just from the fact that less random ac-
tions are being taken through the epsilon-greedy stra-
tegy. Increasing the number of episodes did not lead
to an increase on the final score average when testing
the policy. This can be seen in Figure 12, where the
average score and aircraft availability was obtained for
policies trained for different amounts of time steps. All
results consist of averages for 30 episodes and 800 time
steps.

Figure 12: Effect of learning period length on average
score and aircraft availability.

Regarding the KPIs, it is clear that the greedy
policy provided slightly better scores in both periods
simulated. When evaluating the standard deviation,
the 800 weeks simulations showed a much higher stan-
dard deviation for the greedy policy, showing that it
is much more dependent on the initial scenario condi-
tions. The greedy policy, however, provided lower air-
craft utilization ratios than the reinforcement learning
policy, while both presented low standard deviations.
This indicates that the reinforcement learning policy
will more effectively utilize engines at airplanes differ-
ent from the ones they are titled to, what also explains
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the lower score average, as there is a penalty for using
non-titled engines. The very high aircraft utilization
rate for the 800 week simulation when using the rein-
forcement learning policy, in combination to the very
low standard deviation, demonstrates that the policy is
very flexible to the changes in the randomly generated
initial scenarios.

Regarding the engine utilization averages, both
policies provided very similar results. The greedy pol-
icy had a higher utilization average, what is expected,
as the policy has no flexibility to use titled engines on
other aircraft. It also had higher standard deviation
values, indicating that it is more susceptible to changes
in the initial scenario.

It is important to note that the values given to the
reward and penalties will have a large impact on the
solution. The values used in this simulation were cho-
sen not based on airline data, rather by testing combi-
nations that would improve learning performance. It
is thus essential that the airline operator responsible
for the schedule optimization also has a high degree
of financial awareness, in order to translate the results
obtained from the simulation into real revenue and cost
estimations.

5.3 Sensitivity Analysis
It was also evaluated how changes in a few of the pa-
rameters affect the final results. Two different changes
were implemented:

• Change in the number of spare engines;

• Change in the number of aircraft;

The change on the number of engines and aircraft
results in the need of the training of a new policy. For
all obtained policies, the reinforcement learning learn-
ing process maintained the same parameters as the
ones presented in Table 5, except for the number of
training steps for the change in the number of aircraft,
that was increased to 800.000 steps due to the larger
state space.

5.3.1 Number of spare engines

Airlines might be able to also save costs by reducing
the number of spare engines. It is thus of interest to
find the optimal number of spare engines, balancing the
gains from the operational flexibility of a higher num-
ber of spare engines and their leasing costs. This can
be done by evaluating optimal schedules determined
with different number of spare engines.

Simulations were performed with two, four, six, and
eight spare engines for a fleet of 30 aircraft and 60 ti-
tled engines, thus ranging from a margin of 3.26% to
11.76% of spare engines within the entire engine pool.
All test were executed testing for 800 time steps and
running 100 simulations. Results represent the average
for all 100 episodes. The results for two spare engines
are presented in Table 10.

Parameter Value Std. Dev.
Avg. score 16307.09 861.10

Avg. acft. utilization 71.13% 3.78%
Avg. eng. utilization 81.64% 1.92%

Avg. reg. eng. utilization 81.17% 1.96%
Avg. spare eng. utilization 95.73% 2.29%

Avg. numb. of AOGs 198.42 31.23

Table 10: Results for 2 spare engines

The results for four spare engines are presented in
Table 11.

Parameter Value Std. Dev.
Avg. score 22578.70 57.90

Avg. acft. utilization 99.54% 0.22%
Avg. eng. utilization 93.52% 0.11%

Avg. reg. eng. utilization 96.28% 0.45%
Avg. spare eng. utilization 52.14% 6.38%

Avg. numb. of AOGs 505.86 22.08

Table 11: Results for 4 spare engines

The results for eight spare engines are presented in
Table 12.

Parameter Value Std. Dev.
Avg. score 21980.50 104.43

Avg. acft. utilization 96.88% 0.44%
Avg. eng. utilization 86.20% 0.73%

Avg. reg. eng. utilization 94.78% 0.67%
Avg. spare eng. utilization 21.90% 5.47%

Avg. numb. of AOGs 448.29 35.83

Table 12: Results for 8 spare engines

5.3.2 Number of aircraft

To evaluate if the presented method is efficient and flex-
ible enough to be applied for larger fleets, especially in
terms of the critical engine definition algorithm, a sim-
ulation was performed for 60 aircraft, using 120 titled
engines and an additional 12 spare engines, totaling
132 engines. The same prioritization structure as for
all other full scenario results, with 20 engines per time
step was used. The training process took 12 hours and
25 minutes. All test were executed testing for 800 time
steps and running 100 simulations and the results are
presented in Table 13.

Parameter Value Std. Dev.
Avg. score 45024.74 105.34

Avg. acft. utilization 98.97% 0.21%
Avg. eng. utilization 90.35% 0.15%

Avg. reg. eng. utilization 94.53% 0.50%
Avg. spare eng. utilization 48.54% 4.87%

Avg. numb. of AOGs 783.41 48.57

Table 13: Results for reinforcement learning policy
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The same scenario was also used using the greedy
policy, producing the results presented in Table 14.

Parameter Value Std. Dev.
Avg. score 45370.05 1110.67

Avg. acft. utilization 96.20% 2.15%
Avg. eng. utilization 89.17% 0.98%

Avg. reg. eng. utilization 89.56% 1.30%
Avg. spare eng. utilization 85.28% 5.16%

Avg. numb. of AOGs 375.57 26.61

Table 14: Results for greedy policy

5.3.3 Discussion

Regarding the number of spare engines, it is clearly
observable that both the score and the aircraft utiliza-
tion average increase from two to six spare engines,
with a slight decrease when 8 spare engines are avail-
able. Furthermore, results for six spare engines pre-
sented the lowest standard deviation, indicating that
it provides the highest degree of flexibility to any oper-
ational disruptions to the policy. The results for four
engines, however, also presented high average score and
low standard deviation, indicating that, depending on
engine leasing costs, the optimal economic efficiency
will likely be found between four and six engines. No-
ticeable, the average utilization of spare engines with
four spare engines was still around 50%, indicating that
for about half of the evaluated period they were not
used.

As for the number of aircraft, the increase in num-
ber of engines and aircraft led to a drastic increase in
the training time, a consequence of the significantly
larger input state space and the increased length of
training. The results showed a better performance of
the reinforcement learning than the greedy policy in
most of the parameters, except in the average score
and number of AOGs. The test proved that the criti-
cal engine definition algorithm is still able to efficiently
handle the set of engines, allowing the reinforcement
learning to effectively maintain aircraft in operation
for most of the time.

6 Conclusions
In this paper, the engine shop visit scheduling process
was explored, investigating the possibility of using a
reinforcement learning approach to help in the opti-
mization process of the scheduling of this dynamic and

complex problem. The study demonstrated the via-
bility and effectiveness of the approach, as well as its
limitation, being a potentially beneficial tool for air-
lines to save on maintenance cost.

The application of the proposed algorithm resulted
in high aircraft utilization averages, one of the main
goal for any airline. The different tests showed the
flexibility of the presented method, being able to ac-
tively react to the different initial scenarios generated.
Notably, the reinforcement learning approach was able
to recognize the long-term implications of maintenance
decisions, even when the direct reward of the operation
of the engine after the shop visit was not explicitly vis-
ible to the learning agent, as is the case with the use
of prioritization.

The reinforcement learning approach also presented
clear limitations. For example, it performed only
marginally better than the greedy policy. Admittedly,
a better evaluation would be achieved by comparing
the reinforcement learning policy to a real life sched-
ule from the past, providing the reinforcement learning
with the initial scenario obtained from historical data
for the start of the analysis period, but this analysis
was not possible with the provided data. Future re-
search is also necessary to better correlate the score
with real expected savings generated by the schedule.
Moreover, results were highly dependent on the train-
ing parameters, and small changes in the initial en-
vironment and reward functions might require a new
testing process for the optimal training parameters.
Comparing the performance of different training pa-
rameters also proved difficult, as the training process
is influenced by the type of initial scenario that it faces
during its training, having as consequence that two
training sessions with the exact same training param-
eters will lead to different results. For future research,
the creation of a batch of different scenarios that are
always used in the same order could be beneficial, stan-
dardizing the training process and facilitating the eval-
uation of parameters effects.

In conclusion, the proposed methodology provides
a new approach to the engine maintenance scheduling
process. The capabilities of reinforcement learning al-
low for airlines to reach new schedules in seconds if
unforeseen events come to light, as long as the num-
ber of engines and aircraft remain constant. This tool
thus provides airlines with high flexibility, allowing op-
erators to test a multitude of different scenarios and
help in decision making processes, as for example how
many spare engines to keep. The method may thus po-
tentially help airlines to enhance operational efficiency
and cost savings.
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Appendices
A Appendix 1 - Engine Shop Visit Scheduling Parameters

Table 15: Engine Shop Visit Scheduling Parameters

Parameters Description
ae,t Action assigned to engine e at time step t
αp Aircraft affected by current action
ca Relative cost variable for AOG
cl Relative cost variable for LLP shop visit
ce Relative cost variable for performance shop visit
cp Relative cost variable for pair shop visit
cs Relative extra cost variable for summer AOG

CSpe Critical status prediction for engine e
γ LLP status decay between two time steps
kp,t Counter of engines for aircraft p at time step t
le Leasing progress status for engine e

LSe,t LLP Status - Ratio of RUL to complete life for engine e at time step t
m Number of engines in airline’s pool of engines

Me,t MRO provider available capacity
n Number of aircraft in airline’s fleet
λe,t Average LLP status decay
ξe,t Average EGTM status decay
ϕ MRO provider turn around time

PnAOG Penalty for aircraft on ground
Pnsv Penalty for shop visit action
Pnt Penalty for non titled engines in operation
PSe,t Performance Status - Ratio for current to maximum EGTM for engine e at time step t
rle LLP recovery rate for engine e
rpe

EGTM recovery rate for engine e
ρt Summer progress indicator at time step t
Rv Reward for aircraft operation

