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Abstract
Coordination for truck platooning refers to the active formation of a group
of heavy-duty vehicles traveling at close spacing to reduce the overall truck
operations costs. Conventionally, this coordination is achieved by optimizing
various truck-related parameters, such as schedules, velocities, and routes,
based on an objective function that minimizes a certain cost, for example, fuel
usage. However, prevalent algorithms for the coordination problem are typically
integer-constrained, which are not only hard to solve but are not readily scalable
to increasing fleet sizes and networks. In this paper, to overcome these limita-
tions, we propose a centralized formulation to optimize the truck parameters
and solve a multidimensional objective cost function including fuel, operation
time costs and preferential penalty. Furthermore, to improve the scalability of
our proposed approach, we propose a decentralized algorithm for the platoon
coordination problem involving multiple fleets and objectives. We perform both
theoretical and numerical studies to evaluate the performance of our decentral-
ized algorithm against the centralized solution. Our analysis indicates that the
computation time of the proposed decentralized algorithms is invariant to the
increasing fleet size, at the cost of a small relative gap to the optimum cost given
by the centralizedmethod.We discuss these results and present future directions
for research.

1 INTRODUCTION

Heavy-duty vehicles (HDVs) emit around 5% of the total
carbon emissions in the world; therefore, there is an ever-
increasing demand for enhancing the fuel efficiency of
HDVs (Schroten et al., 2012). In addition to ecological
effects, one-third of the overall operation cost of an HDV
is fuel consumption (Schittler, 2003). Therefore, it is bene-
ficial both environmentally and economically to develop
systems to increase the fuel efficiency in HDVs opera-
tions. Truck platooning is one of such systems that has
received substantial attention due to its promising benefits
and business model (Larson et al., 2013; Varaiya, 1993).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
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Truck platooning refers to controlling a group of HDVs
at a close intervehicle distance (Varaiya, 1993). In a pla-
toon, the overall air drag is decreased, thus improving the
average fuel efficiency of the platoon. There are several
approaches for forming platoons. If there are a sufficient
number of trucks traveling in the network, it may be possi-
ble to form a platoon by encountering peer trucks, known
as the opportunistic platooning (Bhoopalam et al., 2018).
However, given the low percentage of truck traffic in the
overall traffic composition and the gradual introduction
of truck automation and intelligent transportation systems
(Jiang & Adeli, 2004a, 2004b; Wei et al., 2022), the proba-
bility of forming a platoon in an ad hoc way is very low in
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practice. Therefore, it is necessary to coordinate different
trucks to actively form more platoons (Larson et al., 2013).
The goal of the truck platooning coordination prob-

lem is to maximize the platooning benefits by adjust-
ing the trucks’ itinerary plans. Coordination is generally
achieved by optimizing the schedule, velocity, and routes
to increase the platooning chances. However, the math-
ematical program built for the coordination problem is
typically integer-constrained, making it generally hard to
solve for and scale to large fleet sizes and networks. This
paper deals with computational algorithms for truck pla-
tooning coordination. To justify the contribution of the
paper, we begin with a review of the current methods
and state-of-the-art computational algorithms on truck
platooning coordination in the next section.

2 LITERATURE REVIEW: TRUCK
PLATOONING COORDINATION

Truck platooning coordination can be classified into
various categories. In this paper, we mainly consider
cooperative versus noncooperative and centralized versus
decentralized in this study.

2.1 Cooperative versus noncooperative

In a cooperative truck platooning coordination scenario,
all the trucks seek to minimize a global cost function.
For example, it is common that in one logistics company,
cooperative trucks share a set of delivery assignments. The
trucks are cooperative as they belong to the same owner
and are thus interested in optimizing the overall cost of
the fleet. It is therefore acceptable for individual trucks to
travel in a plan with a higher individual cost as long as
the global fleet cost is optimized. In contrast, noncoopera-
tive truck platooning participants are concerned only with
individual cost functions. In this scenario, an individual
truck owner is unwilling to accept a plan that increases his
or her cost, albeit the overall cost reduction of all trucks.

