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Abstract

This thesis mainly studies the causality in natural language processing. Understanding
causality is key to the success of NLP applications, especially in high-stakes domains. Causal-
ity comes in various perspectives such as enable and prevent that, despite their importance,
have been largely ignored in the literature. In view of the lack of a dataset that can be used
for causality-related research, in this thesis, we first build a first-of-its-kind, fine-grained
causal reasoning dataset - FineCR, that contains new causality relations such as enable and
prevent, with the help of human annotators. Our dataset contains human annotations of
25K cause-effect event pairs and 24K question-answering pairs within multi-sentence sam-
ples, where each can contain multiple causal relationships. To study current NLP models’
ability to deal with the causality-related dataset and to figure out the problems that still ex-
ist, we define a series of NLP tasks based on FineCR, including causality detection, causality
event extraction and causality question answering. Our experimental results with state-of-
the-art deep learning models prove that there is still much room for improvement on those
causal reasoning tasks. We found that those models have different shortcomings for differ-
ent tasks. For the causality detection task, current classification models are easily affected
by keywords, while the model cannot accurately extract the events for the causality event
extraction task. And for the causality question answering task, it is sometimes difficult for
the model to find the corresponding answer due to its inability to understand the seman-
tics well. Those discoveries indicate the need to design better solutions to event causality
research. In conclusion, our novel datasets and tasks provide a challenging benchmark for
evaluating models’ causal ability, and the experimental results shed light on future direc-
tions for improving neural language models.
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1
Introduction

Causality [66], which consists of a pair of cause and effect, is an essential way of under-
standing the world. The event causality represents a causal relation between two events.
Both the cause and effect are an event. Causality can be established from objective natu-
ral factors, such as the rotation of the earth causing the change of day and night, or from
operating rules of human society, such as disobeying traffic rules resulting in being fined
by traffic police. The reasonable expectation of the possible causes and consequences of
an event is essential for rational decisions, such as when oil is in short supply, the price of
oil will go up, thus more and more people turn to electric cars. Sometimes we need to find
the cause of when one thing has happened, thus we can take corresponding measures be-
fore the next thing happens. For example, a fire broke out in a house, and the investigator
found this was because of the lack of a smoke alarm. To prevent the fire next time, we need
to install smoke alarms in each room.

Causality in natural language processing (NLP) has received much research attention
in recent years [21, 22, 74, 75]. It has been shown that causal reasoning entails a new goal
of building more powerful AI systems beyond making predictions using statistical correla-
tions [37, 52, 78]. However, it is still challenging for current deep learning models to con-
duct causal inference between real-world events due to their complexity. Yet, there is huge
potential for machines to be able to understand and reason about causality in text. All the
written information recorded by our humans from ancient to the present contains many
causal facts. If we can extract and leverage valid causal relationships from these document
texts, we can then use them to build a huge causal reasoning graph that can improve perfor-
mance of various of NLP applications. Therefore, understanding causal relations between
events in a document is an essential step in language understanding and is beneficial to
various NLP applications – information extraction, question answering, and machine read-
ing comprehension, especially in high-stakes domains such as medicine and finance.

Much work has been done on detecting a shallow “cause” relationship automatically
from text [40, 58, 61]. However, a single “cause” relationship cannot cover a plethora of
causal concepts in the real-world scenarios For example, the spread of COVID-19 has led
to the boom in online shopping – i.e., (cause) – but it also has deterred – i.e. (prevent) –
people from going shopping-centres. According to classical psychology [95], it is impor-
tant to understand possible fine-grained relationships between two events from three dif-
ferent causal perspectives, including cause, enable, and prevent. As Steven Solman et al.

1
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Figure 1.1: Comparison of existing “cause-only” researches (inner box) and more ideal causality graph with
three kinds of causal relationships - CAUSE, ENABLE and PREVENT (outer box). More kinds of causal

relationships can bring more events into the event graph and make the graph more complete.

[77] state in the paper “A Causal Model Theory of the Meaning of Cause, Enable, and Pre-
vent”, The notion that the causal model involves a relationship from A to B is expressed by
the phrase "A causes B." "A enables B" implies that the model has a connection from A to
B, that A represents a category of occurrences required for B, and that B has a secondary
cause. "A prevents B" means that the model has a relationship from A to B and that A low-
ers the probability of B. A model, or an event graph as shown in Figure 1.1, can only be
virtually complete if it has all three relationships. As can be seen, given the same passage
“COVID-19 has accelerated change in online shopping, and given Amazon’s ... it will result in
economic returns for years to come and offering more competitive prices compared to an of-
fline business that brings pressures for the offline business recruitment.”, previous work can
extract facts such as “COVID-19 causes an increase in online shopping”, yet cannot detect
the subsequence for Amazon to “offer more competitive prices”, and further the negative
influence on offline business recruitment, both of which can be valuable for predicting the
future events.

Besides the granularity of causal relationships, another problem existing in previous
causality-related researches is that not all causal relationships can be automatically ex-
tracted. Previous researches usually leverage the conjunction words such as “because” and
“since” to find causality event pairs. Although connectives can be used to find causal re-
lationships in a text efficiently, a large number of causal relationships are hidden with no
indication by salient conjunction words. Currently, no research can extract that hidden
causality. To find these hidden causal relationships, human annotations are essential, since
We can use human commonsense to extract potential causality.

To extract fine-grained and implicit causal relationships from the textual data, we con-
struct a large-scale, hand-labeled, fine-grained causal reasoning dataset (FineCR) in the
financial domain to measure the model’s ability to extract these three kinds of event rela-
tions. We first collect many English-based financial analysis reports written by professional
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financial analysts. We selected the sections in those documents that contain the most
causal relationships to construct FineCR. Human annotators are hired to first select sen-
tences containing causal relationships from those documents, then extract all the causal
triples from these sentences. Finally, we use template generation plus manual calibration
to generate massive question-answering pairs that require causal inference. The resulting
dataset, FineCR, consists of 25,193 cause-effect pairs and 24,486 question-answering pairs,
in almost all questions involving “why”[64] and “what-if” scenarios belonging to three fine-
grained causalities. Our dataset can also potentially benefit downstream applications such
as financial analysis [16] and BioNLP [13].

With FineCR, we define a series of causality-related tasks, including causality detection
task, causality event extraction task, and causality question answering task. The causality
detection task aims at detecting whether a given sentence has any causality relationships,
while the causality event extraction task aims to extract all the causality triplets in a sen-
tence, where the causality triplet consists of a cause event, causal category, and an effect
event. The goal of causality question answering is to evaluate models’ ability to answer
questions that need some causal reasoning.

We explore several state-of-the-art neural models to establish the benchmark perfor-
mance on different tasks with FineCR. Experimental results show a significant gap between
machine and human ceiling performance (74.1% vs. 90.53% accuracy in fine-grained clas-
sification). To the best of our knowledge, FineCR is the first human-labeled fine-grained
event causality dataset, and we define a series of causality tasks based on that. We then
conduct a detailed error analysis on each task and find that, due to current neural-based
language models’ inability to understand semantics, there is still a long way to solve the
causality-related problems. Our contribution can be summarised as follows:

• We leverage human annotators to build the first-of-its-kind dataset that can be used
for causality-related research, which makes researchers now possible to study causal-
ity in NLP.

• We first define the series of causality tasks, including causality detection task, causal-
ity event extraction task, and causality question answering task. These tasks can be
used in many places in our life.

• Through extensive experiments and analysis, we show that the complex relations
in our dataset bring unique challenges to state-of-the-art methods across all three
tasks and highlight some potential research opportunities, especially in developing
“causal-thinking” methods.





2
Background and Related Work

In this chapter, we will first introduce some critical notions about this research and then
review some relevant previous research as well as the state-of-the-art NLP models. This
thesis brings together two exciting ideas – event causality and causal question answering
– and in what follows, we briefly introduce the existing relevant works and datasets to the
present work.

