

Delft University of Technology

Functional self-awareness and metacontrol for underwater robot autonomy

Aguado, Esther; Milosevic, Zorana; Hernández, Carlos; Sanz, Ricardo; Garzon, Mario; Bozhinoski, Darko;
Rossi, Claudio
DOI
10.3390/s21041210
Publication date
2021
Document Version
Final published version
Published in
Sensors (Switzerland)

Citation (APA)
Aguado, E., Milosevic, Z., Hernández, C., Sanz, R., Garzon, M., Bozhinoski, D., & Rossi, C. (2021).
Functional self-awareness and metacontrol for underwater robot autonomy. Sensors (Switzerland), 21(4),
Article 1210. https://doi.org/10.3390/s21041210

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/s21041210
https://doi.org/10.3390/s21041210

sensors

Article

Functional Self-Awareness and Metacontrol for Underwater
Robot Autonomy

Esther Aguado 1,* , Zorana Milosevic 1,2 , Carlos Hernández 3 , Ricardo Sanz 1 , Mario Garzon 3 ,
Darko Bozhinoski 3 and Claudio Rossi 1

����������
�������

Citation: Aguado, E.; Milosevic, Z.;

Hernández, C.; Sanz, R.; Garzon, M.;

Bozhinoski, D.; Rossi, C. Functional

Self-Awareness and Metacontrol for

Underwater Robot Autonomy.

Sensors 2021, 21, 1210. https://doi.

org/10.3390/s21041210

Academic Editor: Enrico Meli

Received: 31 December 2020

Accepted: 5 February 2021

Published: 9 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Automation and Robotics UPM-CSIC, Universidad Politécnica de Madrid, 28006 Madrid, Spain;
Zorana.Milosevic@upm.es (Z.M.); Ricardo.Sanz@upm.es (R.S.); Claudio.Rossi@upm.es (C.R.)

2 Resources Computing International Ltd, Matlock DE4 5JA, UK
3 Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The Netherlands;

C.H.Corbato@tudelft.nl (C.H.); M.A.GarzonOviedo@tudelft.nl (M.G.); D.Bozhinoski@tudelft.nl (D.B.)
* Correspondence: e.aguado@upm.es

Abstract: Autonomous systems are expected to maintain a dependable operation without human
intervention. They are intended to fulfill the mission for which they were deployed, properly handling
the disturbances that may affect them. Underwater robots, such as the UX-1 mine explorer developed
in the UNEXMIN project, are paradigmatic examples of this need. Underwater robots are affected
by both external and internal disturbances that hamper their capability for autonomous operation.
Long-term autonomy requires not only the capability of perceiving and properly acting in open
environments but also a sufficient degree of robustness and resilience so as to maintain and recover
the operational functionality of the system when disturbed by unexpected events. In this article,
we analyze the operational conditions for autonomous underwater robots with a special emphasis
on the UX-1 miner explorer. We then describe a knowledge-based self-awareness and metacontrol
subsystem that enables the autonomous reconfiguration of the robot subsystems to keep mission-
oriented capability. This resilience augmenting solution is based on the deep modeling of the
functional architecture of the autonomous robot in combination with ontological reasoning to allow
self-diagnosis and reconfiguration during operation. This mechanism can transparently use robot
functional redundancy to ensure mission satisfaction, even in the presence of faults.

Keywords: autonomy; resilience; self-awareness; metacontrol; rendundancy; ontology

Content

1 Introduction · 2
2 State of the Art · 3

2.1 Flexible Approach to Robust Autonomy in UUVs · · · · · · · · · · · · · · · · · 3
2.2 Resilient Robotics· 4
2.3 Fault-Tolerance and Adaptation · 5
2.4 Self-X for Robots · 6

3 The UX-1 Robot: A Flooded Mine Explorer · 6
4 A Metacontrol Architecture Using Self-Knowledge · 9

4.1 TOMASys: Metacontrol Framework · 10
4.2 Ontological Reasoning and Metacontrol · 11

5 UX-1 Self-Model and Metacontrol · 12
5.1 UX-1 Ontological Model · 12
5.2 Ontological Reasoning for UX-1 · 13
5.3 Reconfiguration in UX-1 · 15

Sensors 2021, 21, 1210. https://doi.org/10.3390/s21041210 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7860-9030
https://orcid.org/0000-0002-8701-5701
https://orcid.org/0000-0001-6094-4917
https://orcid.org/0000-0002-2381-933X
https://orcid.org/0000-0001-6672-4827
https://orcid.org/0000-0002-6853-0310
https://orcid.org/0000-0002-8740-2453
https://doi.org/10.3390/s21041210
https://doi.org/10.3390/s21041210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041210
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1210?type=check_update&version=1

Sensors 2021, 21, 1210 2 of 28

6 Experimental Results · 17
7 Discussion · 24

7.1 Assessment of Present State · 24
7.2 Future Work · 25

8 Concluding Remarks · 25
References · 26

1. Introduction

Unmanned Underwater Vehicles (UUV), also called Autonomous Underwater Robots
(AUR) and Autonomous Underwater Vehicles (AUV), perform a variety of operations
in situations that are far from being fully controlled. They perform in unstructured and
hazardous environments with high uncertainty and, at the same time, they shall operate
robustly because the possibility of human intervention to solve occurring problems is
minimal in deep waters.

The most widespread applications of these robots are exploratory in nature, moving
in partially unknown environments to perform reconnaissance, inspection or mapping
tasks of both the environment and target objects of interest. These are common in the
scientific and military domains, as well as in industries such as mining, oil and gas that
commonly use UUVs in the exploitation activities of underwater resources or operation
and maintenance of submerged elements.

These robots share control architectures with other autonomous mobile robots like
Unmanned Ground Vehicles (UGV) or Unmanned Aerial Vehicles (UAV), because the
essence of their activities are the same: motion, sensing, localization, mapping, navigation,
propulsion or control. However, due to the specifics of each environment, the concrete sys-
tem architectures shall put some emphasis on specific aspects that are of special relevance in
each robot, environment and task (e.g., wind disturbance in UAVs, moving pedestrians in
UGVs and pressure handling in UUVs). Of all the three environments, the underwater one
is of particular difficulty because the medium—water—poses major difficulties especially
concerning visibility (both optical and radio) and physical affectation (esp. pressure and
humidity). This derives in special requirements for UUVs to handle these conditions.

Robot autonomy requires capabilities for performing a task without help, but it also
requires capabilities for enduring disturbances when performing a task. Disturbances are
common trade in the underwater environment and may come both from the environment
and from the robot itself. UUVs, as any technical system, are susceptible to failure in any
subsystem or component. All the subsystems, —propulsion, communications, sensors,
power supply, mechanical elements, among several others—are prone to failure due to
the harsh conditions where they operate. This implies that these robots, when deployed
in real environments, have very concrete operational requirements that specifically address
these extreme operational conditions and failure possibilities. Besides the usual operational
requirements that cover the mission specification and the infrastructure needed for the
operation; environmental conditions such as pressure, temperature, humidity, or radiation
must be taken into account. Also, redundancy and fault-handling techniques are commonly
set as operational requirements to extend the life cycle of the artifact. In field applications
of UUVs it is crucial to deploy specific system recovery functionalities, capable of keeping
the robot operating in the presence of disturbances that may produce task disruption,
component faults or even physical damage. Mission continuity is critical to complete the
task –fully or partially– or, at least, to be able to return to the robot base.

The UX-1 UUV [1], is an autonomous explorer for submerged mines [2]. It serves as a
suitable platform to deploy and test self-awareness and self-control concepts targeted at
augmenting its autonomy. In the UX-1 we transcend the classic fault-tolerance capabilities
to deploy general self-awareness and reconfiguration capabilities to increase the reliability
of the system by improving its adaptive resilience. The objective of our research is pro-
ducing a robot able to recover after damage, using and adapting redundant or alternative
parts of the system to keep performing the same task in complete or diminished form. This

Sensors 2021, 21, 1210 3 of 28

approach, departs from the concrete, ad-hoc component redundancies that are commonly
used, to a generic, knowledge-based, mission-level strategy for system adaptation.

The core capability of this fault-tolerant controllers is achieved through the introduction
of a knowledge-based metacontroller. Just as a traditional controller has to maintain a variable
value close to a certain reference set-point, the metacontroller targets as reference the specified
functionality of the system. In case the system deviates from the functional reference, a system
reconfiguration is in need. A reasoner exploits a metamodel-driven knowledge base, specific
for the robot and its mission, to produce a new suitable configuration.

However, several difficulties must be addressed to reach a system capable to evolve
according to necessities during the lifetime of the application. This may imply a human-in-
the-loop architecture in which engineer knowledge is used to evolve the operative agent.
As the system is operating, metrics such as accuracy and efficiency need to be monitored
to detect to what extent goals are being reached. Moreover, the reliability of the run-time
knowledge must be evaluated. The implementation of these capabilities represents a
challenge to engineers. This challenge, however, addresses the problem of increasing the
autonomy levels of robotic systems.

This paper presents four contributions to augment robots’ autonomy levels. (1) The
use of self-awareness and diagnosis techniques to evaluate the robot performance both at
module level and at system level, (2) the use of ontological reasoning to trace fault sources,
(3) the production of system design alternatives in real-time, and (4) a proof-of-concept of
these techniques as applied to the UX-1 underwater autonomous robot.

This article is organized as follows: Section 2 summarises the state of the art concerning
autonomy, resiliency and fault-tolerance in UUVs. Section 3 introduces the UX-1 robot
used for a proof-of-concept and its redundant components, key for providing alternatives
to the metacontrol. Section 4 presents metacontrol as a knowledge-based architecture to
take advantage of self-information to be able to adapt to operational requirements. Here,
the TOMASys system realization metamodel is presented as the framework whereupon the
metacontroller is implemented. Section 5 addresses the concrete aspects of the adaptation
experiment described in this article. It specifies the UX-1 subsystems that are subject to
the metacontroller and used to reason about and reconfigure during operation. Section 6
describes the results of the metacontrol experiments with UX-1. Finally, Section 7 discusses
benefits and limitations of the metacontroller as proposed and demonstrated. Future
research lines are also identified. Section 8 presents concluding remarks.

2. State of the Art

The work described in this article addresses the need for autonomous operation of
underwater robots. The following three sections address the core issues as stake in our
work: the importance of a flexible approach for autonomy, the augmentation of resilience
by system adaptation and the importance of self-X for autonomous robots.