Rwt,e Total reward for engine e at time step t
σ EGTM status decay between two time steps
t Time step
τt Summer approach indicator at time step t
TS Total score for episode
Θp,t Aircraft on ground (AOG) indicator for aircraft p at time step t
ze Titled aircraft for engine e

B Appendix 2 - Engine Shop Visit Scheduling Sets

Table 16: Engine Shop Visit Scheduling Sets

Set Description
A = {a ∈ N | 1 ⩽ a ⩽ n+ 4} Set of all possible different actions

O = {a ∈ N | 1 ⩽ a < n+ 1} ⊂ A Set of all operational actions
F = {a ∈ N | a = n+ 1} ⊂ A Set of all shop visit actions

S = {a ∈ N | n+ 1 < a ⩽ n+ 4} ⊂ A Set of all storage actions
P = {p ∈ N | 1 ⩽ p ⩽ n} Set of different aircraft in operators fleet
E = {e ∈ N | 1 ⩽ e ⩽ m} Set of different engines in operators fleet

Lct = {} Set of critical engines in prioritization at time step t
Lit = {} Set of aircraft with installed engines at time step t
Lrt = {} Set of aircraft with engine removals at time step t
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C Appendix 3 - Priority Engine Decision Algorithm

Algorithm 1 Greedy Policy Action Decision
1: Ed ← Set E sorted from highest to lowest critical deterioration

2: Eu ← Set E sorted from lowest to highest critical deterioration
3: A ← 4
4: for Engine e in set of engines E do
5: B ← min[4,MROavailablecapacity]
6: if Leasing progress < 1 and no turn around time constraint then
7: if Previous action was a shop visit then
8: Lct ← e
9: else if Previous action was storage and minimum deterioration threshold = True then

10: if Counter1≤ B then
11: Lct ← e
12: Counter1 ← Counter1 + 1
13: end if
14: else if Leasing progress close to titled point llimit then
15: if Counter2≤ A then
16: Lct ← e
17: Counter2 ← Counter2 + 1
18: end if
19: else if Leasing progress close to 1 then
20: if Counter3≤ A then
21: Lct ← e
22: Counter3 ← Counter3 + 1
23: end if
24: end if
25: end if
26: end for
27: for Engine e in set of engines Ed do
28: if Previous action was storage and e not in Lct then
29: if Counter4≤ B then
30: Lct ← e
31: Counter4 ← Counter4 + 1
32: end if
33: end if
34: end for
35: for Engine e in set of engines Eu do
36: if Engine e not in Lct and |Lct| < 20 then
37: Lct ← e
38: end if
39: end for
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D Appendix 4 - Greedy Policy Action Decision

Algorithm 2 Greedy Policy Action Decision
1: if Current engine = reward engine then
2: Action← Rewardaction
3: else
4: if Degradation status above threshold then
5: if Prev. action is ops. action then
6: if Prev. aircraft has spot avlb. then
7: Action← Previous_action
8: else
9: Action← Storage_action

10: end if
11: else
12: if Eng. is not spare eng. then
13: if Titled aircraft has spot avlb. then
14: Action← Aircraft_action
15: else
16: Action← Storage_action
17: end if
18: else
19: if Exists acft. with spot avlb. then
20: Action← Aircraft_action
21: else
22: Action← Storage_action
23: end if
24: end if
25: end if
26: else
27: if MRO has capacity avlb. then
28: if LLP Status trigger then
29: Action← LLP SV
30: else
31: Action← PERFO. SV
32: end if
33: else
34: Action← Storage_action
35: end if
36: end if
37: end if
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1
Introduction

This chapter introduces the engine shop visit scheduling problem, first presenting the reasons for its impor-
tance, then presenting the purpose of its optimization and this report, followed by the scope of the research,
the research framework and the presentation of the structure of the entire report.

1.1. The importance of aircraft engine maintenance.
Aviation has continually become more popular and, at the same time, safer, with a constantly increasing
number of flights per year and a constant reduction in fatal accidents since the beginning of the 90’s [5].
There are many reasons for this improvement in safety. As the technology developed, so did the engineering
of all integrated systems in an aircraft, such as avionics, navigation systems, structures and engines. Develop-
ments in research and science also allowed for a deeper knowledge into how human factors impact aviation
safety, creating strategies to avoid the main determined factors [52]. One of the majors contributors to this
increase in safety was the study of past accidents, allowing for the understanding of what are the main acci-
dent inducers and triggers [49]. This deeper understanding of the aircraft systems and main accident sources
induced, among other things, the development of better maintenance techniques, passing from a system
where maintenance was performed as problems appeared, in the beginning of aviation history, to a current
proactive scheduled maintenance program, actively searching for possible points of failure and working on
them before an incident or accidents occurs [38]. Among these improvements in aircraft maintenance is the
improvement in engine maintenance.

Aircraft engines development was also part on this significant improvement in safety and reliability. One
of the main metrics showing that is the IFSD (In Flight Shutdown rate), with a significant reduction among
the last decades, as seen in Fig. 1.1 and Fig. 1.2. Just as in the case of the aircraft as a whole, the aircraft engine
was also benefited by the improvements in technology, with new materials being implemented and better
manufacturing and maintenance techniques. This increased reliability also had a direct impact on aircraft
design. As engines in the past were remarkably unreliable, aircraft were designed with a higher amount of
engines, so that in case of one or more of them were to fail, the aircraft would still be able to sustain flight
[26]. With the increased reliability of jet engines and the eventual implementation of ETOPS (Extended-range
Twin-engine Operational Performance Standards), twin-jets like the Boeing 767 and 777 and the Airbus A330
and A350, operating with larger and more complex jet engines, slowly replaced most of the three and four
engine jets.

To keep these engines performing in the required levels of safety and reliability, a series of engines main-
tenance procedures are set in place. According to [35], currently around 11% of an airline’s operational costs
are related to MRO (Maintenance, Repair and Overhaul), with around 43% of that attributed to engine main-
tenance costs in 2021, with projections indicating an increase to 48% by 2030. Consequently, it is clear that
optimizing engine maintenance procedures may have a significant impact in an airline’s operational costs.
Among the engine maintenance procedures is the Engine Shop Visit (ESV), defined by Honeywell as “An en-
gine removal, regardless of failure responsibility or maintenance category (scheduled or unscheduled), is
classified as a shop visit whenever the subsequent engine maintenance performed prior to re-installation
entails: a.) separation of pairs of major mating flanges, or b.) removal of a disk hub or spool." [32]

An ESV will usually be performed because of one of the following reasons [3]:
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Figure 1.1: In-flight shut down rate from 1950 to 2000 [10] Figure 1.2: In-flight shut down rate from 2003 to 2013 [44]

1. Expiration of a Life-Limited Part (LLP);

2. Performance deterioration;

3. Service bulletin compliance;

4. Emergency Airworthiness Directives;

5. Unexpected engine anomaly.

Items 1-3 can be fulfilled through scheduled interventions. For item 1, the life-limit of the parts are usually
set as flight cycles, thus it is possible to estimate when the aircraft will achieve the maximum number of cycles
based on its historical flight schedule. Similarly, performance degradation is noted mostly in engine exhaust
temperature (EGT), which through different methods to be discussed later can have the time to its margin
limit estimated. At last, service bulletins will also generally present a maximum date for the required action
to be executed. All these items can be evaluated together in order to schedule the ESV. On the other hand,
emergency airworthiness directives and unexpected engine anomalies cannot be predicted, and thus require
reactive measures.

1.2. The purpose of ESV scheduling optimization.
An ESV requires a prepared space, high amount of tools, spare parts, human hours and a spare engine. As new
generation engines increase in power and complexity, they also increase in price. The scheduling of engine
shop visits thus searches for the mutual accomplishment of many factors, trying to use the engines to the
maximum extend as possible and, at the same time, avoiding aircraft grounding due to reaching an engine
hard limit and reducing the number of spare engines to a minimum, as they are costly. Achieving the ideal
balance between all these factors is the base for the ESV scheduling optimization. For small fleets, this type
of analysis can be performed manually, but as the scope grows, so does the complexity of the optimization
problem, thus finding and evaluating the techniques and methods available to do so is the main purpose of
this literature review.

This literature review has the intention of presenting the most important research published in regards to
ESV scheduling optimization, or any other scheduling optimization problem that might be of use to perform
it. The report aims to present the necessary base to model the scheduling problem and the state of art in
modeling and solving of this type of optimization problems.

1.3. Scope of the research
For the purpose of this research, engines are considered in a generalized manner, without any defining char-
acteristics. Further more, it is focused on long-term planning maintenance process, thus considering only
heavy maintenance procedures, according to the definition of ESV previously presented.

It is assumed that, at this point, there are no operational and financial limitation from an airline seeking
for ESV scheduling optimization and, thus, all literature related to it is considered, independently of method
and implementation requirements.
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From the 5 ESV reasons previously presented, only LLPs, Performance deterioration and unexpected en-
gine will be considered and further explored, as service bulletins and emergency airworthiness directives can
be modeled as scheduled and unscheduled maintenance processes.

1.4. Research framework
The first step into defining the research framework is defining the research objective. The research objective
is:

• Based on engine replacement criteria and the airline‘s operational and maintenance capabilities, develop
a methodology to optimize the scheduling of engine shop visits to reduce the airline‘s maintenance costs,
fulfilling all safety criteria and reducing airline operations disruptions to a minimum.

As a second step the main research question that has to be answered in order to achieve the research ob-
jective is determined. The main research question was defined as:

• How can maintenance costs be reduced through the optimization of the engine shop visit scheduling for
a commercial airline?

Along with the main research question comes sub-questions that help to structure the research path to
answer the main question. Some sub-questions also present sub-questions of their own.

• What factors influence the scheduling of ESVs?

• What are the most used methods to model ESV scheduling?

– What methods are used for the optimization of ESV scheduling?

• What are the most used methods to model other maintenance processes scheduling?

– What methods are used for the optimization of other maintenance scheduling problems?

• What factor influence the cost of an ESV?

• What metrics allow for the comparison between methods?