2.1. Current Research of Event Causality
There is an extensive literature on causal inference techniques using non-text datasets
[21, 38, 62, 66], and a line of work focusing on discovering the causal relationship between
events from textual data [17, 25, 60]. Previous efforts lie on the graph-based event causality
detection tasks [17, 51, 87] and the event-level causality detection tasks [20, 27, 57]. How-
ever, causal reasoning for text data with a particular focus on fine-grained causality be-
tween events has been little considered. For this reason, we build a fine-grained causality
dataset in the financial domain and expect to see whether the state-of-the-art models can
achieve human-like accuracy on several causal reasoning tasks and, if not, to what extent.

2.2. Current Research of Question Answering
Question answering (QA) [29] aims to provide correct answers to questions based on con-
text or knowledge. QA is a traditional research direction that was proposed half a cen-
tury ago. People hope to help with everyday life by teaching the program how to answer
questions like real people. Traditional QA systems integrate some information retrieval
techniques to find answers. With the development of deep learning, computer programs
can tackle more complex problems. At the same time, in the era of deep learning, more
and more datasets are being proposed to measure the capabilities of QA models. These
datasets, in turn, facilitate the development of deep learning QA models.

A comprehensive understanding of those datasets and benchmarks is essential before
further research about QA. Therefore, in this paper, we investigate some of the most com-
monly used datasets nowadays and categorize them according to the capabilities of the QA
models involved. Meanwhile, according to the different modes designed, we divide them
into three categories: textual QA, image QA, and video QA. In textual QA, all the corpora in-
volved are presented in textual form. A typical sample in textual QA consists of a question,
an answer, and a paragraph that contains the answer. Image QA and video QA are generally

5



6 2. Background and Related Work

referred to as Visual Question Answering (VQA) [1]. In image QA, the question and answer
are usually in textual form, while the context is an image. And in video QA, the question and
answer are the same, but the context is a video clip. Since our proposed causal QA is based
on textual QA, in Table 2.1, we present the current most used textual question answering
datasets.

It can be found from the table that there is a large group of QA datasets that only use
the multi-choice or entity as the answer, while our FineCR dataset uses a span of text as the
answers. Compared to multi-choice and entity, span-based answers are more challenging
for deep learning models, since answer spans are usually much longer and more complex.
Compare FineCR to other QA datasets that use span as the answer type, such as SQuAD
or DROP, we can find from the table that those previous datasets do not ask and answer
questions about causality. The SQuAD is about reading comprehension, and DROP focuses
more on multi-hop questions. However, since causality plays a vital role in our daily life, the
study of causal QA is essential. The causality question answering dataset proposed in this
thesis is a good complement to this research field as a standard to measure the QA model’s
ability to answer causal questions.

2.3. Transformer-based NLP models
In this thesis, the models we used are mainly developed based on the Transformer [90]
architecture which proposed by Google in 2017. Nowadays, Transformer-based models are
dominate almost all the NLP tasks, such as text classification, sentiment analysis, question
answering, etc.

2.3.1. Basic Architecture
The basic architecture of Transformer is shown in figure 2.1. On the left is the encoder block
and on the right is the decoder block. The encoder is responsible for converting the input
alphabetic sentence into matrix vectors, and the decoder is responsible for re-decoding the
encoded vectors into an alphabetic sentence.

The key part of Transformer model is the self-attention mechanism, which is used in
the Multi-Head Attention (MHA) module in figure 2.1. A more detailed MHA is shown in
figure 2.2. On the left is the scaled dot-product attention (SDA) module, and on the right is
the multi-head attention module composed of multiple SDAs with some linear layers. The
calculation of SDA is shown in Equation 2.1.

Attention(Q,K ,V ) = softmax

(
QK T√

dk

)
V (2.1)

where Q, K, V are all the same word embedding matrix, represent the three inputs of
Transformer. Through SDA, different words in the same sentence can find which words
in the sentence are closest to themselves, so that the model can deduce the correct output
more efficiently. This kind of weighted sum between word vectors is called Attention. While
the role of MHA is to increase the expression space and ability of the model through more
layers of SDA to enhance the learning ability of Transformer.
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Dataset Answer Type Size Domain Evaluate Ability
ARC[10] Multi-Choice 7,787 Science Reasoning
BoolQ [9] Bool 16K Wikipedia Reasoning
BioASQ [89] Span 282 Biomedical Articles Indexing
CaseHOLD [105] Multi-Choice 53,137 Law Pre-training
bABi [93] Bool/Entity 40K Open Domain Reasoning
CBT [28] Entity 20K Children’s Book Model Memory
CliCR [83] Entity 105K Medical Domain Knowledge
CNN and Daily Mail [76] Entity 311K News Text Summarization
CODAH [6] Multi-choice 4,149 Open Domain Commonsense
CommonsenseQA [85] Multi-choice 12,247 ConceptNet Commonsense
ComplexWebQuestions
[84]

Entity 34,689 Freebase Multi-hop

ConditionalQA [81] Entity/Span 9983 Public Policy Multi-hop
COPA [72] Multi-choice 1000 Commonsense Reasoning
CoQA [70] Entity 127K Open Domain Conversation
DROP [18] Span 96K Wikipedia Multi-hop
FinQA [7] Number/Span 8,281 Finance Multi-hop
HotpotQA [100] Entity 113K Wikipedia Multi-hop
JD Production QA [23] Generation 469,953 E-commerce Domain Knowledge
LogiQA [54] Multi-choice 8,678 Exam Reasoning
MCTest [71] Multi-choice 2,000 Fictional Story RC
Mathematics Dataset
[73]

Numeric 2.1×106 Mathematics Calculate

MS MARCO [63] Generation 1,010,916 Web pages Search
MultiRC [39] Multi-choice 6K Multiple Domain Multi-hop
NarrativeQA [42] Span 46,765 Story Full Document
Natural Questions
[44]

Span/Passage 323,045 Wikipedia Search

NewsQA [88] Span 100,000 CNN news RC
OpenBookQA [59] Multi-choice 6000 Science Facts Reasoning
PIQA [2] Multi-choice 21,000 Physical Physical
PubMedQA [33] Multi-choice 1K Medical Summarization
QASPER [12] Extractive 5,049 NLP papers Reasoning

QuAC [8]
Multi-choice
Generation

100K Wikipedia Dialog

QUASAR [15] Span 43,000 StackOverflow/Trivia search
RACE [46] Multi-choice 100,000 Exam RC
ReClor [103] Multi-choice 6138 Exam Logical
SCDE [43] Exam 6K Exam RC
SimpleQuestions [3] Entity 100K Freebase Knowledge
SQuAD [68, 69] Span 130,319 Wikipedia RC
TriviaQA [34] Span 650K Open Domain RC
TweetQA [96] Generation 13,757 Tweet RC
WikiHop [92] Multi-choice 51,318 Wikipedia Multi-hop
WikiQA [99] Sentence 3,047 Wikipedia RC

Table 2.1: Statistics of textual QA datasets. “RC” means “reading comprehension”.
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Figure 2.1: Architecture of Transformer.

2.3.2. Pre-training, Fine-tuning and BERT
Although the original Transformer model has already surpassed the previous LSTM [30]
model, the emergence of BERT [14] has made the NLP researchers completely turn to the
study of Transformer, and even affected the development of computer vision. BERT is
made up of multiple encoder layers in Transformer. The training of BERT mainly consists
of two phases: the pre-training phase and fine-tuning phase.

In the pre-training phase, the authors use two kinds of methods: Masked Language
Model (MLM) and Next Sentence Prediction (NSP). In MLM, 15% tokens in the input sen-
tence is masked by the special token [MASK], and the training goal of MLM is to make the
model correctly recover what the masked tokens are. And in NSP, the input is a pair of sen-
tences concatenated by a special token [SEP], and the training goal is to make the model
correctly judge whether the two input sentences are truly adjacent in the original article.
Through pre-training with a massive of easily accessible unlabeled texts, BERT adjusted its
parameters and made it learn some basic text knowledge and semantic knowledge, laying
a good foundation for later specific tasks.

In the fine-tuning phrase, the pre-trained BERT is trained by a specific NLP dataset with
its training set and then tested on the validation set and testing set. Since the training tasks
of the pre-training phase (MLM and NSP) are quite different from the specific downstream
NLP tasks, such as question answering or text classification, the fine-tuning phase is nec-
essary.

