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ABSTRACT

Context. In the near future, dedicated telescopes will observe Earth-like exoplanets in reflected parent starlight, allowing their physical
characterization. Because of the huge distances, every exoplanet will remain an unresolved, single pixel, but temporal variations in the
pixel’s spectral flux contain information about the planet’s surface and atmosphere.
Aims. We tested convolutional neural networks for retrieving a planet’s rotation axis, surface, and cloud map from simulated single-
pixel observations of flux and polarization light curves. We investigated the influence of assuming that the reflection by the planets is
Lambertian in the retrieval while in reality their reflection is bidirectional, and the influence of including polarization.
Methods. We simulated observations along a planet’s orbit using a radiative transfer algorithm that includes polarization and bidi-
rectional reflection by vegetation, deserts, oceans, water clouds, and Rayleigh scattering in six spectral bands from 400 to 800 nm,
at various levels of photon noise. The surface types and cloud patterns of the facets covering a model planet are based on prob-
ability distributions. Our networks were trained with simulated observations of millions of planets before retrieving maps of test
planets.
Results. The neural networks can constrain rotation axes with a mean squared error (MSE) as small as 0.0097, depending on the
orbital inclination. On a bidirectionally reflecting planet, 92% of ocean facets and 85% of vegetation, deserts, and cloud facets are
correctly retrieved, in the absence of noise. With realistic amounts of noise, it should still be possible to retrieve the main map features
with a dedicated telescope. Except for face-on orbits, a network trained with Lambertian reflecting planets yields significant retrieval
errors when given observations of bidirectionally reflecting planets, in particular, brightness artifacts around a planet’s pole. Including
polarization improves the retrieval of the rotation axis and the accuracy of the retrieval of ocean and cloudy map facets.

Key words. planets and satellites: surfaces – planets and satellites: oceans – planets and satellites: atmospheres – techniques:
photometric – techniques: polarimetric – techniques: image processing

1. Introduction

Since the discovery of the first exoplanet by Mayor & Queloz
(1995), more than 4000 exoplanets have been identified and cat-
aloged.1 Statistically, nearly every star has exoplanets (Bryson
et al. 2020; Dressing & Charbonneau 2015; Tuomi et al. 2014),
and several of these will be rocky and in the habitable zone of
their star, where the ambient conditions could allow the presence
of liquid water. In particular, Earth-like landscapes with conti-
nents and shallow water regions between water oceans appear to
be a promising environment for life to form and evolve. With
the aim of finding potentially habitable exoplanets and traces
of extraterrestrial life, scientists are thinking about designing
and optimizing the next generation of space and ground-based
telescopes and instruments that would be able to characterize
small, rocky exoplanets in the habitable zones of their stars (see
for example, the recently published “Pathways to Discovery in
Astronomy and Astrophysics for the 2020s” by the National
Academies of Sciences, Engineering, and Medicine 2021).

The techniques that are currently the most successful in
detecting such small, rocky exoplanets are the transit method and
the radial velocity method, which give little information about
the planet’s characteristics besides the (minimum) mass and the
orbital parameters. The latter allows one to compute the amount

1 https://exoplanetarchive.ipac.caltech.edu/

of incoming stellar flux and estimate, albeit very roughly, the
average surface temperature and the possible presence of liquid
water on the planet and hence the possible presence of liquid
surface water, if the planet is of the terrestrial type.

A future technique to characterize the physical properties
of small planets is the direct detection of light that these plan-
ets reflect as they orbit their parent star. This is very difficult
because these planets are extremely faint compared to their par-
ent star; the star will usually be at least 10 million times brighter
than the planet (see Hunziker et al. 2020; Snellen et al. 2021,
and references therein). The most promising candidates for direct
observations of Earth-like exoplanets orbiting solar-type stars are
space telescopes, in particular when flown in combination with
a starshade. This architecture was originally proposed by Cash
(2006) and it makes use of a starshade spacecraft that blocks out
the star’s bright light, allowing a distant, formation flying space
telescope to directly observe the reflected starlight of the orbiting
planets. Two starshade missions have been selected for study: the
Starshade Rendezvous Probe that aims to add a starshade to the
Nancy Grace Roman Space Telescope (Seager & Kasdin 2018)
(to be launched before 2030), and the HabEx mission (JPL 2019)
that consists of a space telescope and a dedicated starshade (to
be launched in the mid-2030s). The next generation of ground-
based telescopes, such as the Extremely Large Telescope (ELT)2

2 https://www.eso.org/public/teles-instr/elt/
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Fig. 1. Number of photons that would be detected by the Nancy Grace
Roman and HabEX space telescopes (apertures 2.4 m and 4.0 m, respec-
tively) from a white, Lambertian reflecting, Earth-sized planet in a 1 au
orbit around a solar-type star at α = 0◦, in optical spectral bands with
widths of 50 nm for a 3.0 h observation. These lines can be regarded as
upper bounds for the number of photons from an Earth-twin (the lines
for the 500, 550, 600, 700, and 800 nm bands are very close together).
The signal-to-noise ratio is proportional to

√
Nmax.

will also have the capability to directly image Earth-like exoplan-
ets around nearby M-type stars, but the contrast needed to detect
signals of such planets around Sun-like stars appears to be hard
to achieve.

Apart from measuring the total flux of light that is reflected
by an exoplanet, some telescope designs also aim to measure
the degree and direction of linear polarization of this light, for
example, the Nancy Grace Roman Space Telescope (Maier et al.
2021), and it is being considered for HabEx and LUVOIR (a
UV-space telescope concept) (see Snellen et al. 2021, and ref-
erences therein). Polarimetry for the characterization of small
exoplanets, in particular the detection of oceans, was explic-
itly mentioned in “Pathways to Discovery in Astronomy and
Astrophysics for the 2020s” (National Academies of Sciences,
Engineering, and Medicine 2021).

Dedicated space and/or ground-based telescopes, with or
without polarimetric capabilities, are expected to take the first
images of Earth-like exoplanets sometime in the next decades.
However, due to the huge distances, these exoplanets will appear
as single pixels in any such image, much like the Earth itself
in the iconic Pale Blue Dot picture taken from about 6 billion
kilometers distance by Voyager 1.

Even with the largest telescope concepts, the photons
received from a small exoplanet will have to be collected for up to
hours to make sure that the planet signal rises above the noise. In
Fig. 1, we show the number of photons that would be received by
the Starshade Rendezvous Probe (with the Nancy Grace Roman
Space Telescope) and HabEx, which have apertures of 2.4 and
4 m, respectively, for a completely white, Earth-sized planet
around a solar-type star at full phase (the planet is then actu-
ally behind the star, so this is a theoretical maximum value). We
furthermore assumed that the total flux in a 50 nm-wide spectral
band is integrated over 3 h.

If the planet’s surface is horizontally inhomogeneous and/or
if the planet has a broken cloud-deck, its total flux signal as well
as its polarization signal will vary as the planet rotates about its
axis and different parts of its surface are illuminated by the light
of its parent star. The planet’s signal will thus depend on the
longitudinal variation over the planet. Also, as the planet orbits

Fig. 2. Planetary orbits with inclination angles i ranging from 0◦ to 90◦.
The lower half of the figure is closest to the observer (we thus define i
as the angle between the orbit normal and the vector to the observer).
Each planetary system is defined with respect to a Cartesian coordinate
system (x, y, z), with the x-axis pointing toward the observer, and the
y- and z-axis as shown. Points where the planets have the same phase
angle, α (defined as the angle between the vectors from the planet toward
the star and the observer), form circles, because they lie on a cone with a
tip-angle equal to α and also on a sphere with the radius of the (circular)
orbits. The rainbow is thus a semicircle, since it is the intersection at
α = 38◦. The color sequence of the rainbow is reversed compared to the
rainbow that forms in rain droplets (Karalidi et al. 2012). Planets are
shown at the eight locations where we assume observations would be
taken.

the star, its phase will change, just like the lunar phase changes
throughout a month. With an exoplanet, we will, however, not
see a change in the shape of the illuminated disk, as we do for
the Moon, but a change in the overall total and polarized fluxes
of the unresolved pixel. As can be seen in Fig. 2, the range of
phase angles that the planet will cover along its orbit depends on
the inclination angle i of the orbit: if the orbit is seen edge-on
(i = 90◦), the phase angle α varies between almost 0◦ to 180◦,
while if the orbit is face-on (i = 0◦), the phase angle is always
90◦. From which part of the exoplanet an observer will receive
reflected starlight at any given phase angle also depends on the
orientation of the rotation axis of the planet. If the axis is tilted
with respect to the planet’s orbital plane, the substellar point
travels between the tropical circles. This results in a reflected
light signal that depends on the surface and cloud variation with
latitude.

Because the reflection properties of a planetary surface and
atmospheric constituents will also depend on the wavelength, the
reflected light signal of a rotating planet will thus depend on time
and also on the wavelength, (Ford et al. 2001; Groot et al. 2020,
and references in the latter). Measurements of the temporal and
spectral variations of the signal of a single pixel exoplanet con-
tain information about the horizontal variability of the planet.
How to retrieve a surface map of an exoplanet from reflected total
flux light curves has been studied by Fujii & Kawahara (2012);
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Kawahara & Masuda (2020); Fan et al. (2019); Farr et al. (2018);
Asensio Ramos & Pallé (2021). They have shown that it is indeed
possible to constrain a planet’s rotation axis and retrieve a rough
planetary surface map. In these studies, the planet’s surfaces are
treated as Lambertian reflectors, which diffusely reflect starlight
in all directions.

Lambertian reflectors do not include polarization. As the
total flux of the reflected starlight depends on the properties of
the illuminated and visible part of the planetary disk, so does
the linear polarization signal of this light. While the starlight
that is incident on the planet can be assumed to be unpolarized,
Rayleigh scattering by the gases in the atmosphere, scattering by
cloud particles and reflection by surfaces like oceans will usually
polarize the reflected light, depending on the directions of the
incident and reflected light, and hence depending on the phase
angle and the location on the planet (for polarization signals of
Earth-like planets, see Stam 2008; Groot et al. 2020; Trees &
Stam 2019, and references therein).