1.5. Structure of the literature review.
This report is divided into 6 chapters.

Chapter 1 presents the introduction to this literature review, presenting the justification for the research,
as well as its purpose, its scope and framework.

Chapter 2 focus on presenting the main factors involved with ESV scheduling, starting by presenting the
aircraft maintenance process and then proceeding to the specific case of engines maintenance, with the goal
of answering the first research question: ”What factors influence the scheduling of ESVs?".

Chapter 3 presents the most used and state of art methods found on literature for the ESV scheduling,
starting by presenting the maintenance policies, followed by the presentation of a historical base with early
scheduling methods and then presenting research on ESV scheduling optimization.

Chapter 4 presents the most used and state of art methods found on literature for maintenance scheduling
and planning for other activities. It is complemented by a discussion on the presented literature and how
it might be applicable to development of a new method for ESV scheduling optimization, searching for a
research gap on maintenance schedule modeling.

Chapter 5 presents the main optimization methods used to solve the presented different types of main-
tenance scheduling models. The optimization methods are discussed and a reflection upon which type of
methods seem to fit the discussed research gap is performed.

At last, Chapter 6 presents the literature review conclusion, summarizing the work done and the found
research gap.





2
ESV scheduling factors

This chapter describes the main factors found in literature that are involved on the scheduling of ESV, in order
to answer the second research sub-question “ What factors influence the scheduling of ESVs?".

2.1. Aircraft maintenance processes
Although aircraft are in essence a machine with a high number of integrated subsystems, just as many other
types of equipment throughout different sectors and industries, the main difference regarding maintenance
of aircraft is the high standardization of its processes in comparison to general machinery maintenance [1].
This high standardization was an evolution process of two basic maintenance approaches [38]:

1. The process-oriented approach;

2. The task-oriented approach.

In the beginning of aviation history, maintenance was based in a direct correlation between risk of failure
and time in service, limiting the life time of certain parts and, once the limit is reached, removing the piece
and overhauling or discarding it, in a concept named as ”Hard Time" process (HT). Some less critical parts
would be periodically inspected in search of notable degradation, being then also replaced or overhauled, in
a concept named as ”On Condition" process (OC). These two processes, in conjunction with the ”Condition
monitoring" (CM) process, where the item cannot have a defined life time or have its degradation level mea-
sured or inspected and has to be replaced only once it fails, are the base of the process-oriented approach
[60].

The advances in statistical analysis of parts reliability led to more structured maintenance programs,
starting with the Maintenance Steering Group (MSG), developed initially by Boeing to be implemented in the
maintenance of the then new Boeing 747. Developed together with the suppliers, airlines and the FAA, the
MSG was initially based on the classic process-oriented approach and divided the process into six working
groups, aggregating different aircraft subsystems. Analyzing each part individually, the MSG system would
use a process flow diagram to evaluate if the set part required a HT, OC or CM maintenance process [38]. The
MSG system was then generalized and expanded for all aircraft by the Air Transport Association of America,
becoming MSG-2, where each aircraft had a list of items to be evaluated, called as “Maintenance Significant
Items" (MSIs).

In 1980 MSG-3 was implemented, switching from the “bottom-up" process-oriented approach of the
MSG-1/2 to a “top-down" task-oriented approach. This was an evolution from MSG-2, focusing on how fail-
ures affect the system as a whole. Each failure is investigated through a different flow chart, evaluating how it
affects the operations of the aircraft and if it is a safety concern or has only a financial impact, further down
evaluating if the failure is evident or hidden to the crew. This methodology was called “Failure Mode Effect
Analysis (FMEA) [12]. Tasks are divided into four sections:

1. Systems and Powerplant;

2. Aircraft Structures;
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3. Zonal Inspections;

4. Lighting/High Intensity Radiated Field.

Using the MSG-3 philosophy, type certificate holders (TCH), as aircraft manufacturers for example, will
develop together with future operators and the certification authorities the Maintenance Review Board Re-
port (MRBR). The MSG-3 analysis is also implemented to perform the System Safety Analysis (SSA), from
which the Certification Maintenance Requirements (CMR) and the Airworthiness Limitations (ALS) docu-
ments are elaborated. The MRBR, the CMR and the ALS are the primary sources for the creation of the main-
tenance program document (MPD), which will be submitted to the aviation agency responsible to certificate
the aircraft. These documents have their description summarized below.

• Maintenance Review Board Report (MRBR): According to the FAA [4], the MBRB is “a baseline or frame-
work around which each operator can develop its own individual aircraft maintenance program, (...),
outlining the minimum scheduled tasking/interval requirements to be used in the development of an
airworthiness maintenance/inspection program for the airframe, engines, systems and components";

• Certification Maintenance Requirements (CMR): According to EASA [27], CMR are defined as “a re-
quired periodic task, established during the design certification of the aeroplane as an operating lim-
itation of the type certificate, (...), intended to detect safety-significant latent failures which would, in
combination with one or more other specific failures or events, result in a Hazardous or Catastrophic
Failure Condition.";

• Airworthiness Limitations (ALS): According to EASA [27], the ALS must contain “Each mandatory mod-
ification time, replacement time, structural inspection interval, and related structural inspection pro-
cedure."

In addition to the primary sources, secondary sources are also used to elaborate the MPD, as for example
Airworthiness Directives, operational requirements, low utilization maintenance program, and others. As a
result, the MPD will have all the recurring maintenance information to base the operator‘s Aircraft Mainte-
nance Program (AMP), which will be the base for the scheduling and procedures of all the operator‘s mainte-
nance tasks. The MPD, together with the Aircraft Maintenance Manual (AMM), the operator‘s experience and
other non-recurring tasks, are combined to produce the operator‘s AMP. The entire process can be visualized
in Fig. 2.1.

Figure 2.1: Aircraft Maintenance Program construction flowchart.
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2.2. Engine maintenance process
As part of the AMP, each scheduled or unscheduled task to be performed on an engine is defines as a simpler
maintenance procedure, that can be performed with the engine still installed on the wing, or as a heavier
maintenance requiring the removal of the engine is necessary, possibly to perform a shop visit [60]. As the
scope of this study is limited to engine shop visits, the processes related to light on-wing maintenance will
not be further discussed.

2.3. Engine shop triggers
Understanding the factor that trigger an engine shop visit is essential for the prognostics of when an ESV
should be scheduled.

2.3.1. Life-Limited Parts
The Engine life-limited parts are defined by the Code of Federal Regulations, on Section 33.70 of Title 14 [9],
as:

“Engine life-limited parts are rotor andmajor static structural parts whose primary failure is
likely to result in a hazardous engine effect. Typically, engine life-limited parts include, but
are not limited to disks, spacers, hubs, shafts, high-pressure casings, and non-redundant
mount components.”

According to [48], the number of economically usable flight hours remaining on an LLP at the time it
is replaced is called ”stub life". One of the goals of the ESV scheduling optimization is reduce the stub life
while complying with maximum phase-out conditions. Furthermore, airlines might have contractual leasing
conditions on stub life on an engine at the point of aircraft return, resulting in penalties (mainly financial
costs) when they are overrun.

2.3.2. Performance factors
For an aero-engine, the most commonly adopted performance assessment parameter is the Exhaust Gas
Temperature Margin (EGTM) [19]. The EGTM is the temperature difference between the measured engine
exhaust gas temperature and the red-line temperature, that is, the maximum temperature that the engine
should operationally maintain. As an engine continually degrades, the margin reduces as exhaust tempera-
tures go up. This pattern allows for airlines to estimate a time until the engine reaches its limitation and is
able to schedule recovery maintenance accordingly [43].

2.3.3. Unexpected engine anomalies
Unexpected engines anomalies are, as the name suggests, causes for the engine to fail, or decrease in per-
formance in such a manner that an engine shop visit is necessary. This type of failure mostly occurs in parts
which are under high operational stress, such as compressor and turbine blades and bearings, or caused by
foreign object damage (FOD), such as aircraft parts on a termac or bird strikes [[54],[53]].

2.3.4. Maintenance resources
According to [14], one of the main constraints for aircraft maintenance scheduling is the resources avail-
able. Many items are among the necessary resources, such as manpower, equipment, hangar capacity and
MRO (Maintenance, Repair, and Operations) provider capacity. Another important factor to be taken into
consideration is the MRO pace of processing and redelivering the overhauled engines, that is, the shop repair
turn-around-time (TAT), as this will determine when the engine is once again available to be put in operation,
freeing spare engines to be used in other aircraft [54].

2.3.5. Airline schedule
When evaluating ESV scheduling, being a long term planning, the access to aircraft routing is still not possible
as it is not know, being defined only a few weeks before the operation [25]. This makes favoring certain
locations more complicated, and therefore the geographical location of the hangar or maintenance base is
mostly not taken into consideration, as it is not possible to know where the aircraft will be.

This is not to say, however, that the airline planning has no impact on ESV scheduling, as other temporal
and geographic parameters have know and consistent impacts. As noted by [14], it is usual for airlines not to
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perform maintenance during the summer period, for example, as it is a high demand time, requiring most of
the aircraft to be operational, while also being a common holiday season for maintenance staff. Furthermore,
aircraft frequently are assigned to a base that does not change frequently, allowing for airlines to predict which
maintenance base will be closer to the aircraft at the time on which it is scheduled. This does not imply,
however, that other maintenance bases cannot be used, but requires the consideration of the impact of a
further maintenance base to the aircraft operation.



3
Main methods of ESV scheduling

This chapter describes the main methods of ESV scheduling found in literature, in order to answer the sec-
ond research sub-question “What are the most used methods to model ESV scheduling?" and the sub-sub-
question ”What methods are used for the optimization of ESV scheduling?".

3.1. Maintenance policies
To understand how a maintenance task is scheduled it is necessary to first understand the difference policies
of maintenance that can be performed on a system. [41] separates the policies into 3:

• Failure-Based Maintenance (FBM);

• Time-Based Maintenance (TBM);

• Condition-Based Maintenance (CBM).