Through detailed experiments, the authors of BERT prove that the BERT model with
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Figure 2.2: Architecture of Multi-Head Attention.

pre-training not only outperforms LSTM, but also outperforms the original Transformer
model. This demonstrates the importance of pre-training for deep learning models.

2.3.3. Variants of BERT
With the advent of BERT leading to research on pre-training tasks, there are more studies
based on BERT and different pre-training tasks. RoBERTa [56] uses larger pre-training cor-
pus and removed the NSP task. The better model performance proves the value of BERT,
and demonstrates that the pre-training model still has great potential to be exploited.

Different from BERT and RoBERTa, the pre-training task in SpanBERT [35], where the
mask operation always masks some neighboring tokens, is specifically designed for span
prediction. SpanBERT can be used in span-based NLP tasks such as extractive question an-
swering. SpanBERT demonstrates that incorporating the features of downstream tasks into
pre-training tasks can significantly improve model performance for those specific tasks.

BART [48] is a model mainly aiming at natural language generation (NLG). It keeps the
original Transformer architecture. The MLM in BART is quite different from the BERT. BART
masked tokens in sentences using spans that matched the Poisson distribution. About 30%
of tokens are masked. Another pre-training task is sentence permutation, which is reorder-
ing several sentences that had been input out of order. After these two pre-training tasks,
BART achieved state-of-the-art (SOTA) on many NLG tasks.

The structure of T5 [67] is also similar to the original Transformer structure. The biggest
innovation and contribution of T5 is using generation tasks to unify various NLP tasks, in-
cluding natural language understanding (NLU) and NLG. For example, usually, the output
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of a sentiment analysis task is a “True” or “False” label, which is determined by a binary
linear classification layer. But the output is the label itself in T5. This makes it possible for
different NLP tasks to share the same parameters, allowing T5 to be trained with plenty of
labeled datasets, even if these datasets are originally designed for different tasks.





3
Datasets and Tasks

In this chapter, we will introduce where we collected our dataset and how we leverage
human annotators to create this unique causality related dataset. We first introduce the
source of the data and how we filtered the raw data to the needed parts. Then we present
the data annotation process in detail and give some examples to help understand. Finally,
we introduce how we guarantee the quality of the final dataset through some additional
quality control methods.
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3.1. Data Source
We collected a financial analyst report dataset from Yahoo Finance, as shown in figure 3.1 1,
which contains 6,786 well-processed articles between December 2020 and July 2021. Each
instance corresponds to a specific financial analyst report on a U.S. listed company, which
highlights the financial strengths and weaknesses of the company business. In figure 3.2,
we present an example of our used financial analyst report. Each report is composed of
multiple sections. We select the most valuable chapters with the most cause-and-effect
event pairs, including “Business Strategy & Outlook”, “Economic Moat”, “Fair Value and
Profit Drivers”, and “Risk and Uncertainty”, where there contains most of causality con-
tents.

3.2. Crowdsourcing
The annotation platform used in this work is introduced in Fig. 3.3. As follows, we provide
the detailed annotation instructions used for training the human annotators. Also, we show
the annotation of some actual examples stored in our dataset.

3.2.1. General Instruction
This is an annotation task related to event causality. In this task, you are asked to find all the
cause-effect pairs and the fine-grained event relationship types from the given passages.

3.2.2. Steps
1. Please read your assigned examples carefully.

2. A sentence is considered contains event causality if at least two events occur in it and
the two events are causally related.

3. If a sentence contains causality, mark it as Positive; otherwise, mark it as Negative.

4. For the positive sentence, first find all the events that occur in the sentence, and then
pair the events to see if they constitute a causal relationship. The relationship much
be one of Cause, Enable and Prevent.

5. “A causes B” means B always happens if A happens. “A enables B” means A is a pos-
sible way for B to happen, but not necessarily. “A prevents B” means A and B cannot
happen at the same time.

6. Remember to annotate all event causality pairs. If there is no more pairs, process to
the next passage.

3.2.3. Examples
Here are some annotation examples, please read it before starting your annotation.

Example 1: Moreover, we do not think that DBK’s investment banking operation has
the necessary scale and set-up to outcompete peers globally or within Europe.

Answer: # Negative
Explanation: This is a sentence that contains no causal relationship between events.

1We have received the written consent from Yahoo Finance.
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Figure 3.2: An example of financial analyst report.
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Example 2: In our view, customers are likely to stay with VMware because of knowl-
edge of its product ecosystem as well as the risks and complexities associated with chang-
ing virtual machine providers.

Answer: # Positive
Explanation: This is a causal sentence. There exist two events marked by yellow color.

You should first annotate the two events and then give them the label according to their
relationship, using one of Cause, Enable and Prevent. Here the relationship is Cause.

Example 3: Depressed realized prices due to lack of market access have forced capital
spending cuts, stalling the growth potential of the company’s oil sands assets.

Answer: # Positive
Explanation: This is a causal sentence and there exist four events. You need to mark

out all four of these events and then pair them up to see if they’re related. If so, determine
what kind of relationship they belong to.

Content Choose Relation add
cause

add
effect

Annotate Result

cause

effect

deleterelation: cause

Figure 3.3: The annotation platform provided the crowdsourcing company for collecting annotations for
fine-grained causality event extraction and causality question answering.

3.2.4. Quality Control
To ensure high quality, we restricted the participants to experienced human annotators
with relevant records. For each task, we conducted pilot tests before the crowd-sourcing
work officially began to receive feedback from quality inspectors and revise instructions ac-
cordingly. We filter out the sentences regarding the estimation of the stock price movement
due to the naturally high-sensitive features and uncertainty of the complex financial mar-
ket. After the first-round annotation (half of the data), we manually organized spot checks
for 10% samples in the dataset and revised the incorrect labels. After review, we revised
roughly 3% of instances and refused the annotators with above 10% error rate from partic-
ipating in the second-round data annotation. Finally, the inter-annotators agreement ratio
is 91% for fine-grained causality labels, and the F1 score of the inter-annotators agreement
ratio is 0.94 for causal question-answer pairs.
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Finally, we obtained a dataset of 51,025 instances (21,046 contain at least one causal
relation) with fine-grained labels of cause-effect relations that were subsequently divided
into training, validation, and testing sets for the following experiments. Additionally, we
sort the dataset in chronological order because the future data is not expected to be used
for predictions.

3.2.5. An Example

Depressed realized prices due to lack of market access have forced capital spending cuts, stalling the growth
potential of the company's oil sands assets.

cause
enable 

prevent 

LABEL 1: <CAUSE, RELATION, EFFECT> LABLE 2: What-if and Why questions

Input Text:

Output Labels:

(a) (b)

Figure 3.4: Illustration of our crowdsourcing tasks using an example that contains all three types of causal
relationship.

In Figure 3.4, we present an example of the annotated data. This is a positive sentence
that contains all the three kinds of causality relationships. Each red part represents an
event, and the connecting line between the two red and red represents the type of causal
relationship between the two events. The starting point of the line represents the cause
event, and the focal point of the line represents the effect event. At the same time, we
generate corresponding question-answer pairs based on the causality triples (<cause, rela-
tionship, effect>), which are used to examine the ability of the model to answer causality
questions.

3.3. Dataset and Tasks
After the dataset annotation in Section 3.2, we can then build our causality dataset called
- FineCR (Fine-grained Causal Reasoning Dataset). The whole pipeline of this thesis is
shown in Fig. 3.5. We define three tasks on our FineCR dataset and build strong bench-
mark results for each task. The original FineCR dataset consists of 6,786 articles in 54,289
sentences. We employ editors from a crowd-sourcing company to complete several human
annotation tasks. Several preprocessing steps required crowd-sourcing efforts were carried
out to prepare the raw dataset.

As mentioned in Section 3.2.2, we first ask the annotator to find which sentences con-
tain causality and which sentences not from a document. Sentences with causality are
marked as “Positive”, while sentences without causality are marked as “Negative”. After the
annotation we obtain a binary classification dataset - FineCR-D and define the first task
- CausalDet (Causality Detection Task). In this task, the model should predict whether a
sentence contains any causality relationships.

