

Delft University of Technology

Type Theory Unchained
Extending Agda with User-Defined Rewrite Rules
Cockx, Jesper

DOI
10.4230/LIPIcs.TYPES.2019.2
Publication date
2020
Document Version
Final published version
Published in
25th International Conference on Types for Proofs and Programs, TYPES 2019

Citation (APA)
Cockx, J. (2020). Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules. In M. Bezem,
A. Mahboubi, & A. Mahboubi (Eds.), 25th International Conference on Types for Proofs and Programs,
TYPES 2019 Article 2 (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 175). Schloss Dagstuhl-
Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.TYPES.2019.2
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.4230/LIPIcs.TYPES.2019.2

Type Theory Unchained: Extending Agda with
User-Defined Rewrite Rules
Jesper Cockx
Department of Software Technology, TU Delft, The Netherlands
https://jesper.sikanda.be
j.g.h.cockx@tudelft.nl

Abstract
Dependently typed languages such as Coq and Agda can statically guarantee the correctness of our
proofs and programs. To provide this guarantee, they restrict users to certain schemes – such as
strictly positive datatypes, complete case analysis, and well-founded induction – that are known
to be safe. However, these restrictions can be too strict, making programs and proofs harder to
write than necessary. On a higher level, they also prevent us from imagining the different ways the
language could be extended.

In this paper I show how to extend a dependently typed language with user-defined higher-order
non-linear rewrite rules. Rewrite rules are a form of equality reflection that is applied automatically
by the typechecker. I have implemented rewrite rules as an extension to Agda, and I give six
examples how to use them both to make proofs easier and to experiment with extensions of type
theory. I also show how to make rewrite rules interact well with other features of Agda such as
η-equality, implicit arguments, data and record types, irrelevance, and universe level polymorphism.
Thus rewrite rules break the chains on computation and put its power back into the hands of its
rightful owner: yours.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computa-
tion → Equational logic and rewriting; Theory of computation → Type theory

Keywords and phrases Dependent types, Proof assistants, Rewrite rules, Higher-order rewriting,
Agda

Digital Object Identifier 10.4230/LIPIcs.TYPES.2019.2

Supplementary Material The official documentation of rewrite rules in Agda is available in the user
manual at https://agda.readthedocs.io/en/v2.6.1/language/rewriting.html. The full source
code of Agda (including rewrite rules) is available on Github at https://github.com/agda/agda/.

1 Introduction

In the tradition of Martin-Löf Type Theory [19], each type former is declared by four sets of
rules:

The formation rule, e.g. Bool : Set
The introduction rules, e.g. true : Bool and false : Bool
The elimination rules, e.g. if P : Bool → Set, b : Bool, pt : P true, and pf : P false,
then if b then pt else pf : P b

The computation rules, e.g. if true then pt else pf = pt and if false then pt else pf = pf

When working in a proof assistant or dependently typed programming language, we
usually do not introduce new types directly by giving these rules. That would be very unsafe,
as there is no easy way to check that the given rules make sense. Instead, we introduce new
rules through schemes that are well-known to be safe, such as strictly positive datatypes,
complete case analysis, and well-founded induction.

© Jesper Cockx;
licensed under Creative Commons License CC-BY

25th International Conference on Types for Proofs and Programs (TYPES 2019).
Editors: Marc Bezem and Assia Mahboubi; Article No. 2; pp. 2:1–2:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3862-4073
https://jesper.sikanda.be
mailto:j.g.h.cockx@tudelft.nl
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://agda.readthedocs.io/en/v2.6.1/language/rewriting.html
https://github.com/agda/agda/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

However, users of dependently typed languages or researchers who are experimenting with
adding new features to them might find working within these schemes too restrictive. They
might be tempted to use postulate to simulate the formation, introduction, and elimination
rules of new type formers. Yet in intensional type theories there is one thing that cannot be
added by using postulate: the computation rules.

This paper shows how to extend a dependently typed language with user-defined re-
write rules, allowing the user to extend the definitional equality of the language with
new computation rules. Concretely, I extend the Agda language [22] with a new op-
tion --rewriting. When this option is enabled, you can register a proof (or a postulate)
p : ∀x1 . . . xn → f u1 . . . un ≡ v (where the ∀ quantifies over the free variables x1 . . . xn

of u1 . . . un and v, and ≡ is Agda’s built-in identity type) as a rewrite rule with a pragma
{-# REWRITE p #-}. From this point on, Agda will automatically reduce instances of the
left-hand side f u1 . . . un (i.e. for specific values of x1 . . . xn) to the corresponding instance
of v. As a silly example, if f : A→ A and p : ∀x→ f x ≡ x, then the rewrite rule will replace
any application f u with u, effectively turning f into the identity function λx→ x (which is
the Agda syntax for the lambda term λx. x).

Since rewrite rules enable you as the user of Agda to turn propositional (i.e. proven)
equalities into definitional (i.e. computational) ones, rewrite rules can be seen as a restricted
version of the equality reflection rule from extensional type theory, thus they do not impact
logical soundness of Agda directly. However, they can break other important properties of
Agda such as confluence of reduction and strong normalization. Checking these properties
automatically is outside of the scope of this paper, but some potential approaches are
discussed in Sect. 6.

Instead, the main goal of this paper is to specify in detail one possible way to add a
general notion of rewrite rules to a real-world dependently typed language. This is meant to
serve at the same time as a specification of how rewrite rules are implemented in Agda and
also as a guideline how they could be added to other languages.

Contributions

I define a core type theory based on Martin-Löf’s intensional type theory extended with
user-defined higher-order non-linear rewrite rules.
I describe how rewrite rules interact with several common features of dependently typed
languages, such as η-equality, data and record types, parametrized modules, proof
irrelevance, universe level polymorphism, and constraint solving for metavariables.
I implement rewrite rules as an extension to Agda and show in six examples how to use
them to make writing programs and proofs easier and to experiment with new extensions
to Agda.

The official documentation of rewrite rules in Agda is available in the user manual1.
The source code of Agda is available on Github2, the code dealing with rewrite rules
specifically can be found in the files Rewriting.hs3 (418 lines), NonLinPattern.hs4 (329
lines), NonLinMatch.hs5 (422 lines), and various other places in the Agda codebase.

1 https://agda.readthedocs.io/en/v2.6.1/language/rewriting.html
2 https://github.com/agda/agda/
3 https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting.hs
4 https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/

NonLinPattern.hs
5 https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/

NonLinMatch.hs

https://agda.readthedocs.io/en/v2.6.1/language/rewriting.html
https://github.com/agda/agda/
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting.hs
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/NonLinPattern.hs
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/NonLinPattern.hs
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/NonLinMatch.hs
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/NonLinMatch.hs

J. Cockx 2:3

Note on the development of rewrite rules in Agda. When the development of rewrite
rules in Agda started in 2016, it was expected to be used mainly by type theory researchers
to experiment with new computation rules without modifying the implementation of the
language itself. For this use case, accepting a large class of rewrite rules is more important
than having strong guarantees about (admittedly important) metatheoretical properties such
as subject reduction, confluence, or termination, which can be checked by hand if necessary.
This is the basis for the rewrite rules as described in the paper.

More recently, Agda users also started using this rewriting facility to enhance Agda’s
conversion checker with new (proven) equalities, as showcased by the examples in Sect. 2.1
and Sect. 2.2. For this class of users having strong guarantees about subject reduction,
confluence and termination is more important. In the future, I would like to extend the
support for these users further as outlined in Sect. 6.

Outline of the paper. Sect. 2 consists of examples of how to use rewrite rules to go beyond
the usual boundaries set by Agda and define your own computation rules. After these
examples, Sect. 3 shows more generally how to add rewrite rules to a dependently typed
language, and Sect. 4 shows how rewrite rules interact with other features of Agda. Related
work and future work are discussed in Sect. 5 and Sect. 6, and Sect. 7 concludes.

2 Using rewrite rules

With the introduction out of the way, let us start with some examples of things you can do
with rewrite rules. I hope at least one example gives you the itch to try rewrite rules for
yourself. There are some restrictions on what kind of equality proofs can be turned into
rewrite rules, which will be explained later in general. Until then, the examples should give
an idea of the kind of things that are possible.

All examples in this section are accepted by Agda 2.6.1 [1]. We start with some basic
options and imports. For the purpose of this paper, the two most important ones are the
--rewriting flag and the import of Agda.Builtin.Equality.Rewrite, which are both required
to make rewrite rules work. Meanwhile, the --prop flag enables Agda’s Prop universe6 [16],
which will be used in some of the examples.

{−# OPTIONS --rewriting --prop #−}

open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite

The examples in this paper make use of generalizable variables7 to avoid writing many
quantifiers and make the code more readable.