3.1.1. Failure-Based Maintenance (FBM)
The FBM is a policy where a maintenance task is only performed when a system part is identified as faulty.
The piece is then replaced or restored to the default condition. It is also called Corrective Maintenance (CM)
and it is, thus, reactive and unscheduled. This policy has in its advantage the fact that items will be used
to the full extend of their operating life, reducing waste of life use (or stub life) to null. As disadvantages,
FBMs leave no space to maintenance planning, leaving the operator to perform maintenance at times that
might be inconvenient and that might over-stress the maintenance capacity. It might also cause a higher
use of resources and generate costly consequences to the system where it is integrated, where it might cause
the failure of other items and/or generate longer non-operating periods, with possible loss of revenue and
payment of compensation fees due to cancellations.

3.1.2. Time-Based Maintenance (TBM)
On a TBM policy, maintenance tasks are performed at fixed intervals, being also called Preventive Mainte-
nance (PM). These intervals can be determined based on the expected life-cycle of the part and by the oper-
ator’s experience. However, once the period is defined, its maintenance will always be performed once the
period is over. As advantages, TBM tasks can be planned to an operation optimality, costs of production stop
are reduced and safety is improved, mainly on systems where the failure’s consequence is catastrophic. As
disadvantages, TMBs might lead to an increase on unnecessary tasks and a consequential increase on costs
with labor and items, as the condition of the item is not taken into consideration. It can also increase non-
operational times on a life-time analysis when compared to CBM, as well as it does not address failures that
are not related to utilization times and might increase the probability of maintenance-induced failures.

3.1.3. Condition-Based Maintenance (CBM)
CBMs, on the other hand, is a newer technique, which tries to overcome the disadvantages found on both
FBM and TBM. It is based on prognostics, that is, based on current observations on the system, trying to
estimate the Remaining Useful Life (RUL) or the failure probability at a certain point of a certain item. It
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reduces stub life at the same time that avoids unexpected failures, it requires, however, that the item can be
inspected, examined and/or monitored. This continuous evaluation of the item, in general, also incurs in
extra costs, being only worth on high cost items or a potential catastrophic failure causer.

3.2. Early maintenance scheduling optimization methods
In the past, maintenance tasks were performed in a on-necessity basis, responding to legislation, operational
experience and internal standards [18]. To this date, many airlines still schedule their maintenance manually,
using personal experience and spreadsheets, focusing on obtaining a feasible solution and not on generating
a solution with a cost-efficiency optimality [42]. This begun to change in the 1960s, with the development
of optimization mathematical models that aimed to balance the costs of the maintenance process and the
benefits that it generates [18], mainly focusing on searching for optimal preventive maintenance periods and
comparing it to corrective maintenance methods.

Early generalist studies, as the one presented by [11], try to evaluate how different maintenance poli-
cies compare to each other when dealing with both simple one-element systems and more complex multi-
element systems. Using the relation between the required time to perform a scheduled maintenance task and
the time required to perform an emergency maintenance task, as well as how frequently emergency mainte-
nance happens, the limiting efficiency of the system can be obtain, that is, what is the portion of time that
the system will be operational in comparison to the total evaluation time. For different correlations of main-
tenance times and failure frequencies, using a simpler method of performing FBM or TMB or using a method
of performing minimal repair procedures when a failure occurs and keep operations until a defined elapsed
time between maintenance tasks is reached may present better limiting efficiencies for the system. The sys-
tem can thus be mathematically defined and an optimal method and maintenance interval can be obtain by
solving the modeled equations.

Complex systems such as an aircraft, however, are usually not only susceptible to one type of mainte-
nance, having a large variety of systems and parts with different inspection and replacement periods. This
creates a problem of possibly having multiple disruptions on its operation, which had a solution first pre-
sented by [36] with the introduction of the concept of ”opportunistic replacement", where a part of a system
might be replaced even though it has not failed or reached its end-of-life, using the period of maintenance
required by another piece of the system, if this results in reduced over-all costs as it reduces non-operational
times.

However, in order to represent the system in a realistic manner through the use of mathematical models,
a large number of simplifications and assumptions is necessary, rendering the solution unrealistic. [14], for
example, analyzed the case of Air Canada’s maintenance planning in the 70’s and came to the conclusion
that finding an exact solution, using a Mixed-Integer Program for examples, was not a feasible method, as it
could not coupe with the complexity of the problem. Furthermore, [14] argues that even if a viable optimal
solution was possible to be achieved, the high unpredictability of an airline’s operation could rapidly turn
the solution unfeasible and, thus, finding a good solution is sufficient. To do so, the found solution was to
develop a simulation platform called AMOS, where the main parameters can be inputted in order to allow for
the user to visualize and optimize the maintenance scheduling program.

The restrictions and assumptions needed to model the maintenance scheduling process as linear expres-
sions, as seen, led to different approach to model such problems, mainly leading to the use of simulations,
them being supporting tools such as AMOS or computational prediction tools, such as Monte Carlo simula-
tions [46]. This left the maintenance scheduling process with three main modeling methods, through the use
of simulations, linear functions and with a Markov Decision Process (MDP). Methods to search for optimality
of these models vary greatly and have many applications throughout all industries.

3.3. Engine Shop Visit Scheduling process
The research onto engine shop visit scheduling optimization, being a very specific topic, is limited. Just as in
the case for general maintenance scheduling, ESVs are currently frequently manually scheduled. Among the
available research, once again the problem is modeled mostly modeled through mathematical equations or
through simulation methods.

3.3.1. Simulation based
Different simulation tools have been developed to simulate the engine shop visit operation and scheduling.
Simulations are most frequently modeled as a decision making support tool, leaving the scheduling optimiza-
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tion to the operator, as in the case for [54] and [48], or providing some level of optimization, as presented by
[14].

Decision making support tools
These tools usually seek to integrate engine data, environmental and operational conditions, maintenance
strategies and MRO capacity as inputs to provide maintenance performance metrics, as for example mean
time between removals, shop visit cost, number of necessary spare engines and others. [54] uses a discrete
event simulation model and is mathematically defined in Matlab to estimate ideal ESV dates, engine degrada-
tion with time, engine overhaul turn-around time and other, using flight cycles as time interval in an engine
life-cycle span. It considers LLPs, performance and random failures as ESV triggers, using a total of 9 items
that can be potential causes. [48] also uses multiple operational, engine performance and contractual data
as inputs to mathematically predict LLPs end of life moments and performance deterioration to determine
ESV times and maintenance costs. It then creates a base of different scenarios to be evaluated by the opera-
tor using a iterative algorithm model, setting different thrust settings, SV schedule or workscope definitions
and searching for lower total maintenance costs. The presented tools allow for the comparison between
the effects of different maintenance policies and schedules on maintenance costs and spare parts planning,
helping management in the decision making process. Such supporting tools, however, dont aim at finding
the optimal shop visit scheduling, rather helping experienced professionals to execute a manual task in a
manner of hours, instead of days.

Multi-agent negotiation
One strategy to tackle the optimization problem inside a simulation environment is through the use of a
multi-agent negotiation method, as used in [53]. In accordance with [14], the authors believe that reaching
an optimal solution is in practice not a requirement, being sufficient to find solution that improves productiv-
ity. They model the problem with 3 agent types: the overhaul bases, the fleet managers and the fleet planner.
Maximum shop visit times are predicted by the fleet planner to determine the date of zero life to LLP parts, the
Date of Zero Margin (DOZM) for parts and the date of zero confidence for the predicted time a parts failure
risk achieves a set threshold. Dates can change depending on service data and unforeseen events. The over-
haul bases may request different schedules due to its operational necessities. The scheduling algorithm was
implemented in Java and attempts to maximize cost reduction by swapping engine shop appointments and
set them as close as possible to the latest removal date, negotiating with the requirements set by all agents.
Importantly, the model considers the uncertainty of the maintenance turnaround time, correlating it to the
number of spare engines, fleet size and maintenance center capacity. The model calculates maintenance
costs as a function of the time distance to the estimated maximum maintenance date, neglecting the possi-
bility of opportunistic replacement and also not considering the possibility of using the AoG moment caused
by the aircrafts other engine as an ESV opportunity.

3.3.2. Optimization based
The optimization tools are developed with the purpose of providing an optimal, or close to optimal, solution
to the maintenance scheduling of engine shop visits. One method frequently used to simulate the engine
shop visit scheduling process is modeling the problem through a Markov Decision Process (MDP). The op-
timization can be also modeled as a mathematical problem, being a solution possible by solving a set of
equations.

Mathematical model
As seen, opportunistic replacement is an important concept for the optimal maintenance of a multi-state sys-
tem. [7] aims at mathematically model the opportunistic replacement problem and uses a jet engine main-
tenance scheduling as a possible application for their model. They model the most basic case, where a set
of components have a defined maximum time to be replaced, considering a limited set of time steps, a cost
of replacement and a cost of maintenance, which is independent of the number of items being replaced.
The mathematical model consists of an objective function, defined by the sum of replacement and mainte-
nance costs, and 6 constraints, defining the variables and guaranteeing the replacement of the items before
their end-of-life and the payment of the fixed maintenance costs. These constraints alone, however, are not
sufficient to model the problem as a convex hull, being necessary the derivation of new ones using Chvá-
talGomory rounding. If costs can be considered non-increasing with time, the problem is proved to have a
single optimal solution, instead of many, and can be solved by a dual greedy procedure. The model was im-
plemented in Python and solved by the mixed integer programming solver Gurobi. To test the model, a case
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study using the scheduling optimization of engine shop visits is performed for two parts of an engine. Firstly,
considering the low pressure turbine and its 10 components, the obtained optimal solution is compared to a
non-opportunistic approach, where every time a component reaches its end-of-life a separate maintenance
procedure is scheduled. The results show a reduction of almost 70% in the amount of maintenance occasions
and 34% reduction in total maintenance costs. Similarly, the same analysis is performed for the high pressure
turbine and its 9 components, also achieving improvements in costs and number of maintenance occasions,
although with reduced significance.