2.1. Flexible Approach to Robust Autonomy in UUVs

The system engineering process [3] proceeds from the needs of the final user to the
concrete realization of the system as an aggregate of components that are integrated and
deployed in the operational environment (see Figure 1). This process applies also to the
engineering of an UUV: needs are related to science, war or business and the final UUV
components that compose the deployed system are the thrusters, cameras, comms, etc.

Needs Mission Functions Components

Figure 1. The system engineering flow from the needs of the final user to the concrete realization of the robot system as an
aggregate of components.

Sensors 2021, 21, 1210 4 of 28

The common strategy to achieve system dependability is straightforward: identify
likely disruptions—internal and external—and design, build and deploy system capability
for handling them. One of the most common strategies to handle component fault distur-
bances is the use of component redundancies and a mechanism to use them (e.g., Triple
Modular Redundancy (TMR), or the use of hot/warm spares). Concerning adaptation to
external disruption, the common strategy is the set up of alternative system configurations
and the active selection of them based on situational awareness mechanisms (for example
using sliding mode controllers [4]).

All these methods suffer from the same drawback: they are ad-hoc solutions to very
specific anticipated problems. They have three major issues: (1) they may not effectively
use all the resources of the robot; (2) they may not ensure a correct operation, and (3) they
do not generalize well (i.e., apply to unforeseen circumstances). The mapping situation→
solution is too rigid. A more general and flexible approach to robust autonomy is in need.

2.2. Resilient Robotics

Resilience is the capability to recover from failures to maintain its operation [5]. It rep-
resents the action of returning the system to the point of balance for which it was designed.
This term is often confused with robustness, which is the ability to withstand in presence
of perturbations or damages [6]. Both characteristics are relevant for increasing robot
autonomy, but they handle the problem differently. Whereas resilience constitutes an active
adaptation to keep the robot functioning after a fault, robustness represents a preventive
approach to avoid malfunctioning and keep operation in presence of disturbances. In this
article, we present a strategy to increase systems resilience. We target an architectural
reconfiguration to ensure mission fulfillment.

The use of resilience in machines and dynamical systems is not new. Sun et al. [7]
presents an architecture of the resilient machine that includes a five-layer approach. First,
it requires a redundancy structure, this includes modular redundancy and functional
redundancy. The second-level structure is a management system to decide how the system
configuration changes. The third level is a monitoring system to evaluate the system’s
performance and the state of the components. Later, they define a system to train the
elements to perform a new function. The last step is an actuation system to implement the
new configuration.

The work presented in this article constitutes the validation of a general approach to
applying resilience to a different type of system, in this case, the UX-1 robot. Metacontrol
implements a resilient structure from a system-independent perspective which is then
particularized for each application (see Section 4.1). Metacontrol uses the modular and
functional redundancy to adapt to contingencies, acting as a structure-manager by using
logical reasoners to evaluate if the system requires reconfiguration and select the best
design alternative. An observer monitors each reconfigurable module of the system to
evaluate its functioning. When reconfiguration is required, the metacontroller selects the
most suitable functional alternative and implements them in the system. The novelty of
our approach is the use of ontologies and logical reasoners to perform reconfiguration, as it
constitutes a reusable top-layer for resiliency. The use of ontologies to store all the design
and run-time information of the system is the tool selected for reusability (see Section 5.2).

The problem addressed in the UX-1 case is motion when a thruster is malfunctioning.
This is similar to [8] in which a resilient self-repair control of aircraft rotors is implemented.
Another solution for motion is provided by [9]. There, a resilient design is used to keep
walking when one of the four legs is damaged. This approach uses self-models to gen-
erate alternative gaits to maintain locomotion. Similarly to this article, the metacontrol
approach implemented here uses self-models to recover from damage. Another example
of self-models usage is [10], which employs self-assembly and reconfiguration on mod-
ular robots. In this case, they use the function-context-behavior-principle-state-structure
(FCBPSS) model [11], which is a semantic framework to define the system domain model.

Sensors 2021, 21, 1210 5 of 28

Our metamodel implementation focuses on a general system model framework to govern
the reconfiguration.

2.3. Fault-Tolerance and Adaptation

System fault tolerance is a well-known engineering discipline developed in the domain
of dependable systems [12–14]. However, to properly understand the issues dealt with
in the work described in this article it is necessary to put them in the perspective of a full
systems engineering life-cycle [15] as described in the previous section (see Figure 1).

The domain of robotics use the same class of fault detection and fault tolerance mecha-
nisms [16] as other technical domains. For example Cui et al. [17] describe a self-adaptation
framework to support fault tolerance in fielded mobile robots. Guo et al. [18] have produced
a ROS-based software framework for fault-tolerant mobile robots. Software fault tolerance
and adaptation is a well-developed domain and hence of major value in intelligent robotics.
Concerning more physical aspects, for example, Sarkar et al. [19] describe a system capable
of performing thruster force allocation of an UUV in faulty situations considering thruster
redundancy and their potential saturation. Ni [20] and Ding et al. [21] describe sliding mode
and Motion Prediction Control (MPC) controllers for ad-hoc fault tolerance in UUVs. The
space probes domain has addressed similar issues [22].

Antonelli [23] makes a survey over existing fault-tolerant schemes for UUVs, where
sensor and thruster failure both in software and hardware are successfully handled in
operational conditions. The consideration on most of the Fault Tolerance (FT) schemes are
thruster redundant vehicles with 6 degrees-of-freedom even after the fault. This is also the
scheme followed by the experimental setup of this article.

Usual faults aligned with thruster unavailability are:

• Rotor failure. Zeroing the blade rotation so the thruster stops working. An example of
this failed experiment can be found in [24].

• Thruster blocked. A solid body situated between the propeller blades to the thruster
requires more current, as stated in [25]. In extreme cases, this can be solved by
deactivating the blocked thruster.

• Flooded thruster. If water gets into a thruster, there is an electrical dispersion that
may increase the blade rotation. Again this can trigger an unsafe level of force on the
thrusters that may be handled by deactivating the flooded thruster. This problem is
also addressed in [25].

In these cases, usually the action taken in a fault-tolerant approach consist in zeroing
the reference signals to the faulty thruster. In practice, this consists of the zeroing of the
column corresponding to the broken thruster from the thruster configuration matrix. However,
in performing this operation it must be guaranteed that the resulting matrix satisfy some
constraints: it must be rectangular-enough to allow the UUV control in all the 6 degrees-of-
freedom. This is a mathematically complex problem that only specific set-ups such as the one
reported in [26] have addressed. In this work, we provide some design-criteria to overcome
this mathematical complexity. In our implementation, a further step has been taken as this
matrix adapts to this zeroing action (see Section 5 and Equation (4)).

The use of system engineering and component-based architectures is not novel for
reusable self-adaptable UUVs. As mentioned in [27], innovation, particularly in the marine
robotic context, need not necessarily be developed from scratch but can be built on existing
infrastructures. In this article, reusability is one of the main targets. The aim of our research
is to explore a transversal technology in which some particularities are application depen-
dent but there is a strong core of substantial ideas functional for a variety of systems. In this
field, Gerasimou et al. [28] presents a predefined set of ocean surveillance missions, adap-
tation scenarios, and controller implementations which are integrated into the UNDERSEA
tool, [29]. In [30], the uncertainty of self-adaptive systems is handled through requirement
thresholds and component interactions. Further research on this field has been made in the
RODIN project (Rigorous Open Development Environment for Complex Systems) with
special emphasis on design techniques to develop software-based systems [31].

Sensors 2021, 21, 1210 6 of 28

From the Sifakis [32] perspective, autonomy is characterized by knowledge handling
and adaptation response. The objective is to maintain functionality rather than use certain
techniques. In this field, Zhai et al. [33] presents a reasoner based on the Web Ontology
Language (OWL) and the Semantic Web Rule Language (SWRL) to manage knowledge
with underwater heterogeneous robot during cooperative missions.

In this work we adopt the TOMASys metamodel (see Section 4). TOMASys approach
also uses OWL and SWRL reasoning for managing the use of heterogeneous components
in an UUV. However, TOMASys takes a further step. Zhai et al. [33] uses the reasoner
to define an information model through semantic queries. In our implementation, the
information model is used as a diagnostic tool to trigger the adaptation and reconfiguration
of the robot.

2.4. Self-X for Robots

The technology that we are exploring in this work can be described as Self-X [34]:
using system reflection for any task. In the world of pure software systems this strategy
is commonly named self-* or self-adaptive systems and its origins can be traced back to
IBM Autonomic Computing initiative. However, most of these systems are just simple
controllers for computing systems [35].

Using control loops to address run-time uncertainty is common trade in automatic
control. A meta step beyond simple control is the use of reflective controllers: controllers
that control themselves. The use of reflective closed control loops is not new, but a common,
old strategy in the engineering of adaptive systems [36]. Adaptive controllers have been
used for all kinds of systems—including software systems—to keep them aligned with
run-time changes.

In the work described here we try to go one step further: the control loops use deep
knowledge about (i) the controlled system—the UUV in our case—, (ii) its controller—a ROS-
based robot controller—and (iii) their relation to perform run-time system reorganization
based on a deep understanding of the mission ↔ system relation. To achieve this, the
system must be aware of both the environment and itself (i.e., be self-aware).

3. The UX-1 Robot: A Flooded Mine Explorer

Underwater Robotic Vehicles (URV) are usually divided into two categories, Remotely
Operated Underwater Vehicles (ROV) and Unmanned Underwater Vehicles (UUV). Al-
though UUVs are more restricted in terms of operation and power consumption, they are
more autonomous and maneuverable because of their control capabilities [37,38].

The UX-1 is an UUV developed to explore and map underground flooded mines. The
aim is to provide geological, visual and spatial data of hazardous areas that currently are
expensive and risky to explore. In Europe, there are around 30,000 closed mines with a
considerable amount of mineral raw materials. Many of them were abandoned because
of low commercial revenue or expensive and dangerous exploration [39]. The UX-1 robot
is designed for different applications: open new exploration mines for raw materials,
define more informed drilling plans for intricate tunnels and unknown topologies, improve
geosciences understanding through new data, exploration of dangerous areas such as
nuclear accidents or toxic spills, surveying unstable underwater environments after an
earthquake, etc.