6 https://agda.readthedocs.io/en/v2.6.1/language/prop.html
7 https://agda.readthedocs.io/en/v2.6.1/language/generalization-of-declared-variables.

html

TYPES 2019

https://agda.readthedocs.io/en/v2.6.1/language/prop.html
https://agda.readthedocs.io/en/v2.6.1/language/generalization-of-declared-variables.html
https://agda.readthedocs.io/en/v2.6.1/language/generalization-of-declared-variables.html

2:4 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

variable
` `1 `2 `3 `4 : Level
A B C : Set `
P Q : A → Set `
x y z : A
f g h : (x : A) → P x
b b1 b2 b3 : Bool
k l m n : Nat
xs ys zs : List A
R : A → A → Prop

We use the following helper function to annotate terms with their types:

El : (A : Set `) → A → A
El A x = x

infix 5 El
syntax El A x = x ∈ A

To avoid reliance on external libraries, we also need two basic properties of equality:

cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl

transport : (P : A → Set `) → x ≡ y → P x → P y
transport P refl p = p

2.1 Overlapping pattern matching
To start, let us look at a question that is asked by almost every newcomer to Agda: why
does 0 + m compute to m, but m + 0 does not? Similarly, why does (suc m) + n compute
to suc (m + n) but m + (suc n) does not? This problem manifests itself for example when
trying to prove commutativity of _+_ (the lack of highlighting is a sign that the code is not
accepted by Agda):

+comm : m + n ≡ n + m
+comm {m = zero} = refl
+comm {m = suc m} = cong suc (+comm {m = m})

Here Agda complains that n 6= n + zero. The problem is usually solved by proving
the equations m + 0 ≡ m and m + (suc n) ≡ suc (m + n) and using an explicit rewrite8
statement in the proof of +comm.

Despite solving the problem, this solution is rather disappointing: if Agda can tell that
0 + m computes to m, why not m + 0? During my master thesis, I worked on overlapping
computation rules [14] to make this problem go away without adding any explicit rewrite
statements. By using rewrite rules, we can simulate this solution in Agda. First, we need to
prove that the equations we want hold as propositional equalities:

8 Agda’s rewrite keyword should not be confused with rewrite rules, which are added by a REWRITE
pragma.

J. Cockx 2:5

+zero : m + zero ≡ m
+zero {m = zero} = refl
+zero {m = suc m} = cong suc +zero

+suc : m + (suc n) ≡ suc (m + n)
+suc {m = zero} = refl
+suc {m = suc m} = cong suc +suc

Then we mark the equalities as rewrite rules with a REWRITE pragma:

{−# REWRITE +zero +suc #−}

Now the proof of commutativity works exactly as we wrote before:

+comm : m + n ≡ n + m
+comm {m = zero} = refl
+comm {m = suc m} = cong suc (+comm {m = m})

Without rewrite rules there is no way to make this proof go through unchanged: it is
essential that _+_ computes both on its first and second arguments, but there is no way to
define _+_ in such a way using Agda’s regular pattern matching.

2.2 New equations for neutral terms
Allais, McBride, and Boutillier [2] extend classic functions on lists such as map, _++_
(concatenation), and fold with new equational rules for neutral expressions. In Agda, we can
prove these rules and then add them as rewrite rules. For example, here are their rules for
map and _++_:

map : (A → B) → List A → List B
map f [] = []
map f (x :: xs) = (f x) :: (map f xs)

infixr 5 _++_
++ : List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

map−id : map (λ x → x) xs ≡ xs
map−id {xs = []} = refl
map−id {xs = x :: xs} = cong (x ::_) map−id

map−fuse : map f (map g xs) ≡ map (λ x → f (g x)) xs
map−fuse {xs = []} = refl
map−fuse {xs = x :: xs} = cong (_ ::_) map−fuse

map−++ : map f (xs ++ ys) ≡ (map f xs) ++ (map f ys)
map−++ {xs = []} = refl
map−++ {xs = x :: xs} = cong (_ ::_) (map−++ {xs = xs})

{−# REWRITE map−id map−fuse map−++ #−}

TYPES 2019

2:6 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

These rules look simple, but can be quite powerful. For example, below we show that
the expression map swap (map swap xs ++ map swap ys) reduces to xs ++ ys, without
requiring any induction on lists.

record _×_ (A B : Set) : Set where
constructor _,_
field

fst : A
snd : B

open _×_

swap : A × B → B × A
swap (x , y) = y , x

test : map swap (map swap xs ++ map swap ys) ≡ xs ++ ys
test = refl

To compute the left-hand side of the equation to the right-hand side, Agda makes use
of map−++ (step1), map−fuse (step2), built-in η-equality of _×_ (step3), the definition of
swap (step4), and finally the map−id rewrite rule (step5).

step1 : map swap (map swap xs ++ map swap ys)
≡ map swap (map swap xs) ++ map swap (map swap ys)

step1 = refl

step2 : map swap (map swap xs) ≡ map (λ x → swap (swap x)) xs
step2 = refl

step3 : map (λ x → swap (swap x)) xs ≡ map (λ x → swap (swap (fst x , snd x))) xs
step3 = refl

step4 : map (λ x → swap (swap (fst x , snd x))) xs ≡ map (λ x → (fst x , snd x)) xs
step4 = refl

step5 : map (λ x → (fst x , snd x)) xs ≡ xs
step5 = refl

2.3 Higher inductive types
The original motivation for adding rewrite rules to Agda had little to do with adding new
computation rules to existing functions as in the previous examples. Instead, its purpose
was to experiment with defining higher inductive types [30]. In particular, it was meant as
an alternative for people using clever (but horrible) hacks to make higher inductive types
compute.9

A higher inductive type is similar to a regular inductive type D with some additional
path constructors, which construct an element of the identity type a ≡ b where a : D and
b : D. A classic example is the Circle type, which has one regular constructor base and one
path constructor loop (note that Set in Agda corresponds to Type rather than hSet from
HoTT):

9 https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assis-
tant/

https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/

J. Cockx 2:7

postulate
Circle : Set
base : Circle
loop : base ≡ base

postulate
Circle−elim : (P : Circle → Set `) (base∗ : P base) (loop∗ : transport P loop base∗ ≡ base∗)

→ (x : Circle) → P x
elim−base : ∀ (P : Circle → Set `) base∗ loop∗ → Circle−elim P base∗ loop∗ base ≡ base∗
{−# REWRITE elim−base #−}

To specify the computation rule for Circle−elim applied to loop, we need the dependent
version of cong, which is called apd in the book [30].

apd : (f : (x : A) → P x) (p : x ≡ y) → transport P p (f x) ≡ f y
apd f refl = refl

postulate
elim−loop : ∀ (P : Circle → Set `) base∗ loop∗ → apd (Circle−elim P base∗ loop∗) loop ≡ loop∗
{−# REWRITE elim−loop #−}

Without the rewrite rule elim−base, the type of elim−loop is not well-formed. So without
rewrite rules, it is impossible to even state the computation rule of Circle−elim on the path
constructor loop without adding extra transports that would influence its computational
behaviour.

2.4 Quotient types
One of the well-known weak spots of intensional type theory is its poor handling of quotient
types. One of the more promising attempts at adding quotients to Agda is by Guillaume
Brunerie in the initiality project10, which uses a combination of rewrite rules and Agda’s
Prop universe. Unlike Prop in Coq or hProp in HoTT (but like sProp in Coq), Prop in Agda
is a universe of definitionally irrelevant propositions, which means any two proofs of a type
in Prop are definitionally equal.

Before I can show this definition of the quotient type, we first need to define the Prop-
valued equality type _ .=_. We also define its corresponding notion of transport, which has to
be postulated due to current limitations in the implementation of Prop. To make transportR
compute in the expected way, we add it as a rewrite rule transportR−refl.

data _ .=_ {A : Set `} (x : A) : A → Prop ` where
refl : x .= x

postulate
transportR : (P : A → Set `) → x .= y → P x → P y
transportR−refl : transportR {x = x} {y = x} P refl z ≡ z
{−# REWRITE transportR−refl #−}

Note that the rewrite rule transportR−refl is non-linear in its two implicit arguments x
and y.

10 https://github.com/guillaumebrunerie/initiality/blob/reflection/quotients.agda

TYPES 2019

https://github.com/guillaumebrunerie/initiality/blob/reflection/quotients.agda

2:8 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

Now we are ready to define the quotient type _//_. Given a type A and a Prop-valued
relation R : A → A → Prop, the type A // R consists of elements proj x where x : A, and
proj x is equal to proj y if and only if R x y holds.

postulate
// : (A : Set `) (R : A → A → Prop) → Set `
proj : A → A // R
quot : R x y → proj {R = R} x .= proj {R = R} y

The elimination principle //−elim allows us to define functions that extract an element
of A from a given element of A // R, provided a proof quot∗ that the function respects the
equality on A // R. The computation rule //−beta allows //−elim to compute when it is
applied to a proj x.

//−elim : (P : A // R → Set `) (proj∗ : (x : A) → P (proj x))
→ (quot∗ : {x y : A} (r : R x y) → transportR P (quot r) (proj∗ x) .= proj∗ y)
→ (x : A // R) → P x

//−beta : {R : A → A → Prop} (P : A // R → Set `) (proj∗ : (x : A) → P (proj x))
→ (quot∗ : {x y : A} (r : R x y) → transportR P (quot r) (proj∗ x) .= proj∗ y)
→ {u : A} → //−elim P proj∗ quot∗ (proj u) ≡ proj∗ u

{−# REWRITE //−beta #−}

Compared to the more standard way of defining the quotient type as a higher inductive
type, this definition behaves better with respect to definitional equality: the argument quot∗
to the eliminator is definitionally irrelevant, so it does not matter what equality proof we give.
Consequently, there is no need to add an additional constructor to truncate the quotient
type.