Another strategy to consider LLP and EGT degradation together is to consider a LLP as a normal distri-
bution with very small variance. In fact, when considering that LLP are set in cycles (or flying hours) and
an airplane might have different operational periods, flying a variable amount of cycles in a day, converting
the number of cycles up to a set calendar date present uncertainties, resulting in a value with some variance.
[19] uses this strategy in conjunction with a just-in-time (JIT) concept for the engine repair. It does that by
considering that only one spare engine is necessary if the engine shop visits of an aircraft are scheduled in
such a fashion that once one engine returns from the shop visit, the AoG opportunity is used to remove the
other engine, which in turn is also sent for a shop visit, and the spare engine swap wings. To model the engine
degradation, the EGT margin is described as a State Space Model. A Bayesin state estimation and prediction
method is used to obtain the cumulative distribution function and probability density function to determine
the probability of the engine reaching a defined EGT threshold for each time step of the analysis. Considering
also uncertainties on the time required to perform the maintenance in the engine at the shop visit, the paper
mathematically defines the optimal point for the first engine shop visit based on the maximum acceptable
probability risk of failure on the first engine and the acceptable maximum probability of shortage of the sec-
ond engine due to its RUL, that is because in the case that the second engine needs a SV before the first engine
returns from its SV, a urgent spare engine is necessary, resulting in much greater costs. The concept can be
better visualized by Fig. 3.1. The paper concludes that the SSM can better predict the engines RUL when
compared to a simple linear regression and that its optimization method has a feasible implementation by
operators. This paper, however, considers a single engine, and not a fleet of multiple airplanes and the pos-
sibility of using engines of other aircraft returning from SV as spare engines. More importantly, the method
assumes a generalist RUL probability distribution, independent from the different possible causes for ESVs.
Furthermore, the optimization process considers EGTM and LLP separately, finding the ideal ESV for each
factor, which in turn disregards the possibility of opportunistic replacement. At last, the authors assume the
absence of random failures.

Figure 3.1: Definition of optimal SV point from failure pdf. [19]

Markov Decision Process
As engines combine condition-based maintenance, hard-time maintenance and corrective maintenance items,
a hybrid approach is necessary to try to optimize the engine shop visit scheduling considering all factors.
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MDPs allow for this hybrid representation, presenting the system as a state vector that can represent the
different components requiring maintenance in an engine.

[43], aspires to optimize maintenance intervals and maintenance workscopes in conjunction through the
use of a reinforcement learning approach. To do so, the engine is represented by a multi-dimensional state
space. In the model, an agent chooses a maintenance task in response to the engines state. LLP parts usage
and EGT degradation are modeled with a Markov Decision Process and failures are considered in the state
transition, where the failure probability is correlated to the engines performance state. The reinforcement
learning is performed with a GaussSeidel value iteration algorithm, used to explore different possibilities of
maintenance policies, iterating over different schedules and workscopes and searching for the sequence of
maintenance tasks which minimizes the total cost. As it considers different workscopes, it considers the pos-
sible benefits of opportunistic replacement. This analysis, however, does not consider maintenance periods
and extra costs involved with the use of spare engines and operational costs related to the time needed to
reinstall the overhauled engine on its original aircraft. In it, maintenance actions are considered instant,
changing the engines state from one time step to the next subsequent step.

Hybrid maintenance policies can also be approached by other methods. [20], for example, uses genetic
algorithms for the optimization process. In it, 4 different maintenance items in a system are analyzed consid-
ering their interdependencies. Moreover, [20]s approach is to not use prognostics to predict the approach of
thresholds, rather to predict total system failure probabilities and use them in conjunction with inventory lev-
els to optimize the maintenance scheduling. System risk is defined as a sum of failure costs and maintenance
losses, which in turn are modeled with mathematical equations and have their failure probabilities obtained
from reliability data with a Weibull distribution. This can be correlated to the study case, where 3 different
items (considering EGT performance, failures and the grouping of LLP items) are considered together to op-
timize the maintenance periods. Maintenance schedules are represented by a set of binary strings, which
are then evaluated for their total system risk. Using GA, a schedule solution which minimizes the total risk is
found. The author goes on to compare the obtained results with the results that would be obtained by im-
plementing the traditional CM, PM and CBM (with thresholds) separately, achieving better results with the
proposed use of failure probabilities in combination with genetic algorithm. The research, however, doesnt
consider the optimization of a combination of multiple systems, as it would be the case in a fleet with many
engines, and how maintenance opportunities in one system may present opportunities for another system,
as for example when an aircraft is put out of operation for the re-installation of its original engine, the other
engine could be removed with reduced operational impact (one less AoG period). Furthermore, as in the pre-
vious study, it considers maintenance to be instantaneous from one time step to the next, when performed.

[33] provides a different approach to use genetic algorithms to optimize an individual engine shop visit
scheduling. Instead of a binary string, the proposed method uses real-valued strings in a pair of chromo-
somes, with the first half containing to the number of cycles up to the shop visit and the second half contain-
ing the work scope of the corresponding gene shop visit. The paper compares two different logic methods
for the generation of the initial population of chromosomes for the implementation of the genetic algorithm
optimization process. The engine shop visit problem is analyzed in the context of the engines entire life cy-
cle and only considering LLPs and the aircraft maintenance requirements. Maintenance work scopes are
divided between 3 levels of maintenance, from minimum to heavy, and 4 maintenance actions, from no LLP
replacement to both LLP types replaced. The objective function is set in order to achieve a minimal total
maintenance cost per flight cycle. The fleet is not considered, nor the use of spare engines, the concept of
just-in-time maintenance or other ESV triggers, as EGTM and unpredictable failures.





4
Maintenance Scheduling Problems

Although the engine shop visit scheduling has its particularities that have to be taken into consideration for
a useful and successful implementation, it is just a specific case of the general scheduling problem. This type
of scheduling problem can also be seen in other aviation and operations related topics, as for example in the
maintenance of the aircraft as a whole. Although engines are a part of commercial airplanes, the maintenance
policies of engines and the aircraft as a system are separate and have distinct frequencies and thresholds.
Aircraft maintenance tasks are, as a standard, grouped in 4 categories: A, B, C and D checks. C and D checks
are considered heavy maintenance and happen less frequently, requiring a long term planning [58], as it is
the case of ESV scheduling.

A comprehensive literature review on the most recent (up to the time of publication of the article, in 2013)
operations research applied to aircraft maintenance is provided by [57], dividing the articles into 6 differ-
ent subcategories: Type of maintenance; Integrated airline scheduling; Aircraft maintenance optimization;
Facility location; Workforce and training; and Uncertainty and application of research.

While from the literature review it is clear that, for aircraft and engine maintenance, the use of simulations
and MDP are the main approaches to model the scheduling problem, another type of formulation can also
be seen when looking into other maintenance scheduling activities. According to [39], scheduling problems
are commonly divided into three different shop problems: open shop, flow shop and job shop.

This chapter seeks to answer the sub-question ”What are the most used methods to model other main-
tenance processes scheduling?" and the sub-sub-question ”What methods are used for the optimization of
other maintenance scheduling problems?".

4.1. Dynamic Programming
[25] proposes a method to optimize the long-term planning of C checks while also considering A checks,
aiming at reducing the number maintenance occasions and increase aircraft availability. The problem is
mathematically modeled in a framework prepared to be solved with dynamic programming, with an objec-
tive function which seeks to minimize the number of remaining hours until necessary maintenance at the
time of the scheduled procedure. The authors present the unavailability of reliable cost data as reasoning
for not using cost reduction as optimization objective, as well as the direct correlation between number of
checks and total life time costs and the high costs of AoG in comparison to the costs of performing the neces-
sary maintenance. To model the problem 16 constraints are set, considering the hangar capacity per day for
each type of maintenance and allowing for tolerance interval, although with a high penalty (with tolerance
interval, airlines may perform maintenance after the maximum stipulated limit, but have to compensate
for it in the next check scheduling process). The process is defined through a decision space, a state space
and a state transition, following the structure of a Markov Decision Process, as it was also frequently seen
in ESV scheduling. An unbounded approach to solve the problem would create an exponentially increasing
number of outputs, leading to a dimensionality problem. For example, by having only 10 aircraft and two
maintenance slots per day, in three days a total of 1.7 millions outcome possibilities have to be analyzed, thus
being computationally inefficient. Trying to reduce the amount of paths to be evaluated, the authors propose
three additional steps: giving priority to the aircraft that is closer to its due maintenance date and require a C
check, as it is more restrictive; doing a thrifty analysis on every possible outcome and eliminate the ones that
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might result in an aircraft on ground waiting for a maintenance opportunity, which is undesirable; bounding
the number of outcomes by discretizing the problem in respect to the fleets utilization and then aggregating
them into mean utilization and electing one of the outcomes to represent the entire group. The implemented
method is successfully able to optimize in minutes the maintenance scheduling for years. Comparing it to
the manual scheduling from a European airline, the method is able to reduce the number of maintenance
checks and, consequently, reduce costs and increase aircraft availability.

[50] introduces the use of dynamic programming to the case of scheduling maintenance for systems sub-
ject to stochastic failure, as aircraft engines for example, by optimizing it to reduce total maintenance costs,
considering the system‘s downtime; [42] uses DP to solve the Airline Maintenance Scheduling Problem, defin-
ing which airplanes should be maintain and which maintenance tasks should be performed on a daily basis;
[17] uses a MDP to model a multi-state deteriorating wind turbine and optimizes its maintenance strategy
with a backward induced DP, considering Condition-Based Maintenance and including seasonal effects on
the turbine‘s state; [62] models an opportunistic preventive maintenance for a multi-unit system and finds
the optimal solution through DP, considering imperfect maintenance (maintenance doesn‘t return the parts
to the same condition as new) and using total costs as objective function.

4.2. Mixed-Integer Linear Programming
As an engine comes for a shop visit in an MRO provider, it is disassembled into multiple sets that have to go
to different maintenance procedures. [21] uses a variation of the flexible job-shop problem, allowing for an
operation to be performed in any machine in a set of them, adapting the MILP formulation first developed by
[45]. The authors use the tardiness of a job as objective function, aiming to provide a more customer-oriented
approach to the problem, as the tardiness refers to the time difference between the scheduled maximum
due date and the actual completion time. As a constraint, it is considered that some operations can only
occur after the realization of another. The final model has 10 constraints and was implemented in AMPL and
optimized with Gurobi. By using data from a major European airline, the authors optimize a set of engines
going to maintenance based on a initial set provided by the airline, they are, however, unable to optimize the
full scenario for an entire week due to dimensionality problems, limiting their analysis to 8 engines with a
total of 179 parts.