Here, we propose a retrieval algorithm that uses light curves
computed assuming bidirectional reflection, as described by
Rossi et al. (2018) and Trees & Stam (2019). The radiative
transfer computations fully include polarization and multiple
scattering and are performed for an Earth-like atmosphere with
Rayleigh scattering, water clouds that create a rainbow at cer-
tain phase angles and thus orbital locations (Fig. 2 shows such
locations along the planetary orbits) and oceans that exhibit
the bright glint pattern due to specular reflection. The glint
significantly affects a planet’s bidirectional reflection curve as
compared to Lambertian reflection.

The use of bidirectional and polarized light curves requires
a new approach to planet mapping. Since bidirectional reflection
is more complicated than Lambertian reflection, analytical meth-
ods would be difficult to apply so different tools are required.
We used neural networks, which have several advantages: they
are universal approximators (Hornik 1991) and can thus find
a planet’s rotation axis and they have achieved state-of-the-art
results in classification problems (Schmidhuber 2015), and sur-
face mapping is at heart a classification problem. Our neural
networks are designed to use the temporal variations of the
reflected light signal of an exoplanet to retrieve planet charac-
teristics such as the orientation of the rotation axis, the surface
and the cloud coverage. Our networks were trained with a large
set of simulated observations of various model planets before
being provided with the validation data set, which are simu-
lated observations of model planets that were not in the training
set.

In Sect. 2, we describe the characteristics of our model plan-
ets including the surface types that we consider, and we explain
the numerical method that we used to simulate the total and
polarized flux curves of our model planets, and the model obser-
vations, including photon noise, in the training and the test data
sets. In Sect. 3, we describe the general architectures of our
neural networks, how they compare to other networks that have
been applied in similar research questions, and how we train
and validate the network. In Sects. 4, 5, and 6, we describe
the specific neural network architectures and the results for the
retrievals of planetary rotation axes, albedo maps, and surface
type maps, respectively. In these sections, we also investigate
the retrieval errors that result from training a neural network
on Lambertian reflecting planets and applying it then on real-
istically bidirectionally reflecting test planets, and we discuss
the benefits of including polarization. In Sect. 8, we provide
our conclusions and a number of recommendations for future
work.

2. Method: Radiative transfer

2.1. Total and polarized fluxes

We provided our neural network with simulated observations of
the total and polarized fluxes of starlight reflected by an exo-
planet. These fluxes form a so-called Stokes vector (see Hansen
& Travis 1974):

I =


I
Q
U
V

 , (1)

with I the total flux, Q and U the linearly polarized fluxes,
(Q2 +U2)1/2 the total linearly polarized flux, and V the circularly
polarized flux.

The reflected vector I that arrives at a distant observer per-
tains to the planet as a single point of light, and thus comprises
the locally reflected light integrated over the illuminated and
visible part of the planetary disk. Given a wavelength λ and a
planetary phase angle α, vector I can be computed using (see
Eq. (5) in Stam et al. 2004)

I(λ, α) = AG(λ) R(λ, α)
r2

D2 πF0(λ). (2)

Here, AG is the planet’s geometric albedo, which generally
depends on λ through the spectral dependence of the planet’s
reflective properties (for a horizontally inhomogeneous planet,
this will depend on which part of the planet is facing the
observer), r is the radius of the planet, and D is the dis-
tance between the planet and the observer. Furthermore, πF0
is the stellar flux incident on the planet, which we assume to
be unpolarized and unidirectional. Furthermore, R is the vec-
tor describing the angular variation of the starlight reflected by
the planet (this is represented by a vector instead of a matrix
because we assume that the starlight is unpolarized); R depends
on the characteristics of the planetary surface and atmosphere,
the wavelength λ, and the illumination and viewing geometries.

Because the circularly polarized flux V of Earth-like plan-
ets is approximately 5 orders of magnitude smaller than the total
flux I (see for example Groot et al. 2020), its detection is virtu-
ally impossible. We therefore ignore V in our simulations. The
other vector elements are normalized such that I equals one
at a phase angle of 0◦, and we thus used AGI as the planet’s
(flux) phase curve. Next, we describe the surface and atmosphere
characteristics of our model planets.

2.2. Phase curves for homogeneous planets

Similar to Earth, our model planets are covered by different
surface types and have gaseous atmospheres that can con-
tain liquid water clouds. Our radiative-transfer algorithm (Rossi
et al. 2018), computes the starlight that is reflected by a
locally plane-parallel and horizontally homogeneous surface-
atmosphere model, where the atmosphere consists of a stack of
homogeneous layers. To capture the spatial variation in surface-
atmosphere models while adhering to the requirements of our
radiative transfer algorithm, we describe each spherical planet
with locally flat facets each of which is assigned a specific
surface-atmosphere model.

We use three surface types: ocean, sandy desert, and vegeta-
tion. We do not include ice for polar caps and we limit ourselves
to a static model. Although ice caps can be permanent, a realistic
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Fig. 3. Geometric albedos AG of model planets that are completely
covered by ocean (blue), sandy desert (orange), vegetation (green),
or clouds (gray). Rayleigh scattering by the gaseous atmosphere is
included.

model would account for seasonal growing and melting depend-
ing on the obliquity of the planet’s rotation axis. Studying the
retrieval of such seasonal effects is beyond the aims of this work
(see the recommendations in Sect. 8).

The reflection by a given facet depends not only on the
local surface-atmosphere model and wavelength λ, but also on
the local zenith angle of the star, the local zenith angle of the
observer, and the azimuthal angle between the directions toward
the star and the observer. These angles depend on the facet’s
location on the planet and on the phase angle α.

In the papers about exoplanet cartography by Fujii &
Kawahara (2012); Kawahara & Masuda (2020); Fan et al. (2019);
Farr et al. (2018); Asensio Ramos & Pallé (2021), the model
planets reflect Lambertian, that is isotropic and unpolarized. To
allow for a comparison with results in those papers, we imple-
mented Lambertian reflecting model planets as well. However,
we also implemented bidirectional and polarized reflection using
an efficient adding-doubling radiative transfer algorithm and the
summation of local reflection vectors across the planetary disk
as described by Rossi et al. (2018); Trees & Stam (2019); Groot
et al. (2020).3 This allows for more accurate simulations of the
reflected fluxes angular reflection patterns due to the clouds, such
as rainbows, the ocean glint, and, indeed, polarization.

Our Earth-like model atmosphere consists of layers that con-
tain an Earth-like gas-mixture and, optionally, cloud particles.
For the properties of the anisotropic Rayleigh scattering gas
and the clouds that consist of Mie-scattering liquid water par-
ticles, see Stam (2008). We use the reflection by the rough ocean
surface as implemented by Trees & Stam (2019), assuming a
wind-speed of 7 m s−1. The sandy desert and vegetation surfaces
are modeled as Lambertian reflectors with wavelength dependent
surface albedos (see Groot et al. 2020).

Figure 3 shows the geometric albedos AG (the phase func-
tions AGI at α = 0◦) of four model planets that are completely
covered by ocean, sandy desert, vegetation, or clouds, all com-
puted at λ = 400, 500, 550, 600, 700, and 800 nm. At 400 nm,
the relatively high values for AG of the cloud-free planets are
due to Rayleigh scattering by the atmospheric gas. With increas-
ing λ, the gas optical thickness decreases allowing the surface
albedo to dominate the signal. Because the ocean is very dark,

3 In these papers, the facets that describe the variation across the planet
are determined by a grid of square pixels modeling a distant detector,
while our Fibonacci sphere facets are defined on the planet surface.

the albedo of the ocean-covered planet decreases with increas-
ing λ. At 550 nm, the chlorophyll signature of the vegetation is
captured, and the strong increase of AG of the vegetation planet
above 700 nm is due to the so-called red edge that is characteris-
tics of terrestrial vegetation (see for example Seager et al. 2005).
The highly reflective clouds dominate the signal of the cloudy
planet at all wavelengths.

Figure 4 shows the total and polarized fluxes of the hor-
izontally homogeneous planets with ocean, desert, vegetation,
and clouds from Fig. 3, as functions of the phase angle α. The
curves are shown both for the Lambertian reflecting model plan-
ets (thus without polarized fluxes) and for the bidirectionally
reflecting planets, for wavelengths from 400 to 800 nm. For ease
of comparison between the directional and Lambertian reflec-
tion models, the geometric albedos of each Lambertian reflecting
model planet are normalized to the corresponding bidirectionally
reflecting planet.

The Lambertian planets are all brighter than their corre-
sponding bidirectionally reflecting planets between about α =
10◦ and 100◦. At the largest phase angles, they tend to be darker,
in particular the ocean covered planet. Indeed, due to the ocean
glint, the bidirectionally reflecting model planet is relatively
bright around α = 160◦, especially at the longest wavelengths
(for a more in-depth discussion of the reflected light signals of
ocean planets, see Trees & Stam 2019).

The bump at α = 38◦ in the total flux of the (bidirectionally
reflecting) cloudy planet is the rainbow, which is characteristic
for liquid water clouds. We do not have a bidirectional reflec-
tion model for the desert and vegetation surfaces. Therefore,
the curves for those model planets virtually coincide with those
of the Lambertian planets at the longer wavelengths. This is
because at those wavelengths, the atmospheric Rayleigh scat-
tering optical thickness is very small and the surface reflection
dominates the signal.