2.5 Exceptional type theory
First-class exceptions are a common feature of object-oriented programming languages such
as Java, but in the world of pure functional languages they are usually frowned upon.
However, recently Pédrot and Tabareau have proposed an extension of Coq with first-class
exceptions [23]. With the exceptional power of rewrite rules, we can also encode (part of)
their system in Agda.

First, we postulate a type Exc with any kinds of exceptions we might want to use (here
we just have a single runtimeException for simplicity). We then add the possibility to raise
an exception, producing an element of an arbitrary type A.

postulate
Exc : Set
runtimeException : Exc
raise : Exc → A

Note that raise makes the type theory inconsistent. In their paper, Pédrot and Tabareau
show how to build a safe version of exceptions on top of this system, using parametricity to
enforce that all exceptions are caught locally. Here that part is omitted for brevity.

By adding the appropriate rewrite rules for each type former, we can ensure that exceptions
are propagated appropriately. For positive types such as Nat, exceptions are propagated
outwards, while for negative types such as function types, exceptions are propagated inwards.

J. Cockx 2:9

postulate
raise−suc : {e : Exc} → suc (raise e) ≡ raise e
raise−fun : {e : Exc} → raise {A = (x : A) → P x} e ≡ λ x → raise {A = P x} e
{−# REWRITE raise−suc raise−fun #−}

To complete the system, we add the ability to catch exceptions at specific types. This
takes the shape of an eliminator with one additional method for handling the case where the
element under scrutiny is of the form raise e.

postulate
catch−Bool : (P : Bool → Set `) (pt : P true) (pf : P false)

→ (h : ∀ e → P (raise e)) → (b : Bool) → P b

catch−true : ∀ (P : Bool → Set `) pt pf h → catch−Bool P pt pf h true ≡ pt
catch−false : ∀ (P : Bool → Set `) pt pf h → catch−Bool P pt pf h false ≡ pf
catch−exc : ∀ (P : Bool → Set `) pt pf h e → catch−Bool P pt pf h (raise e) ≡ h e
{−# REWRITE catch−true catch−false catch−exc #−}

As shown by this example, rewrite rules can be used to extend Agda with new primitive
operations, including ones that compute according to the type of their arguments. Currently
the user has to add new rewrite rules manually for each datatype and function symbol, so
using this in practice is quite tedious. In the future, it might be possible to leverage Agda’s
reflection framework to generate these rewrite rules automatically.

2.6 Observational equality
Rewrite rules also allow us to define type constructors that compute according to the type
they are applied to. This is a core part of observational type theory (OTT) [3]. OTT
replaces the usual identity type with an observational equality type (here called _∼=_) that
computes according to the type of the elements being compared. For example, an equality
proof between pairs of type (a , b) ∼= (c , d) is a pair of proofs, one of type a ∼= c and one of
type b ∼= d.

Below, I show how to extend Agda with a fragment of OTT. Since OTT has a proof-
irrelevant equality type, I use Agda’s Prop to get the same effect. First, we need some basic
types in Prop:

record > {`} : Prop ` where constructor tt

data ⊥ {`} : Prop ` where

record _∧_ (X : Prop `1) (Y : Prop `2) : Prop (`1 t `2) where
constructor _,_
field

fst : X
snd : Y

open _∧_

The open statement makes the constructor and the fields of the records available in the
remainder of the module.

The central type of OTT is observational equality _∼=_, which should compute according
to the types of the elements being compared. Here I give the computation rules for Bool and
for function types:

TYPES 2019

2:10 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

infix 6 _∼=_
postulate
∼= : {A : Set `1} {B : Set `2} → A → B → Prop (`1 t `2)

postulate
refl−Bool : (Bool ∼= Bool) ≡ >
refl−true : (true ∼= true) ≡ >
refl−false : (false ∼= false) ≡ >
conflict−tf : (true ∼= false) ≡ ⊥
conflict−ft : (false ∼= true) ≡ ⊥
{−# REWRITE refl−Bool refl−true refl−false conflict−tf conflict−ft #−}

postulate
cong−Π : ((x : A) → P x) ∼= ((y : B) → Q y)

≡ (B ∼= A) ∧ ((x : A)(y : B) → y ∼= x → P x ∼= Q y)
cong−λ : {A : Set `1} {B : Set `2} {P : A → Set `3} {Q : B → Set `4}

→ (f : (x : A) → P x) (g : (y : B) → Q y)
→ ((λ x → f x) ∼= (λ y → g y)) ≡ ((x : A) (y : B) (x∼=y : x ∼= y) → f x ∼= g y)

{−# REWRITE cong−Π cong−λ #−}

According to cong−Π, an equality proof between function types computes to a pair of
equality proofs between the domains and the codomains respectively. Though not necessary,
it is convenient to swap the sides of the equality proofs in contravariant positions (B ≡ A

and y ≡ x). Meanwhile, an equality proof between two functions computes to an equality
proof between the functions applied to heterogeneously equal variables x : A and y : B.

To reason about equality proofs, OTT adds two more notions: coercion and cohesion.
Coercion _[_〉 transforms an element from one type to the other when both types are
observationally equal, and cohesion _||_ states that coercion is computationally the identity.

infix 10 _[_〉 _||_

postulate
[〉 : A → (A ∼= B) → B
|| : (x : A) (Q : A ∼= B) → (x ∈ A) ∼= (x [Q 〉 ∈ B)

Here the ∈ annotations are just there to help Agda’s type inference algorithm.
Again, we need rewrite rules to make sure coercion computes in the right way when

applied to specific type constructors. On the other hand, We do not need rewrite rules for
coherence since the result is of type _ ∼= _ which is a Prop, so the proof is anyway irrelevant.

Coercing an element from Bool to Bool is easy.

postulate
coerce−Bool : (Bool∼=Bool : Bool ∼= Bool) → b [Bool∼=Bool 〉 ≡ b
{−# REWRITE coerce−Bool #−}

To coerce a function from (x : A)→ P x to (y : B)→ Q y we need to:

1. Coerce the input from y : B to x : A
2. Apply the function to get an element of type P x

3. Coerce the output back to an element of Q y

J. Cockx 2:11

In the last step, we need to use coherence to show that x and y are (heterogeneously)
equal.

postulate
coerce−Π : {A : Set `1} {B : Set `2} {P : A → Set `3} {Q : B → Set `4} {f : (x : A) → P x}
→ (ΠAP∼=ΠBQ : ((x : A) → P x) ∼= ((y : B) → Q y))
→ f [ΠAP∼=ΠBQ 〉
≡ (λ (y : B) →

let B∼=A = fst ΠAP∼=ΠBQ
x = y [B∼=A 〉
Px∼=Qy = snd ΠAP∼=ΠBQ x y (_||_ {B = A} y B∼=A)

in f x [Px∼=Qy 〉 ∈ Q y)
{−# REWRITE coerce−Π #−}

Here the syntax {B = A} instantiates the implicit argument B of _||_ to the value A.
Of course this is just a fragment of the whole system, but implementing all of OTT would

go beyond the scope of this paper. In principle, observational equality can be used as a full
replacement for Agda’s built-in equality type. So rewrite rules are even powerful enough to
experiment with replacements for core parts of Agda.

3 Type theory with user-defined rewrite rules

In the previous section, I gave several examples of how to use rewrite rules in Agda to make
programming and proving easier and to experiment with new extensions to type theory. The
next two sections go into the details of how rewrite rules work in general.

Instead of starting with a complex language like Agda, I start with a small core language
and gradually extend it by adding more features to the rewriting machinery step by step. In
the next section, I will extend this language with other features that you are used to from
Agda. The full rules of the language can be found in Appendix A.

3.1 Syntax
We use a simplified version of the internal syntax used by Agda [22]. The syntax has five
constructors: variables, function symbols, lambdas, pi types, and universes.

u, v, A, B ::= x ū (variable applied to zero or more arguments)
| f ū (function symbol applied to zero or more arguments)
| λx. u (lambda abstraction)
| (x : A)→ B (dependent function type)
| Seti (ith universe)

(1)

As in the internal syntax of Agda, there is no way to represent a β-redex in this syntax.
Instead, substitution uσ is defined to eagerly reduce β-redexes on the fly. Since terms are
always in β-normal form, our rewrite system is a HRS (Higher-Order Rewrite system) in the
spirit of Mayr and Nipkow [20].

Contexts are right-growing lists of variables annotated with their types.

Γ,∆ ::= · (empty context)
| Γ(x : A) (context extension) (2)

TYPES 2019

2:12 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

Patterns p, q share their syntax with regular terms, but must satisfy some additional
restrictions. To start with, the only allowed patterns are unapplied variables x and applica-
tions of function symbols to other patterns f p̄. This allows us for example to declare rewrite
rules like plus x zero −→ x and plus x (suc y) −→ suc (x+ y).

3.2 Declarations
There are two kinds of declarations: function symbols (corresponding to a postulate in Agda)
and rewrite rules (corresponding to a postulate together with a {-# REWRITE #-} pragma).

d ::= f : A (function symbol)
| ∀∆. f p̄ : A −→ v (rewrite rule)

(3)

When the user declares a new rewrite rule, the following properties are checked:

Linearity. Each variable in ∆ must occur exactly once in the pattern p̄ (this will later be
relaxed to “at least once”).