The requirements imposed by these applications have ended in a spherical robot with
a diameter of 0.5 m with high maneuverability capabilities. The UX-1 could not have any
protruding elements that may collide with the intricate underwater deposits. For this
reason, the propulsion manifold is integrated into the hull, an image of the UX-1 prototype
can be found in Figure 2.

Sensors 2021, 21, 1210 7 of 28

Figure 2. The UX-1 prototype during operation in Kaatiala Mine (Finland). Image credits: UNEXMIN,
www.unexmin.eu, (Accesed: 30 December 2020).

When a robot is in operation and suffers a severe disruption, the robot base configuration
is not capable of handling it because the situation is outside the base set of design assumptions.
In the case that the severe disruption comes from a system fault, the fault-tolerant mechanism
takes control to recover the operational capability of the robot. The recovery process is
automatic and implicit because the systems engineering design knowledge that links functions
to components is generated, used, and lost at design time and is not available at run-time.
Metacontrol provides a tool for run-time reasoning with a knowledge base which is based on
that system design information. The UX-1 prototype is an ideal option for testing metacontrol
and self-awareness capabilities for two reasons, it is a highly redundant system and operates
in complex environments such as the flooded mines.

For metacontrol testing purposes, we have focused on the motion system of the UX-1.
The propulsion system is composed of eight thrusters (four per side, arranged crosswise).
This results in five degrees of freedom: surge, heave, yaw, roll and sway; according to the
Society of Naval Architects and Marine Engineers (SNAME), see Figure 3. Additionally, a
pendulum allows the pitch rotation and an additional ballast for a faster heave motion.

To test the metacontrol and self-awareness capabilities, only two degrees-of-freedom
are taken into account: surge and heave. Surge is the linear longitudinal (front/back)
motion in SNAME terms. Likewise, heave is the linear vertical (up/down) motion. The
reason to use these directions is because they are the two main movements for travelling
during an expedition. Furthermore, each movement uses a different set of thrusters so
reconfiguration in presence of fault is enriched with adaptation to the motion direction. In
Figure 4, thrusters in blue (T0, T2, T4 and T6) are responsible for surge whereas thrusters in
green (T1, T3, T4 and T7) are responsible for heave. So if T0 breaks during the shaft descend,
no reconfiguration is needed until the start of the forward movement, as this thruster is
not implicated in heave. With this approach, metacontrol ensures the use of maximum
performance architectures when possible; further detail can be found in Section 5.

www.unexmin.eu

Sensors 2021, 21, 1210 8 of 28

Figure 3. In blue, main components of the UX-1 robot for navigation; in green, description of motion
coordinates according to Society of Naval Architects and Marine Engineers (SNAME).

Figure 4. Thrusters allocation, the green arrows represent the thrusters implicated on heave move-
ment (T1, T3, T4 and T7) and the blue ones, the thrusters responsible of forward movement (T0, T2, T4

and T6.

UX-1 Mission Description

The UX-1 robot is designed for the exploration of underground flooded mines. In this
experimental setup, we focus on one possible scenario in a typical underground mine
network, that is, a vertical shaft extending downwards connected to a perpendicular
horizontal tunnel. This structure can be found in various mine workings, such as the
mercury mine Idrija in Slovenia, the uranium mine Urgeirica in Portugal, and the Ecton
copper mine in the UK, where the second, third and fourth field trials of the UNEXMIN

Sensors 2021, 21, 1210 9 of 28

project, respectively, took place, and represents the starting point of numerous mine sites:
hence its interest. As an illustration, in Figure 5, a simplified cross-section of the Ecton
mine is depicted.

Figure 5. Simplified cross section of the Ecton mine in the UK.

In this proof-of-concept experiment, the mission consists of the following steps: de-
scending a shaft from the deployment location of the submersible, i.e., the surface; entering
and traversing a tunnel; and returning to the deployment location. To perform this type of
mission, the submersible moves in four directions independently: downward, forward,
backward, and upward. Movements in downward and upward directions are referred
to as heave in the SNAME convention, whereas movements in forward and backward are
referred to as surge.

4. A Metacontrol Architecture Using Self-Knowledge

Metacontrol is the instrument to pursue mission goals in the presence of disturbances
with enhanced capabilities. This control loop is based on explicit models of the system. The
solution designed in [40] and implemented here defines each controller as a domain and a
metacontrol subsystems. The domain subsystem is the traditional controller, which does the
sensing and acts on the plant. The metacontrol subsystem is the innovative approach, where
the objective is to fulfill the system requirements. In this case, the plant to control is the
domain subsystem. Hence, the metacontroller closes a loop on top of the regular control
loop. However, to allow metacontrol, the domain subsystem must have some special
features. First, it is required some redundancy to grant reconfiguration on the system. This
can be reached within a variety of aspects: control laws, algorithms for behavior, structural
components, etc. Furthermore, it has to allow monitorization so processes and elements
have to report in real-time information about is operation. Lastly, the whole system must

Sensors 2021, 21, 1210 10 of 28

be designed in a way that reconfiguration is possible. This is the possibility of change, from
parameter values to replacement, elimination, or declaration of components. Concerning
the metacontroller, besides the monitorization of other subsystems, dynamical changes
must be taken into account during reconfiguration.

In this case, the domain subsystem is in charge of navigation in nominal conditions.
When a thruster-failure occurs, the metacontrol detects a deviation in the nominal con-
ditions. Then, the robot cannot reach the mission with the nominal control laws. The
metacontroller takes action through reconfiguration. To do so, a knowledge-base is used
to specify the most suitable configuration according to different component failures and
tasks. Then, a new set-point is defined to the domain controller according to the new
configuration, so the system continues it operation.

4.1. TOMASys: Metacontrol Framework

The metacontroller used here is based on a metamodel called TOMASys (Teleolog-
ical and Ontological Model of an Autonomous System) [40]. TOMASys is a theoretical
framework aimed at reaching autonomy independently of the application and the system.
This metamodel has a perspective both teleological and ontological. The teleological ap-
proach represents the incorporation of engineering-knowledge, that is, the intention and
the purpose of the designers into the system model. Likewise, the ontological perspective
represents the depiction of the structure and the behavior of the system.

As it is based on reaching an agent’s goals which are organized hierarchically in a
teleological model. Self-awareness and adaptability are achieved by making use of general
and specific knowledge through ontologies, organizing them in a model. The metamodel is
exploited at run-time by the metacontrol subsystem to ensure the fulfillment of the system
requirements. To do so, this metamodel is formal enough to be read by a machine. In other
words, TOMASys makes a explicit representation of both the system structure and the
function of its components, which are activated or deactivated according to the situation in
response to the ontological reasoner.

TOMASys metamodel is inspired by component-based software in the definition of
system structure and its functionality. The model elements are divided into two main
groups. Static knowledge is stored in Functions and Function Designs. The Function
element allows the definition of the abstract Objectives that the system must achieve.
Function Designs are design alternatives to execute a Function.

The instantaneous state, by contrast, is captured with Objectives that define a hierarchy
of the system requirements pursued at run-time, and Function Groundings, that specifies
the run-time use of a Function Design. Components are also part of the instantaneous state,
as this specifies the structural modules used at that instant.

Quality Attributes are entities that affect both static and run-time knowledge. Quality
Attributes are used to measure how the system fits the mission fulfillment. Each Objective
has some requirements associated. Common Quality Attributes requirements are defined
in terms of safety, energy consumption, performance, etc. Each Function Design has some
estimated Quality Attribute Values to allow the selection of the best alternative according
to the situation. Lastly, each Function Grounding has some measured Quality Attribute
Values to reify the estimations of Function Design with run-time perceptions. An overview
of the TOMASys metamodel is shown in Figure 6.

Sensors 2021, 21, 1210 11 of 28

Figure 6. Main elements of Teleological and Ontological Model of an Autonomous System (TOMASys) metamodel, the *
symbol represents the possible multiplicity in the destination relationship.

4.2. Ontological Reasoning and Metacontrol

TOMASys constitutes the TBox (assertion on concepts). The term TBox describes the ter-
minological components of the knowledge-base in contrast to the ABox (assertion on individ-
uals) that are the TBox-compliant statements that use the terminology. Therefore, TOMASys
defines a formal, application-independent vocabulary to developers to facilitate reusability
among different applications, particularly in hierarchical, component-based systems.

To make use of TOMASys metamodel, a knowledge base specific for the system and
its mission is required. The ABox defines the specific individuals of the application in
terms of TOMASys TBox. Conclusions extracted are not only relative to faults, but also
about real-time performance and efficacy of involved components. With this information,
the system will be able to adapt to keep operating after damage while reaching the best
competence among its capabilities.

The ontology is composed of two files: The TOMASys TBox and the application-specific
ABox, UX-1 navigation in this case. Both of them are written in OWL-DL language (Web
Ontology Language—Descriptive Logic). Then, they are used at run-time by a DL reasoner
to diagnose the system and compute the reconfiguration when it is necessary. The ontology
upon this reasoning acts as the knowledge provider on which self-awareness is founded.

Functional diagnosis is done by asserting the information about components. The rea-
soner provides the inference of the status of the set of Objectives and Functions Groundings
from the TOMASys metamodel. If the levels of performance and efficiency are under expec-
tations, the metacontroller proposes the best reconfiguration with the resources available.
To do so, specific rules design for the system must be combined with general TOMASys
semantics. In recent works, the TOMASys framework has been implemented with an OWL
ontology with SWRL rules [41]. In that article, the authors explore a theoretical solution to
address adaptation to thruster’s status using the TOMASys metamodel. Building on those
results, in this article we present a complete proof of concept to address thruster failure
and optimize navigation in a realistic operating environment. The proof of concept consists

Sensors 2021, 21, 1210 12 of 28

of an operational implementation of the metacontrol solution for ROS systems, including
automatic ontological reasoning and software reconfiguration, and its application and
test in a realistic scenario, for which a simulation of the UX-1 underwater robot has been
developed. This implementation has been created as part of the Metacontrol for ROS
systems (MROS) project [42], and is available as an open-source library [43].

5. UX-1 Self-Model and Metacontrol

In this paper we present the application of the metacontrol architecture to the UX-1
robot, with the objective to improve navigation performance in the presence of thruster
faults. In this case, force reallocation is required to keep the submersible operating. A naive
way of dealing with a thruster failure is disabling the symmetric thruster, i.e., the thruster
in the same position but on the opposite side of the robot: this initial approach has been
presented in Milosevic et al. [44]. However, in this work we test a more sophisticated
approach avoiding the deactivation of a proper-functioning thruster, thus not wasting the
available resources. The metacontroller acts here as a modular tool in controlling the robot
behavior, changing the system parameters in presence of faults to continue the operation in
optimal conditions according to the available thrusters. No human intervention is required
so these parameter changes need to be integrated into the robot.