Figure 5 illustrates the differences between Lambertian and
bidirectional reflection on spatially resolved ocean and cloud-
covered planets at different phase angles and at wavelengths
of 400 and 800 nm. On the ocean planet, the glint pattern is
strongest at α = 142◦ and λ = 800 nm, as expected from Fig. 4.
At 400 nm, the glint pattern is weakened due to Rayleigh scat-
tering. At smaller phase angles, the Rayleigh scattering spreads
out the reflected flux across the planetary disk when compared to
the Lambertian reflection. A similar evening-out of the reflected
fluxes can be seen for the cloudy model planet: the Lambertian
reflecting model planet is much brighter across the subsolar
region than the bidirectional reflecting planet. At the largest
phase angles, the forward scattering behavior of the cloud parti-
cles leaves the bidirectional reflecting planet much brighter than
the Lambertian reflecting planet.

These differences in the brightness distribution across the
planetary disk will influence the retrieval of the map of the
planet: an algorithm that assumes a Lambertian reflecting model
planet, while the reflection by the actual planet is bidirectional,
is thus expected to retrieve lower surface albedo’s in the subso-
lar region. Consequences of assumptions on the retrievals by our
neural network will be discussed further in this paper.

2.3. Surface-type and cloud maps

The positions of the facets on the planet are determined by
the Fibonacci sphere (González 2010) instead of the HEALPix
scheme (Górski et al. 2005). The Fibonacci sphere has the
advantage that it allows any (even) number of approximately
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Fig. 4. Total flux (left column) and polarized flux (right column) phase functions of horizontally homogeneous model planets covered by ocean
(first row), sandy desert (second row), vegetation (third row), or clouds (fourth row), from 400 to 800 nm. The total fluxes have been computed for
Lambertian reflecting (dotted lines) and bidirectionally reflecting planets (solid lines), and the polarized fluxes only for bidirectionally reflecting
planets. The curves are normalized such that a white Lambertian reflecting planet at α = 0◦ has a total flux of one. Near α = 180◦, the approximation
that the surface and atmosphere are locally plane-parallel breaks down (because of the very low fluxes, this is not visible in the curves).

equal-area and equilateral facets. Through testing, we deter-
mined that 1000 facets covering the whole planet strike a good
balance between capturing surface and cloud patterns while
ensuring the efficiency of training the network.

To create model planets with various coverage fractions of
different surface types, we use the following probability dis-
tribution for fraction x (ocean), y (desert), and z (vegetation):

p(x, y, z) =
δ(1 − x − y − z)

2π
√

xyz
. (3)

Here, δ is the Dirac-delta function. The unconditional distribu-
tions for having a fraction x ocean, and for having respective

fractions x and y for ocean and desert are then

p(x) =
1

2
√

x
, p(x, y) =


1

2π
√

xy(1 − x − y)
if x + y < 1

0 else.
(4)

The prior probability distribution in Eq. (3) is symmetric in the
three variables and, due to its singular behavior at the edges, will
generate a significant number of planets with one dominant sur-
face type. We thus trained the network to also recognize planets
that are mostly covered with one of the surface types, like water
worlds or desert planets.
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Fig. 5. Images of homogeneous, Lambertian and bidirectionally reflect-
ing planets for λ = 400 and 800 nm, with the star to the top-right of each
planet. A white facet corresponds to a brightness of ≥ 0.62 (normalized
to a white, Lambertian reflecting facet). The overall brightest facet (2.7)
is in the ocean glint for α = 142◦ and λ = 800 nm. At the same α and λ,
the cloudy facets reach a maximum brightness of 1.1.

To create a surface map on the sphere, we draw numbers
q1, q2 from the uniform distribution on [0, 1] and compute the
fractions as follows:

x = q2
1, y =

1
2 (1 − x) (1 − cos πq2), z = 1 − x − y. (5)

We then assigned to each facet a fictional elevation using the
tetrahedral subdivision method (with an offset exponent q of
0.5) that was originally designed for video game applications
(Mogensen 2010). We created surface maps by establishing the
elevation cut-off levels of each surface type based on the cover-
age fractions x, y, and z with the ocean at the lowest elevations,
vegetation at the highest, and desert at those in between.

The clouds overlay the surface and to select the facets of our
model planets that are cloud covered, we draw a cloud coverage
fraction from the probability distribution in Eq. (5), and then use
the method described in Rossi et al. (2018) to create patchy, zonal
cloud patterns. The clouds have an optical thickness of 10 at
550 nm, and the surface below them is assumed to be black. The
clouds are static with respect to the surface across all epochs. A
sample model planet with a surface coverage resembling Earth,
thus with (x, y, z) ≈ (71%, 13%, 16%), is shown in Fig. 6.

Once we have the planet’s surface and cloud map, we com-
pute the starlight that is reflected by each facet and, by summing

Fig. 6. Examples of model-planet maps used to train the neural network,
including a model Earth (bottom) with (x, y, z) ≈ (71%, 13%, 16%) in
Eq. (5), and a selected cloud pattern. The flux curves of the model Earth
in an edge-on orbit (i = 90◦) are shown in Fig. 7. The RGB color values
of each surface type are given by the albedos at the wavelengths of 700,
550, and 500 nm (see Fig. 3), respectively.

the contributions of the individual facets, by the planet as a
whole (see Rossi et al. 2018).

2.4. Orbits and rotation axes of the model planets

Exoplanets move in planes that are generally observed at an
angle. The inclination angle i of this orbital plane is defined
as the angle between the normal on the plane and the direction
toward the observer. As the planet orbits its star, α ranges from
(90◦ − i) to (90◦ + i). Figure 2 illustrates planetary orbits for the
values of i that we used to simulate the observations of the model
planets for training and testing the network: i ranges from 0◦ to
90◦ with steps of 15◦. Since we consider directly detected exo-
planets, the inclination angles of their orbits could be obtained
from the observations and will be provided to the network.

Rather than continuous measurements throughout a com-
plete orbit, we assume that each model planet is observed at
eight locations along its orbit, see Fig. 2. For our application,
we assume that an exoplanet will be observed spatially resolved
from the stellar flux, as the latter will be several orders of mag-
nitude larger and exhibit its own temporal variations. We thus
exclude small and large phase angles, where the angular distance
between the planet and the star is smallest, from our simulated
observations, and only include locations where 38◦ ≤ α ≤ 142◦.
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Table 1. Phase angle α vs. observational epoch and orbital inclination.

i 1 2 3 4 5 6 7 8

0◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦ 90◦
15◦ 90◦ 79◦ 75◦ 79◦ 90◦ 101◦ 105◦ 101◦
30◦ 90◦ 68◦ 60◦ 68◦ 90◦ 112◦ 120◦ 112◦
45◦ 90◦ 55◦ 45◦ 55◦ 90◦ 125◦ 135◦ 125◦
60◦ 65◦ 65◦ 115◦ 142◦ 142◦ 115◦
75◦ 67◦ 67◦ 113◦ 142◦ 142◦ 113◦
90◦ 67◦ 67◦ 113◦ 142◦ 142◦ 113◦

Notes. The symbol indicates that α = 38◦ and that the rainbow
feature should be visible (provided the planet has liquid water clouds).
See Fig. 2 for the geometries at the given orbital inclination angles i.

For real observations, the limiting phase angle range, or the inner
working angle (IWA), depends on the telescope and for example
on the use of a coronagraph or a star shade, and on the char-
acteristics of the planetary system such as the angular distance
between the planet and the star. With our choice, we are on the
safe side.

The lower limit of 38◦ ensures the visibility of the rainbow of
starlight that has been scattered by liquid water cloud particles,
which could be used for the characterization of clouds (for exam-
ple Karalidi et al. 2011). The orbits with i < 52◦ do not include
the rainbow location and we distribute the observation epochs
evenly along those orbits, in steps of 45◦ around the star (see
Fig. 2) to allow the observer to sample all parts of the surface.
For the orbits with i ≥ 52◦, we chose two observation locations
at α = 38◦ and two at α = 142◦, and the other four locations
are distributed evenly along the remaining orbit. The location
of each observational epoch with the corresponding value of α
is listed in Table 1. Since changing the orbital eccentricity and
radius alters only the magnitude and timing of the phase curves,
we used circular orbits with r = 1 and F0 = 1.

An exoplanet’s rotational period and axis of rotation modu-
late the observed light curves and must therefore be retrieved to
map an exoplanet’s surface (Kawahara 2016). We used a set of
rotation axes that are homogeneously distributed across a unit
sphere’s surface defined in the Cartesian coordinate system as
(x, y, z) (see Fig. 2), as this prevents the neural networks from
learning a bias. Because the neural networks cannot resolve the
degeneracy described in Sect. 4.1, the degenerate counterpart
of each rotation axis is also included in the set. To achieve
this, the first 32 points from a 64-point Fibonacci spiral (see
González 2010) as well as their degenerate counterparts (found
by multiplying element-wise by (−1,−1, 1)) create a set of 64
axes.

At each of the eight observation locations, the model planet
is observed eight times as it rotates about its axis, for a total
of 64 observations per orbit (we used a constant phase angle
at each location, neglecting the orbital motion). During each
observation, the planet is assumed to have a fixed orientation.
We thus do not include rotation during the integration period
(see also recommendation vi in Sect. 8). This approach reduces
memory requirements for storing the phase curves, simplifies the
network architecture, and increases neuron gradients, leading to
more efficient training of the neural network.

Figure 7 shows the total and polarized fluxes of the Earth-
like planet shown in Fig. 6 in an edge-on orbit (i = 90◦) and
with a rotation axis angle of 90◦. Curves are shown both for a
Lambertian and a bidirectionally reflecting model planet. Since

Fig. 7. Total (top) and polarized (bottom) flux curves for our model
Earth (bottom of Fig. 6) in an edge-on orbit with an axial tilt angle
of 90◦ (see Table 1 for the planet’s position and phase angle during
each observational epoch). The polarized flux is calculated only for the
bidirectionally reflecting planets, since Lambertian reflection is unpo-
larized.

the Earth-like planet is largely covered with ocean and clouds,
the Lambertian and bidirectional curves differ significantly in
magnitude, particularly when α = 38◦, and when α = 142◦ (see
Table 1). This was to be expected from the reflection patterns of
the spatially resolved planets shown in Fig. 5.