Well-typedness. The left- and right-hand side of the rewrite rule must be well-typed and
have the same type, i.e. ∆ ` f p̄ : A and ∆ ` v : A.

Neutrality. The left-hand side of the rewrite rule should be neutral, i.e. it should not reduce.

The first restriction ensures that all variables of a rewrite rule are bound by the left-hand
side. This ensures that reduction can never introduce variables that are not in scope, which
would break well-scopedness of expressions. The second restriction ensures that applying
a rewrite rule does not change the type of a well-typed expression.11 It is possible to go
without the third restriction, but in practice this would mean that the rewrite rule would
never be applied.12

Requiring rewrite rules to be well-typed has in some cases the unfortunate side-effect
of introducing non-linearity where it is not really necessary, for example when defining the
computation rule of the J eliminator as a rewrite rule. This non-linearity slows down the
reduction unneccessarily and greatly complicates confluence checking. It would be interesting
to investigate how to remove this unneccessary non-linearity, e.g. as proposed by Blanqui [8].

3.3 Reduction and matching
To reduce a term f ū, we look at the rewrite rules with head symbol f to see if any of them
apply. In the rule below and all rules in the future, we assume a fixed global signature Σ
containing all (preceding) declarations.

(∀∆.f p̄ : A −→ v) ∈ Σ [ū // p̄]⇒ σ

f ū −→ vσ
(4)

Matching a term u against a pattern p [u // p]⇒ σ (or [ū // p̄]⇒ σ for matching a list
of terms against a list of patterns) produces – if it succeeds – a substitution σ. In contrast to
the first-match semantics of clauses of a regular definition by pattern matching, all rewrite
rules are considered in parallel, so there is no need for separate notion of a failing match.

11To prove type preservation we also need confluence of reduction, see the future work section for more
details.

12 If the rewrite system is globally confluent and strongly normalizing, it does not matter that we never
apply a certain rewrite rule. Global confluence ensures that even if we apply a different rewrite rule,
the result will still be the same, and strong normalization ensures that termination does not depend on
the choice of rewrite rule either. Hence as a user one does not have to worry about the precise rewrite
strategy implemented by Agda, but only about confluence and termination of the rewrite system.

J. Cockx 2:13

[u // x]⇒ [u /x]
u −→∗ f v̄ [v̄ // p̄]⇒ σ

[u // f p̄]⇒ σ

[· // ·]⇒ []
[u // p]⇒ σ1 [ū // p̄]⇒ σ2

[u; ū // p; p̄]⇒ σ1] σ2

Figure 1 Basic rules for the matching algorithm used for rewriting.

The basic matching algorithm is defined by the rules in Fig. 1. Matching a term against
a pattern variable produces a substitution that assigns the given value to the variable.
Matching an expression against a pattern f p̄ evaluates the expression until it becomes of the
form f v̄ (here −→∗ is the reflexive and transitive closure of −→). It then recursively matches
the arguments v̄ against the patterns p̄, combining the results of each match by taking the
disjoint union σ1] σ2. Since matching can reduce the term being matched, matching and
reduction are mutually recursive.

3.4 Higher-order matching
With the basic set of rewrite rules introduced in the previous section, we can already declare
a surprisingly large number of rewrite rules for first-order algebraic structures. From the
examples in Sect. 2, it handles all of Sect. 2.1, rules map−fuse and map−++ from Sect. 2.2,
all of Sect. 2.3, rule //−beta from Sect. 2.4, rules catch−true, catch−false, and catch−exc
from Sect. 2.5, and the rules dealing with Bool in Sect. 2.6.

Most of the examples that are not yet handled use λ and/or function types in the
pattern of a rewrite rule. This brings us to the issue of higher-order matching.13 To support
higher-order matching, we extend the pattern syntax with the following patterns:

A lambda pattern λx. p

A function type pattern (x : p)→ q

A bound variable pattern y p̄ , where y is a variable bound locally in the pattern by a
lambda or function type
A pattern variable x ȳ applied to locally bound variables

During matching we must keep the (rigid) bound variables separate from the (flexible)
pattern variables. For this purpose, the algorithm keeps a list Φ of all rigid variables. This
list is not touched by any of the rules of Fig. 1, but any variables bound by a λ or a function
type are added to it.

The extended matching rules for higher-order patterns are given in Fig. 2. Note the strong
similarity between the third rule and the rule for matching a function symbol f. This is not
a coincidence: both function symbols and bound variables act as rigid symbols that can be
matched against. The first three rules in Fig. 2 extend the pattern syntax to allow for bound
variables in patterns, and allow for rules such as map− id : map (λ x→ x) xs ≡ xs. However,
alone they do not yet constitute true higher-order matching (such as used in rules raise−fun,
cong−Π, and cong−λ). For this we also consider pattern variables applied to zero or more

13 See also https://github.com/agda/agda/issues/1563 for more examples where higher-order matching
is needed.

TYPES 2019

https://github.com/agda/agda/issues/1563

2:14 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

u −→∗ λx. v Φ, x ` [v // p]⇒ σ

Φ ` [u // λx. p]⇒ σ

A −→∗ (x : B)→ C Φ ` [B // p]⇒ σ1 Φ, x ` [C // q]⇒ σ2

Φ ` [A// (x : p)→ q]⇒ σ1] σ2

u −→∗ x v̄ x ∈ Φ Φ ` [v̄ // p̄]⇒ σ

Φ ` [u // x p̄]⇒ σ

x 6∈ Φ FV (v) ∩ Φ ⊆ ȳ
Φ ` [v // x ȳ]⇒ [(λȳ. v) / x]

Figure 2 Rules for higher-order pattern matching.

arguments. Allowing arbitrary patterns as arguments to pattern variables is well known
to make matching undecidable, so we restrict patterns to Miller’s pattern fragment [21] by
requiring pattern variables to be applied to distinct bound variables. Matching against a
pattern variable in the Miller fragment is implemented by the fourth rule in Fig. 2. Since all
the arguments of x are variables, we can construct the lambda term λȳ. v. To avoid having
out-of-scope variables in the resulting substitution, the free variables in v are checked to be
included in ȳ, otherwise matching fails.

3.5 Eta equality
The attentive reader may have noticed a flaw in the matching for λ-patterns: it does not
respect η-equality. With η-equality for functions, any term u : (x : A) → B x can always
be expanded to λx. u x, so it should also match a pattern λx. p. A naive attempt to add
η-equality would be to η-expand on the fly whenever we match something against a λ-pattern:

Φ, x ` [u x // p]⇒ σ

Φ ` [u // λx. p]⇒ σ
(5)

This is however not enough to deal with η-equality in general. It is possible that the
pattern itself is underapplied as well, e.g. when we match a term of type (x : A) → B x

against a pattern f p̄ or x p̄. For example, when we have symbols f : (Nat→ Nat)→ Bool
and g : Nat → Nat with rewrite rules f g −→ true and ∀(x : Nat). g x −→ x, then we
want f (λx. x) to reduce to true, but with the above rule matching is stuck on the problem
[λx. x // g].

To respect eta equality for functions and record types, we need to make matching type-
directed. We also need contexts with the types of the free and bound variables. Thus we
extend the matching judgement to Γ; Φ ` [u : A// p]⇒ σ where A is the type of u (note: not
necessarily the same as the type of p) and Γ and Φ are now contexts of pattern variables and
bound variables respectively.

The type information is used by the matching algorithm to do on-the-fly η-expansion of
functions whenever the type is (or computes to) a function type:

A −→∗ (x : B)→ C Γ; Φ(x : B) ` [u x : C // p x]⇒ σ

Γ; Φ ` [u : A// p]⇒ σ
(6)

Here p x is only defined if the result is actually a pattern, otherwise the rule cannot be
applied.

J. Cockx 2:15

Having access to the type of the expression being matched is not only useful for η-equality
of functions, but also for non-linear patterns (Sect. 3.6), η-equality for records (Sect. 4.1),
and irrelevance (Sect. 4.4). While type-directed matching might slow down the reduction
in some cases, I believe in many cases the benefits outmatch this disadvantage. Moreover,
using irrelevance to avoid unneccessary conversion checks might even make up for the lost
performance.

3.6 Non-linearity and conditional rewriting

Sometimes it is desirable to declare rewrite rules with non-linear patterns, i.e. where a
pattern variable occurs more than once. As an example, this allows us to postulate an
equality proof trustMe : (x y : A)→ x ≡ y with a rewrite rule trustMe x x ≡ refl. This can be
used in a similar way to Agda’s built-in primTrustMe14. Another example where non-linearity
is used is the rule transportR−refl from the example in Sect. 2.4, which is non-linear in its
two implicit arguments x and y.15

Non-linear matching is a specific instance of conditional rewriting. For example, the
non-linear rule trustMe x x ≡ refl can be seen equivalently as the linear rule trustMe x y ≡ refl
with an extra condition x = y : A.