4.3. Genetic Algorithms
[25] is also the base for the methodology proposed by [58], combining a minmax scenario with genetic al-
gorithms to search for the optimal solution. With the minmax case, an optimal solution for the worst case
scenario is found, which is in turn a feasible solution for all other scenarios. Scenarios are created using
Monte Carlo simulations and consider two factors as having uncertainty: the duration of the maintenance
procedure, being the critical cases the ones which have a much shorter or much longer maintenance period
in comparison to the average value; the daily aircraft utilization, being the critical case when the aircraft has
a much higher utilization than the average, thus requiring maintenance in a shorter time span. The daily
utilization of the aircraft is represented with a vector size 12, representing the average aircraft utilization for
each month in a year, allowing to capture seasonal variations frequently seen throughout the year. Differ-
ently from [25], [58] formulates the maintenance problem as an integer linear programming problem. For
the optimization, the schedule is modeled with a chromosomic representation, where each line represents a
different aircraft and each column represents the number of time steps from the simulation start point to the
according maintenance procedure. The initial population is created using an ϵ-greedy algorithm, which not
necessarily will generate feasible schedules. The set is evaluated with a fitting function equal to the objective
function, and as in the case of [25], evaluates the number of remaining hours available at the time of mainte-
nance. As the problem is modeled as an ILP, it could theoretically also be solved with a commercial LP solver,
however the scale of the problem makes it computationally impractical, as each aircraft has a decision vari-
able for each time step, presenting dimensionality problems as also seen in [25]. To validate the GA model,
a small scenario was created and compared to the LP solution. For cases with a low amount of aircraft and
short planning period, both methods reach the same solution at comparable computation times, however
considering 40 aircraft and a short 3 year time span, the LP solver takes more than 60 times the computa-
tional time of the GA model, while the GA is able to keep a small optimality gap. When comparing with the
DP method presented in [25] for a deterministic scenario, the GA optimization is able to increase the average
number of flight hours between maintenance and reduce the overall number of C-checks performed. When
using the minmax scenario, it is able to reach a significantly better result then the manual airline scheduling
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process in both flight hours and number of C-Checks, at the same time that it generates its solution has a high
robustness, not requiring any changes in 40% of cases created with a Monte Carlo simulation, compared to
0,27% in the deterministic optimization.

When considering preventive maintenance, two types of maintenance can be performed, simple preven-
tive maintenance and preventive replacement. [56] considers both options, and their impacts on a general
decaying system, to calculate with GA the best scheduling and policy in regards of total life costs for the sys-
tem. Considering a manufacturing system, [61] considers both the gains of production on a well-maintained
machine and the maintenance expenses, in a system with increasing failure probability with time. Each cell
in the chromosome represents one machine and has an integer value, corresponding to the time of main-
tenance. Probability of failure is evaluated using Monte-Carlo simulations and then used to estimate total
life-cycle costs during the GA optimization. Results show a reduction in costs when compared to simulated
FBM, TBM and CBM methods. [59] applies a maintenance scheduling optimization to increase the reliability
of a power generation system with many generators, by having as objective goal the minimization of the loss
of load expectation, that is, the amount of days in a year that the system wont generate the expected output.
The method was tested using real life power system data and observed improvements on loss of load using
GA. Importantly, it also saw a higher impact of the initial population on the final result for a smaller number
of generators, with a reduced impact on larger systems, where a standard initiation procedure with random
chromosomes will produce similar end results.

[39] has a similar objective as the one seen in [21], searching for the optimal way to distribute and se-
quence the 5 parts of an aircraft engines that arrives for maintenance among their correspondent work areas.
They increase the complexity of the problem by also analyzing the mean time to repair each of the parts and,
in the case of a large difference between them, consider the possibility of swapping parts among engines, thus
modeling the problem as a job shop problem within a flow shop problem. The optimization is performed with
genetic algorithm, using a unique chromosome representation, as described in Section 5.5. The goal of the
optimization is to minimize the time that an engines stays in the shop and the number of times the engine
needs an ESV. To do so, two fitness functions are used: First the makespan for each engine is calculated by
adding the repair time, the swap time and the test time; secondly, it calculates how many components have
a mean time to repair out of the set tolerance and, thus, will be swapped. The optimization in done with
GENMOP, a Pareto-based algorithm that utilizes real values for crossover and mutation operators, according
to the authors, achieving what they consider as good results, however limited to a small number of engines.

4.4. Reinforcement learning
The method proposed by [25] was further explored by [8] by applying a reinforcement learning (RL) approach
to optimize the problem. This was done by using Deep Q-learning with experience replay and a Double Q-
learning variant. In comparison to the DP solving approach, the RL method was able to reach a schedule with
a lower average stub life value for C-Checks and only needing seconds to find a solution, albeit a long time is
necessary for the model training, in the presented case it was 20 hours. The authors also show the flexibility
of the proposed solution by implementing disturbances into the initial data, as once the model is trained, it
takes a minimal amount of time to find a solution in case there are changes in the base scenario.

The JSSP has been extensively studied and multiple optimization approaches have been evaluated. As
seen, among the most recent approaches genetic algorithms is once again used, however other techines are
frequently used well, such as branch-and-bound algorithms, beam search, simulated annealing, tabu search
and ant colony optimization [[39],[45]]. [29] evaluates the use of one of the most recent solution approaches,
reinforcement learning. To model the JSSP problem, a multi-agent Markov Decision Process (MMDP) is
used, where each resource has an agent attributed to it. An MMDP allows for local decisions and reacting
scheduling, so that the model can more easily adapt to unpredictable events. Using a Multi-Agent Produc-
tion Scheduling framework (MAPS), a decision vector is updated by the corresponding agent, where each
decision occurs after a previous operation is ended. The authors present a difference between joint-action
learners and independent learners, where in the first type agents are aware of their state and contribution
to the system as well as the state and contribution from all other agents, where in the later each agent has
only access to their own set of information, being the later the system used by the MAPS framework. To train
the model, a Q learning method is implemented, deriving a control policy from a limited (and optimistic)
training set. The method is compared to traditional methods for classical operations research benchmarks.

Many other articles tackle the scheduling optimization problem using reinforcement learning. [24] unites
preventive maintenance into production scheduling using reinforcement learning using a MDP model. They
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propose a novel model-free algorithm and compare to traditional methods achieving encouraging results. In
[6], reinforcement learning is used in a petroleum industry application, by considering the dynamic schedul-
ing of maintenance tasks problem, modeled with a MDP and solved with a State-Action-Reward-State-Action
algorithm, instead of the Q-learning, thus using an on-policy learning approach. [22] applies reinforcement
learning to schedule real-time workloads received by a cloud services provider, aiming at reducing virtual
machine use costs while keeping the quality of service high for the client, suing a Deep Q-Learning.

4.5. Discussion on maintenance scheduling models
This section provides a discussion upon the presented methods to model maintenance scheduling processes
and how they can be used in the ESV scheduling case. The objective function is also discussed, as part of the
answer to the sub-question ”What factor influence the cost of an ESV?".

4.5.1. Analysis
As seen, it is clear that the scheduling optimization problem has been widely researched since the 60s as part
of the operations research field. The engine shop visit scheduling problem is a subset of this wider problem,
having particularities which make it unique and complex.

As these are complex problems, many different ways to model them were created, as seen in Chapter 3.
Modeling seems to resume to simulations and mathematical models. When considering simulations, most
approaches aim at providing a decision support tool, with none or minimal computational optimization.
Looking into mathematical models, it is seen that there are many ways to model the problem, from using
probabilities and time periods to find a system of equations that can be solved, as in [11] and [19], to more
complex MDP models, as seen in [[43],[20],[33],[25],[29]].

To this day, one of the favorite methods for operators to schedule their maintenance operations is do-
ing it manually with the assistance of simulation platforms. While simulations are a helpful and intuitive
tool to support decision making from aircraft operators, they dont guarantee that the solution will be robust
nor close to optimal, only guaranteeing feasibility at the moment of scheduling. The scheduling process is
also longer and may take days for the operators to find a feasible scenario and try to find ways to improve
it. [[54],[48],[14]] show more modern approaches to produce decision making supporting simulation tools,
predicting end of life of LLP parts and degradation of performance up to a defined threshold, and even try-
ing to perform optimization with multi-agent negotiation methods. As advantages, this type of simulations
present a very intuitive operation an allow for a easy performance of a manual sensitive analysis, changing
scheduling and looking on how this affect the costs. It allows for quick changes and usually have a visual
appealing interface for the operator. On the other hand, the short comings of decision making support tools
are obvious, being the main points the long time needed to do the scheduling, especially for larger fleets; and
the not optimal schedule, limiting it’s function to find feasible schedules.

When aiming at optimizing the scheduling of ESVs, it is seen [[43],[20],[33],[7]] that most methods focus
on a single engine scheduling. Opportunistic replacement plays key role in scheduling optimization, as it
allows to consider the impact of having the system down for a period of time and how this may make benefi-
cial the performance of maintenance tasks in parts that might still have considerable amounts of stub life on
them, but would require the system to be non-operational once more. This is precisely the case for engines,
as there is a multitude of sub-systems of an engine with different due dates and a high cost of grounding
an aircraft for maintenance. In this case, two focus points can be identified as being considerable for the
opportunistic replacement implementation, them being the LLP limits and the engine degradation pattern
represented by the EGTM. The moment where an ESV will be required to perform LLP replacement can be es-
timated by evaluating the pattern of cycles per day for a set aircraft and performing a simple linear regression.
To estimate the moment where an ESV is required due to EGTM can be, as seen, more complicated, as the
degradation does not follow a linear pattern. In some cases, as for example in [43], performance degradation
is considered in a more complex way, defining it as a state in a MDP and defining degradation probabilities.
Cases as the one seen in [19] go one step further, modeling the performance degradation as a state space
model, considering observation noise and the different rates of performance degradation rate throughout
the engine’s operational life. Their results, however, show that the degradation pattern correlation coeffi-
cients indicate a close resemble to linear degradation, and although SSM results show better precision than
linear regression, the difference is not that significant. Thus, it seems that for a life cycle management esti-
mation, a linear regression considering the period of stable degradation of the engine, after the initial wear
period, is enough to provide a long-term estimate.
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It is also clear that this type of problem is frequently modeled as a Markov Decision Process, using different
optimization methods to search for the optimal schedule. Most frequently, however, MDPs focus on the
modeling of the particular engine and are modeled to update the state of it to fully restored as soon as the
action of performing maintenance is selected. In reality, maintenance on the engine takes long times, during
which the system (in this case the aircraft) will be operational using a spare engine. This interrelationship
between aircraft and engine, and the costs correspondent to the state of each of them, brings an additional
complexity to the problem. For a practical application, both have to be modeled and considered together
in the optimization. Among the optimization methods the most seen are: mathematical solution (including
linear programming solving methods), negotiation methods, genetic algorithms and reinforcement learning.