2.5. Photon noise

Because the light fluxes reflected by exoplanets will be very low,
the measurable signals will have relatively strong noise levels.
Most exocartography research uses Gaussian noise (for example
Asensio Ramos & Pallé 2021), which can be compared to instru-
mental noise. In that case, however, the noise level is not adjusted
to the magnitude of the flux, which can give negative values
when the flux is low. Instead we used Poisson noise (also called
photon noise). To calculate the noise in the total and polarized
fluxes, we write the observed fluxes Io, Qo, and Uo as functions
of the linearly polarized fluxes Ix, with x the angle of the optical
axis of the linear polarizer through which the flux was measured
(see Eq. (1.6) of Hansen & Travis 1974):

Io = I0◦ + I90◦ , Qo = I0◦ − I90◦ , Uo = I45◦ − I135◦ , (6)

where Ix can be derived from the numerically simulated noise-
free fluxes I, Q, and U using Eq. (1.5) from Hansen & Travis
(1974) (and ignoring circularly polarized flux V):

Ix =
1
2 (I + Q cos 2x + U sin 2x). (7)

For each noise-free flux Ix, we then computed the correspond-
ing number of photons by multiplication with Nmax, the number
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Fig. 8. Distribution functions for photon noise. The Poisson distri-
butions with mean N (top) give the probability for k photons being
received from a light source (such as a reflecting planet). The Skellam
distributions (bottom) give the probability for the difference of two inde-
pendent Poisson-distributed variables, describing the polarized fluxes Q
and U.

of photons that would be received from a white Lambertian
planet at full phase (α = 0◦) without noise. Then the noisy
Ix are obtained by drawing from Poisson distributions, and the
observed, noisy Io, Qo, and Uo are computed using Eq. (6). The
result of adding two Poisson-distributed variables with averages
N = µ1 and N = µ2 is a Poisson-distributed variable with N =
µ1 + µ2, so Io is also described by a Poisson distribution. When
subtracting two independent Poisson-distributed variables, such
as for computing Qo and Uo, one obtains a so-called Skel-
lam distribution with mean µ1 − µ2 and variance µ1 + µ2. The
distributions we used are shown in Fig. 8 for µ1 = µ2.

The effect of noise on flux curves can be seen in Fig. 9, where
we show simulated total and polarized flux curves for eight rota-
tional phases (thus at a single orbital position) assuming different
photon numbers and thus different noise levels. Because polar-
ized fluxes are generally much smaller than total fluxes (see
Fig. 7), they are more sensitive to photon noise. This is par-
ticularly obvious when comparing the curves for Nmax = 103

in the two graphs of Fig. 9: while for the total flux this curve
almost coincides with the Nmax = ∞ (“no noise”) curve, for the
polarized flux the difference is large except at the highest flux
level (Nmax = 105). Indeed, for the polarized flux to be reliably
observed, we would need Nmax ≈ 2 · 104.

The number of reflected photons received by a telescope
from a white Lambertian planet at α = 0◦ can be derived
starting with Eq. (2) and using AGR11 =

2
3 for the reflection

by the Lambertian planet (see for example Stam et al. 2006;

Fig. 9. Total (top) and polarized (bottom) flux curves at various noise
levels. The number of photons that represents a total flux equal to 1.0
(a white Lambertian planet at α = 0◦) is Nmax; the range of Nmax used
for the polarized flux differs from that used for the total flux, because
the former is generally smaller than the latter (cf. Fig. 7) and thus more
sensitive to noise. The curves labeled “no noise” (Nmax = ∞) are sine
functions with similar amplitudes as the curves in Fig. 7.

van de Hulst 1957):

Nmax =
2
3

r2

D2

Ṅ
4πd2 tinteg. πr2

tel.. (8)

Here, Ṅ is star’s photon emission rate across the spectral band
under consideration, tinteg. is the integration time, D is the dis-
tance between the telescope and the star system, and rtel., r, and
d are the respective radii of the telescope’s primary mirror, the
planet and the planetary orbit.

In the following, we assume that the planet is Earth-sized and
orbits its solar-type star at a distance of 1 au. The integration time
tinteg. is 3 h (24/8 h/observations), and the spectral bandwidth is
50 nm. The stellar flux across each spectral band is computed
assuming black-body radiation and a stellar radius and effective
temperature of, respectively, 695 700 km and 5772 K, similar to
solar values. Figure 1 shows that the number of photons Nmax
reflected by a white, Lambertian reflecting planet in the Alpha
Centauri system would range from 105 to 106. As we show in
Sect. 6.3, Nmax should be 104 or more for accurate retrievals.
According to Eq. (8), this should be achievable for systems up to
distances of 20 lightyears with the Nancy Grace Roman Space
telescope (in combination with a star shade) and 30 lightyears
with the HabEx telescope.

3. Method: Neural networks

3.1. Training our neural networks

Our neural networks are trained by feeding them data of model
planets and by comparing the networks’ output to each model
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Table 2. Number of combinations for which we created model planets.

Parameter # combinations

Inclinations 7
Rotation axes 64
Cloud maps 10 000
Surface maps 10 000

Notes. These combinations yield 44.8 billion planets from which we
selected 4 million for the training data set and for validation.

planet’s true rotation axis orientation and surface map. The train-
ing data consists of numerically simulated observations of model
planets with various surface and cloud maps, inclinations and
rotation axis angles. These input values are multiplied by neuron
weights that are adjusted by an optimization algorithm minimiz-
ing the loss, defined by the difference between the desired output
and the network’s output. This process is repeated in epochs until
the optimization algorithm no longer increases the network’s
accuracy. The latter is established by evaluating the loss of the
network when applied to validation planets, that is model planets
that were not included in the training data set.

The large parameter space requires a large training data set.
To reduce computation and memory requirements, we defined
a set of possibilities for each of the parameters. The set size of
each of the four parameters is listed in Table 2, resulting in a total
of 44.8 billion unique combinations. We rapidly created 4 mil-
lion model planets by randomly drawing combinations from the
sets. For these planets we then computed flux curves that is the
input to the network. One tenth of the planets and light curves
are used for validation, to evaluate the accuracy of the neural
networks.

3.2. Periodic convolutions

Recently, 1D convolutions have been used to process time-series
in neural networks, achieving state-of-the-art results in fields
such as biomedical data classification and early diagnosis, and
anomaly detection in power electronics and electrical motor fault
detection (Kiranyaz et al. 2021). Our neural network architec-
ture uses such 1D convolutions, adjusted to take advantage of
the periodic nature of the light curves. Since the model planet’s
prime meridian (the line of 0◦ longitude) is arbitrary, the rela-
tionship between the rotational phases of, for example, 315◦ and
0◦ should be equivalent to that between 45◦ and 90◦. To prevent
that such combinations are interpreted as being distinct by the
neural network, the first N − 1 rotational phases are appended to
the end of each light curve before the 1× N convolutional kernel
slides over the light curve, as shown in Fig. 10 for a kernel size
N of 4. An additional advantage is that the convolution does not
change the dimensions of the light curve. There is thus no need
for zero-padding, a common method for preserving data dimen-
sions by adding a border of zeros around the actual data, which
has the disadvantage of increasing susceptibility to spatial bias,
as shown by Alsallakh et al. (2021).

To down-sample the data dimensions, a stride greater than 1
can be used. However, the kernel size should be a multiple of the
stride to avoid some rotational phases being sampled more than
others. We used a kernel size of 1 × 4 and a stride of 2 in the
final architecture and found that the loss of the neural network
decreases by 10% when using these periodic convolutions rather
than conventional 1D convolutions.

Fig. 10. Periodic convolution with a stride of 2 and kernel size N of 4.
Since the rotational phases are pseudo-periodic, the first N − 1 values
are appended to the end of the light curves before the size N kernel
slides over to preserve dimensions.

3.3. Spherical convolutions

Originally developed for image recognition (Lecun et al. 1989),
2D convolutions can also be used for 2D image generation, for
example when generating faces (Karras et al. 2020) or for seman-
tic segmentation, where the output of the neural network is an
image with each pixel belonging to a specific class (Wang et al.
2018). Asensio Ramos & Pallé (2021) demonstrated that con-
volutions on the surface of a sphere can be used to regularize
retrieved exoplanet maps. They use the spherical convolution
algorithm developed by Krachmalnicoff & Tomasi (2019) com-
bined with ReLU activation functions to regularize a retrieved
planet map on a HEALPix pixelization scheme (Górski et al.
2005).

Since we did not use HEALPix but a Fibonacci sphere,
we have adapted the spherical convolution algorithm by
Krachmalnicoff & Tomasi (2019). A spherical convolution takes
advantage of the optimization that has been achieved for 1D
convolutions by expanding the 1D list of facets on the sphere’s
surface such that each facet is followed by its N surrounding
facets. Then a kernel with size and stride equal to N + 1 con-
volves each facet with its surrounding facets. To achieve this for
a Fibonacci sphere, we first identified each facet’s surrounding
facets. These are then ordered in clockwise direction by calculat-
ing the clockwise angle from the z-direction to each surrounding
facet’s center. More rings can be added by taking the surround-
ing facets of the inner ring. A problem that arises here is that the
rings around the facets have different sizes, while the 1D kernel
can only have one size. To solve this problem, Krachmalnicoff &
Tomasi (2019) use zero-padding, which can cause unwanted arti-
facts (Alsallakh et al. 2021). To avoid these artifacts, we instead
used the periodicity of the rings and add the first value to the
end of the series. Then we computed the mean integer length of
the rings surrounding each facet, and if the number of facets in a
given ring differs from the mean value, facets are either repeated
or taken out in an evenly spaced manner. This can yield gaps in
the rings as shown in Fig. 11, while in other places there can be
double counts, causing spatial bias with minimal effects on the
final maps.