Using conditional rewriting, we can not only allow non-linear patterns but also patterns
that contain arbitrary terms that do not fall in the pattern fragment. Like for non-linear rules,
these “non-pattern” parts of the pattern are replaced by a fresh variable and a constraint
that enforces this variable to be definitionally equal to the actual term. The only restriction
is that all variables must be bound at least once in a pattern position.

This use of conditional rewriting is similar to to inaccessible patterns (also known as dot
patterns in Agda) used in dependent pattern matching, with the important difference that
inaccessible patterns are guaranteed to match by the type system, while the constraints for
conditional rewriting have to be checked.

To check the equality constraints of conditional rewrite rules, the matching algorithm
needs to decide whether two given terms are definitionally equal. This means reduction
and matching are now mutually recursive with conversion checking.16 We make use of a
type-directed conversion judgement Γ ` u = v : A (see the appendix for the full conversion
rules). The new judgement form of matching is now Γ; Φ ` [v : A// p]⇒ σ; Ψ, where Ψ is a
set of constraints of the form Φ ` u ?= v. We extend the matching algorithm with the ability
to generate new constraints:

Γ; Φ ` [v : A// p]⇒ []; {Φ ` v ?= p : A}
(7)

14 https://agda.readthedocs.io/en/v2.6.1/language/built-ins.html#primtrustme
15 It also needs irrelevance for Prop, see Sect. 4.4 for more details.
16To actually change the implementation of Agda to make the matching depend on conversion checking

took quite some effort (see https://github.com/agda/agda/pull/3589). The reason for this difficulty
was that reduction and matching are running in one monad ReduceM, while conversion was running in
another monad TCM (short for “type-checking monad”). The new version of the conversion checker is
polymorphic in the monad it runs in. This means the same piece of code implements at the same time
a pure, declarative conversion checker and a stateful constraint solver.

TYPES 2019

https://agda.readthedocs.io/en/v2.6.1/language/built-ins.html#primtrustme
https://github.com/agda/agda/pull/3589

2:16 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

All other rules just gather the set of constraints, taking the union whenever matching
produces multiple sub-problems. When matching concludes, the constraints are checked
before the rewrite rule is applied:

f : Γ→ A ∈ Σ (∀∆.f p̄ : B −→ v) ∈ Σ
[ū : Γ[ū] // p̄]⇒ σ; Ψ ∀(Φ ` v ?= p : A) ∈ Ψ. Φ ` v = pσ : A

f ū −→ vσ
(8)

When checking a constraint we apply the final substitution σ to the pattern p but not
to the term v or the type A. This makes sense because the term being matched does not
contain any pattern variables in the first place (and neither does its type).

4 Interaction with other features

Adding rewrite rules to an existing language such as Agda is quite an undertaking. Re-
write rules often interact with other features in a non-trivial matter, and it takes work to
resolve these interactions in a satisfactory way. In this section, I describe the interaction
of rewrite rules with several other features of Agda: record types with eta equality, data-
types, parametrized modules, definitional irrelevance, universe polymorphism, and constraint
solving.

4.1 Eta equality for records

Agda has η-equality not just for function types, but also for record types. For example,
any term u : A×B is definitionally equal to (fst u, snd u). Since η-equality of records is a
core part of Agda, we extend the matching algorithm to deal with it.17 As for η-equality of
functions, we make use of the type of the expression to η-expand terms and patterns during
matching.

Let R : Seti be a record type with fields π1 : A1, . . ., πn : An. We have the following
matching rule:

Γ; Φ ` [πi u : Ai[πj u / πj
j<i

] // πi p]⇒ σ (i = 1 · · ·n)
Γ; Φ ` [u : R // p]⇒ σ

(9)

Since records can be dependent, each type Ai may depend on the previous fields
π1, . . . , πi−1, so we need to substitute the concrete values πj u for πj in Ai for each j < i.

In the case where n = 0, this rule says that a term of the unit record type > (with no
fields) matches any pattern. So the matching algorithm even handles the notorious η-unit
types.

4.2 Datatypes and constructors

An important question is how rewrite rules interact with datatypes such as Nat, List, and
≡. Can we simply add rewrite rules to (type and/or term) constructors? The answer is
actually a bit more complicated.

17See https://github.com/agda/agda/issues/2979 and https://github.com/agda/agda/issues/
3335.

https://github.com/agda/agda/issues/2979
https://github.com/agda/agda/issues/3335
https://github.com/agda/agda/issues/3335

J. Cockx 2:17

If we allow rewriting of datatype constructors, we could (for example) postulate an
equality proof of type Nat ≡ Bool and register it as a rewrite rule. However, this would mean
zero : Bool, violating an important internal invariant of Agda that any time we have c ū : D
for a constructor c and a datatype D, c is actually a constructor of D.18 For this reason, it is
not allowed to have rewrite rules on datatypes or record types.

For constructors of datatypes there is no a priori reason why they cannot have rewrite
rules attached to them. This would actually be useful to define a “definitional quotient
type” where some of the constructors may compute. Unfortunately, there is another problem:
internally, Agda does not store the constructor arguments corresponding to the parameters
of the datatype. For example, the constructors [] and _::_ of the List A type do not store
the type A as an argument. This is important for efficient representation of parametrized
datatypes. However, this means that rewrite rules that match on constructors cannot match
against arguments in those positions, or bind pattern variables in them.

When a rewrite rule is added with a constructor as the head symbol, we have to take care
that the rewrite rule is not applied too generally. For example, a rewrite rule for [] : List Nat
should not be applied to [] : List A where A 6= Nat19. To avoid unwanted reductions like
these, it is only allowed to add a rewrite rule to a constructor if the parameters are fully
general, i.e. they must be distinct variables. This ensures that rewrite rules are only applied
to terms whose type matches the type of the rewrite rule.

4.3 Parametrized modules and “where” blocks

A parametrized module is a collection of declarations parametrized over a common telescope
Γ. In one sense, parametrized modules can be thought of as λ-lifting all the definitions inside
the module: if a module with parameters Γ contains a definition of f : A, then the real
type of f is Γ→ A. But this does not quite capture the intuition that definitions inside a
parametrized module should be parametric in the parameters. So module parameters should
be treated as rigid symbols like postulates rather than as flexible variables.

For this reason, module parameters play a double role on the left-hand side of a rewrite rule:
As long as the parameter is in scope (i.e. inside the module), it has to match “on the
nose” (i.e. it cannot be instantiated by matching).
Once the parameter goes out of scope (i.e. outside of the module), it is treated as a
regular pattern variable that can be instantiated by matching.

For example, inside a module parametrized over n : Nat, a rewrite rule f n −→ zero only
applies to terms definitionally equal to f n. On the other hand, outside of the module the
rewrite rule applies to any expression of the form f u.

This intuition of module parameters as rigid symbols also applies to Agda’s treatment of
where blocks, which are nothing more than modules parametrized over the pattern variables
of the clause (you can even give a name to the where module using the module M where
syntax20). Here a rewrite rule declared in a where block should only apply for the specific
arguments to the function that are used in the clause, not those of a recursive call21.

18 See https://github.com/agda/agda/issues/3846.
19 See https://github.com/agda/agda/issues/3211.
20 https://agda.readthedocs.io/en/v2.6.1/language/let-and-where.html#where-blocks
21 https://github.com/agda/agda/issues/1652

TYPES 2019

https://github.com/agda/agda/issues/3846
https://github.com/agda/agda/issues/3211
https://agda.readthedocs.io/en/v2.6.1/language/let-and-where.html#where-blocks
https://github.com/agda/agda/issues/1652

2:18 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

4.4 Irrelevance and Prop
Another feature of Agda is definitional irrelevance, which comes in the two flavours of
irrelevant function types .A→ B22 and the universe Prop of definitionally proof-irrelevant
propositions23. For rewrite rules with irrelevant parts in their patterns matching should
never fail because this would mean a supposedly irrelevant term is not actually irrelevant.
However, it should still be allowed to bind a variable in an irrelevant position, since we might
want to use that variable in (irrelevant positions of) the right-hand side.24 This means in
irrelevant positions we allow:
1. pattern variables x ȳ where ȳ are all the bound variables in scope, and
2. arbitrary terms u that do not bind any variables.

Both of these will always match any given term: the former because ȳ is required to consist
of all bound variables, and the latter because two irrelevant terms are always considered
equal by the conversion checker. However, only the former can bind a variable.

Together with the ability to have non-linear patterns, this allows us to have rewrite
rules such as transportR− refl : transportR P refl x ≡ x where transportR : (P : A→ Set`)→
x
.= y → P x → P y and x .= y is the equality type in Prop. The constructor refl here is

irrelevant, so this rule does not actually match against the constructor refl. Instead, Agda
checks that the two arguments x and y are definitionally equal, and applies the rewrite rule
if this is the case.

4.5 Universe level polymorphism
Universe level polymorphism allows Agda programmers to write definitions that are poly-
morphic in the universe level of a type parameter. Since the type Level of universe levels is a
first-class type in Agda, it interacts natively with rewrite rules: patterns can bind variables
of type Level just as any other type. This allows us for example to define rewrite rules such
as map− id that work on level-polymorphic lists.