With those positive sentences, we then construct the second dataset - FineCR-E us-
ing the annotated causality triples and define the second task - CausalExt (Fine-grained
Causality Extraction Task). In this task, the model should correct extraction all the causal-
ity triples contained in a sentence.
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Figure 3.5: The pipeline of experiments based on the FineCR dataset.

Finally, we use the template as well as human manual calibration to generate a causality
question answering dataset - FineCR-Q based on the causality triples, and design the third
task - CausalQA (Causality Question Answering Task) based on this dataset. In this task,
the model needs to find the correct answer given the question and related context.

For hold-out evaluation, we split each of the dataset into mutually exclusive training /
validation / testing sets in the same ratio of 8:1:1 for all tasks. Predictive models and data
splitting strategies have been kept the same among these tasks for building the benchmark
results of each task. In line with the best practice, model hyper-parameters are tuned using
the validation set. Both validation results and testing results will be reported in experi-
ments. In the following chapters, we will describe each dataset and task with the corre-
sponding experiments in detail.





4
Causality Detection

This chapter mainly describes the task of causality detection. We first introduce the defini-
tion of this task and give some basic information about the dataset for this task, including
some statistics and several concrete examples. Then we present the results of experiments
using some classification models. In response to these results, we carried out both quanti-
tative and qualitative analysis and hoped our experiments could have a specific enlighten-
ing effect on some follow-up research.

Human 
Annotators

Pos

Binary
Classification
Models

Neg

Figure 4.1: The architecture of causality detection model.

4.1. CausalDet Introduction
The goal of the causality detection task is that given a sentence, the model should figure
out whether the sentence contains at least one causality events pair. CausalDet is a binary
classification task similar to sentiment analysis.

4.2. FineCR-D Introduction
FineCR-D is a binary classification dataset containing the positive and negative samples to
do the causality detection task. Each positive sample is a sentence that contains at least one
causal relationship (one of CAUSE, ENABLE, and PREVENT), while a negative sample is one
sentence that does not contain any causal relationship. In Table 5.1 we list some positive
samples that contain causality as well as some negative samples that do not contain any
causality.

In Table 4.2 we list the detail statistics about the causality detection dataset and also its
comparison to FinCausal [58]. Our dataset significantly outperforms FinCausal in the num-
ber of samples, which was previously the largest causality detection related dataset. More
importantly, FinCausal only includes the cause-effect relationship, while in our dataset, the

17
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Sentence Label
MercadoLibre faces limited online retail competition in the re-
gion, with Amazon, eBay, and local players like B2W generating
less unique visitors in its core markets, though there are several
solid competitors in the payments segment.

Positive

Offering secure and convenient payment settlement between
sellers and buyers on and off the MercadoLibre platform, Mer-
cadoPago attracts more sellers if more buyers sign up to use the
services; the more sellers offer MercadoPago’s payment solu-
tions, the more popular the service will become among buyers.

Positive

Moreover, we do not think that DBK’s investment banking op-
eration has the necessary scale and set-up to outcompete peers
globally or within Europe.

Negative

Despite first-quarter weather headwinds, we expect solid de-
mand and pricing recovery to support 13% revenue growth in
2021, including industrial end-market improvement, a strong
intermodal rebound, and healthy cross-border refined product
shipments.

Negative

Table 4.1: Examples in FineCR-D.

relationship includes cause, enable, and prevent, which allows our dataset to be used to
study a wider range of causal relationships.

We observe no significant difference between positive and negative examples in the av-
erage token numbers, which shows that predictive models are difficult to learn from short-
cut features [47, 79, 80] (e.g., the instance length) during the training process. Furthermore,
our dataset contains 846 multi-sentence samples, and 3,017 text chunks have more than
one causal relation in one instance, which requires a complex reasoning process to get the
correct answer, even for a human.

Metric Counts
FineCR-D

#Positive Instances 21,046
#Negative Instances 29,979
#Multi-sentence Samples 846
#Average Token Length of POS Samples 42.8
#Average Token Length of NEG Samples 41.3
#Total Instances 51,025

FinCausal [58]
#Total Instances 3031

Table 4.2: Statistics for FineCR-D and the comparison to FinCausal[58].
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4.3. Model
We consider using both classical deep learning models – CNN-Test [41] and HAN [102] –
and Transformer-based models downloaded from Huggingface1 – BERT [14], RoBERTa [56],
and SpanBERT [35] – as predictive models.

We use Adam as the optimizer and adopt the trick of decay learning rate with the steps
increase to train our model until converging for all models. Our methods are built on the
recently advanced Transformer architectures [94] with the framework provided by Hug-
gingface2. As follows, we introduce the detailed implementation of deep neural methods
on three tasks completed on the FineCR dataset.

4.4. Metrics
The F1-score and accuracy are used for evaluating the causality detection task. The Macro
F1-score is defined as the mean of label-wise F1-scores:

Macro F1-score = 1

N

N∑
i=0

F1-score i (4.1)

where i is the label index and N is the number of classes.

4.5. Experimental Results

Methods
Dev. Test

F1 Acc F1 Acc
CNN-Text 81.35 81.59 80.03 81.01

HAN 81.18 81.23 80.60 81.26
BERT-base 83.72 84.23 84.02 84.43
BERT-large 84.03 84.41 84.63 84.90

SpanBERT-base 84.09 84.38 84.51 84.72
SpanBERT-large 84.43 84.80 84.55 84.82
RoBERTa-base 84.59 85.16 84.31 84.76
RoBERTa-large 84.39 84.75 84.64 84.89

Human - - 94.32 95.94
Best Results
@FinCausal

- - 97.75 97.76

Table 4.3: The results of the causal sentence classification. ’F1’ refers to the Macro F1. ’ACC.’ is short for the
accuracy.

The causality detection result is shown in Table 4.3. We find that although Transformer-
based methods achieve much better results than other methods – CNN and HAN using
ELMO embeddings – on judging whether an instance contains at least a causal relation-
ship (RoBERTa-Large can get the highest F1 Score – 84.64), it is still significantly below the
human performance (84.64 vs. 94.32). The results of human performance are reported by
quality inspectors from the crowdsourcing company. It is worth noting that the best re-
sults on the FinCausal [58] dataset can reach the human-level result (F1 = 97.75), providing

1https://github.com/huggingface/models
2https://github.com/huggingface/transformers

https://github.com/huggingface/models
https://github.com/huggingface/transformers
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indirect evidence that our dataset is more challenging caused of more complex causality
instances.

4.6. Error Analysis
In Table 4.4, we present some correctly classified sentences and also some falsely classified
sentences. From the table, we can find that causality keywords play an important role in the
classification results. While keywords (such as since, because, or limit) can help the model
do classification faster, it can lead to serious prediction errors in some cases. For example,
in the first two samples (sentences 1 and 2), based on the keywords “because” and “since”,
the model predicts those two sentences are positive, which means they contain causality
relationships. However, in the examples of wrong judgment, the last two sentences (sen-
tences 7 and 8) are judged as positive because they contain relevant keywords. But the cor-
rect label should be negative because in these sentences, “as” and “since” do not indicate
a relationship, but are part of a phrase that belongs to “view as” and “since the beginning
of” respectively. And when the keyword does not appear, such as in sentences 5 and 6,
although there are causal relationships in the sentences, because the current NLP models
still cannot understand the language semantics well, these causal relationships cannot be
found and thus lead to error classification.

Those experimental results prove that when the deep learning models are used for NLP
classification tasks, they can easily fall into the situation of only learning salient keywords.
This phenomenon has also been found in previous studies related to sentiment analysis
[98]. When there is no keyword in the sentence, the classification fails because the model
cannot really understand the semantic knowledge of causality.
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Index Sentence Ground
Truth

Model
Predic-
tion

Correct Prediction
1 Because it offers a full suite of sterilization so-

lutions, from the sale of individual sterilizers
to full outsourcing, Steris benefits regardless
of how hospitals choose to manage steriliza-
tion.

Positive Positive

2 Even though the number of firms with an
NRSRO designation has increased (to about
10) since the introduction of the Credit Rat-
ing Agency Reform Act of 2006, we believe the
network effect has been strong enough to re-
sult in limited traction of other rating agen-
cies.