4. Results: Retrieval of the rotation axis

The first step for retrieving planet maps using reflected fluxes
is to estimate the orientation of the planet’s rotation axis. Fujii
& Kawahara (2012) find the axis orientation by maximizing the
overlap between the measured signals and dominant left-singular
vectors. Kawahara (2016) also showed that retrieval of the axis
is possible from measurements of the frequency modulation of
the planetary signal over a complete orbit. Because we take eight
discrete observational periods of a planet along its orbit instead
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Fig. 11. Example of a spherical convolution with five rings. The
method developed by Krachmalnicoff & Tomasi (2019) (originally for
HEALPix) is adapted to the Fibonacci sphere with the improvement
that instead of zero-padding, the periodic nature of rings is used. Some
facets inside the rings are black because they are not included in the
kernel, since the number of facets in each respective ring must match
for all kernel locations on the sphere.

of (near) continuous monitoring, we decided to use a convolu-
tional neural network approach with as output of the network the
three Cartesian coordinates of the planet’s rotation axis.

4.1. Degeneracy in the signal for the edge-on case

The retrieval of the rotation axis is problematic when the orbital
inclination angle i is close to 90◦, because then every config-
uration has a mirror configuration with the same light curve
upon reflection in the orbital plane, as the orbit and the sense
of rotation remain the same. However, this leaves the planet map
mirrored with respect to the equator and the x and y components
of the rotation axis change sign. In the reference system shown in
Fig. 2, this would be expressed as an element-wise multiplication
by (−1,−1, 1). Because the two configurations are inherently dif-
ferent, while the observable light curves are identical, the neural
network should not be able to decide on the actual configuration.
We identified the degeneracy by trial-and-error and confirmed
by testing that the light curves are the same for several different
mirror pairs.

4.2. Architecture

We drew inspiration for our neural network architecture, shown
in Fig. 12, from other convolutional signal processing neural
networks (see, for example, Badshah et al. 2017). We split the
network into a “feature recognition” part with convolutional
layers followed by a “feature combination” part with dense lin-
ear layers. The network must be retrained for each new orbital
inclination angle i.

The input dimensions to the neural network are either 8× 8×
6 without polarization (8 orbital locations, 8 rotational phases, 6
wavelengths) or 8 × 8 × 12 with polarization (Stokes parameters
I and Q are included, which doubles the final dimension; param-
eters U and V have negligible magnitudes and are not included
in the retrievals). The network’s feature recognition part consists
of two periodic convolutional layers, each with 16 filters. The
first layer, with a kernel size of 3, increases the dimensions of
the input to 8 × 8 × 16, as shown in Fig. 12. The final dimension
increases to 16 since each of the filters, which convolve the six
wavelengths and eight rotational phases, has its own output. To
halve the size of the data, the second periodic convolution skips
half of the rotational phase steps (stride = 2) with a kernel size
of 4, leading to an 8 × 4 × 16 output, as shown in Fig. 10. The

output of the last convolutional layer is then flattened and passed
onto the network’s feature combination part.

The data is then fed through five dense, fully connected lay-
ers with linear activation functions and a bias. These layers have
512, 512, 256, 32, and three nodes, respectively. The first four
layers are followed by PReLU activation functions to introduce
nonlinearity (He et al. 2015):

f (yk) =
{
yk if yk > 0
ak yk if yk ≤ 0 , (9)

where the slope coefficient ai causes nonlinearity due to the
change in gradient at yi = 0 and is actively learned and man-
ually inspected (see Fig. 13). To prevent over-fitting, the first
three layers are followed by dropout regularization layers with a
dropout rate of 15%. These dropout layers randomly set 15% of
the layer’s output to 0, preventing the neural network from over-
fitting to peculiarities of the training data. The network has a
total of 667, 907 or 667, 619 trainable parameters, depending on
whether polarization is included or not, respectively. The param-
eters that we trained are the weights of the convolutional kernels,
linear nodes and slope coefficients of the PReLU layers.

4.3. Training the axis retrieval network

When the neural network is trained on all planets with a given
inclination angle i, the available number of light curves is
4 000 000/7 ≈ 570 000. In order to mitigate the degeneracy
(Sect. 4.1), the network can only be trained on all planets with
a rotation axis with y ≥ 0, in which case the number of curves is
halved. We used 90% of the curves for training and 10% for vali-
dation. To prevent over-fitting, we stopped with training when the
validation losses have not decreased for two consecutive epochs.

The neural network is created and trained using the Keras
Python package.4 Since retrieving the rotation axis is a regres-
sion problem, we chose the mean squared error (MSE) as the loss
that the network should minimize. We found that for small batch
sizes (16 to 64 planets fed to the neural network together), the
training loss can increase after roughly ten epochs. This appears
to indicate that the optimization algorithm (Kingma & Ba 2014)
overshoots the local minimum and adjusts to peculiarities in
the small batch, rather than finding the global optimum. This
problem was solved by increasing the batch size to 256.

Figure 13 shows the slope coefficients a (see Eq. (9)) after
training for the edge-on case. The coefficients of PReLU layers
2, 3, and 4 are distributed around zero. Because they approxi-
mate a classical ReLU function with a = 0, we tested replacing
them with ReLU layers, but this did not lead to better results
as the validation losses of this modified network were larger;
apparently the nonzero a values in these PReLU layers do add
value. PReLU layer 1 is not centered around zero but has a mean
a of −0.32, with a standard deviation that is roughly one order
of magnitude larger than that for the other layers. The negative
coefficients of the majority of the nodes in layer 1 mean that the
PReLU function is not one-to-one.

4.4. Numerical artifacts

When the network is trained with light curves with very lit-
tle noise, it can distinguish between the two degenerate cases
addressed in Sect. 4.1 and correctly estimate the x and y coor-
dinates of the planet’s rotation axis. Because this information

4 https://keras.io/
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Fig. 12. Network architecture to retrieve rotation axes. The feature recognition part uses periodic convolutions and the feature combinations part
consists of densely connected layers with PReLU activation functions and dropout layers to prevent over-fitting (the number of nodes is indicated
above the lower layers). When using polarization, the input shape is 8 × 8 × 12, otherwise 8 × 8 × 6. The periodic convolutions maintain the 1st
and 2nd data dimensions since the first N − 1 values along the rotation axis are appended to the end before convolution. The number of filters
determines the 3rd dimension of the output. The number of trainable parameters is 667 907 (with polarization) and 667 619 (without polarization).

Fig. 13. PReLU slope coefficients after training (plotted with a log
scale). See Fig. 12 for the position of each layer in the neural network.
These coefficients were retrieved from a neural network trained on plan-
ets in an edge-on orbit with bidirectional light curves and including
polarization.

should actually not be present in the light curves, this shows
that the network uses numerical artifacts in the retrieval. For
example, the network might have learned to recognize the facet
scheme, which is not symmetric under the reflection in the plane.

By increasing the noise levels, such numerical artifacts are
suppressed. We have determined by trial and error that a noise
level at photon numbers Nmax ≈ 104 ensures that the network is
unable to distinguish the degenerate cases, as it should be.

4.5. Retrieval accuracy for near edge-on observations

The left panel in Fig. 14 shows the retrieval accuracy of the
neural network as a function of the orbital inclination angle i.
The loss increases with i up to MSE = 0.22 for i = 90◦, except
for the network that was trained with Lambertian data but that
was presented directional validation. Here, the degeneracy in the
geometry happens: the network cannot determine the signs of the
x and y components of the rotation axes. In that case the retrieved
values are near zero and therefore

MSE = 1
3 ⟨∆x2 + ∆y2 + ∆z2⟩ ≈ 1

3 ⟨x2 + y2⟩ = 2
9 . (10)

The degeneracy for the near edge-on observation can be mit-
igated by constraining the rotation axes to y ≥ 0 and by training
the neural network on these planets only. The neural network is
able to approximate the rotation axis in this half of the search
space, as shown in Fig. 15. With decreasing inclination angle,
the two cases y > 0 and y < 0 are increasingly distinguishable,
and the use of a constraint becomes invalid, as by then giving
away the correct sign of y, one obviously artificially reduces the
MSE.
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Fig. 14. Rotation axis retrieval accuracy as a function of orbital inclination angle i without (left) and with the constraint y ≥ 0 (right). Blue: training
with Lambertian reflection and retrieval with Lambertian reflection; Orange: training with bidirectional reflection and retrieval with Lambertian
reflection; Green: training with bidirectional reflection and retrieval with bidirectional reflection, both without polarization; Red: the same, but
both with polarization.

Fig. 15. Accuracy of the retrieval of the rotation axis direction for N = 100 model planets in edge-on orbits: the x-coordinate (left), y-coordinate
(middle), and z-coordinate (right). The degeneracy has been mitigated with the constraint y ≥ 0.

4.6. Retrieval accuracy at other inclination angles

The network is trained three times, for three different reflection
models. First, we trained it with light curves computed assuming
Lambertian reflection. The second and third training sessions are
with light curves computed using bidirectional reflection with
and without polarization. All losses discussed in this section are
validation losses, and thus the network’s losses when it is applied
to the validation planets that it was not trained with.

4.7. Validation with model Earth

In order to validate that the neural network is able to retrieve
maps and rotation axes of planets that are not included in the
training data, we used calculated data of the cloudy model planet
Earth shown in Fig. 6. The fluxes were computed using bidirec-
tional reflection with polarization for a face-on orbit (i = 0◦) with
rotation axis coordinates (0.918, 0.281,−0.281), such that the tilt
is 23.4◦. Noise corresponding to Nmax = 104 photons was added
to the fluxes and they were normalized to a maximum value of 1.