5.1. UX-1 Ontological Model

In this application the metacontrol loop focus on thruster failure. As not all the thruster
are used in all the movement, different navigation functions have been designed. For surge,
thrusters (T1, T3, T5, T7) are used; whereas (T0, T2, T4, T6) are used for heave. The ontology
captures this knowledge making use of the classes defined in TOMASys.

An overview of some relationships between classes and individuals is shown in
Figure 7. The Objective and Function Grounding individuals are created at run-time. When
the UX-1 is descending the shaft, the reasoner gets a diagnostic message of this movement
and sets the Objective to o_nav_heave. When it starts going forward, this Objective is
deleted and instantiates an o_nav_surge Objective. Each time a new Objective is defined,
the reasoner searches the best function design available and grounds it creating a new
Function Grounding individual. In this example with the malfunctioning thruster T0, it is
the fg_surge_no_t0.

Regarding the static knowledge, the UX-1 implementation uses two Functions,
f_nav_surge and f_nav_heave. Each of them has five Function Designs that are alternatives
to complete the motion in that direction. For the surge movement, we have fd_surge_all to
use when all surge thrusters are available and specific Function Designs when any of the
surge thrusters are disabled, e.g., fd_surge_no_t0.

The selection among Function Designs is done with Quality Attributes criteria. Dif-
ferent Quality Attribute Types can be defined, such as safety, energy, or reliability. In this
case, performance is used. A reasonable assumption is that the navigation performance
depends on the number of thrusters used, and we consider only two possible cases: normal
operation using all thrusters, or having a faulty thruster and using the rest. Therefore, two
Quality Attribute values are defined, high performance for all the function design that use all
the thrusters and low performance to navigate without a thruster.

There are several relationships among classes; however, the main relationship in this
application are requiredBy that defines which components (thrusters) are required in each
Function Design and typeF that links an Objective to the type of Function it solves.

Sensors 2021, 21, 1210 13 of 28

Figure 7. Main relationships affected by thruster T0 contingency. The metacontroller uses the information in the knowledge-
base partially represented here to take action. The Objective o_nav_surge is fulfilled by the Function Grounding fg_surge_no_t0,
this Function Grounding is a realization of the Function Design fd_surge_no_t0 which solves the Function f_nav_surge . This
Function is required as is the one that solves the Objective. Components required to surge are thrusters T0, T2, T4 and T6.
Among all the possible Functions Designs, the one that does not require the broken thruster, T0, is the Function Grounding
in use, fg_surge_no_t0. Additionally, Quality Attributes relative to performance are assigned to each Function Design to
prioritize the use of higher performance ones.

5.2. Ontological Reasoning for UX-1

One of the main challenges of metacontrol is the implementation of reasoning at
run-time. The design criteria is incorporated into the robot to allow the most suitable
adaptation according to the situation. In this application, the reasoning is based on SWRL
rules using Pellet [45]. SWLR stands for Semantic Web Rule Language, based on OWL
DL and OWL Lite sublanguages of the OWL. SWRL implements Horn-like rules to make
assertions of an OWL knowledge-base. The assertions are made through a reasoner. The
selection of Pellet reasoner is due to its availability and fast performance using SWRL rules.
Pellet is an OWL2 DL reasoner open source, based on Java. It can be used with Owlready2
library which allows the integration of Ontologies with Python.

The ontological reasoner used for this application is based on TOMASys structure, so
is application-independent as long as the UX-1 knowledge-base is organized in TOMASys
terms. This reasoner has been used previously in a dual-arm mobile manipulator and
in a mobile robot navigation [46] and now is used for controlling the navigation of an
underwater robot, evidencing the transversal approach of metacontrol.

The metacontroller is based on the well established MAPE-K loop, constituted on a
Monitor, Analyzer, Planer, and Executer supported by Knowledge [47]. The monitor stage

Sensors 2021, 21, 1210 14 of 28

is implemented with an observer node. In the UX-1 case, the observer uses ROS diagnostic
messages to inform the reasoner about two types of events, the failure in one of the thrusters
and the movement direction change, Table 1 collects the thrusters used for each movement
direction according to Figure 4. e.g., if the robot is describing a surge motion and T0 is not
available, no reconfiguration action is needed. However, when the robot switch to heave,
a reconfiguration action is required to take into account the disabled thruster.

Table 1. UX-1 optimal thrusters used according to the movement direction, if one thruster is disabled
the system must adapt to use the remaining thrusters in the column.

Surge Heave

T0 T1
T2 T3
T4 T5
T6 T7

The remaining stages of MAPE-K (Analyzer, Planer, and Executer) are implemented
by the reasoner node. First, the reasoner loads the knowledge-base, this is the UX-1 ABox
ontology and its TBox backbone, TOMASys. Then, the metacontroller creates a default
Objective. In this case, as the experiment is targeted to traverse an L-shaped tunnel,
this first Objective is to navigate in the heave direction. When the Objective is created,
a Function Grounding is set to specify an initial robot configuration. In this case, the
selected configuration is the use of the four heaving thrusters for maximum performance.

The nominal functioning of the reasoner is checking if the Objective is in error status,
this is the Analysis phase of the reasoner. Two causes can set an Objective in error. First,
when the observer notifies that one thruster is not working, the reasoner updates the
knowledge-base. As a thruster is a component, its component status is set to false. Then,
the Pellet reasoner makes the corresponding assertions according to the state through
TOMASys SWRL rules. Table 2 shows the rules used in this case.

First, it checks if the component with a false status is used by the current implemen-
tation (Function Grounding). If the grounded function uses the disabled component, the
Function Grounding status is in error, rule no. 1. Likewise, the error is propagated to the
Objective through rule no. 2. Lastly, the Function Designs realisability changes according
to the available components with rule no. 3. For instance, if T0 is not working, the only
available function design will be heave without T0 and all surge designs. If the disabled
thruster is not used in the current Function Grounding, the Function Design realisability is
also set to false, as this result will be used when the objective change, e.g., the case while
doing a heave movement, when switching to heave without T0 the adaptation will use the
realisability asserted in previous analysis loops.

When there is a change in the movement direction, the Objective must be reformulated.
This is done by checking the link between Functions and Objectives, typeF as is shown in
Figure 7. If the new direction does not match the Objective typeF relationship, the reasoner
destroys the current Objective and creates one according to the new direction.

When an Objective is in error, the reconfiguration action is triggered, this is the
Planner and Executer phase. The reconfiguration starts with the search for a new Function
Grounding. The selection is made according to thruster availability, and performance-level
to prioritize the use of all thrusters if possible. This is done first by checking the realisability
and then the quality attribute values of performance linked to each available Function
Design. The grounding of a new Function Design constitutes the reconfiguration that is
realized in the robot by publishing a reconfiguration message in this case. The reconfiguration
from the robot perspective is detailed in Section 5.3.

Sensors 2021, 21, 1210 15 of 28

Table 2. Semantic Web Rule Language (SWRL) rules for UX-1 TOMASys implementation. The first
one sets the Function Grounding in error if it uses a faulty Component, the second one sets the
Objective in error if the Function Grounding is in error and the third one marks as unreachable the
Function Designs that require unavailable Components.

Rule no.1 tomasys:Component(?c) ^tomasys:c_status(?c, false) ^ux:requiredBy(?c, ?fd)
^tomasys:typeFD(?fg, ?fd) ^tomasys:FunctionGrounding(?fg) -> tomasys:fg_status(?fg,

INTERNAL_ERROR)

If a Component has a Component status in false (in error), and that component is required by a
Function Design with the same type as the Function Grounding in use, then that Function

Grounding status is set as INTERNAL ERROR.

Rule no.2 tomasys:FunctionGrounding(?fg) ^tomasys:fg_status(?fg, INTERNAL_ERROR)
^tomasys:solvesO(?fg, ?o) ^tomasys:Objective(?o) -> tomasys:o_status(?o, INTERNAL_ERROR)

If a Function Grounding has a Function Grounding status in INTERNAL ERROR, and that Function
Grounding solves an Objective, then that Objective status is set as INTERNAL ERROR.

Rule no.3 tomasys:Component(?c) ^tomasys:c_status(?c, false) ^ux:requiredBy(?c, ?fd) ->
tomasys:fd_realisability(?fd, false)

If a Component has a Component status in false (in error), and that component is required by a
Function Design then that Function Design realisability is set to false.

Therefore, this reasoning architecture supports three failure cases. First, if one thruster
responsible for the motion in course fails, reconfiguration is triggered. Second, if one
thruster not involved in the current motion fails, the status is stored to be used when the
involved motion change. Third, failure of two thrusters, one responsible for each motion. In
this case, the system selects a design adaptation for the motion direction in use as surge and
heave directions are decoupled in motion. The case of two or more thrusters in one motion
direction is not addressed in this implementation. In this case, the reasoner launches a
message to inform that there is not Function Designs available.

5.3. Reconfiguration in UX-1

In our application, the reconfiguration available in the UX-1 is the selection of a
force allocation matrix. Each Function Design in the UX-1 ontological model (Section 5.1)
corresponds to a different force allocation matrix, and it depends on which thrusters are
used according to the following dynamical model. The non-linear equation in (4) models
the motion for an UUV using the motion representation vectors in (1)–(3).

ν = [u, v, w, p, q, r]T (1)

η = [x, y, z, φ, θ,ψ]T (2)

τ = [X, Y, Z, K, M, N]T (3)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = Bτ (4)

where ν is the linear and angular velocity vector, η is the position and orientation vector,
and τ is used to describe the forces and moments acting on the vehicle. The motion model

Sensors 2021, 21, 1210 16 of 28

matrix are M, which is the system inertia matrix, C(ν), the Coriolis and Centripetal term
matrix, D(ν), the total hydrodynamic damping matrix. g(ν) is the vector of hydrostatic
forces and moments for the gravitational and buoyant forces acting on the vehicle and B is
used as a mapping matrix for thruster configuration. Further detail of this model can be
found in [48].