Positive Positive

3 Over the past decade, Beyond’s research
and development team has delivered several
plant-based meat breakthroughs as well as
continuous improvements to existing prod-
ucts.

Negative Negative

4 We increased our five-year capital expendi-
ture forecast by $700 million, to $8.7 billion,
when we advanced our estimates by one year
to 2021-25.

Negative Negative

Wrong Prediction
5 The tendency for manufacturers to reduce

the cost of aircraft design by using derivative
(such as Airbus’ A320neo and Boeing’s 737
MAX), rather than clean-sheet new aircraft,
reduces the probability that a particular com-
ponent will be recompeted in the redesign.

Positive Negative

6 Previously we rated the Dutch banking sys-
tem as only Fair, with the poor performance
of the Dutch banks during the 2008 financial
crisis a major consideration. positive

Positive Negative

7 ING DiBa, ING’s digital German bank gener-
ates return on equity in what we view as the
eurozone’s least attractive banking market.

Negative Positive

8 The strong share price performance from
Italian banks since the beginning of 2017
would suggest that the market is currently
less concerned about the risks they face, but
we are not convinced.

Negative Positive

Table 4.4: Some classification results of causality detection experiment.





5
Causality Event Extraction

In this chapter, we mainly describe the task of fine-grained causality event extraction. We
first introduce the definition of this task and give some basic information about the dataset
for this task, including some statistics and several concrete examples. Then we introduce
the two-step model we designed to solve this task and present the results of experiments
using our model. In response to these results, we carried out both quantitative and qual-
itative analysis and hoped our experiments could have a specific enlightening on some
follow-up research.

Fine-grained
Classification 

Models

 Extraction
Models Causal

Relation

Event_a Causal Relation Event_b

CAUSE EFFECTRELATION

Event_a SEPCLS

Event_n SEPCLS

........
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Event_a Causal Relation Event_n

CAUSE EFFECTRELATION

........

Step 1 Step 2

DOC
DOC

Doc

Figure 5.1: The architecture of two-step causality extraction model.

5.1. CausalExt Introduction
In fine-grained causality event extraction task, the model should first correctly extract all
the events in a given sentence and then pair them to find all the plausible causalities.

5.2. FineCR-E Introduction
We build the first fine-grained causality event extraction dataset using the annotated causal-
ity triplet in Chapter 3. In Table 5.1, we list some samples from this dataset, and the dataset
statistics is shown in Table 5.2. For each corpus in FineCR-E, there is at least one corre-
sponding causality relationship, and some samples contain multiple causal relationships.
At the same time, in order to make the data set more difficult, some corpus are composed of
multiple sentences, one of which contains the cause and the other one contains the effect.
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Sentence Relation
We expect Neogen will continue to face headwinds through
2021 because of reduced volumes and price volatility during
the ongoing pandemic.

Cause

We forecast 8% per year volume growth for recreational and
food-products based on expanded distribution, consumers
converting from the black market, and non-consumers be-
coming consumers.

Enable

Even so, annual research and development expense as well as
number of patents are not disclosed by Magna, leaving no way
for the market to judge the extent of technological innovation.

Prevent

On the production animal side, rising standards of living in
emerging markets should lead to wider adoption of meat-
heavy diets, driving greater demand for livestock products.

Enable

Fastly has a more modern approach to running a content de-
livery network (CDN) that enables it to offer equivalent or su-
perior service, depending on the task, with fewer points of
presence (PoPs) and less commitment of capital.

Enable

Additionally, the pandemic has caused many millennials to
consider moves to the suburbs, either into suburban apart-
ments or their own single-family homes, which limits the po-
tential short-term demand for new urban apartments.

Prevent

Table 5.1: Examples in the causality extraction dataset. Red is the cause and the green is the effect.

Metric Counts
Cause-Effect Event Pairs

#Causal Text Chunks 45, 710
#Uni-causal Text Spans 18, 457
#Multi-causal Text Spans 3, 017
#Average Token Length of Cause Spans 16.0
#Average Token Length of Effect Spans 15.2

Table 5.2: Statistics for FineCR-E.

Category Counts
Dev. Test

F1 Acc F1 Acc
Irrelevant 8,441 84.17 86.49 84.40 85.55
Cause 8,428 73.60 73.93 74.00 76.61
Cause_By 7,437 80.21 84.94 79.62 83.69
Enable 5,506 63.42 60.91 62.61 58.70
Enable_By 2,367 47.66 41.06 41.49 35.68
Prevent 1,086 79.79 71.43 76.34 67.87
Prevent_By 369 55.88 52.78 64.46 65.00

Table 5.3: Error analysis for fine-grained classifications.
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5.3. Model
To do this task, we design a two-step model shown in Figure 6.1. The first step is the event
extraction step, in which we use models to extract all feasible events within the given text.
After getting those events, we add [CLS] and [SEP] tokens to the beginning and end of each
event separately. Then we input all the extracted events into a classification model. The
second step is to predict whether there is a causality relationship between the two events
and, if so, to which causality relationship belongs.

Because two events appear in a sentence in a sequence, to distinguish this order, we
further divide the relationship into “relation” and “relation_by”, as shown in Table 5.3. For
relation prediction, we always use the event that occurs first in the sentence as the first
input to the model, and the following event as the second event input. If an event occurs
after, but is a cause event, then the predicted relationship will end with a “_by”. After the
above two steps, we can get the causality triplet, consisting of two events and the causality
relationship between them.

The classification model we used is the same in Section 4.3. And the extraction model
we used including BERT [14], RoBERTa [56], and SpanBERT [35]. We use Adam as the opti-
mizer and adopt the trick of decay learning rate with the steps increase to train our model
until converging for all models.

5.4. Metrics
In event extraction step, we use F1 and exact match (EM) to measure the model perfor-
mance. Given the extracted event sentence and the ground-truth sentence, EM is true if
and only if the extracted sentence is exactly the same as the ground-truth sentence, includ-
ing the types of words that are formed and the order between words, otherwise it is false.
And different to the F1 in Section 4.4, the F1 score used to measure the similarity between
two sentences is defined as:

Overlap = B AG(P_S)
⋂

B AG(G_S)

Precise = l en(Over l ap)

len(B AG(P_S))

Recall = len(Over l ap)

l en(B AG(G_S))

F1-score = 2∗Pr eci se ∗Recal l

Pr eci se + r ecal l

where B AG means bag of word set, P_S is the predicted sentence, G_S is the ground-truth
sentence, len means the number of words in a set. The F1 in step 2 is the same as in Section
4.4.

5.5. Experimental Results
The results of the fine-grained event causality extraction task are shown in Table 5.4. We
find that SpanBERT and RoBERTa model can achieve the best performance for event causal-
ity extraction (F1 = 86.82 and EM = 60.26) and fine-grained classification (F1 = 68.99 and EM
= 74.09), respectively. Nevertheless, all methods perform dramatically worse on the more
challenging joint task, where the prediction is judged true only if event extraction and clas-
sification results exactly match the ground truth. Although the SpanBERT-large model can
achieve the highest 21.78 EM on the test set, there is still much room for improvement.
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Model
Event Causality Extraction Fine-grained Classification Joint Evaluation

Dev. Test Dev. Test Dev. Test
F1 EM F1 EM F1 ACC F1 ACC EM EM

BERT
-base 84.37 51.48 85.30 53.53 71.74 70.43 63.72 71.72 21.21 20.15
-large 85.13 50.34 86.93 52.88 70.90 64.16 60.24 69.85 17.54 21.73

RoBERTa
-base 85.67 53.41 86.32 56.04 73.09 68.37 65.99 71.63 20.45 19.08
-large 85.12 54.70 85.95 56.77 74.54 71.99 68.99 74.09 20.46 19.77

SpanBERT
-base 85.84 55.40 86.82 57.26 71.18 68.40 63.73 70.52 21.17 21.09
-large 85.50 57.40 86.33 60.26 73.65 68.15 64.43 72.93 23.01 21.78

Human - - 94.32 81.34 - - 88.61 90.53 - -

Table 5.4: The results of the joint event causality detection (task2), ’F1’ refers to the Macro F1. ’ACC.’ is short
for the accuracy, ’EM’ refers to exact match and spe.