The network trained on planets with rotation axes with y ≥ 0 pre-
dicts a rotation axis of (0.904, 0.170,−0.331) for the light curves,
corresponding to an MSE of 0.0050, similar to the MSE obtained
from the validation for face-on orbits. We conclude that the neu-
ral network has not “memorized” the maps or rotation axes in
the training data and constrains the rotation axis as intended.

5. Results: Retrieval of albedo maps

5.1. Absolute light curves

In this section, we attempt to replicate the results of other
authors, retrieving planetary albedo maps based on absolute light
curves computed using Lambertian reflection (see for example
Fujii & Kawahara 2012; Kawahara & Masuda 2020; Fan et al.
2019; Farr et al. 2018; Asensio Ramos & Pallé 2021). Since infor-
mation about facets that never face the observer is not present
in the light curves, the neural network cannot retrieve the albe-
dos of those facets. The number of output albedo values is thus
between 500 (the axis is parallel to the line of sight and only half

A59, page 12 of 21



K. Meinke et al.: Exoplanet cartography using convolutional neural networks

Table 3. Tested architectures for retrieving facet albedos.

Model architecture Val. Loss # Epochs

681 Nodes 0.0186 413

64 Nodes
681 Nodes 0.0164 249

Periodic convolution
64 Nodes

681 Nodes
0.0146 383

Notes. These architectures are tested for the best combination of inclina-
tion and rotation axis (shown in Fig. 17), for which 681 facets are visible.
The inputs to the neural network are 64 Lambertian fluxes (8 orbit
locations ×8 rotation phases) for the wavelength of 550 nm. The archi-
tectures are trained until the validation loss does not decrease for 10
consecutive epochs. The periodic convolution uses a 1 × 3 kernel, as
shown in Fig. 10.

of the surface becomes visible) and 1000 (the axis is perpendicu-
lar to the line of the sight and the whole surface becomes visible).
Every facet that becomes visible also becomes illuminated while
being visible.

Since the problem is linear in nature, the first architecture
that is tried is a single layer of nodes (see Table 3), meaning that
each facet output is a linear combination of the 64 flux values
(8 orbit locations × 8 rotation phases). Since no facet is biased
toward a high or lower albedo, it is found that including biases in
the nodes decreases the retrieval accuracy.

The neural network is trained using Lambertian, absolute
flux curves for an orbital inclination of 60◦ and a rotation axis
of (0.93,−0.20,−0.30) (this geometry is found to be best in
Sect. 5.2). The wavelength chosen for the retrievals is 550 nm,
since at this wavelength it is easiest to distinguish the four sur-
face types from each other (see Fig. 3). Furthermore, 10% of the
data is used as validation data, the batch size of the training is
set to 32 (found by trial and error to be optimal), the network is
trained until the loss does not decrease for 10 consecutive epochs
and the loss function used is the mean squared error (MSE) since
this is a regression problem. These training parameters are used
for all architectures discussed in this section.

The validation loss of the single layer after 413 training
epochs is 0.0186. By trial and error, it is found that adding
another layer of 64 nodes decreases the MSE to 0.0164 while
also roughly halving the number of training epochs to 249.
Adding more dense layers than this does not further decrease
the validation loss of the network. However, the accuracy can
be improved by including a periodic convolution (described in
Sect. 3.2) with a kernel size of 1 × 3 before the two densely
connected layers. The MSE of this model when applied to the
validation data is equal to 0.0146. Two example retrievals are
shown in Fig. 16 for a model planet Earth in the best and
worst configurations of inclination and rotation axis shown in
Fig. 17.

5.2. Retrieval accuracies for different geometries

In this section, the effect of the orbital inclination angle and the
rotation axis orientation on the albedo map retrievals is investi-
gated. Only half of the possible 64 rotation axes are discussed
since all axes with x ≤ 0 can be reflected in the yz plane to create
a new axis with the same observations in reverse order, resulting

Fig. 16. Examples of albedo map retrievals for the best (top) and worst
(middle) geometries from Fig. 17 using absolute light curves for λ =
550 nm. In these cases, 681 and 917 facets are visible, respectively. The
map outside the visible region is white. The original map (bottom) is
the model Earth (at λ = 550 nm). The MSE for these two retrievals
is 0.0286 and 0.0129, respectively, which is similar to the MSE of the
validation data for these geometries (see Fig. 17).

in the same retrieval accuracy (see Fig. 2 for the definition of the
(x, y, z) coordinate system).

To this end, the final model from Table 3 is retrained for all
32 axes with x ≥ 0 for each of the seven inclinations (0◦, 15◦,
30◦, 45◦, 60◦, 75◦ and 90◦). The resulting MSEs of the valida-
tion data are plotted in Fig. 17. The number of facets that are
retrieved varies for each rotation axis, since not all facets become
visible.

We found that a rotation axis angle (angle between the rota-
tion axis and orbital normal vector) near 90◦ provides the best
retrieval accuracy for edge-on and near-edge-on orbits (i = 75◦
and i = 90◦). For edge-on orbits (in the xy plane), the orbital
movement modulates the signal across the y (vertical) axis of
the planet’s surface. When the rotation axis has a large compo-
nent in the orbital plane, this provides modulation in the opposite
(z) direction. Conversely, when the axis is normal to the orbital
plane the modulation due to the rotation of the planet is in the
same direction as the modulation due to the orbital movement.
Edge-on orbits with rotation axes normal to orbital plane thus
have the worst accuracy of all combinations. The worst geome-
try that is studied is for an edge-on orbit and a rotation axis of
(0.34,−0.11,−0.94), with an MSE of 0.022.

For face-on and near-face-on orbits, the orbital movement of
the planet modulates the signal in both the y and z directions. The
best retrieval accuracies are then found for axes near the normal
of the orbital plane that also modulate in both directions. Axial
tilts near to 90◦ modulate in only one direction and thus show
slightly worse results. The best geometry is found for an inclina-
tion of 60◦ and an axis of (0.93,−0.20,−0.30), as in this case the
orbit and rotation axis both modulate across two perpendicular
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Fig. 17. Accuracy of albedo retrievals using the last architecture from
Table 3 for various combinations of rotation axis and inclination. The
axes are shown from the observer’s perspective. Only the 32 axes with
x > 0 (on the front-side) are shown since the other 32 axes are mirrors
with the rotation epochs in reverse order. The highest loss is found for
i = 90◦ and an axis of (0.34,−0.11,−0.94), and the smallest loss for
i = 60◦ and the axis of (0.93,−0.20,−0.30).

directions. The rotation axis angle is 78◦, so the rotation axis lies
close to the orbital plane, roughly in the direction of the observer.
The MSE for this case is 0.015 and this geometry is chosen for
many of the remaining example retrievals in this paper.

5.3. Relative (normalized) light curves

Since the radius of an exoplanet is difficult to constrain from
direct detections (a small, bright planet can have the same flux
as a large, dark one), we used flux curves that are normalized
to 1.0 for our retrieval algorithms for directly observed exoplan-
ets. To this end, we used a modified architecture as shown in
Fig. 18 in which the outputs of the periodic convolution are used
to estimate the overall brightness of the albedo maps by three
densely connected layers with 32 nodes each. Two single nodes
(which each output a single value) are then multiplied and added
to the albedo map to scale the map to the estimated brightness.
The densely connected layers have ReLU activation functions,
which are a special case of PReLU (Eq. (9) with a = 0). Based
on our experience with this architecture, PReLU layers where
a is actively trained instead of ReLU layers do not provide bet-
ter results and increase the number of epochs needed to reach a
similar validation loss.

When using the network designed for absolute flux curves
(Table 3) and training it with normalized flux curves, the MSE
increases from 0.0146 to 0.0197. Using the scaling discussed

Table 4. Mean squared error (MSE) of the albedo retrievals.

Nmax Model Earth MSE Validation MSE

∞ 0.0142 0.0162
105 0.0146 0.0185
104 0.0157 0.0210
103 0.0184 0.0240
102 0.0262 0.0280
10 0.0284 0.0336

Notes. The architecture from Fig. 18 is trained on normalized light
curves to produce albedo maps and then fed light curves of our model
Earth and validation light curves to find these errors. Compare with
Fig. 19 for visual indication of different MSE levels.

above decreases the MSE from 0.0197 to 0.0162. This shows
that the network can effectively estimate the map’s brightness.

5.4. Effects of noise

In this section, we study the effect of noise on the albedo map
retrievals. We trained the architecture from Fig. 18 with nor-
malized, Lambertian light curves with different levels of photon
noise added (see Sect. 2.5). The MSE of the validation data and
the retrieved model Earth maps are shown in Table 4 and in
Fig. 19. For all noise levels the retrieval of the model Earth is
significantly better than that of the validation data. This could
be because the model Earth is largely covered by vegetation and
ocean, which have similar albedo’s for the studied wavelength of
550 nm when compared with a combination of clouds and ocean,
for example. Homogeneous planets may be easier to retrieve
since there are less hard-to-predict details with large penalties
for the loss function.

For the case without noise (Nmax = ∞), the clouds, the
Sahara and North America can be clearly distinguished. These
features disappear at a noise level corresponding to Nmax ≤ 103

photons. The results shown here are comparable to results from
Fujii & Kawahara (2012); Farr et al. (2018); Fan et al. (2019);
Kawahara & Masuda (2020); Asensio Ramos & Pallé (2021),
although a precise comparison is difficult due to differences
in geometry, noise models, number of observations and the
specific map.

6. Results: Retrieval of surface-type maps

Since albedo maps do not fully describe the properties of a planet
and do not identify unique non-Lambertian reflecting patterns
due to oceans and clouds, we here retrieve for each facet that cov-
ers the planet, a surface type instead of an albedo, as in Sect. 5.
The four possible surface types for each facet are: ocean, vege-
tation, sandy desert, and clouds (while strictly speaking clouds
are not on the surface, the network assumes them to be). For
each facet, our neural network predicts a probability for each
surface type. When creating maps or checking the classification
accuracy, each facet is assigned the surface type with the highest
probability.