The type Level supports two operations lsuc : Level → Level and _ t_ : Level →
Level→ Level. These operations have a complex equational structure: _t_ is associative,
commutative, and idempotent, and lsuc distributes over _t_, just to name a few of the laws.
This causes trouble when a rewrite rule matches against one of these symbols: how should it
determine whether a given level matches a t b when _t_ is commutative?25 For this reason
it is not allowed to have rewrite rules that match against lsuc or _t_.

This restriction on patterns of type Level seems reasonable enough, but it is often not
satisfied by rewrite rules that match on function types – like the cong−Π rule we used in
the encoding of observational type theory (Sect. 2.6). The problem is that if A : Set`1 and
B : Set`2 , then the function type (x : A) → B has type Set`1 t `2 , so there is no sensible
position to bind the variables `1 and `2.

To allow rewrite rules such as cong−Π, we need to find a different position where these
variables of type Level can be bound. In the internal syntax of Agda, function types
(x : A)→ B are annotated with the sorts of A and B. So the “real” function type of Agda

22 https://agda.readthedocs.io/en/v2.6.1/language/irrelevance.html
23 https://agda.readthedocs.io/en/v2.6.1/language/prop.html
24 See https://github.com/agda/agda/issues/2300.
25 Issue #2090 (https://github.com/agda/agda/issues/2090) and issue #2299 (https://github.com/

agda/agda/issues/2299) show some of the things that would go wrong.

https://agda.readthedocs.io/en/v2.6.1/language/irrelevance.html
https://agda.readthedocs.io/en/v2.6.1/language/prop.html
https://github.com/agda/agda/issues/2300
https://github.com/agda/agda/issues/2090
https://github.com/agda/agda/issues/2299
https://github.com/agda/agda/issues/2299

J. Cockx 2:19

is of the form (x : A : Set`1) → (B : Set`2). This means that if we allow rewrite rules to
bind pattern variables in these hidden annotations, we are saved.26 The matching rule for
function types now becomes:

Γ; Φ ` [A : Set `1 // p]⇒ σ1; Ψ1 Γ; Φ ` [`1 : Level // q]⇒ σ2; Ψ2
Γ; Φ(x : A) ` [B : Set `2 // r]⇒ σ3; Ψ3 Γ; Φ ` [`2 : Level // s]⇒ σ4; Ψ4

Γ; Φ ` [(x : A : Set `1)→ (B : Set `2) // (x : p : Setq)→ (r : Sets)]
⇒ (σ1] σ2] σ3] σ4); (Ψ1 ∪Ψ2 ∪Ψ3 ∪Ψ4)

(10)

Thanks to this rule, also the universe-polymorphic version of the rewrite rules in Sect. 2.6
are accepted by Agda.

4.6 Metavariables and constraint solving
To automatically fill in the values of implicit arguments, Agda inserts metavariables as their
placeholders. These metavariables are then solved during typechecking by the constraint
solver. A full description of Agda’s constraint solver is out of the scope of this paper, but let
me discuss the most important ways it is impacted by rewrite rules.

4.6.1 Blocking tags
The constraint solver needs to know when a reduction is blocked on a particular metavariable.
Usually it is possible to point out a single metavariable, but this is no longer the case when
rewrite rules are involved:

With overlapping rewrite rules, reduction can be blocked on a set of metavariables. For
example, if we try to reduce the expression X + Y where X and Y are metavariables of
type Nat and _+_ is defined with the rewrite rules from Sect. 2.1, then this expression
might reduce further when either X or Y is instantiated to a constructor. So a postponed
constraint involving this expression has to be woken up when either metavariable is
instantiated.
For higher-order matching, matching checks whether a particular variable occurs freely
in the body of a lambda or pi. When metavariables are involved, a variable occurrence
may be flexible: whether or not the variable occurs depends on the instantiation of a
particular metavariable27. In this case reduction is blocked on the set of all metavariables
with potentially unbound variables in their arguments.
When a conditional rewrite rule is blocked on the conversion check because of an unsolved
metavariable, reduction can be blocked on the metavariable that is preventing the
conversion check from succeeding.2829

Currently the Agda implementation uses only an approximation of the set of metavariables
it encounters, i.e. only the first metavariable encountered. This is harmless because the
current implementation of Agda will eventually try again to solve all postponed constraints.
If in the future Agda would be changed to be more careful in when it decided to wake
up postponed constraints, a more precise tracking of blocking metavariables would also be
desirable.

26 See also https://github.com/agda/agda/issues/3971.
27 https://github.com/agda/agda/issues/1663
28 https://github.com/agda/agda/issues/1987
29 https://github.com/agda/agda/issues/2302

TYPES 2019

https://github.com/agda/agda/issues/3971
https://github.com/agda/agda/issues/1663
https://github.com/agda/agda/issues/1987
https://github.com/agda/agda/issues/2302

2:20 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

4.6.2 Pruning and constructor-like symbols
When adding new rewrite rules, we also keep track of what symbols are constructor-like.
This is important for the pruning phase of the constraint solver. For example, let us consider
a constraint X ?= Y (f x). Since the metavariable X does not depend on the variable x, the
constraint solver attempts to prune the dependency of Y on x. If f is a regular postulate
without any rewrite rules, there is no way that Y could depend on f x without also depending
on x, so the dependency of Y on its first argument is pruned away. However, if there is a
rewrite rule where f plays the role of a constructor – say a rule g (f y) −→ true – then the
assignment X := true and Y := λy. g y is a valid solution to the constraint where Y does
depend on its argument, so it should not be pruned away. In general, an argument should
not be pruned if the head symbol is constructor-like, i.e. if there is at least one rewrite rule
that matches against the symbol.

5 Related work

The idea of extending dependent type theory with rewrite rules is not new and has been
studied from many different angles. The groundwork of all this work was laid in 1988 by
Breazu-Tannen [29], who extended simply typed lambda calculus with first-order and higher-
order rewrite rules (but not higher-order matching). In what follows, I give an overview
of some important milestones, focussing on languages that combine dependent types and
higher-order rewrite rules.

The idea of extending dependent type theory with rewrite rules originates in the work
by Barbanera, Fernandez, and Geuvers [5]. They present the algebraic λ-cube, an extension
of the λ-cube with algebraic rewrite rules, and study conditions for strong normalization.
Since the left-hand sides of rewrite rules must be algebraic terms, this work does not include
higher-order matching.

Several lines of work investigate possible ways to integrate rewrite rules into the Calculus
of Constructions, with or without inductive datatypes:

Walukiewicz-Chrza̧szcz [31] extends the calculus of constructions with inductive types and
rewrite rules, and gives a termination criterion based on HORPO (higher-order recursive
path ordering). Later, Walukiewicz-Chrza̧szcz and Chrza̧szcz also discuss the question of
completeness and consistency of this system [32], and consider the addition of rewrite
rules to the Coq proof assistant [12].
The Open Calculus of Constructions [26, 27] integrates features from the Calculus of
Constructions (CoC) with conditional rewrite rules, as well as other kinds of equational
reasoning. It provides many of the same benefits as our system and is even more powerful
when it comes to conditional rewrite rules. However it again does not provide higher-order
matching or η-equality. It has a prototype implementation using the Maude language [13].
The Calculus of Algebraic Constructions (CAC) [7] is another extension of the Calculus
of Constructions with functions and predicates defined by higher-order rewrite rules.
Compared to our implementation of rewrite rules, CAC is more limited in that it does
not allow higher-order matching, but it provides criteria for checking subject reduction
and strong normalization of the rewrite rules.

Coq modulo theory (CoqMT) [28] and the newer version CoqMTU [6, 18] extend the
Coq proof assistant with a decidable theory. The equational theory in CoqMTU must be
first-order, but can include equational rules such as commutativity, which cannot be expressed

J. Cockx 2:21

as rewrite rules. CoqMTU also provides strong guarantees for confluence, subject reduction,
strong normalization, and consistency of the theory. Unfortunately, the implementation of
CoqMTU30 has not been updated to work with the current version of Coq.

Our extension of dependent type theory with rewrite rules resembles in many ways the
Dedukti system [15, 24, 10, 4]. Both systems support dependent types and higher-order
non-linear rewrite rules. There are however some important differences:

Dedukti was built up from the ground based on rewrite rules. In contrast, we start from
a general dependently typed language (Agda) and extend it with rewrite rules.
Dedukti is based on the Logical Framework (LF) [17], while our language is build from
Martin-Löf’s intuitionistic type theory [19], which includes several features not present in
LF such as sigma types, W-types, identity types, and a universe hierarchy.
Dedukti has universes à la Tarski: a universe is a set of codes that can be interpreted
as types by an interpretation function. In contrast, Agda uses universes à la Russell:
elements of a universe are types without need of an interpretation function.
Dedukti uses an untyped conversion algorithm, while Agda uses a typed one. Hence we
can support η-equality for functions and record types, which is not possible (directly) in
Dedukti.
Dedukti provides external tools for checking confluence and termination of the rewrite
system given by the user. Applying the same strategy to rewrite rules in Agda would
be difficult because several features cannot be translated into standard rewrite systems,
e.g. copattern matching, eta-equality, irrelevance, and universe levels. All of these features
introduce additional definitional equalities that should be taken into account when
computing critical pairs. A confluence checker that does not would not detect all critical
pairs and thus only be of limited use. Instead, we are currently working on integrating a
confluence checker into Agda directly.31

The Zombie language [25] is another dependently typed language where definitional
equality can be extended with user-provided equations that are applied automatically by
the typechecker. Instead of rewrite rules, Zombie computes the congruence closure of the
given equations and uses this during conversion checking. An important difference with our
approach is that the definitional equality in Zombie does not include β-equality, which makes
it easier to extend it in other directions. The congruence closure algorithm used by Zombie
is untyped, which means it cannot handle η-equality of functions or records. It also does not
include higher-order matching.