The action taken by the metacontroller is targeted to the thruster configuration matrix,
B. This matrix is used to define how the thruster configuration affects the dynamics of the
UX-1 robot. The UUV is actuated with eight thrusters allocated symmetrically on each side
of the vehicle. B is a 6 × 8 matrix, the rows are the six DOF, {X, Y, Z, K, M, N}, and the
columns correspond to each thruster, {T0, ... , T7}.

Based on the dynamics of the system and the effect of the thrusters, the matrix B is
defined in (5).

B =

1 0 −1 0 1 0 −1 0
1 1 1 1 −1 −1 −1 −1
0 1 0 −1 0 1 0 −1
0 −l 0 l 0 l 0 −l
0 0 0 0 0 0 0 0
l 0 −l 0 −l 0 l 0

 (5)

with
l = sin(δ)

√
σ2

1 + σ2
2 (6)

where σ1 is the distance from the axis of the thrusters to the geometrical center of the UX-1,

σ2 is the distance from each thruster to the middle lateral point, and δ = arctan
σ2

σ1
is the

rotation angle of the moments generated on the UUV.
After experimental tests, this matrix is adapted to force limitations and particularities

in the final thruster disposition. The real B used when all thrusters are well-functioning is
presented in Equation (7); this is the configuration used with function designs fd_surge_all
and fd_heave_all. Note that this matrix is independent of the direction of movement. When
surging, the system will use the information in the first row (X); whereas when heaving, it
will use the third row (Z).

Breal =

0.5 0 −0.5 0 0.5 0 −0.5 0
0.25 0.25 0.25 0.25 −0.25 −0.25 −0.25 −0.25

0 0.5 0 −0.5 0 0.5 0 −0.5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0.25 0 −0.25 0 −0.25 0 0.25 0

 (7)

When one thruster is disabled, e.g., T0, its corresponding column is all set to zero. The
force allocation depends on the movement direction, when one thruster is not functioning,
the sum of forces made by one side needs to be equal to the other side to preserve symmetry.
If T0 is disabled, T2 could double its force to compensate. However, for security reasons is
preferable to preserve the nominal workload in T2 and divide it by half in the other side,
T4 and T6, see Figure 8.

The adaptation of the B optimal matrix in (7) to the case of thruster T0 disabled while
surging, result in the matrix (8).

BnoT0 =

0 0 −0.5 0 0.25 0 −0.25 0
0 0.25 0.25 0.25 −0.125 −0.25 −0.125 −0.25
0 0.5 0 −0.5 0 0.5 0 −0.5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −0.25 0 −0.125 0 0.125 0

 (8)

Sensors 2021, 21, 1210 17 of 28

The same force-conservative approach is taking when any thruster is disabled, adapt-
ing the force reallocation their motion contribution, surge in (T0, T2, T4, T6) and heave in
(T1, T3, T5, T7).

Figure 8. Force allocation in thrusters T0, T2, T4, T6 when surging.

When the metacontroller creates a Function Grounding entity from the selection of
the most suitable Function Design, the reconfiguration is triggered. The reconfiguration
consists of the adaptation of the B matrix according to the thruster availability. This matrix
is stored in a comma-separated values (CSV) file. The name of the file corresponds to the
Function Design reified by the Function Grounding.

The metacontroller publishes this matrix to a reconfiguration ROS topic for the low-
level controllers, which will use this matrix to adapt the motion to the run-time situation,
according to the motion model in (4).

6. Experimental Results

In order to validate the designed ontological reasoner and the metacontroller we
have performed experiments following a software-in-the-loop approach, set through the
combination of the Gazebo [49] simulator and a realistic model of the UX-1 robot. The
position of the robot was acquired from Gazebo’s ground truth measurements, further
disturbed with random Gaussian noise accumulated over time, to better mimic the posi-
tioning system of the real submersible based on noisy instant relative measurements and
dead-reckoning. The controller used for the experiments is the Feedback Linearization
(FL) controller developed for the UX-1 platform and presented and validated in detail
in [48]. The experiments were performed on a 64-bit Ubuntu 16.04 PC with an Intel i7-6700
2.6 GHZ processor and 16 Gb of memory and using ROS Kinetic as middleware.

Three different experiments were performed, all of them reproducing the setting and
steps explained in Section 3, but with different thrusters enabled/disabled. The first exper-
iment, denoted as I, was performed with all thrusters working. The second experiment,
denoted as II, was performed with a simulated failure of one of the thrusters in charge
of the heave movement (T0, T2, T4, T6). Finally, the third experiment, denoted as III, was
performed with a simulated failure of one of the thrusters in charge of the surge movement
(T1, T3, T5, or T7).

The experiments were performed with analogous setting, and the commanded path
was comprised of waypoints containing the desired location in space and the orientation
of the robot, and were entered in the following format [x, y, z, φ, ψ], where the location
variables x, y, and z follow the usual North (x)-East (y)-Down (z) convention for marine

Sensors 2021, 21, 1210 18 of 28

navigation, and φ and ψ represent, respectively, the pitch and yaw of the robot. The
complete reference path was composed of the following 6 waypoints (x, y, z in meters, φ, ψ
in degrees).

A : (0, 0, 2, 0, 0), B : (2, 0, 2, 0, 0), C : (3.5, 0, 2, 0, 0),

D : (1.5, 0, 2, 0, 0), E : (0, 0, 2, 0, 0), F : (0, 0, 0.5, 0, 0)
. (9)

In the experiment II, corresponding to the fault situation, said failure of the thruster
T0 was triggered during the surge movement while going away from the deployment
location when the submersible reached the position x = 1.7 m. In the experiment III,
failure of the thruster T1 was triggered during the heave movement while going away
from the deployment location when the submersible reached the position z = 0.8 m. The
time elapsed between the trigger of the failure and the system reconfiguration, referred
to as latency, in the experiment II was 1.81 s, and in the experiment III was 1.09 s. The
measurement of these elapsed times was performed by comparing the timestamps of
ROS messages, and therefore its precision depends on the timestamps’ quality. Since all
the nodes were run on a single PC, we assume no considerable delay caused by ROS
middleware. The latency is depicted in Table 3c.

The odometry measurement of each experiment is shown in Figure 9, as well as the
reference waypoints depicted in alphabetical order corresponding to (9). The root-mean-
square deviation (RMSD) of submersible’s position with respect to the ideal path, described
by linking the commanded waypoints, is depicted in Table 3a. It can be noted that the
RMSD for all experiments has similar values. This result is in line with the expectations
and confirms the assumption of the redundancy of the UX-1 motion system, showing that
the submersible can successfully perform the desired maneuvers (surge and heave, in this
particular proof-of-concept) despite the failure of one of the thrusters.

Figure 10 depicts the force reference commands over time in all three experiments:
that is, the force in each direction demanded to the thrusters by the controller, and Table 4a
depicts mean values of each force reference. Figure 11 depicts the forces produced by each
thruster in charge for surge movement, and Figure 12 shows the forces produces by each
thruster in charge for heave movement. Table 4b summarized mean values of produced
force per thruster.

It can be noted that the mean commanded force has almost identical values in all three
tests: however, the forces actually produced by the thrusters are lower in the experiments
II and III, compared to the experiment I in which all thrusters were working properly and
with full power. The lower accomplished forces by the thrusters cause, as expected, the
longer duration of the experiment (see Table 3b). The considerable difference in duration of
the experiment II seems to be the result of the relative lengths of the vertical and horizontal
sections of the experimental setting: the length of the reference path is longer in North (x)
direction than in Down (z) (7 m versus 3 m); the longer distance travelled with reduced
power in the thrusters in charge for that direction leads to the observed longer duration for
completing the desired maneuver.

The green graphs in Figure 11, corresponding to the experiment II, visually depict the
effect of the successfully performed run-time system adaptation of the submersible due to
the thruster failure, explained in Section 5.3. The time instance when the thruster failure is
triggered is shown with a vertical black line. After the waypoint A is reached and before
the moment of the thruster failure, Function Design fd_surge_all is used, implying that all
the thrusters are working properly and with full power. When the failure is simulated in
the thruster T0, the reconfiguration is triggered and the new Function Design is selected,
that is, the one that does not require the malfunctioning thruster T0, fd_surge_no_t0. This
Function Design implies the use of the opposite thruster on the same side of the hull, T2,
operating at the same power (Figure 11b), and the two thrusters on the other side of the
hull, T4 and T6, operating at half power (Figure 11c,d). The reduction of the power by
half can be perceived by comparison with the experiment I (graph in purple) when all the
thrusters were working properly.

Sensors 2021, 21, 1210 19 of 28

Analogously, the blue graphs in Figure 12, corresponding to the experiment III,
illustrate the successfully performed run-time system adaptation due to the failure of
thruster T1.

Finally, the performed experiments, II and III, are compared to the initial naive ap-
proach consisting of disabling the symmetric thruster, i.e., the thruster in the same position
but on the opposite side of the robot. Table 5 summarizes the numerical comparison
between the experiments performed with the use of the proposed metacontroller and the
experiments performed using the naive approach. Table 5a shows mean forces, Table 5b
duration, and Table 5c latency of each experiment. It can be noted that the produced mean
forces have similar values, however, higher values are obtained in the experiments with
the metacontroller. This result is expected since the metacontroller avoids deactivation of
a proper-functioning thruster; contrary to the naive approach. This result directly affects
the tests’ duration, causing the longer duration of the experiments done with the naive
approach. Finally, the latency of the system response to the thruster failure is compared
and depicted in Table 5c. Both experiments have similar values, however, slightly shorter
latency is obtained with the naive approach due to the usage of fewer ROS nodes.

0 0.5 1 1.5 2 2.5 3 3.5

North (m)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
e

p
th

 (
m

)

Odometry

all thrusters working

thruster T0 failure

thruster T1 failure

reference

F

AE D B C

triggered T0 failure

triggered T1 failure

Figure 9. Odometry measurements during the thruster failure experiments. Yellow squares depict the reference waypoints.

Sensors 2021, 21, 1210 20 of 28

0 10 20 30 40 50 60

Time [seconds]

−20

−10

0

10

20

F
o

rc
e

 [
N

]

all thrusters working

Fx

Fy

Fz

waypoint sent

failure triggered

0 20 40 60 80 100 120 140 160

Time [seconds]

−20

−10

0

10

20

F
o

rc
e

 [
N

]

thruster T0 failure at 21.13 s

0 10 20 30 40 50 60 70 80

Time [seconds]

−20

−10

0

10

20

F
o

rc
e

 [
N

]

thruster T1 failure at 2.4 s

70

Figure 10. Force reference commands obtained by the FL controller. Uppermost figure represent the I test, middle the II and
bottom the III. The time instance when each waypoint is sent is depicted with a red circle, and the moment of the thruster
failure is depicted with a vertical black line.