6.1. Architecture

To create surface type maps, the output dimensions of the neural
network should equal the number of visible facets (between 500
and 1000) times the number of possible surface types (4). To
recognize patterns in the light curves, we used a similar periodic

A59, page 14 of 21



K. Meinke et al.: Exoplanet cartography using convolutional neural networks

Fig. 18. Architecture used to retrieve planetary albedo maps from normalized phase curves. Several logic layers with ReLU activation functions
are used to scale the output map by adding and multiplying by two single values. The scaling part of the network decreases the loss from 0.0197 to
0.0162 (for the ideal geometry as shown in Fig. 17). The output of the neural network is between 500 and 1000 values, depending on the number
of facets that is visible for the specific geometry. Neurons in the bottom layers have biases but neurons in the top layers do not.

convolution as shown in Fig. 12. Two periodic convolutions (see
Sect. 3.2) with 16 kernels of size 1 × 3 and 1 × 4 were applied to
the light curves. No down-sampling was done as the resolution
along the rotation phase should be high to create accurate maps;
the stride is thus 1. This means that we used a vector of size 1024
after flattening the output of the periodic convolutions. This was
followed by a dense layer for each surface type. Each dense layer
has as many nodes as there are output facets.

Finally, we used spherical convolutions to regularize the
surface map. With a ResNet approach (He et al. 2016) the
dense layer output is fed into the convolutions (four filters, one
ring) and the output is added to the previous output. This is
repeated five times to achieve the final output of the neural
network. Before training, the spherical convolution kernels were
initialized with zeros, to avoid interference with the learning of
earlier layers.

6.2. Training the surface-type network

The neural network was trained for one combination of incli-
nation and rotation axis at a time, so the training data consists
of roughly 4 000 000/7/64 ≈ 9 000 light curves, of which 10%
were set aside for validation. The neural network was trained
using the Adam optimization algorithm (Kingma & Ba 2014),
until the validation loss did not decrease for five consecutive
epochs. We found that a batch size (number of training curves
fed into the neural network simultaneously) of 32 works best,
since larger batch sizes can cause the network to overshoot the
local minima. This could be due to the gradient magnitudes in
combination with the standard learning rate in Keras. We also
found that training the neural network using the MSE as the loss
function gives the highest retrieval accuracies when compared to
the categorical cross entropy that is usually used for classifica-
tion problems (Zhang & Sabuncu 2018). This might be due to the
ill-defined nature of the exocartography inversion problem or to
a suboptimal network architecture.

6.3. Retrieval accuracy

In this section, the retrieval accuracies of the neural network
architecture shown in Fig. 20 are investigated. The retrieval

accuracy of each surface type is plotted as a function of the noise
level in Fig. 21. The inclination and rotation axis chosen were the
best combination as shown in Fig. 17. Since the inclination angle
is 60◦, the rainbow feature at α = 38◦ is visible at two of the eight
orbital positions and the ocean glint is also prominent at the two
orbital positions for which α = 142◦.

The network performs poorly when trained on Lambertian
light curves while applied to directional light curves. This will
be further discussed in Sect. 7.2. The surface type that is cor-
rectly classified most often is ocean, due to its unique glint
feature as well as its characteristic darkness. We verified that
the high accuracy is (at least) partially due to the ocean glint
since the Lambertian trained network applied to Lambertian
light curves does not perform as well as the directional trained
network applied to directional light curves. A similar effect is
also seen for cloudy facets, which also have unique, bidirec-
tional reflection (see Fig. 4). The accuracy of the classification of
vegetation and desert surface types, which are modeled as Lam-
bertian reflectors, does not increase when bidirectional curves
instead of Lambertian curves are used. We found that excluding
the light curves with a wavelength of 550 nm (the green bump)
does not impact the retrieval accuracy of the surface maps in the
absence of noise.

The retrieved maps of the Earth-like planet are shown in
Fig. 22 for different noise levels. These maps have more detail
than the albedo maps shown in Fig. 19, which validates our
approach of retrieving surface types rather than albedos. In the
absence of noise (Nmax = ∞), all continents can clearly be dis-
tinguished. At a noise level for photon numbers Nmax ≤ 103, the
Americas disappear. Lastly, for Nmax = 10, only the main sur-
face types (vegetation and ocean) are retrieved. At this high noise
level, the retrieved map depends strongly on probabilistic noise
contributions.

7. Discussion

Our method of retrieving exoplanet surface maps is based on
the assumption that the planet has an atmosphere with clouds
and three surface types: ocean, desert and Earth-like vegetation.
These are modeled with bidirectional reflection for clouds and a
rough ocean with glint. The planet has a fast rotation compared
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Nmax Retrieved Earth MSE

Fig. 19. Albedo retrievals of an Earth-like planet for different noise
levels (Nmax = ∞ is noise-free), using the optimal configuration from
Fig. 17. The architecture from Fig. 18 for total flux curves computed
using Lambertian reflecting model planets is used. The actual Earth
albedo map is shown in Fig. 16. The MSE is computed by comparing
the retrieved map with the map of the model Earth.

to the orbital period, as its surface is static. Here, we first dis-
cuss the results of using neural networks, then the results from
our inclusion of bidirectional reflection and polarization in the
signal, and list possible steps for an observational campaign and
recommendations for future work.

7.1. Optimizing the neural network architectures

The rotation axis retrieval is nonlinear and therefore a neu-
ral network with nonlinear activation functions was found to
be most accurate. On the other hand, the neural network for
creating surface-type maps was found to work best when only
linear layers were used, contrary to our initial assumptions. The
linear neural network is equivalent to a least squares method
(with regularization) which defines the ideal solution for a data
set. It remains to be seen whether neural networks have advan-
tages over least-squares solutions for the map retrieval with a
constrained rotation axis.

Our model assumes a static map, and we thus did not
include seasonal variations, such as dynamical ice caps, hurri-
cane clouds, and volcanic eruptions. Although nonstatic maps
can be retrieved with a least-squares method, this is at the cost of
spatial resolution (Kawahara & Masuda 2020). Neural networks
could be trained to make connections between planet charac-
teristics, such as a relation between an obliquity of the planet’s
rotation axis and the varying size of a polar ice cap, or between
cloud cover and oceans. They thus appear to be suitable for the
retrieval of dynamic maps, and we expect them to prove their
usefulness in future exocartography.

7.2. Consequences of the Lambertian assumption

Since all other authors, to our knowledge, use Lambertian reflec-
tion for their retrievals, it is interesting to evaluate the validity
of this Lambertian assumption for training a network when the
actual data will be of planets that reflect non-Lambertian, that
is bidirectionally. When retrieving the rotation axis, the network
trained with Lambertian curves and applied to Lambertian model
planets performs best of all combinations in Fig. 14: the MSE is
0.0074 for face-on orbits. However, when this network that was
trained with Lambertian model planets is applied to the more
realistic bidirectional light curves, the losses increase by roughly
one order of magnitude for large inclination angles. Thus evalu-
ating the network’s performance while using only Lambertian
light curves leads to a false confidence in the retrieval algo-
rithm’s accuracy. When such a retrieval algorithm is used to
retrieve the rotation axes of bidirectionally reflecting planets in a
face-on orbit, however, the MSE is 0.0117, only 18% larger than
the MSE of 0.0099 for the network that was trained on bidirec-
tional curves. This confirms that in an edge-on orbit, where the
phase angle is constant along the orbit, the reflection appears to
be mostly Lambertian because of the lack of angular features.

The MSE of the retrievals by the networks trained with
bidirectional models increases with increasing inclination angle.
Including polarization in the retrievals overall increases the
retrieval accuracy. The beneficial effects of including polariza-
tion are smallest for i = 0◦ and 15◦. This can be explained
since the reflected flux for these small inclinations appears to be
mostly Lambertian. The largest decrease in MSE when includ-
ing polarization occurs for i = 60◦, where including polarization
decreases the loss by 26%.

To test the Lambertian assumption for albedo map retrievals,
we used the architecture from Fig. 18, which provides compara-
ble results to those by other authors by training on Lambertian
light curves and testing on directional light curves (light curves
computed using directional reflection). As can be seen in Fig. 23,
strong concentric artifacts about the pole appear for all inclina-
tions besides for a face-on orbit. Each of the planets in the figure
is a homogeneous planet and should be retrieved as such. Since
the planets have the same flux at all rotation phases, the arti-
facts are purely due to the overestimation of the flux at low phase
angles and underestimation of the flux at high phase angles when
using the Lambertian assumption (see Fig. 4). Since most exo-
planets are not in a face-on orbit, these errors demonstrate a need
for new retrieval algorithms that use directional light curves to
map planet surfaces.

For surface-type map retrievals, the Lambertian trained neu-
ral network yields large errors when applied to bidirectional
light curves, as can be seen in Fig. 21. As an example, Fig. 24
shows the map as retrieved from bidirectional light curves of the
model Earth (see Fig. 6) by a neural network that was trained on
Lambertian light curves. Amongst others, the network predicts a
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Fig. 20. Architecture for classifying facets on a planet as one of four surface types. Several periodic convolutions recognize patterns in the curves
similar to the rotation axis retrieval network (Fig. 12). To maintain a high level of resolution of rotation phases, no down-sampling is used in the
convolutions. Four dense layers with 500 to 1000 nodes estimate the probability of each surface type for all visible facets. We applied five spherical
convolutions in series and add the outputs to achieve the final result. We used four filters in the spherical convolutions to match the dimensions.