Our treatment of rewrite rules in parametrized modules is very similar to the one given
by Chrza̧szcz [11]. The main difference is that Chrza̧szcz considers modules parametrized by
other modules, while in Agda modules are parametrized by term variables. So our system is
a bit simpler since we cannot have rewrite rules as parameters.

6 Future work

Safe(r) rewrite rules

This paper is about how to add rewrite rules to Agda or similar languages. By their design
rewrite rules are a very unsafe feature of Agda. Compared to using postulate, rewrite rules
by themselves do not break logical soundness of the theory, since it can only be used to turn

30 https://github.com/strub/coqmt
31The development version of Agda already includes an experimental flag --confluence-check, checking
local confluence of rewrite rules.

TYPES 2019

https://github.com/strub/coqmt

2:22 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

propositional equalities into definitional ones. Logical consistency of the system thus follows
from the consistency of extensional type theory. While several of our examples do introduce
equalities that were previously unprovable (specifically higher inductive types, quotient types,
exceptions, and observational equality), they do so by first explicitly postulating the required
propositional equality and then registering it as a rewrite rule. Hence as long as the postulates
preserve logical soundness, we can trust that turning them into rewrite rules does not break
soundness either.

On the other hand, rewrite rules can break core assumptions of Agda such as confluence
of reduction and even type preservation. So using rewrite rules is like building your own type
theory, which means you have to do your own meta-theory to make sure everything is safe.
Ideally, Agda would be able to detect if a given set of rewrite rules is “safe”, in the sense
that they do not break the usual properties of Agda programs such as subject reduction and
decidable typechecking. The development version of Agda 2.6.1 includes an experimental flag
--confluence-check, which checks the local confluence of the declared rewrite rules. We are
currently working to improve this confluence checker to also enforce global confluence of the
rewrite rules. This would allow us to prove injectivity of Π types, and hence subject reduction
of our type theory. For checking termination – and hence decidability of typechecking – we
could make use of the dependency pairs criterion as done by SizeChangeTool for Dedukti [9].

Local rewrite rules

When programming in a dependently typed language, we rely on terms computing to their
values. However, this fails when we work with abstract values (e.g. module parameters):
until they are instantiated, they are opaque symbols without any computational behaviour.
This actively encourages users to work with concrete values and discourages abstraction.

To improve this situation, we could allow local rewrite rules on module parameters to
be added to the context. For example, we could parametrize a module over a value ∅ and
a binary operation _ ·_ together with rewrite rules ∅ · y −→ y and x · ∅ −→ x. When
instantiating the module parameters, we have to check that that the given instantiation of
the parameters satisfies each of the rewrite rules as a definitional equality.

Having local rewrite rules greatly complicates checking of confluence and termination.
So the future will have to point out if there is a reasonable way to allow local rewrite rules
while maintaining subject reduction of the language.

Custom η rules

Rewrite rules allow us to add custom β rules to our type theory, but it would be useful to
also allow custom η rules. This would for example allow us to add η-rules for datatypes such
as Vec, making any vector of length zero definitionally equal to [].

Where rewrite rules allow extending the reduction relation of the theory, custom η

rules would allow extending the conversion checker directly. Since conversion in Agda is
type-directed, it would make sense to allow custom η rules that match against the type of a
constraint. Thus much of the matching algorithm in this paper could be reused for η rules.

7 Conclusion

This paper documents the process of integrating user-defined rewrite rules into a general-
purpose dependently typed language, and all the weird interactions that I encountered along
the way. Rewrite rules allow you to extend the power of a dependently typed language on a

J. Cockx 2:23

much deeper level than normally allowed. They can be used as a convenient feature to make
more terms typecheck without using explicit rewrite statements, and they allow advanced
users to experiment with new evaluation rules, without actually modifying the typechecker.
If you are an Agda user, I hope reading this paper has given you a deeper understanding of
rewrite rules and allows you to harness their power responsibly. And if you are implementing
your own dependently typed language, I hope you consider adding rewrite rules as a way to
make it both easier to use and more extensible.

References
1 Agda development team. Agda 2.6.1 documentation, 2020. URL: http://agda.readthedocs.

io/en/v2.6.1/.
2 Guillaume Allais, Conor McBride, and Pierre Boutillier. New equations for neutral terms: a

sound and complete decision procedure, formalized. In Stephanie Weirich, editor, Proceedings
of the 2013 ACM SIGPLAN workshop on Dependently-typed programming, DTP@ICFP
2013, Boston, Massachusetts, USA, September 24, 2013, pages 13–24. ACM, 2013. doi:
10.1145/2502409.2502411.

3 Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equality, now!
In Proceedings of the 2007 workshop on Programming languages meets program verification,
pages 57–68. ACM, 2007.

4 Ali Assaf and Guillaume Burel. Translating HOL to dedukti. In Cezary Kaliszyk and Andrei
Paskevich, editors, Proceedings Fourth Workshop on Proof eXchange for Theorem Proving,
PxTP 2015, Berlin, Germany, August 2-3, 2015., volume 186 of EPTCS, pages 74–88, 2015.
doi:10.4204/EPTCS.186.8.

5 Franco Barbanera, Maribel Fernández, and Herman Geuvers. Modularity of strong normal-
ization in the algebraic-lambda-cube. Journal of Functional Programming, 7(6):613–660,
1997.

6 Bruno Barras, Jean-Pierre Jouannaud, Pierre-Yves Strub, and Qian Wang. CoQMTU: A
higher-order type theory with a predicative hierarchy of universes parametrized by a decidable
first-order theory. In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science, LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 143–151. IEEE
Computer Society, 2011. doi:10.1109/LICS.2011.37.

7 Frédéric Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical
Structures in Computer Science, 15(1):37–92, 2005. doi:10.1017/S0960129504004426.

8 Frédéric Blanqui. Type safety of rewriting rules in dependent types. In At the 26th Internationan
Conference on Types for Proofs and Programs (TYPES 2020), 2020.

9 Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant. Dependency pairs termination
in dependent type theory modulo rewriting. In Herman Geuvers, editor, 4th International
Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-
30, 2019, Dortmund, Germany., volume 131 of LIPIcs, pages 9:1–9:21. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.FSCD.2019.9.

10 Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The λπ-calculus modulo
as a universal proof language. In the Second International Workshop on Proof Exchange for
Theorem Proving (PxTP 2012), 2012.

11 Jacek Chrzaszcz. Modules in Coq are and will be correct. In Stefano Berardi, Mario
Coppo, and Ferruccio Damiani, editors, Types for Proofs and Programs, International
Workshop, TYPES 2003, Torino, Italy, April 30 - May 4, 2003, Revised Selected Pa-
pers, volume 3085 of Lecture Notes in Computer Science, pages 130–146. Springer,
2003. URL: http://springerlink.metapress.com/openurl.asp?genre=article&issn=
0302-9743&volume=3085&spage=130.

TYPES 2019

http://agda.readthedocs.io/en/v2.6.1/
http://agda.readthedocs.io/en/v2.6.1/
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.4204/EPTCS.186.8
https://doi.org/10.1109/LICS.2011.37
https://doi.org/10.1017/S0960129504004426
https://doi.org/10.4230/LIPIcs.FSCD.2019.9
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3085&spage=130
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3085&spage=130

2:24 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

12 Jacek Chrzaszcz and Daria Walukiewicz-Chrzaszcz. Towards rewriting in Coq. In Hubert
Comon-Lundh, Claude Kirchner, and Hélène Kirchner, editors, Rewriting, Computation and
Proof, Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday,
volume 4600 of Lecture Notes in Computer Science, pages 113–131. Springer, 2007. doi:
10.1007/978-3-540-73147-4_6.

13 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Jose F. Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science, 285(2):187–243, 2002. doi:10.1016/S0304-3975(01)00359-0.

14 Jesper Cockx, Frank Piessens, and Dominique Devriese. Overlapping and order-independent
patterns - definitional equality for all. In Zhong Shao, editor, Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Computer Science,
pages 87–106. Springer, 2014. doi:10.1007/978-3-642-54833-8_6.

15 Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi and Applications,
8th International Conference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings,
volume 4583 of Lecture Notes in Computer Science, pages 102–117. Springer, 2007. doi:
10.1007/978-3-540-73228-0_9.

16 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional proof-
irrelevance without K. PACMPL, 3(POPL):3:1–3:28, 2019. doi:10.1145/3290316.

17 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, 1993. doi:10.1145/138027.138060.

18 Jean-Pierre Jouannaud and Pierre-Yves Strub. Coq without type casts: A complete proof of
Coq modulo theory. In Thomas Eiter and David Sands, editors, LPAR-21, 21st International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017, volume 46 of EPiC Series in Computing, pages 474–489. EasyChair, 2017.
URL: http://www.easychair.org/publications/paper/340342.