0 10 20 30 40 50 60

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

all thrusters working
force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

0

5

10

F
o

rc
e

 [
N

]

thruster T0 failure

force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

thruster T1 failure force

triggered T1 failure

waypoint sent

70

(a) T0

0 10 20 30 40 50 60

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

all thrusters working force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

thruster T0 failure
force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

thruster T1 failure force

triggered T1 failure

waypoint sent

70

(b) T2

Figure 11. Cont.

Sensors 2021, 21, 1210 21 of 28

0 10 20 30 40 50 60

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

all thrusters working
force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

0

5

10

F
o

rc
e

 [
N

]

thruster T0 failure

force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

thruster T1 failure force

triggered T1 failure

waypoint sent

70

(c) T4

0 10 20 30 40 50 60

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

all thrusters working
force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

−10

−5

0

F
o

rc
e

 [
N

]

thruster T0 failure

force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

−10

0

10

F
o

rc
e

 [
N

]

thruster T1 failure force

triggered T1 failure

waypoint sent

70

(d) T6

Figure 11. Forces produced by thrusters in charge for surge movement in all three experiments. Purple graphs represent
the I test, green the II and blue the III. The time instance when each waypoint is sent is depicted with a red circle, and the
moment of the thruster failure is depicted with a vertical black line.

These experiments demonstrate the viability of model-based metacontrol for reconfig-
uring the deployed system. This approach provides benefits that manifest both in (a) the
mission fulfillment (in this case, shorter duration of the experiment in comparison with
the most basic contingency handling, i.e., disabling the symmetrical thruster of the one
malfunctioning) and (b) the generality of the systems engineering process. Reduction of
engineering time is a clear advantage of model-based reasoners; however, from the point of
adaptation response time, it is possible that most fault-handling results for a specific UUV
in the literature will have better metric values (RMSD and/or latency) than ours, as they
are designed specifically for a robot and its concrete operation.

0 10 20 30 40 50 60

Time [seconds]

−5

0

5

F
o

rc
e

 [
N

]

all thrusters working

force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

−4
−2

0
2
4
6

F
o

rc
e

 [
N

]

thruster T0 failure

force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

−5

0

F
o

rc
e

 [
N

]

thruster T1 failure

force

triggered T1 failure

waypoint sent

70

(a) T1

0 10 20 30 40 50 60

Time [seconds]

−5

0

5

F
o

rc
e

 [
N

]

all thrusters working
force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

−6
−4
−2

0
2
4

F
o

rc
e

 [
N

]

thruster T0 failure force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

−5

0

5

F
o

rc
e

 [
N

]

thruster T1 failure force

triggered T1 failure

waypoint sent

70

(b) T3

Figure 12. Cont.

Sensors 2021, 21, 1210 22 of 28

0 10 20 30 40 50 60

Time [seconds]

−5

0

5

F
o

rc
e

 [
N

]

all thrusters working

force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

−4
−2

0
2
4
6

F
o

rc
e

 [
N

]

thruster T0 failure

force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

−6

−4

−2

0

F
o

rc
e

 [
N

]

thruster T1 failure

force

triggered T1 failure

waypoint sent

70

(c) T5

0 10 20 30 40 50 60

Time [seconds]

−5

0

5

F
o

rc
e

 [
N

]

all thrusters working

force

waypoint sent

0 20 40 60 80 100 120 140 160

Time [seconds]

−6
−4
−2

0
2
4

F
o

rc
e

 [
N

]

thruster T0 failure
force

triggered T0 failure

waypoint sent

0 10 20 30 40 50 60 70 80

Time [seconds]

0

2

4

6

F
o

rc
e

 [
N

]

thruster T1 failure

force

triggered T1 failure

waypoint sent

70

(d) T7

Figure 12. Forces produced by thrusters in charge for heave movement in all three experiments. Purple graphs represent
the I test, green the II and blue the III. The time instance when each waypoint is sent is depicted with a red circle, and the
moment of the thruster failure is depicted with a vertical black line.

The suitability of using metacontrol in terms of fault handling depends on the usually
soft real-time bounding relation between measured adaptation time and mission require-
ments. When a fault is detected, the observer advises the metacontroller which changes
the status of the component involved and asserts the reconfiguration required. Once the
reconfiguration is selected, as the action is the selection of the thruster configuration matrix,
so its usage is practically immediate. The bottleneck in the use of the metacontrol is the
reasoning time for asserting the reconfigured system status and choosing the best design
alternative depending on the objective and the contingency.

Table 3. Comparison between tests. I represent the test with all thrusters working. II represent the
test with the failure of T0. III represent the test with the failure of T1.

(a) The root-mean-square deviation (RMSD) of the
vehicle position with respect to the reference trajectory

Test RMSD Units

I 0.12 [m]

II 0.19 [m]

III 0.23 [m]

(b) Duration of each test

Test Duration Units

I 70.2 [s]

II 168.7 [s]

III 88.3 [s]

(c) Latency between the thruster failure trigger and the system response

Test Latency Units

II 1.81 [s]

III 1.09 [s]

Sensors 2021, 21, 1210 23 of 28

Table 4. Mean force summary.

(a) Mean force reference commands obtained by the FL controller

I II III

Metrics Value Units

Mean Fx 2.93 3.01 2.72 [N]

Mean Fz 1.73 1.72 1.92 [N]

(b) Mean force produced by each thruster in each experiment

T0 T1 T2 T3 T4 T5 T6 T7 Units

I 0.82 0.82 0.32 0.32 0.82 0.82 0.32 0.32 [N]

II 0.09 0.29 0.13 0.13 0.29 0.5 0.13 0.13 [N]

III 0.59 0.59 0.1 0.17 0.59 0.59 0.39 0.17 [N]

Table 5. Numerical comparison of the experiments performed with and without the metacontroller (MC).
II represent the test with the failure of T0. III represent the test with the failure of T1.

(a) Mean force

II III

Test Mean F Unit

With MC 0.21 0.4 [N]

Without MC 0.16 0.29 [N]

(b) Duration of the test

II III

Test Duration Unit

With MC 168.7 88.3 [s]

Without MC 203.2 113.1 [s]

(c) Latency between the thruster failure trigger and the system response

II III

Test Latency Unit

With MC 1.81 1.09 [s]

Without MC 0.91 0.72 [s]

In this implementation, we have used the Pellet reasoner, which offered a good
trade-off in software availability and temporal performance [50]. In further work, the
reasoning subsystem implementation may be improved using alternative reasoners and
logic handling algorithms to reduce the time needed to reason about the fault. This will
positively impact the adaptation time, decreasing the latency perceived by the system at
the mission level.

Nevertheless, the value and strength of the model-based metacontrol approach are
best seen from the systems engineering viewpoint, because it provides an application-
independent, reusable adaptation engine that can be used to fast-implement a system-
tailored module that can be deployed over any extant system with minimal additional in-
strumentation.

Advantages of Using a General Approach

One may wonder why to use such a complex architecture for just selecting among
different design alternatives. We could have used a number of simple ad-hoc if statements in

Sensors 2021, 21, 1210 24 of 28

the control code to adapt the robot behavior. However, the decoupling of reasoning assets
from programming code allows not only the reusability of the metacontrol elements but also
the reduction of the system and development complexity. This is a matter of separation of
concerns that becomes critical when the complexity of the target system increases.

As of today, if-else hard-coded statements deeply embedded in ROS code are the
commonly used mechanism to handle robot controller reconfiguration issues. But, as is
well known in robust programming, handling emergent errors in deeply layered software
is a tricky issue for programmers; especially if the code is complex [51,52] or has stringent
requirements. In our case, as two system aspects are taken into consideration—motion
direction and thruster failure—the complexity of the error handling problem directly maps
to the number of if-else statements, since the addition of a new rule would require checking
all the existing ones. In general, its estimated complexity is nm if we assume m aspects
and an equal number n of variations per aspect. In our UX-1 case, the complexity can
be estimated simply as 20, assuming 10 possible thruster configurations and 2 motion
directions. Interestingly, in our ontology-based solution a formal vocabulary (our TBox),
a set of general rules, and minimal module instrumentation—easily realizable using ROS
nodes life-cycle resources—are all that is necessary to define and handle the error handling
problem, instead of using a set of nested, pervasive if-else hard-coded statements. This
way, once the developer is familiar with the language, adding a new variation in one of the
aspects only requires the addition of the corresponding individuals and relationships in
the ABox. The error handling system programming complexity is thus independent of the
number of variants and depends only on the TOMASys vocabulary and the number and
complexity of the rules in our ontology, which being Horn clauses have the same complexity
than if-else statements. In the UX-1 case, the ontology contains 13 rules that are application-
independent. For a simple system as is the case of our UX-1 thruster experiment, this
difference maybe not very high; but for real robots, with tens of critical components, the
difference may be substantial. This affects not only the system development time but also
its quality and understandability; two critical factors that impinge on software reliability,
maintainability, and extensibility.

One of the main advantages of using ontologies, particularly the TOMASys framework,
is the usage of logic rules with a one to one mapping relationship. Most of the rules
propagate the status of a Component to other entities such as the Objective or the Function
Grounding. So, general actions can be taken depending on the entity affected.

When applying this technology in other applications it is possible that some system-
or application-specific rules shall be added to the ABox to address new aspects. This, if
properly done, shall produce an extension of system self-awareness knowledge because
TOMASys, given its general systems foundation, provides a solid theoretical basis to
ground and structure the knowledge growth process.

7. Discussion

In this work we address self-X concepts in robots; particularly, the use of these concepts
in meta-control to close the control loop of the system at the mission level. This theoretical
approach is validated in the UX-1 robot, an UUV used for floated mines exploration. The
metacontrol here is targeted to ensure motion reliability in presence of thruster-failure. All
the thrusters of the robot are used to ensure the movement in two directions: heave and
surge. With the addition of an external control loop, when a thruster fails, no extra thruster
is disabled for symmetrical force allocation. Therefore, the metacontrol approach augments
the faulty-performance without human intervention.

7.1. Assessment of Present State

This application constitutes a proof-of-concept of the benefits that self-awareness
and metacontrol provide to autonomous systems. TOMASys is a general framework,
application-independent that is adapted to the particular system with an adequate ontology

Sensors 2021, 21, 1210 25 of 28

for reasoning. To use the TOMASys Architecture, a component instantiation is required
with the particular elements that will be considered to metacontrol.