Fig. 21. Percentages of correctly retrieved facets in the validation data for different noise levels and different combinations of training data
(Lambertian or bidirectional reflection) and validation data (Lambertian or birdirectional reflection). Ocean, clouds, desert and vegetation facets
show maximal percentages of 92%, 85%, 85%, and 85%, respectively. The architecture in Fig. 20 was trained for the best combination of orbital
inclination and rotation axis shown in Fig. 17.
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Fig. 22. Retrieved maps of the model Earth (bottom of Fig. 6) for different levels of photon noise, using directional light curves with (left) and
without polarization (right). The architecture from Fig. 20 was used and trained for the optimal configuration of Fig. 17. For Nmax = ∞ photons,
there is no noise.

large fraction of desert facets where there should be dark ocean
facets.

Since so far we have only studied the ideal geometry from
Fig. 17, we also used other inclinations to investigate if that
improves the retrieval of the Lambertian trained network, like
with the rotation axis and albedo map retrievals for a face-on
orbit. Figure 25 shows the retrieval accuracy for Lambertian
and bidirectional trained networks as functions of the inclination
angle, using a rotation axis tilt close to 0◦. As seen in Fig. 25,
the Lambertian trained network is only reliable for orbits that
are face-on or close to face-on: only for i ≤ 10◦ all surface types
have a classification accuracy larger than 60%, and even then,
the accuracy of the directional network is considerably higher
and thus preferred.

The only surface type for which the classification accuracy of
the Lambertian trained network is higher than 65% for all incli-
nation angles is vegetation. Indeed, the Lambertian network can
use the red edge feature in the albedo (see Fig. 3) to recognize
vegetation. Since the atmospheric influence on the signal is very
small at the large wavelengths of the red edge, and because veg-
etation is modeled as a Lambertian reflector, vegetation facets

appear very similar in directional and Lambertian light curves
(see Fig 4).

7.3. Benefits of polarization

The effects of including polarization on the surface-type map
retrievals can be seen in Table 5 which shows the confusion
matrices for the bidirectional neural networks with and without
polarization. Confusion matrices visualize the performance of
classification schemes by showing for each actual class the frac-
tions of the possible classes that are retrieved, thus, the fraction
of ocean facets that is retrieved as ocean, desert, vegetation, and
cloud facets, for example.

A comparison of the confusion matrices shows that the
retrieval accuracy of the desert and vegetation-covered surface
facets is insensitive to including the polarization signal to the
model observations and the retrieval algorithm. This is to be
expected since both surface types are modeled as Lambertian,
nonpolarizing surfaces. Indeed, the retrieval accuracy of ocean
and cloud facets is increased by 2% and 1%, respectively, due
to the unique polarization signatures of the ocean glint and the
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Fig. 23. Albedo maps of bidirectionally reflecting planets at λ = 400 nm
for homogeneous desert, cloud, and ocean planets retrieved by the net-
work architecture of Fig. 18 that was trained on Lambertian reflecting
planets, for different orbital inclination angles i. The rotation axis for
each planet (indicated with a white or black cross) was chosen from the
set shown in Fig. 17 to minimize the difference to the normal of the
orbital plane. The tilt angles of the axes are 15◦, 5◦, 11◦ and 23◦ in order
of ascending inclination.

Fig. 24. Map of the model Earth as retrieved from bidirectional light
curves by the network that was trained with Lambertian reflecting
curves. The orbital inclination and rotation axis of the planet are the
optimal configuration shown in Fig. 17. The actual map is shown in
Fig. 6.

rainbow. Including polarimetry on a future exoplanet character-
ization telescope would thus increase the ability to map oceans
and clouds on exoplanets.

7.4. Steps in observation campaign

We imagine that the actual observation campaign consist of the
following steps. (i) Determine the orbital elements of the Kepler

Fig. 25. Accuracy of the retrieval algorithms that trained on Lambertian
(dashed) and bidirectionally (solid) reflecting planets, when applied to
light curves of bidirectionally reflecting planets, as functions of the
orbital inclination angle i. The rotation axes for each inclination angle
are chosen to minimize the difference to the normal on the orbital plane
(see Fig. 23 for examples).

Table 5. Confusion matrices for the neural network shown in Fig. 20.

Without polarization

Pred.
Actual Ocean Desert Veget. Clouds

Ocean 0.90 0.06 0.03 0.05
Desert 0.05 0.85 0.08 0.06
Veget. 0.02 0.05 0.85 0.05
Clouds 0.03 0.04 0.04 0.84

With polarization

Pred.
Actual Ocean Desert Veget. Clouds

Ocean 0.92 0.06 0.03 0.05
Desert 0.04 0.85 0.08 0.05
Veget. 0.01 0.05 0.85 0.04
Clouds 0.03 0.03 0.04 0.85

Notes. The accuracy of the retrieval using directional light curves with-
out polarization (top), and with polarization (bottom), for planets with
the best configuration from Fig. 17, without noise. Shown are the frac-
tions of each surface types’ facets (columns) that are classified as a
specific type (rows). The diagonals show the correct classification of
each surface type (cf. Fig. 21 for Nmax = ∞). An increase or decrease
with respect to the matrix without polarization (top) is marked in green
and red in the matrix with polarization (bottom), respectively.

orbit and the period from the (relative) positions of the planet at
the observation points. Feng et al. (2019) describe a comprehen-
sive method to obtain these positions. (ii) Determine the diurnal
period from light curves at (one or more) observation points and
the phase shift between the points (see for example Visser &
van de Bult 2015). Close-in planets can be tidally locked or in
a spin-orbit resonance. These need to be treated as special cases
that we do not consider in this paper. (iii) Update the parameters,
and corrected for the diurnal phase shift due to the light-travel
(Rømer) delay, at the different observation points. (iv) Retrieve
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the rotation axis as explained in Sect. 4. (v) Retrieve the surface
map. This is demonstrated in Sect. 6.

7.5. Recommendations

We have a number of recommendations for further research
on the application of neural networks to exoplanet cartogra-
phy: (i) Include more surface types in the training data, like
ices (such as those found on Earth, Mars, and icy moons), dif-
ferently colored deserts (such as the martian red desert), and
wetlands. (ii) Implement dynamical surface maps to capture sea-
sonal changes, for example in the size of polar ice caps, snow
cover, and vegetation color, and train a network to recognize
such surface types from their seasonal changes. (iii) Include
different model atmospheres and different cloud compositions,
such as sulfuric acid clouds as seen on Venus, that exhibit
angular features, such as the rainbow, at different phase angles
than water clouds (see Hansen & Travis 1974, for examples
in single scattering phase functions). (iv) Include other noise
sources than photon noise, such as instrumental noise and phys-
ical background noise sources. (v) Simulate with orbital and
rotational periods that are closer together in frequency or in a res-
onance (like Mercury’s 3 : 2 spin-orbit resonance). (vi) Account
for signal smearing caused by the planet’s rotation during one
observational integration period. (vii) Optimize the number of
sample points. Increasing the number of observational epochs
may require new network architectures as the number of trainable
parameters may become too large for efficient training. (viii) Test
different weighting schemes for the loss function of the neural
network, in particular for surface type retrieval. This would allow
training to focus on facets with smaller or larger expected con-
tributions to the phase curves. (ix) Test the retrieval algorithms
with light curves of Earth observed from afar, for example by
using an instrument like LOUPE (Klindžić et al. 2021) on the
Moon or on a distant spacecraft. (x) Investigate how to adapt
the network to identify a surface type with an unknown albedo
spectrum, such as that of vegetation that uses photosynthesis-
like processes at other wavelengths than the terrestrial vegetation
and/or that has a red edge feature at different wavelengths. One
of the key advantages of neural networks is that they are flexi-
ble and show promise for implementing many of the mentioned
recommendations using the same architectures presented in this
paper, or improvements thereof.

8. Conclusions

We used neural networks to retrieve surface and cloud maps of
spatially unresolved Earth-like exoplanets, using temporal and
spectral variations in the flux and polarization of the star light
that is reflected by such planets.

We were able to retrieve the rotation axes of our model plan-
ets using a neural network with 1D convolutions. The mean
squared error (MSE) is as small as 0.0097 and depends on the
orbital inclination angle. In the special case of an exact edge-on
orbit, the signals are insensitive to mirror reflection of the axis
in the orbital plane. Up to this reflection symmetry, the rotation
axis can be determined.

We have tested a new approach for planet mapping by
predicting surface types rather than surface albedos. A neu-
ral network with 1D convolutions and spherical convolutions
applied in a ResNet fashion can create detailed planet maps that
correctly predict up to 92% of ocean facets and 85% of cloud,
vegetation and desert facets on a planet. When applied to a model

Earth, the retrieved map shows that the Sahara, Europe, Asia, the
Americas and cloud patterns can all be retrieved. When photon
noise is the dominant noise source, our results show that it should
be possible to retrieve a map with such Earth-like patterns from
future observations by the HabEx telescope in combination with
a star shade for planets at distances of up to 75 ly.

We showed that the retrieval of the rotation axis and surface
map is usually poor if the network assumes Lambertian reflec-
tion for a bidirectionally reflecting planet, except for planets in
face-on orbits, where the lack of phase angle variation hides the
bidirectionality of the actual reflection. In particular, retrieving
maps of planets with oceanic reflection and atmospheric scatter-
ing while assuming Lambertian reflection results in erroneous
concentric bright patterns about the planet’s poles due to an over-
estimation and an underestimation of the planet’s brightness at
small and large phase angles, respectively. The MSE of the rota-
tion axis retrievals is reduced by a factor 10 if the network does
take bidirectional reflection into account.

We also showed that while photon noise affects a planet’s
polarized signal more than its total flux signal, adding polar-
ization to the neural network training decreases the MSE of the
rotation axis retrievals by about 15% and increases the retrieval
accuracy of ocean and and cloud-covered facets by 2% and 1%,
respectively, due to their unique polarization signatures.

In conclusion, neural networks appear to be promising tools
for retrieving exoplanet maps from total flux and polariza-
tion phase curves. Eight orbital locations and eight rotational
phases appear to suffice for Earth-like planets when using the
architectures we have discussed.
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