19 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in proof theory. Bibliopolis,
1984.

20 Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theor-
etical Computer Science, 192(1):3–29, 1998. doi:10.1016/S0304-3975(97)00143-6.

21 Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. J. Log. Comput., 1(4):497–536, 1991. doi:10.1093/logcom/1.4.497.

22 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden, September 2007.

23 Pierre-Marie Pédrot and Nicolas Tabareau. Failure is not an option - an exceptional type
theory. In Amal Ahmed, editor, Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, Lecture Notes in Computer Science, pages 245–271. Springer, 2018. doi:10.1007/
978-3-319-89884-1_9.

24 Ronan Saillard. Typechecking in the lambda-Pi-Calculus Modulo: Theory and Practice. PhD
thesis, MINES ParisTech, 2015.

25 Vilhelm Sjöberg and Stephanie Weirich. Programming up to congruence. In Sriram K.
Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 369–382. ACM, 2015. doi:10.1145/2676726.2676974.

26 Mark-Oliver Stehr. The open calculus of constructions (part i): An equational type theory with
dependent types for programming, specification, and interactive theorem proving. Fundamenta
Informaticae, 68(1-2):131–174, 2005.

https://doi.org/10.1007/978-3-540-73147-4_6
https://doi.org/10.1007/978-3-540-73147-4_6
https://doi.org/10.1016/S0304-3975(01)00359-0
https://doi.org/10.1007/978-3-642-54833-8_6
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1145/3290316
https://doi.org/10.1145/138027.138060
http://www.easychair.org/publications/paper/340342
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.1145/2676726.2676974

J. Cockx 2:25

27 Mark-Oliver Stehr. The open calculus of constructions (part ii): An equational type theory with
dependent types for programming, specification, and interactive theorem proving. Fundamenta
Informaticae, 68(3):249–288, 2005.

28 Pierre-Yves Strub. Coq Modulo Theory. In Anuj Dawar and Helmut Veith, editors, Computer
Science Logic, 24th International Workshop, CSL 2010, 19th Annual Conference of the EACSL,
Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6247 of Lecture Notes in
Computer Science, pages 529–543. Springer, 2010. doi:10.1007/978-3-642-15205-4_40.

29 Val Tannen. Combining algebra and higher-order types. In Proceedings, Third Annual
Symposium on Logic in Computer Science, 5-8 July 1988, Edinburgh, Scotland, UK, pages
82–90. IEEE Computer Society, 1988.

30 The Univalent Foundations Program. Homotopy Type Theory - Univalent Foundations of
Mathematics: The Univalent Foundations Program. Institute for Advanced Study, 2013. URL:
https://homotopytypetheory.org/book/.

31 Daria Walukiewicz-Chrzaszcz. Termination of rewriting in the calculus of constructions.
Journal of Functional Programming, 13(2):339–414, 2003. doi:10.1017/S0956796802004641.

32 Daria Walukiewicz-Chrzaszcz and Jacek Chrzaszcz. Consistency and completeness of rewriting
in the calculus of constructions. In Ulrich Furbach and Natarajan Shankar, editors, Automated
Reasoning, Third International Joint Conference, IJCAR 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings, volume 4130 of Lecture Notes in Computer Science, pages 619–631.
Springer, 2006. doi:10.1007/11814771_50.

A Complete rules of type theory with user-defined rewrite rules

A.1 Syntax
Terms. u, v, w,A,B,C, p, q

u, v, w,A,B,C, p, q ::= x ū (variable applied to zero or more arguments)
| f ū (function symbol applied to zero or more arguments)
| λx. u (lambda abstraction)
| (x : A)→ B (dependent function type)
| Seti (ith universe)

Substitutions. Substitutions σ are lists of variable-term pairs [u1 / x1, . . . , un / xn]. Ap-
plication of a substitution to a term uσ is defined as usual, avoiding variable capture by
α-renaming where necessary.

Application. Application u v is a partial operation on terms and is defined as follows:

(x ū) v = x (ū; v)
(f ū) v = f (ū; v)

(λx. u) v = u[v / x]

Contexts. Γ,∆,Φ,Ξ

Γ,∆,Φ,Ξ ::= · (empty context)
| Γ(x : A) (context extension)

TYPES 2019

https://doi.org/10.1007/978-3-642-15205-4_40
https://homotopytypetheory.org/book/
https://doi.org/10.1017/S0956796802004641
https://doi.org/10.1007/11814771_50

2:26 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

Declarations. d

d ::= f : A (function symbol)
| ∀∆. f p̄ : A −→ v (rewrite rule)

A.2 Typing rules
We assume a global signature Σ containing declarations and rewrite rules, which is implicit
in all the judgements.

Typing. Γ ` u : A

x : A ∈ Γ
Γ ` x : A

f : A ∈ Σ
Γ ` f : A

Γ(x : A) ` u : B
Γ ` λx. u : (x : A)→ B

Γ ` u : (x : A)→ B Γ ` v : A
Γ ` u v : B[v / x]

Γ ` A : Seti Γ(x : A) ` B : Setj

Γ ` (x : A)→ B : Setitj Seti : Set1+i

Γ ` A = B : Seti Γ ` u : A
Γ ` u : B

Conversion. Γ ` u = v : A

Γ ` u −→ u′ Γ ` u′ = v : A
Γ ` u = v : A

Γ ` v −→ v′ Γ ` u = v′ : A
Γ ` u = v : A

x : A ∈ Γ
Γ ` x = x : A

f : A ∈ Σ
Γ ` f = f : A

Γ(x : A) ` u x = v x : B
Γ ` u = v : (x : A)→ B

Γ ` u1 = u2 : (x : A)→ B Γ ` v1 = v2 : A
Γ ` u1 v1 = u2 v2 : B[v1 / x]

Γ ` A1 = A2 : Seti Γ(x : A1) ` B1 = B2 : Setj

Γ ` (x : A1)→ B1 = (x : A2)→ B2 : Setitj

Reduction. Γ ` u −→ v

f : B ∈ Σ (∀Ξ.f p̄ : C −→ v) ∈ Σ
ΓΞ; · ` [(• : B) ū // p̄]⇒ σ; Ψ ∀(Φ ` v ?= p : A) ∈ Ψ. ΓΦ ` v = pσ : A

Γ ` f ū −→ vσ

Matching. Γ; Φ ` [u : A// p]⇒ σ; Ψ

x : B ∈ Γ
Γ; Φ ` [u : A//x]⇒ [u /x]; ∅ Γ; Φ ` [u : A// v]⇒ []; {Φ ` u ?= v : A}

ΓΦ ` u −→∗ f v̄ f : B ∈ Σ Γ; Φ ` [(• : B) v̄ // p̄]⇒ σ; Ψ
Γ; Φ ` [u : A// f p̄]⇒ σ; Ψ

ΓΦ ` u −→∗ x v̄ x : B ∈ Φ Γ; Φ ` [(• : B) v̄ // p̄]⇒ σ; Ψ
Γ; Φ ` [u : A//x p̄]⇒ σ; Ψ

ΓΦ ` A −→∗ (x : B)→ C Γ; Φ(x : B) ` [u x : C // p x]⇒ σ; Ψ
Γ; Φ ` [u : A// p]⇒ σ; Ψ

ΓΦ ` A −→∗ (x : B)→ C Γ; Φ ` [B // p]⇒ σ1; Ψ1 Γ; Φ(x : B) ` [C // q]⇒ σ2; Ψ2

Γ; Φ ` [A : D// (x : p)→ q]⇒ σ1] σ2; Ψ1 ∪Ψ2

J. Cockx 2:27

Spine matching. Γ; Φ ` [(• : A) ū // p̄]⇒ σ; Ψ

Γ; Φ ` [(• : A) · // ·]⇒ []; ∅

ΓΦ ` A −→∗ (x : B)→ C Γ; Φ ` [u : B // p]⇒ σ1; Ψ1
Γ; Φ ` [(• : C[u /x]) ū // p̄]⇒ σ2; Ψ2

Γ; Φ ` [(• : A) u; ū // p; p̄]⇒ σ1] σ2; Ψ1 ∪Ψ2

A.3 Checking declarations
A declaration of a function symbol f : A is valid if Γ ` A : Seti. A declaration of a rewrite
rule ∀∆. f p̄ : A −→ v is valid if:

Each variable in ∆ occurs at least once in a pattern position in p̄.
∆ ` f p : A and ∆ ` v : A
There is no term w such that ∆ ` f p̄ −→ w.

TYPES 2019

	Introduction
	Using rewrite rules
	Overlapping pattern matching
	New equations for neutral terms
	Higher inductive types
	Quotient types
	Exceptional type theory
	Observational equality

	Type theory with user-defined rewrite rules
	Syntax
	Declarations
	Reduction and matching
	Higher-order matching
	Eta equality
	Non-linearity and conditional rewriting

	Interaction with other features
	Eta equality for records
	Datatypes and constructors
	Parametrized modules and ``where'' blocks
	Irrelevance and Prop
	Universe level polymorphism
	Metavariables and constraint solving
	Blocking tags
	Pruning and constructor-like symbols

	Related work
	Future work
	Conclusion
	Complete rules of type theory with user-defined rewrite rules
	Syntax
	Typing rules
	Checking declarations