We find that the large Transformer-based models [90] with larger parameter sizes could
not improve the performance on these tasks based on the FineCR dataset by comparing
the test performance of BERT-base (63.72 in F1, 71.72 in ACC) with BERT-large (60.24 in F1,
69.85 in ACC) on the task of the fine-grained classification. It sheds new light that increasing
the parameter size could not be helpful for causal reasoning tasks.

5.6. Error Analysis

5.6.1. Event Extraction

We first present the error analysis of the first event extraction step in our model in Table 5.5.
The first three are examples of correct extraction, and the last three are examples of some
extraction errors. In the first error example, it can be seen that the cause predicted by the
model has a missing premise - “In Spain, its second-largest market, ”. Although the answer
predicted by the model contains the most important part, “Orange does not benefit from
cost advantages”, it lacks an essential premise, which makes the extracted answer not very
accurate. Because the conclusion can only be established under this specific condition (in
Spain), it is not necessarily the case if you change the country to the Netherlands.

While in the second error example, the model mistakenly included connectives “Be-
cause”, which should not be part of the event. A similar error can also be observed in the
last example. The effect mispredicted by the model includes “we believe”, and the clause
that explicitly explains the “sticky area” is not included, which is “like automotive safety
systems, industrial controls, and server platforms”. Without this explanation, we may not
know what the “sticky area” represents.

The above error examples illustrate why it is easy for the model to find where an event
is in a sentence roughly, but it can be challenging to extract the event very precisely. Merely
using the existing data to train the event extraction model may not achieve very high accu-
racy in extraction.
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5.6.2. Relationship Classification
For fine-grained classification in the second step, a more detailed error analysis by using
the best-performed RoBERTa-Large model is given in Table 5.3. The model performs well
in terms of the F1 score when predicting simple causal relations – Irrelevant (84.40), Cause
(74.00), Cause_by (79.62), and Prevent (76.34). In contrast, complex relations – Enable
(62.61) and Enable_by (41.49) – and the category with few examples – Prevent_by (64.46)
– are not well predicted.



28 5. Causality Event Extraction

Sentence P_Cause P_Effect
Correct Extraction
The continued reinvestment in R&D sup-
ports Hardie’s strong brand equity and
thus perpetuates the price premium that
Hardie’s range attracts.

continued rein-
vestment in R&D
supports Hardie’s
strong brand eq-
uity

perpetuates the
price premium
that Hardie’s
range attracts

As the number of contacts increases, more
developers will choose to develop mini pro-
grams for Weixin or mobile QQ, and existing
users can benefit from having access to ad-
ditional mini programs.

more developers
will choose to de-
velop mini pro-
grams for Weixin
or mobile QQ

existing users
can benefit from
having access to
additional mini
programs

Robinson is a highly attractive source of
freight opportunities, given its ability to ag-
gregate fragmented demand across a broad
customer base of shippers.

its ability to
aggregate frag-
mented demand
across a broad
customer base of
shippers

Robinson is a
highly attractive
source of freight
opportunities

Wrong Extraction

::
In

:::::::
Spain,

:::
its

::::::::::::::::
second-largest

:::::::::
market, Orange

does not benefit from cost advantages, since
its customer base is smaller than the incum-
bent Telefonica.

its customer base
is smaller than
the incumbent
Telefonica

Orange does not
benefit from cost
advantages

Because the liquid could be anything from
water to a dangerous chemical, choosing
the different metals for the seal faces and
understanding how they will interact with
fluid running through the pump is critical to
proper functioning of the seal.

Because the
liquid could be
anything from
water to a dan-
gerous chemical

choosing the dif-
ferent metals for
the seal faces and
understanding
how they will in-
teract with fluid
running through
the pump is crit-
ical to proper
functioning of
the seal

Furthermore, we believe the design wins
and resulting share gains in sticky areas

::::
like

:::::::::::::
automotive

:::::::
safety

:::::::::
systems,

::::::::::::
industrial

:::::::::
controls,

:::::
and

::::::::
server

:::::::::::
platforms arise from

customer switching costs.

customer switch-
ing costs

we believe the
design wins and
resulting share
gains in sticky
areas

Table 5.5: Examples in the causality extraction experiment. Red is the cause and the green is the effect.
P_Cause mean the predicted cause and P_Effect means the predicted effect.





6
Causality Question Answering

In this chapter, we mainly introduce the task of causality question answering. We first give
the definition of this task and how we constructed the corresponding dataset, and at the
same time, we give some basic statistics and some examples of the dataset. Then we use
current state-of-the-art QA models to experiment on the dataset and give the experimental
results. For these results, we carried out both quantitative analysis and qualitative analysis.
Finally, we compare our dataset with previous QA datasets, highlight our dataset’s unique-
ness and research value, and hope to inspire some research on causality problems in the
QA field.

Answer

Human 
Annotators

Manual 
calibration

Pos

Binary
Classification

Models

Context

Template
Question

QA
Models

Figure 6.1: The architecture of question answering model.

6.1. CausalQA Introduction
In causality question answering task, for a given question and its corresponding question,
model should correctly give the answer. This task can help us research how to deal with the
question answering related to causality.

6.2. FineCR-Q Introduction
6.2.1. Example
Figure 6.2 shows a sample of the FineCR-Q. Given the causality triplet, We first use “relationship”
to fix the type of problem, for example here because the relationship is “prevent”, the type
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1

Causality Triplet: <Cause, Relationship, Effect>

Context: However, Dell Technologies derives most of its revenue from challenging commoditized 

markets that affect its ability to generate excess economic return on invested capital. The amalgamation 

of various technology brands into an end-to-end product portfolio for the IT environment provides Dell 

Technologies with substantial cross-selling and upselling opportunities as it broadens its product portfolio 

to encompass the overarching market shift to hybrid cloud environments. Altogether, we expect difficult 

pricing environments for servers and PCs to inhibit consolidated operating results as Dell Technologies 

attempts to move forward as a unified company. Dell Technologies' three reportable segments are its 

infrastructure solutions group, or ISG; client solutions group, or CSG; and VMware. In fiscal 2020, net 

revenue of $92 billion was split as 37% from ISG, 50% from CSG, and 14% from VMware.

Question: What will prevent Dell’s ability to generate excess economic return on invested capital?

Answer: Dell Technologies derives most of its revenue from challenging commoditized markets

Figure 6.2: A sample from FineCR-Q.

of problem is “What will prevent”. Then we randomly use one of the cause and effect as
the question and the other as the answer. Here we use “Dell’s ability ...” as the question
and use “Dell Technologies drives ...” as the answer. After the questions are generated with
the template, the annotators are asked to check and manually calibrate the ungrammatical
questions.

6.2.2. Statistics

Metric Counts
CausalQA Pairs

#Total Number of QA pairs 24, 486
#Average Token Length of Context 191.7
#Average Token Length of Questions 20.1
#Average Token Length of Answers 15.4
#Variance of Answer Length 69.15

Table 6.1: Statistics for FineCR-Q.

In Table 6.1, we present the statistics of FineCR-Q. unlike other QA datasets [79, 80]
that can easily benefit from the test-train overlap as revealed by [49, 55, 91], our dataset is
sorted in chronological order so that the future test data could be theoretically challenging
to coincide with the training set. This allows us to obtain greater insight into what extent
models can generalize.