With these elements, we perform a run-time functional adaptation of the robot. The
metacontrol provides a sub-system for recovery from component faults. This proof-of-
concept has been conceived to maintain motion in presence of dysfunctional thrusters.

Moreover, the main limitation is imposed by the design constraints. We have a set of
pre-defined function designs, these are design alternatives, and we select them depending
on the run-time situation. The creation of new alternatives or the usage of available compo-
nents for other tasks is a compelling research line to expand the metacontrol capabilities.

From the metacontrol encoded knowledge-base perspective, ontologies also have
some limitations. In TOMASys, SWRL rules are used to make assertions about the UX-1,
particularly the status of the thrusters, the objective, and the function grounding. SWRL
is based on Horn rules, so it uses monotonic logic. This means that when a formula is
added, the set of consequences is never reduced. As status are changeable values that
evolve according to the run-time situation, this may be a problem. This problem has
been solved through the metacontroller. The metacontroller handles this problem setting
the Objective status and the Function Grounding status to none when an error is solved,
so there is not overlapping status. This status change is not optimal as it is hard-coded
in the metacontroller. Therefore, the ontology is used as an error-propagation system.
When the observer detects a thruster malfunctioning or a change in motion direction, these
observations are propagated to the Objective through SWRL rules in the ontology.

7.2. Future Work

Currently, we are working on reconfiguration representation and an evolving grammar
definition to apply genetic algorithms to explore the best reconfiguration alternatives.
Metrics on optimality and the cost of reconfiguration need to be addressed. Then, we plan
to explore not only reconfiguration in hardware but also in software. In this work, software
reconfiguration is limited to the force allocation matrix when any of the thruster is not
available. Further work aims to adapt existing code to the operation conditions, changing
and learning in real-time as a live system. In this case, reconfiguration conflicts will need to
be addressed. Problems such as changing dynamics or merging information during the
transition of states need to be taken into account.

The ontology implemented here was developed for this application but it is the ABox
supported by the TBox for general autonomous robots, TOMASys. We plan to expand
the ontology with ontological standards in robotics such as CORA (IEEE 1872-2015) [53].
Besides, the representation limitations of the ontology presented in Section 7.1 need to
be addressed.

In this work, we have focused on keep motion. But motion itself does not usually
define a real-world mission. Metacontrol must handle multiple goals organized in a
hierarchy in order to achieve more ambitious missions such as localization of specific
minerals in flooded mines, and also perform mining operations.

8. Concluding Remarks

In conclusion, we propose a generic, architectural, knowledge-based strategy to
augment the autonomy levels of systems and, especially, of autonomous, unattended
robots. Just as humans are able to evaluate the situation and predict changes to accom-
modate incoming disruptions, robots need self-diagnosis and self-adaptation to operate
autonomously in the real world.

In a hazardous environment such as the underwater mine where the UX-1 robot
operates, it is critical to have a trustworthy autonomous system because the possibility
of human intervention is very limited. Using this novel architectural approach we have
been able to increase the UX-1 UUV resilience and hence its reliability by endowing the
propulsion system with a capability for adaptation to its own thrusters faulty state.

Sensors 2021, 21, 1210 26 of 28

The metacontrol framework used here is general. It is domain and application in-
dependent. The use of a general systems metamodel, OWL ontologies and SWRL rules
allows the reasoning in terms of hierarchical components and its attributes to control
the different objectives instantiated on the model. We have applied these techniques to
the UX-1 autonomous underwater robot proving its effectiveness and particularizing its
use. Pending work remains, however, and interesting research questions have arisen in
this projects which will be explored in future works such as the dynamic generation of
reconfiguration designs at run-time, the ontological expansion to avoid SWRL limitations
or the handling of multiple hierarchical goals.

Future work will therefore focus on more complex reconfiguration scenario, both
of software and hardware. In particular, the robots being designed in two follow-up
projects, UNEXUP (https://unexup.eu, [Accesed: 30 December 2020]) and ROBOMINERS
(https://robominers.eu, [Accesed: 30 December 2020]) will build on the research presented
in this paper. While in the former the same goals of advanced autonomy are pursued,
in ROBOMINERS we are also addressing morphological reconfiguration on-the-job of a
modular robot for the purpose of increased resilience.

Author Contributions: Conceptualization, E.A., Z.M. and R.S.; methodology, C.H., M.G., D.B.; formal
analysis, Z.M., C.H. and E.A.; validation, C.H., R.S. and C.R.; writing—original draft preparation,
E.A., Z.M.; writing—review and editing, E.A., Z.M.; supervision, R.S., C.H. and C.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the UNEXMIN (Grant Agreement No. 690008), ROSIN (Grant
Agreement No. 732287), RobMoSys-ITP-MROS (Grant Agreement No. 732410) and ROBOMINERS
(Grant Agreement No. 820971) projects with funding from the European Union’s Horizon 2020
research and innovation programme, and has been co-funded by the RoboCity2030-DIH-CM Madrid
Robotics Digital Innovation Hub (“Robotica aplicada a la mejora de la calidad de vida de los ciu-
dadanos. fase IV”; S2018/NMT-4331), funded by “Programas de Actividades I+D en la Comunidad
de Madrid” and cofunded by Structural Funds of the EU, and by the UNEXUP project supported by
EIT Raw Materials (project no. 19160).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: During the study, an open-source library has been created as part of the
Metacontrol for ROS systems (MROS) project, https://robmosys.eu/mros, [Accesed: 30 December
2020], the tool is available at https://github.com/MROS-RobMoSys-ITP/mros_ontology, [Accesed:
30 December 2020].

Acknowledgments: We thank Carmen Moreno Olivares and Gonzalo Rodríguez Martín, who defined
a first approach to the TOMASys metacontrol architecture applied to the UX-1 robot. We would also
like to mention Ramón Suárez Fernández who worked on the dynamic model of the UX-1 robot, we
thank him especially for the thruster configuration matrix which we use for reconfiguration.

Conflicts of Interest: The authors declare no conflict of interest or involvement in any organization
with any financial interest in the subject matter discussed in this manuscript.

References
1. UNEXMIN Project: The UX-1 Robot. Avaliable online: https://www.unexmin.eu/the-project/the-ux-1-robot (accessed on

30 December 2020).
2. Martins, A.; Almeida, J.; Almeida, C.; Dias, A.; Dias, N.; Aaltonen, J.; Heininen, A.; Koskinen, K.T.; Rossi, C.; Dominguez, S.; et al.

UX 1 system design—A robotic system for underwater mining exploration. In Proceedings of the 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1494–1500. [CrossRef]

3. ISO/IEC/IEEE. ISO/IEC/IEEE 15288-2015 Systems and Software Engineering—System Life Cycle Processes; International Standard;
International Standards Organisation: Geneva, Switzerland, 2015.

4. Blanke, M.; Kinnaert, M.; Lunze, J.; Staroswiecki, M. Diagnosis and Fault-Tolerant Control; Springer: Berlin/Heidelberg, Germany, 2006.
5. Zhang, W.; van Luttervelt, C. Toward a resilient manufacturing system. CIRP Ann. 2011, 60, 469–472. [CrossRef]
6. Capano, G.; Woo, J.J. Resilience and robustness in policy design: A critical appraisal. Policy Sci. 2017, 50, 399–426. [CrossRef]

https://unexup.eu
https://robominers.eu
https://robmosys.eu/mros
https://github.com/MROS-RobMoSys-ITP/mros_ontology
https://www.unexmin.eu/the-project/the-ux-1-robot
http://doi.org/10.1109/IROS.2018.8593999
http://dx.doi.org/10.1016/j.cirp.2011.03.041
http://dx.doi.org/10.1007/s11077-016-9273-x

Sensors 2021, 21, 1210 27 of 28

7. Sun, Z.; Yang, G.S.; Zhang, B.; Zhang, W. On the concept of the resilient machine. In Proceedings of the 2011 6th IEEE Conference
on Industrial Electronics and Applications, Beijing, China, 21–23 June 2011; pp. 357–360.

8. Wang, Z.; Qian, Z.; Song, Z.; Liu, H.; Zhang, W.; Bi, Z. Instrumentation and self-repairing control for resilient multi-rotor aircrafts.
Ind. Robot. 2018, 45, 647–656. [CrossRef]

9. Josh Bongard, V.Z.; Lipson, H. Resilient Machines Through Continuous Self-Modeling. Science 2006, 314, 1118–1121. [CrossRef]
[PubMed]

10. Wang, F.; Qian, Z.; Yan, Z.; Yuan, C.; Zhang, W. A Novel Resilient Robot: Kinematic Analysis and Experimentation. IEEE Access
2020, 8, 2885–2892. [CrossRef]

11. Wang, J.; Wang, H.; Ding, J.; Furuta, K.; Kanno, T.; Ip, W.; Zhang, W. On domain modelling of the service system with its
application to enterprise information systems. Enterp. Inf. Syst. 2016, 10, 1–16. [CrossRef]

12. Randell, B. Dependability-a unifying concept. In Proceedings of the Computer Security, Dependability, and Assurance: From
Needs to Solutions, York, UK, 11–13 November 1998; pp. 16–25.

13. Laprie, J.C. From dependability to resilience. In Proceedings of the 38th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2008, Anchorage, AK, USA, 24–27 June 2008; Fast Abstract Session.

14. Jackson, S. Architecting Resilient Systems: Accident Avoidance and Survival and Recovery from Disruptions; Wiley: Hoboken, NJ,
USA, 2010.

15. Wasson, C.S. System Engineering Analysis, Design, and Development: Concepts, Principles, and Practices, 2nd ed.; Wiley Series in
Systems Engineering and Management; Wiley: Hoboken, NJ, USA, 2015.

16. Visinsky, M.L.; Cavallaro, J.R.; Walker, I.D. Robotic fault detection and fault tolerance: A survey. Reliab. Eng. Syst. Saf. 1994,
46, 139–158. [CrossRef]

17. Cui, Y.; Voyles, R.M.; Lane, J.T.; Mahoor, M.H. ReFrESH: A self-adaptation framework to support fault tolerance in field mobile
robots. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA,
14–18 September 2014; pp. 1576–1582.