The scheduling of aircraft maintenance presents similar long-term planning challenges as for the sched-
ule of ESVs, thus also providing valuable research for the scheduling problem. In fact, when looking at the
research available on the topic, similarities are visible on the modeling structure of the problem, again mostly
seeing the use of Markov Decision Processes, but also seeing the use of the Job-Shop Scheduling Problem
(JSSP) for some cases. For the solving process, again LP solving, Dynamic Programming, Reinforcement
Learning and Genetic Algorithms are most frequently used. The shortcomings are also similar, encountering
dimensionality problems when considering a large time span and a larger fleet and trying to find the optimal
solution. As these are long term planning scenarios, for over 10 year periods, having a time step of a single
day will result in a very large number of decision variables, thus a solution might be reduce the time precision
to longer steps, as a week for example.

It is clear that research has been mostly focused on modeling long-term planning schedules as MDP, leav-
ing the JSSP for more short term and more standard problems. [29] brings a rather unique approach to the
problem, uniting the JSSP with a multi-agent MDP and reinforcement learning to solve it. This is an approach
that could be adapted to the ESV scheduling problem, where each engine or each aircraft is modeled as an
agent and solved to optimize the total costs for the entire fleet. The use of aircraft as agents allow for the cost
considerations regarding Just-in-time engine maintenance, as introduced by [19], as well as optimizing for
the entire fleet. The consideration of the fleet is important as engines might be swapped among all aircraft,
allowing for a higher flexibility in the model.

At last, although many researchers use remaining hours as a minimization objective function, aiming at
using all the parts for the longest possible time, this might not be the ideal approach for an airline seeking to
reduce costs. Although it is evident that using parts as much as possible increases the return on investment,
it ignores the possible financial gains of using opportunistic replacement to perform maintenance on other
parts and the costs (and loss of revenue) for each time an AoG is necessary. Thus an evaluation of total costs
seems more appropriate for practical applications. Furthermore, sensitivity analysis is mostly not evaluated
in the presented research, but might be of high value for airlines, as they try to evaluate different scenarios,
as with the possibility of leasing extensions, for example.





5
Optimization Methods

This chapter goes deeper into the main modeling frameworks and the optimization techniques used to solve
the problem, presenting the main methods most frequently seen in research. It seeks to expand the answers
related to the sub-questions "What methods are used for the optimization of ESV scheduling?” and "What
methods are used for the optimization of other maintenance scheduling problems?".

5.1. Linear Programming
According to [31]: linear programming involves the planning of activities to obtain an optimal result, i.e., a
result that reaches the specified goal best (according to the mathematical model) among all feasible alter-
natives. Any problem that can be mathematically described with linear equations as an objective function
and constraints is a LP problem, being thus a formulation method. To solve this problem, an array of pro-
cedures are available. The most common method is called the simplex method. The simplex method is an
algebraic procedure based on geometrics. As the constraints create solution boundaries, if these constraints
are plotted in a graphical manner, it is possible to see that it creates a solution area, where the corner-points
are the possible candidates for the optimal solution. Other solution techniques are also possible, as dual
simplex, parametric linear programming, interior-point algorithm and others, as heuristic solutions for ex-
ample, which dont guarantee an optimal solution. These methods are then used by commercial solvers, like
Gurobi and CPLEX, to find the optimal solution, as it was the case in [7] and [21]. [21] models the problem
as a Mixed Integer Linear Programming (MILP), a variation of the LP problem, where some of the decision
variables must be integers, differently from the standard LP problem, where they can be decimals and the
Integer Programming, where all of them have to be integers.

On a JSSP, for example, the problem can be modeled with binary variables indicating if a job i is assigned
to a machine j at the t, in the form of xi j t = 1 in case it is and xi j t = 0 in case it is not. Constraints can be set so
that a job is always assigned to a machine and that a machine is not assigned to more then one job at the same
time, among others, depending on the constraints of the problem. Variations of this base case can be seen
as in the case of [21], where one decision variable is a binary indicating if a job is performed on a machine
and one binary decision variable to order the operations, indicating if a job is performed before another or
not. Other articles that also are modeled as MILP also use similar formulations: [58] has 5 decisions variables,
indicating if a check occurs in an aircraft at a set time, the number of flight hours and days since the last
check, the existence of extra maintenance slots at a certain time, if aircraft are under maintenance at a time
and if at a set time at least on aircraft is in maintenance. In [7], the base case of opportunistic replacement,
only two decisions variables are necessary, both being binaries and indicating if a maintenance occurs at a
certain time and if a set component is replaced at that time.

5.2. Markov Decision Process
As described by [34], one of the most important tools to model and solve sequential decision-making prob-
lems is the Markov Decision Process (MDP), and have been used in many practical applications. MDPs are
divided into three main types: Discrete time MDPs, continuous time MDPs, and semi-Markov decisions pro-
cesses. The most basic case is the discrete time MDP, where an agent interacts with an environment in discrete
time steps. This process can be defined as a tuple [51]:
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M = (S, A,T,R) (5.1)

where S is a finite set of states that define the environment. It is assumed that the complete state is always
known at each decision moment and provide all information necessary to reach a decision. A is a finite set of
actions, containing all actions that can be performed for a set state. T is a transition function, that provides
the probability of reaching a following state s’, given the current state and the action chosen. R is the reward
function, providing an expected value consequence of choosing an action based on all possible outcomes
from it.

The result of the MDP is a policy π, that defines which action should be taken knowing the state that the
agent is located. An optimal policy will lead the agent to a path of optimal decisions which will maximize the
reward of the system. In a Markov policy, actions are chosen without consideration of the system’s past. If
at a defined state a fixed action is always chosen, it is considered a stationary policy. According to [15], for a
finite-state and finite-action problem, an optimal stationary policy will exist.

The expected cumulative reward for a given policy at a certain state can be obtained by a value function.
An optimization process will try to determine the policy with the highest value function from the starting
point of the system. The number of possible combinations of states and actions might become very large
as a larger number of states, actions and time steps are evaluated, depending on the problem. Thus, many
different methods to try to optimize the MDP policy without experimenting all possible combinations are
considered.

5.3. Dynamic Programming
Dynamic Programming is a multi-stage decision process first conceptualized by Richard Bellman [13]. A
multi-stage decision process is where a system is defined by a set of states that change in time according to
the result of a sequence of decisions. When the decision of an action incurs in sub-problems, and a same sub-
problems might appear as a result of different possible decisions, then this overlap of sub-problems allows
to reduce the size of the general problem by only solving this set of sub-problems and then combining their
results in a bottom-top approach to obtain the original problem‘s solution [23]. It does that in by making
a time-memory trade-off, saving previous results and looking at each step if the current sub-problem was
already solved in a previous step. This is based on the principle of optimality [13], which states that if the
optimal solution for a sub-problem depends only on its current state and not on any past history, then the
original problem‘s optimal solution can be obtained from the merge of the sub-problems‘ solutions.

This ability makes dynamic programming a powerful and widely used optimization tool, significantly
increasing efficiency and reducing processing times when compared to an optimization solution by looking
at all possible combinations.

Moreover, Richard Bellman’s work on dynamic programming laid the foundation for solving complex se-
quential decision-making problems involving uncertainty, known as Markov Decision Processes (MDPs), as
previously seen. The Bellman Equation, introduced by Bellman, plays an essential role in solving MDPs. It
expresses the value of a state in terms of the expected immediate reward and the value of the next state, fa-
cilitating the determination of optimal policies. Algorithms such as Value Iteration and Policy Iteration build
upon the Bellman Equation to efficiently find the best strategies for navigating MDPs, which will also be es-
sential concepts for Reinforcement Learning.

On [25], as the final state is not known, a forward induction DP has to be implemented, where for each
sub-state, the shortest path from the initial state to it is computed. Due to the number of possible sub-
states, this creates an unpractical method to be computed, requiring the previously mentioned size reduction
actions. The optimal schedule can be then obtained by recursively computing Bellman‘s equation:

Vt (St ) = mi n

{
Ct (St , X t )+γ

∑
St+1

p(St+1|St , X t )Vt+1(St+1)

}
(5.2)

5.4. Reinforcement Learning
Dynamic programming is also the base for another method of problem solving. One of the main ways for
humans to learn anything is through interaction with the environment, analyzing the correlations between
action and consequence. According to [[37],[55]], this is the base idea for the development of reinforcement
learning, where an agent learns by trial-and-error in a defined environment. In it, the path to reach the goal



5.5. Genetic Algorithms 55

is not clear. On every step, the agent chooses an action which affects the current state of the environment,
this effect is communicated and reinforced to the agent. The main goal of the agent is to choose actions that
will lead to an improvement in the final value for the objective function, without previously knowing which
action to take and what the result will be. Typically the environment will be non-deterministic, meaning that
a defined action in a particular state will generate different results depending on the moment it is executed.

The dilemma for the agent is to prefer actions that it knows from experience that are good, performing
exploitation, and also search for other options to try to find new better paths, performing exploration. It is
impossible to perform only exploration or exploitation and be successful on its task, thus, a good trade-off
between them has to be achieved. Even with a good trade-off, reinforcement learning does not guarantee a
global optimal solution, rather it will find sub-optimal solutions.