6.2.3. Datasets Comparison
Table 6.2 compares our dataset with datasets in the domain of both event causality and
question answering (QA). FinCausal [57] dataset is the most relevant to ours, which devel-
oped a relatively small dataset from the Edgar Database1 focusing on the simple “cause”

1https://www.sec.gov/edgar/searchedgar/

https://www.sec.gov/edgar/searchedgar/
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Datasets
Event
Extraction

Causal
Reasoning

Fine-grained
Causality

Span-based
QA

Sources

FinCausal [58] " " % % Finance

COPA [72] % " % % Open

SQuAD [69] % % % " Wikipedia

LogiQA [53] % " % % Examination

HotpotQA [101] % % % " Wikipedia

DROP [19] % % % " Wikipedia

DREAM [82] % " % % Examination

RACE [45] % " % % Examination

FineCR-Q (Ours) " " " " Finance

Table 6.2: Comparisons of our FineCR-Q and related public QA datasets.

relation only and do not contain QA tasks. In addition, existing popular question answer-
ing datasets [11, 53, 82] mainly focus on what, who, where and when questions, making
their usage scenarios somewhat limited. SQuAD [68, 69] consists of factual questions con-
cerning Wikipedia articles, and some unanswerable questions are involved in SQuAD2.0.
Although some datasets contain the causal reasoning tasks [11, 45, 82], none of them con-
sider answering questions by text span. Span-based question answering problems have
gained wide interest in recent years [31, 50, 101]. HotpotQA [101] focuses on multi-hop
QA where the question can only be answered through analyzing multiple documents. The
answers in the [19] may come from different spans of a passage and require some com-
bination technologies to get the correct answer. Compared with these datasets, none of
them have features of causal reasoning and span-based QA simultaneously. Our dataset is
the first to leverage fine-grained human-labeled causality for designing the CausalQA task
consisting of “Why” and “What-if” questions. Our task is similar to the machine reading
comprehension setting [31] where the algorithms make a multiple-choice selection given
a passage and a question. Nevertheless, we focus on causal questions, which turn out to
be more challenging. To the best of our knowledge, we are the first to evaluate models on
the event causality analysis and causal question answering (CausalQA) tasks based on the
fine-grained causality dataset.

6.3. Model

We perform a causality question answering task by leveraging six Transformer-based pre-
trained models provided by Huggingface [94] on our dataset, including BERT-base, BERT-
large, RoBERTa-base, RoBERTa-large, RoBERTa-base-with-squad, and RoBERTa-large-with-
squad2. Furthermore, pre-trained seq2seq models such as T5 [67], or BART [48] are fine-
tuned on QA-pairs as the benchmark methods of the generative QA tasks. In particular, we
consider T5-small, T5-base, T5-large, BART-base, and BART-large models for building the
benchmark results. We use Adam as the optimizer and adopt the trick of decay learning
rate with the steps increase to train our model until converging for all models.

2https://huggingface.co/navteca/roberta-large-squad2

https://huggingface.co/navteca/roberta-large-squad2
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6.4. Metrics
F1 and EM are used as the metrics in CausalQA task and they are the same as CausalExt
step 1 as described in Section 5.4.

6.5. Experimental Results

Dev. Test
CausalQA

F1 EM F1 EM
BERT-base 79.90 55.52 79.33 55.70
BERT-large 82.48 59.24 82.37 58.71
RoBERTa-base 82.96 60.13 83.11 60.33
SQuAD2.0-only 64.87 26.71 65.20 27.36
SQuAD2.0-enhanced 84.39 61.22 84.34 61.17
RoBERTa-large 84.28 61.69 84.35 61.76
SQuAD2.0-only 63.99 26.02 63.82 25.26
SQuAD2.0-enhanced 84.65 61.63 84.65 61.58

Generative Methods
BART-base 74.34 35.81 74.35 36.16
BART-large 65.52 27.24 65.70 26.48
T5-small 75.98 42.31 76.40 41.61
T5-Large 81.95 48.17 81.77 47.43

Table 6.3: The results of causal reasoning QA using both extractive methods and generative methods.
“SQuAD2.0” refers to the evaluation results using the model trained with the training set of SQuAD2.0 3 only.

The results of CausalQA are given in Table 6.3, where the bold values indicate the best
performance while the italic values show the results of transfer learning methods trained
by the SQuAD2.0 training data only. We find that the best-performing generative model
– T5-Large – can achieve comparable results with the RoBERTa-large in terms of the F1
(81.77 vs. 84.35). Meanwhile, the average EM of generative methods is mainly below the
extractive methods using the same training data. Second, the results of models trained with
SQuAD2.0 data are much worse than those models trained with the original FineCR train-
ing set in terms of the F1 score (65.20 vs. 83.11 for RoBERTa-base and 63.82 vs. 84.35 for
RoBERTa-large). On the other hand, we note a distinct improvement in using SQuAD2.0
data for initially training for both RoBERT-base (from 83.11 to 84.34) and RoBERTa-large
(from 84.35 to 84.65), which indicates that the training with additional well-labeled data
could bring significant benefits for CausalQA. This may hint that the current QA data sources
are still helpful for improving the performance of the causal reasoning QA task. However,
further research is required, as to what extent models can actually benefit from the addi-
tional data for the generalization is hard to be evaluated.

6.6. Error Analysis
Table 6.4 presents a qualitative analysis for causality question answering, where we high-
light the question and answer parts extracted from the raw context. Human annotators
label the gold answers while the BERT-based model generates the output answers. The
model answers the first three questions correctly, while the last two instances show two
typical patterns prone to errors. In the first incorrect example, the model outputs “targeted
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Context Question Gold Output
(Relation: Cause) Amazon’s 2017
purchase of Whole Foods remains
a threat ... The COVID-19 out-
break has lifted near-term revenue
as shoppers spend more time at
home.

Why the COVID-
19 outbreak has
lifted near-term
revenue for Ama-
zon?

Shoppers
spend
more time
at home

Shoppers
spend
more time
at home

(Relation: Enable) As a first mover
in the local-market daily deals
space, Groupon has captured a
leadership position, but not robust
profitability.

What enable
Groupon capture
a leadership posi-
tion?

A first
mover in
the local-
market
daily deals
space

A first
mover in
the local-
market
daily deals
space

(Relation: Prevent_By) In neurol-
ogy, RNA therapies can reach their
intended targets via intrathecal
administration into spinal fluid,
directly preventing the production
of toxic proteins

What will be
prevented if
intrathecal ad-
ministration into
spinal fluid?

The pro-
duction
of toxic
proteins

The pro-
duction of
toxic pro-
teins

Incorrect Predictions Examples
(Relation: Enable_By) ... Through
analyzing the data and applying
artificial intelligence, the advertis-
ers can improve the efficiency of
advertisements through targeted
marketing for Tencent ...

What can help
advertisers to
improve the
efficiency of ad-
vertisements?

Analyzing
the data
and ap-
plying
artificial
intelli-
gence

Targeted
marketing

(Relation: Cause_By) Given expec-
tations for more volatile equity and
credit markets, as well as some dis-
ruption as Brexit moves forward, it
remain doubtful that flows will im-
prove too dramatically, a negative
3%-5% annual organic growth...

Why a negative
3%-5% annual
organic growth
happened?

Given ex-
pectations
... as well
as some
disruption
as Brexit
moves for-
ward

It remains
doubtful
that flows
will im-
prove too
dramati-
cally.

Table 6.4: Qualitative analysis of “Why” and “What-if” questions answering tasks based on the
best-performed RoBERTa-Large model. The company name can be found in the meta-information of our

dataset. Cause and Effect are extracted from the original context. The inputs of models consist with the
context and question.
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marketing” using the keyword “through” but fails to give the gold answer “analyzing the
data and applying artificial intelligence”. This could be because the model fails to identify
the difference between the same word appearing in two different positions. The last exam-
ple shows that the model tends to output the answer closer to the question in the context
instead of observing the whole sentence. The real reasons – “equity and credit markets” and
“Brexit” – are ignored as it is relatively away for the question position.

6.7. Challenging by CausalQA

Dataset Method F1 ACC EM
SQuAD1.1 [68] LUKE [97] 95.7 - 90.6
SQuAD2.0 [69] IE-Net [24] 93.2 - 90.9
DROP [19] QDGAT [5] 88.4 - -
HotpotQA [101] BigBird-etc [104] 95.7 - 90.6
Reasoning Based Datasets
LogiQA[53] DAGAN [32] - 39.3 -
FineCR-Q (Ours) RoBERTa-SQuAD 84.7 85.6 61.6

Table 6.5: The comparison of best performance between our dataset and other popular QA datasets.