18. Guo, Z.; Yang, W.; Li, M.; Yi, X.; Cai, Z.; Wang, Y. ALLIANCE-ROS: A Software Framework on ROS for Fault-Tolerant and
Cooperative Mobile Robots. Chin. J. Electron. 2018, 27, 467–475. [CrossRef]

19. Sarkar, N.; Podder, T.K.; Antonelli, G. Fault-accommodating thruster force allocation of an AUV considering thruster redundancy
and saturation. IEEE Trans. Robot. Autom. 2002, 18, 223–233. [CrossRef]

20. Ni, L. Fault-Tolerant Control of Unmanned Underwater Vehicles. Ph.D. Thesis, Virginia Polytechnic Institute and State University,
Blacksburg, VA, USA, 2001.

21. Ding, X.; Zhu, D.; Yan, M. Research on static fault-tolerant control method of thruster based on MPC. J. Mar. Sci. Technol. 2020.
[CrossRef]

22. Kounev, S.; Kephart, J.O.; Milenkoski, A.; Zhu, X., Spacecraft Autonomous Reaction Capabilities, Control Approaches, and
Self-aware Computing. In Self-Aware Computing Systems; Springer International Publishing: Cham, Switzerland, 2017; pp. 687–706.

23. Antonelli, G. Underwater Robots: Motion and Force Control of Vehicle-Manipulator Systems, 2nd ed.; Springer Tracts in Advanced
Robotics; Springer: Berlin/Heidelberg, Germany, 2006; Volume 2.

24. Podder, T.K.; Sarkar, N. Fault-tolerant contr ol of an autonomous underwater vehicle under thruster redundancy. Robot. Auton.
Syst. 2001, 34, 39–52. [CrossRef]

25. Akmal, M.; Yusoff, M.; Arshad, M. Active Fault Tolerant Control of a Remotely Operated Vehicle Propulsion System. Procedia
Eng. 2012, 41, 622–628. [CrossRef]

26. Freddi, A.; Longhi, S.; Monteriu, A. Actuator Fault Detection System for a Remotely Operated Vehicle. IFAC Proc. Vol. 2013,
46, 356–361. [CrossRef]

27. Huet, C.; Mastroddi, F. Autonomy for underwater robots—A European perspective. Auton. Robot. 2016, 40, 1113–1118. [CrossRef]
28. Gerasimou, S.; Calinescu, R.C.; Shevtsov, S.; Weyns, D. UNDERSEA: An Exemplar for Engineering Self-Adaptive Unmanned

Underwater Vehicles. In Proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2017), Buenos Aires, Argentina, 22–23 May 2017.

29. Gerasimou, S.; Calinescu, R.C.; Shevtsov, S.; Weyns, D. UNDERSEA: An Exemplar for Engineering Self-Adaptive Unmanned
Underwater Vehicles. Available online: https://www-users.cs.york.ac.uk/simos/UNDERSEA/index.html (accessed on
30 December 2020).

30. Shevtsov, S.; Weyns, D.; Maggio, M. SimCA*: A Control-theoretic Approach to Handle Uncertainty in Self-adaptive Systems with
Guarantees. ACM Trans. Auton. Adapt. Syst. 2019, 13, 17:1–17:34. [CrossRef]

31. Butler, M.; Jones, C.; Romanovsky, A.; Troubitsyna, E. (Eds.) Rigorous Development of Complex Fault-Tolerant Systems; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4157.

32. Sifakis, J. Autonomous Systems—An Architectural Characterization. In Models, Languages, and Tools for Concurrent and Distributed
Programming: Essays Dedicated to Rocco De Nicola on the Occasion of His 65th Birthday; Boreale, M., Corradini, F., Loreti, M.,
Pugliese, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 388–410.

33. Zhai, Z.; Martínez Ortega, J.F.; Lucas Martínez, N.; Castillejo, P. A Rule-Based Reasoner for Underwater Robots Using OWL and
SWRL. Sensors 2018, 18, 3481. [CrossRef]

34. Sanz, R.; López, I.; Bermejo-Alonso, J.; Chinchilla, R.; Conde, R. Self-X: The Control Within. In Proceedings of the IFAC World
Congress 2005, Prague, Czech Republic, 3–8 July 2005.

http://dx.doi.org/10.1108/IR-03-2018-0053
http://dx.doi.org/10.1126/science.1133687
http://www.ncbi.nlm.nih.gov/pubmed/17110570
http://dx.doi.org/10.1109/ACCESS.2019.2962058
http://dx.doi.org/10.1080/17517575.2013.810784
http://dx.doi.org/10.1016/0951-8320(94)90132-5
http://dx.doi.org/10.1049/cje.2018.03.001
http://dx.doi.org/10.1109/TRA.2002.999650
http://dx.doi.org/10.1007/s00773-020-00778-7
http://dx.doi.org/10.1016/S0921-8890(00)00100-7
http://dx.doi.org/10.1016/j.proeng.2012.07.221
http://dx.doi.org/10.3182/20130918-4-JP-3022.00050
http://dx.doi.org/10.1007/s10514-016-9605-x
https://www-users.cs.york.ac.uk/simos/UNDERSEA/index.html
http://dx.doi.org/10.1145/3328730
http://dx.doi.org/10.3390/s18103481

Sensors 2021, 21, 1210 28 of 28

35. Cámara, J.; Correia, P.; de Lemos, R.; Garlan, D.; Gomes, P.; Schmerl, B.; Ventura, R. Incorporating Architecture-Based Self-
Adaptation into an Adaptive Industrial Software System. J. Syst. Softw. 2015, 122, 507–523. [CrossRef]

36. Tsypkin, Y.Z. Self-learning–What is it? IEEE Trans. Autom. Control 1968, 13, 608–612. [CrossRef]
37. Zavari, S.; Heininen, A.; Aaltonen, J.; Koskinen, K.T. Early stage design of a spherical underwater robotic vehicle. In Proceedings

of the 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 13–15 October
2016; pp. 240–244.

38. Fernandez, R.A.S.; Milosevic, Z.; Dominguez, S.; Rossi, C. Motion Control of Underwater Mine Explorer Robot UX-1: Field Trials.
IEEE Access 2019, 7, 99782–99803. [CrossRef]

39. Lopes, L.; Zajzon, N.; Bodo, B.; Henley, S.; Zibret, G.; Dizdarevic, T. UNEXMIN: Developing an autonomous underwater explorer
for flooded mines. Energy Procedia 2017, 125, 41–49. [CrossRef]

40. Hernández, C. Model-based Self-awareness Patterns for Autonomy. Ph.D. Thesis, Escuela Técnica Superior de Ingenieros
Industriales—Universidad Politécnica de Madrid, Madrid, Spain, 2013.

41. Hernández Corbato, C.; Milosevic, Z.; Olivares, C.; Rodriguez, G.; Rossi, C. Meta-control and Self-Awareness for the UX-1
Autonomous Underwater Robot. In Robot 2019: Fourth Iberian Robotics Conference; Springer International Publishing: Cham,
Switzerland, 2020; pp. 404–415.

42. RobMoSys. Metacontrol for ROS2 Systems (MROS). Available online: https://robmosys.eu/mros (accessed on 30 December 2020).
43. GitHub-MROS. MROS T3 Metacontrol Ontologies. Available online: https://github.com/MROS-RobMoSys-ITP/mros_ontology

(accessed on 30 December 2020).
44. Milosevic, Z.; Fernandez, R.A.S.; Dominguez, S.; Rossi, C. Guidance for Autonomous Underwater Vehicles in Confined

Semistructured Environments. Sensors 2020, 20, 7237. [CrossRef] [PubMed]
45. Sirin, E.; Parsia, B.; Grau, B.C.; Kalyanpur, A.; Katz, Y. Pellet: A Practical OWL-DL Reasoner. SSRN Electron. J. 2007, 5, 51–53.
46. Corbato, C.H.; Bozhinoski, D.; Oviedo, M.G.; van der Hoorn, G.; Garcia, N.H.; Deshpande, H.; Tjerngren, J.; Wasowski, A. MROS:

Runtime Adaptation For Robot Control Architectures. arXiv 2020, arXiv:2010.09145.
47. IBM. An Architectural Blueprint for Autonomic Computing; White Paper; IBM: Hawthorne, NY, USA, 2005.
48. Suarez Fernandez, R.A.; Grande, D.; Martins, A.; Bascetta, L.; Dominguez, S.; Rossi, C. Modeling and Control of Underwater

Mine Explorer Robot UX-1. IEEE Access 2019, 7, 39432–39447. [CrossRef]
49. Koenig, N.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator. In Proceedings of the

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan,
28 September–2 October 2004; Volume 3, pp. 2149–2154; [CrossRef]

50. Dentler, K.; Cornet, R.; Teije, A.; de Keizer, N. Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile. Semantic
Web 2011, 2, 71–87. [CrossRef]

51. McConnell, S. Code Complete, 2nd ed.; Microsoft Press: Redmond, WA, USA, 2004.
52. Koening, A.; Stroustrup, B. Exception Handling for C++. J. Object Oriented Program. 1990, 3, 16–33.
53. IEEE RAS. IEEE Standard Ontologies for Robotics and Automation; Standard IEEE Std 1872-2015; IEEE: New York, NY, USA, 2015.

http://dx.doi.org/10.1016/j.jss.2015.09.021
http://dx.doi.org/10.1109/TAC.1968.1099015
http://dx.doi.org/10.1109/ACCESS.2019.2930544
http://dx.doi.org/10.1016/j.egypro.2017.08.051
https://robmosys.eu/mros
https://github.com/MROS-RobMoSys-ITP/mros_ontology
http://dx.doi.org/10.3390/s20247237
http://www.ncbi.nlm.nih.gov/pubmed/33348753
http://dx.doi.org/10.1109/ACCESS.2019.2907193
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.3233/SW-2011-0034

	Introduction
	State of the Art
	Flexible Approach to Robust Autonomy in UUVs
	Resilient Robotics
	Fault-Tolerance and Adaptation
	Self-X for Robots

	The UX-1 Robot: A Flooded Mine Explorer
	A Metacontrol Architecture Using Self-Knowledge
	TOMASys: Metacontrol Framework
	Ontological Reasoning and Metacontrol

	UX-1 Self-Model and Metacontrol
	UX-1 Ontological Model
	Ontological Reasoning for UX-1
	Reconfiguration in UX-1

	Experimental Results
	Discussion
	Assessment of Present State
	Future Work

	Concluding Remarks
	References