The algorithm thus has to repeatedly update its actions for defined states until convergence to a best de-
cision policy is reached. This is done with by a value iteration algorithm or a policy iteration algorithm. In
the case of [43], a Gauss-Seidel value iteration algorithm is used, taking into consideration previous decisions
in nearby states and, thus, increasing the efficiency of the algorithm, at the risk of not reaching convergence.
For Gauss-Seidel to be implemented, however, it is necessary to know the environment‘s model, as transi-
tion probabilities and rewards. This necessity is avoided by using a model-free algorithm, as Q-learning for
example, used in [8], as the cost of requiring a larger exploration and, thus, processing times.

[47] also provides a reinforcement learning approach to solve the flexible job shop scheduling problem
in general terms, using Q-Learning. They divide the optimization process in a two-phase learning process,
first determining the most fitting machines to each operation and later only determining the sequence of
the operations, already knowing the ideal machine, with the objective of minimizing makespan. On [28]
a comparison between the use of deep reinforcement learning (with a proximal policy optimization) and
genetic algorithms to find an optimal solution for a FJSP is performed, also using as objective the reduction
of makespan. They conclude that RL is able to find close to optimal results in short processing times and
outperforms GA in most cases. [16] goes one step further, considering the possibility of machine breakdown
on a FJSP using another type of machine learning, with a teaching-learning optimization method. In doing
so, instead of only looking at makespan, as was the case in the other presented cases, robustness and stability
of the solution are also evaluated and taken into consideration in the second part of the optimization.

5.5. Genetic Algorithms

Another optimization method based on natural processes is Genetic Algorithms (GA). In GA, a combination of
crossover, mutation and natural selection is computationally implemented to find the fittest result in an evo-
lutionary process. The process begins with an initial set of solutions (the initial population), usually randomly
created and covering a large part of the scenario space. In every step the state of the system is represented by
a vector or a string, comparable to a chromosome, where every gene in the chromosome is a value (usually
binary or integer). At each iteration, a set of chromosomes will be selected, based on their evaluation to an
objective function, and combined to create offsprings. This combination is done with crossover, where each
parent will be split in a random position and combined. Offsprings go through a mutation process, where
the new chromosome might have some of its genes randomly changed to a different value, based on defined
probabilistics. This process is visualized in Fig. 5.1. The offspring will set the new population for further iter-
ations, however before a new iteration begins it is necessary to analyze their fitness, that is, the quality of the
solution to the objective. Just as in the case with reinforcement learning, GA don‘t guarantee a global optimal
[[30],[40]].
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Figure 5.1: Example of crossover and mutation processes. [56]

In [20], chromosomes are defined by a string with 200 binary values, correspondent to each of the com-
ponents for each of the 50 time steps. An example with integer genes is given by [33], where chromosomes
are set up in accordance to the number of engines and the number of shop visits, where the first half sets
to the number of cycles up to the maintenance task and the correspondent gene in the second half sets the
workscope of the maintenance, among 7 different work levels. They also compare two different methods
for the initial populations creation. Another research using a variable sized chromosome representation is
[39], where a direct encoding approach is used with the first part of the chromosome presents all engines
in order of priority and the second part specifies the precedence of the component exchanges, the quantity
of exchanges to be made, the specific components involved in the exchanges, and the engines from which
the components will originate. At last, on [58], each chromosome represents one aircraft and each gene has
an integer representing the number of cycles up to the next maintenance (and the second gene represent-
ing the cycles up to the second maintenance and so on). [58] also presents a flowchart representation of its
GA methodology, which is also the base sequence of actions for all GA implementations, an cab be seen in
Fig. 5.2.

Figure 5.2: Genetic algorithm iteration process. [58]

5.6. Discussion on optimization methods
This section provides a discussion upon the presented methods to optimize the maintenance scheduling
model and how they can be used in the ESV scheduling case. As part of the discussion are the main objectives
of the operator in regards to the optimization, being part of the answer to the sub-question ”What metrics
allow for the comparison between methods?".

5.6.1. Analysis
The complexity and unpredictability of airline operations has hindered the automation and optimization of
the scheduling process. As airlines might have large fleets, with different engine types and different thrust
settings for each type, different operational environments and different leasing agreements for their opera-
tional and spare engines, the number of decision variables and data correlation makes the solution process
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computationally unpractical with classic linear programming solving methods. Furthermore, a determined
optimal solution might quickly lose its feasibility or optimality as disruptions frequently occur in an airlines
daily operation. Thus, the robustness of the solution might be more important to the airline as its real opti-
mality, favoring methods that can easily cope with changes in its base scenario without the need of significant
schedule changes.

As seen in 4.5, a powerful method to model these scheduling problems is using a JSSP, assigning jobs, or
in this case engines, to shops, in this case an aircraft wing, storage or a maintenance workscope. As seen in
[45], [21] and [58], these type of problem is typically modeled as a MILP and solved with a commercial solver.
This type of problem, however, quickly reaches very high number of decision variables when evaluating long
time periods, as it is the case study, favoring the use of heuristic methods to reach a good solution, although
it might not be optimal, in a reasonable amount of processing time.

Dynamic programming provides one of the most common approaches to optimize the scheduling prob-
lem. Breaking down the problem in multi sub-problems might reduce the computational requirements to
solve the problem, however it is an older technique that will generally be outperformed by newer techniques
as genetic algorithms and reinforcement learning.

As seen, there is an abundance of research using genetic algorithms to optimize scheduling processes.
This type of technique provides a very powerful tool to reach good schedules, quickly reaching a result. GAs,
however, are note frequently used with JSSP because of their different structure. Furthermore it has no ”mem-
ory", that is, in case of changes in the base scenario, a new optimization has to be performed, reducing it’s
robustness to operational scenarios, such as in an airline, where states frequently change.

An optimization method that seems to fit well the JSSP structure and provide a robust response is rein-
forcement learning. When considering maintenance and AoG costs (or loss of revenue) as constant in time
for a defined engine type, finding a policy which optimizes total life cycle maintenance costs will create a
system that can easily adapt to changes in the base scenario, as a good policy will be already known, even
if now unfeasible, requiring less processing time to find a new feasible solution. This type of memory can
be useful with the use of Deep Q-learning, as seen in [[8],[22]], in addition to the multi-agent environment,
quickly reaching a new schedule when inevitable disruptions occur. Cases as the one seen in [29], being used
with a multi-agent MDP, prove that it can be used for large fleets and achieve good results.

Thus, as it is possible to identify from the requirements seen for a useful tool for airlines to schedule their
engine shop visits main items such as the robustness of the solution and the speed to find it, reinforcement
learning seems to present a fitting optimization method. It can quickly reach new solutions once the model
is trained and a good policy is determined. Furthermore, operators can also evaluate possible different sce-
narios, performing a manual sensitivity analysis with small computational efforts and also helping in the
business decision making for the airline.





6
Conclusion

As airlines seek to reduce costs and at the same time keep and advance upon current levels of flight safety, one
of the points where improvements can be made is at the scheduling of engine shop visits, as it may reduce
costs with parts, spare engines, with personnel and may also increase aircraft availability, thus increasing
revenue potential. As seen, ESVs can be divided into scheduled and unscheduled, being the first type related
to life limited parts and continuous performance degradation, and the second part related to failing parts and
airworthiness directives. Both LLPs and performance, in this case represented by the exhaust gas temperature
margin, can have their threshold reaching time point estimated with linear regression based on the airline’s
data.

As maintenance processes progressed, older maintenance policies such as failure-based and time-based
maintenance gave way to a condition-based maintenance. Although LLPs still have time-based maintenance
policies, the rest of the engine system and its performance degradation are based on condition, only requiring
maintenance once it is evaluated that they have failed or reached a certain threshold, or will reach it soon.
This provides an additional challenge for engine maintenance scheduling optimization, as it is necessary to
combine both policies in the process.

With the growth in the commercial aviation sector and the corresponding growth in airline’s fleets, atten-
tion started to be redirected into the search for computational tools that could aid the maintenance depart-
ments to keep track of aircraft maintenance status and schedule their maintenance tasks in a more efficient
and productive fashion. Although computational optimization methods quickly started to appear, airlines
still mostly relied on decision making support simulation tools, leaving any optimization process to be man-
ually performed by operator, as finding an optimal schedule was too computationally demanding and the
frequent disruptions in an airline’s schedule would quickly turn optimal solutions unfeasible.

As technology developed, new modeling and optimization techniques allow for airlines to schedule their
ESVs faster and better, reaching closer to optimal results by evaluating much more scenarios than a human
can. To do so, modeling mainly focused on mathematically modeling the problem with a system of equations
that can be solved with a defined optimal result, modeling it as an objective function and a set of constraints
in a MILP framework or with a Markov Decision Process, with most research using the latter. MILP and
MDPs may have a unique optimal solution, but reaching this solution for large fleets and time scales might be
computationally impractical, requiring heuristic optimization approaches to find optimal or close to optimal
solutions in a quick manner.

Among the modeling and optimization methods evaluated, no research presents a comprehensive tools
to optimize an ESV scheduling process considering a large fleet and all operationally significant factors, as the
ones previously stated. There is thus a research gap with the opportunity to use modern modeling and opti-
mization techniques to provide an robust and efficient tool for operators to reduce engine maintenance costs
along an engine’s life cycle. Among the research presented, the use of the Flexible Job-Shop Scheduling Prob-
lem model with a reinforcement learning optimization seem to be a compelling method to tackle this specific
problem, providing a flexible base to apply all operational constraints and find a policy that can quickly re-
act to disruptions and find new scheduling solutions, also allowing for airlines to test multiple scenarios and
evaluate business decisions, as for example the impact of extending a leasing contract or not, considering
maintenance costs.
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All in all, it is possible to see that the engine shop visit scheduling process has received limited attention by
research, and although a lot of operations research is done in the area of scheduling optimization, it is mostly
not adapted to fit the specifications of the case. It is also clear that there is potential for improvement in an
airline’s maintenance cost by using modern techniques to perform this scheduling optimization, providing a
tool useful for the maintenance department.
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