We are interested in better understanding the difficulty of the CausalQA task compared
to other popular datasets regarding prediction performance. We list the best-performing
model of several popular datasets in Table 6.5. In general, we find that reasoning-based
tasks are more complex than other tasks in terms of the relatively low accuracy achieved
by the state-of-the-art method. LogiQA is more challenging than our dataset (39.3 vs. 85.6
in accuracy) because it requires heavy logical reasoning rather than identifying causal rela-
tions from text. Moreover, we find that the state-of-the-art result on our dataset (RoBERTa-
SQuAD) is dramatically worse than the best performance on other datasets (EM = 90.9 on
SQuAD2.0 while EM = 61.6 on CausalQA). This may suggest that the model tends to output
the partially right answer but fails to output the utterly correct answer, although further
research is required, as the model still could be easily perturbed by the length of an event.
Meanwhile, the human performance is still ahead of the best-performing model’s result in
the causal reasoning QA task. Thus, we argue that CausalQA is worth investigating by using
more “causal-thinking” methods in the future.





7
Out-of-Domain in Causality

In this chapter, we mainly examine the impact of the Out-of-domain (OOD) problem in
causality-related research. We first describe how we constructed a causality dataset con-
taining different economic domains from the meta-information we collected earlier. We
used this dataset to conduct some OOD experiments and then carried out some quantita-
tive analysis to reveal the existence of OOD in causality research.
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Figure 7.1: Sector distributions on companies and reports.

7.1. Meta-information
Our dataset contains multi-sentence instances with fine-grained causality labels and the
meta-information (company names and published dates). As shown in Fig. 7.1, we list the
number of financial documents from different sectors, where the top three largest sectors
belong to Consumer Cyclical, Industrial, and Technology. In contrast, companies from the
Utilities are the smallest group in our dataset. The use of the meta-information is two-fold.
First, we choose the top three largest domains for out-of-domain evaluations (see Appendix
A). Second, company names would be used for generating question templates. Besides, the
meta-information is crucial for benefiting the potential applications in NLP related to the
domain of Finance [4, 86].
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7.2. Experimental Results
It has been shown that sector-relevant features from a given domain could become spuri-
ous patterns on the other domains, leading to performance decay under distribution shift
[65]. We use instances from three sectors with the largest amounts of samples in our dataset
for conducting out-of-domain generalization text. These observe in line with recent works
revealing that current deep neural models mostly memorize training instances yet struggle
to predict the out-of-distribution data [26, 36, 78]. To evaluate whether methods can gen-
eralize on the out-of-distribution data and to what extent, the results of the out-of-domain
test are shown in Table 7.1 and Table 7.2.

Sec
Consumer Industrial Technology

F1 Acc F1 Acc F1 Acc
Con 59.69 69.01 50.03 66.47 47.95 63.74
Ind 50.60 67.39 51.14 64.61 47.49 64.09
Tec 48.65 65.87 47.70 63.56 50.39 61.12

Table 7.1: Out-of-domain test results of the BERT-base model for the fine-grained causality classification
task.

Sec
Consumer Industrial Technology

F1 EM F1 EM F1 EM
Con 86.26 49.54 85.75 48.37 85.20 47.26
Ind 84.23 49.83 86.00 50.68 84.90 47.45
Tec 86.24 47.99 86.03 47.50 87.09 61.12

Table 7.2: Out-of-domain test results of the Span-Large model for the cause-effect extraction task.

In particular, the model achieves the best performance when the training and test sets
are extracted from the articles of the same domain companies. In the out-of-domain test,
the model shows varying degrees of performance decay for both tasks. For example, in the
fine-grained causality classification task, the model trained with the data from the Con-
sumer Cyclical domain achieves a 59.69 F1 Score when testing on the Consumer Cyclical
data while decreasing to 47.95 on technology companies. Moreover, in the cause-effect ex-
traction task, the model trained with the data from the Consumer Cyclical domain achieves
an 86.26 F1 Score when testing on itself while decreasing to 85.20 when testing on Technol-
ogy. This shows that the domain-relevant patterns learned by the model cannot transfer
well between domains.
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Conclusion and Discussion

In this chapter, we summarize the previous chapters, mainly including the findings brought
by the dataset and experimental results. At the same time, we analyze the limitations of this
thesis and reveal some possible future research directions.

8.1. Findings
In this thesis, we construct the first-of-its-kind human-annotated high-quality causality
dataset - FineCR, in response to the lack of research on causality in NLP. Instead of using
salient conjunction words, we leverage human annotators to find all the causality relation-
ships contained in the text, which makes our dataset more accurate and comprehensive.
The dataset we constructed makes it now possible to study causality in NLP. For the appli-
cation of causality-related research in our real life, we design a total of three tasks, including
causality detection, causality event extraction, and causality question answering.

We experiment with state-of-the-art deep learning models for these tasks and obtain
some interesting insights. Experimental results using the state-of-the-art neural language
models provide evidence that there is still much room for improvement on causal reason-
ing tasks. And there is a need to design better solutions to correlation discovery related to
event causality analysis and causality QA tasks. After a detailed analysis of the experimental
results, we find that those models have different shortcomings for different tasks.

First, for the causal detection task, we find that the results of current classification mod-
els are easily affected by keywords. Therefore, when the model has an error understanding
of keywords or lacks the keywords, there is a high probability that the model will be clas-
sified incorrectly. This problem is an important reason that we propose FineCR. If models
could only find causal relationships based on keywords, they would ignore massive hid-
den causal relationships. Our dataset contains many causal relationships annotated by
human semantics and commonsense, making our task more challenging and can signifi-
cantly prompt the discovery of implicit causality.

While for the causality event extraction task, although the model can roughly find out
which events exist in the text with a high probability, the model cannot accurately extract
the events (exact match). This is mainly because the model cannot understand the seman-
tics of the text. Thus they may include some irrelevant phrases into events or sometimes
miss some important premise phrases. In FineCR, different from previous word-level re-
search, the annotation of events is phrase-level or even sentence-level. This places higher
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requirements on the model’s ability to extract events precisely.
Finally, we found that it is sometimes difficult for the model to find the corresponding

answer for the causality question answering task due to the model’s inability to understand
the semantics well. Especially when multiple events appear in a sentence simultaneously,
the model may not be able to pick the correct one. FineCR is an excellent dataset for mea-
suring models’ ability to answer causality questions.

Additionally, we use the collected meta information in our dataset to do an out-of-
domain (OOD) experiment across different company sectors. Experimental results prove
that OOD issues also exist in causality-related tasks. A model trained in one sector can-
not be perfectly transferred to another. This is mainly because there are different causal
relationships in different sectors. For example, for online retail companies, the COVID-19
epidemic will lead to a rise in stock prices, while for offline retail companies, the COVID-
19 may even lead to the company’s closure. The same event can lead to vastly different
outcomes.

8.2. Limitations
Although we conduct a comprehensive analysis of the experiments on the dataset, our re-
search in this thesis still suffers from certain limitations. Firstly, since our dataset is merely
built on the financial data, it is unclear if the research based on it can generate open domain
causality detection in the real world. And the causality events in our dataset are annotated
by human annotators, which is small and expensive. If unsupervised methods exist that
can extract large amounts of data from textual data, then it is possible to construct a huge
causal event graph from this data. This graph will surely help us understand the world
better.

For the model part, as mentioned in Section 8.1, our experiments reveal some prob-
lems that currently exist in deep learning models. Statistical-based models cannot under-
stand human semantics well, making it difficult for the model’s prediction results to achieve
human-level accuracy. Actually, this is a problem that has plagued many NLP researchers.
Given the length and depth of this thesis, we did not provide a better solution to this prob-
lem.

8.3. Future work
There are a lot of subsequence works that can be done in the future. First, we should try to
expand our causality research from finance to other domains and finally achieve causality
research in the open domain, which will make our research have more significant social
value. And we can also try to extract causality triplets from more extensive texts through
the automatical pipeline we constructed in this thesis. Thus build a huge causality event
graph, which can help us better use causal knowledge to enable humans to make decisions.
Finally, given some of the shortcomings of the current deep learning model in causality
research, we can study corresponding methods, such as introducing additional knowledge,
to assist the model in causal discovery and extraction to achieve better performance.
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