2.2 Centralized versus decentralized

In a centralized scenario, a centralized node gathers
demands for each truck and solves the coordination prob-
lem. For example, in a logistics company, trucks’ travel
plans are assigned by the dispatch center. Alternatively, a
decentralized setup usually refers to the topology where
the agents in the network send information to a fusion
node. However, unlike the centralized node, the fusion
node does not make decisions for each agent but serves the

purpose such as relaying messages and broadcasting key
parameters after computing based on inputs frommultiple
agents.
An overview of the truck platooning coordination lit-

erature is given in Table 1. We focus our review on
the computational algorithms for truck platooning and
for a more comprehensive survey of truck platooning
coordination, we refer readers to Bhoopalam et al. (2018).

2.3 Cooperative centralized
coordination

Cooperative centralized platooning planning was first pro-
posed by Larson et al. (2013), in which a fast heuristic was
built to solve the problem for large fleets. The research sug-
gests that the fuel-saving potential increases as the number
of trucks increases in the road network. They also find that
trucks are more likely to deviate from their individually
optimized routes if detouring only leads to insignificant
travel distance changes. The existence of such favorable
alternative routes depends on the topology of the road
network.
Larson et al. (2014) proposed a method to handle the

large complexity of the platooning coordination algorithm
by setting local control nodes throughout the graph. How-
ever, since the decisions are made at these control nodes,
the method is still centralized by the classification method
of this paper. This was one of the first attempts to reduce
complexity by splitting the graph into different parts, guid-
ing vehicles to gather in certain local centers to form
platoons.
An extended study on the computational complexity in

coordination heuristics in the truck platooning problem
was carried out (Larsson et al., 2015). It was proven that
the platooning coordination problem is in general non-
deterministic polynomial-time NP-hard, even if all trucks
share the same starting point and departure time. Both the
same starting-point problemand general different starting-
point problem are formulated as integer programs. This
study proposed a solver for an exact solution; however,
the computation time for the solver was infeasible for
realistic networks and fleet sizes. Hence, three heuristic
solvers were proposed, which offer a suboptimal solution
but achieve the solution in a more practical time.
An alternative approach for approximating the optimum

to solve the problem under a fuel-consumption-based
objective function with a genetic algorithm is proposed in
Nourmohammadzadeh & Hartmann (2016). The simula-
tion is based on a simplified German intercity network
with 10–50 trucks. The work incorporates features of the
latest arrival time restriction and travel speed options
(Nourmohammadzadeh & Hartmann, 2018). The model is
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TABLE 1 Truck platooning coordination review

Objective Decision
Authors (year) Scenarios Topology Fuel Others Schedule Routes Speed
Larson et al. (2013) Cooperative Centralized ✓ ✓ ✓ ✓

Larson et al. (2014) Cooperative Centralized ✓ ✓ ✓

Larsson et al. (2015) Cooperative Centralized ✓ ✓ ✓

Nourmohammadzadeh and
Hartmann (2016)

Cooperative Centralized ✓ ✓ ✓

Zhang et al. (2017) Cooperative Centralized ✓ ✓ ✓

Sokolov et al. (2017) Cooperative Centralized ✓ ✓

Nourmohammadzadeh and
Hartmann (2018)

Cooperative Centralized ✓ ✓ ✓ ✓

Boysen et al. (2018) Cooperative Centralized ✓ ✓ ✓

Johansson et al. (2018) Noncooperative Centralized ✓ ✓ ✓

Johansson and Mårtensson
(2019)

Noncooperative Centralized ✓ ✓ ✓

Abdolmaleki et al. (2021) Cooperative Centralized ✓ ✓ ✓ ✓

This study Cooperative Centralized ✓ ✓ ✓ ✓ ✓

Note: The column “objective” describes the composition of the cost function. Most studies focus only on fuel, while other aspects involve operation time cost
and preference penalty, decisions for the optimization problem, including schedule, routes, and speed. The schedule parameters include the departure time and
temporary parking point for each truck.

solved using particle swarm optimization due to the high
computational complexity.
Recently, researchers formulated the platooning coor-

dination problem as a mixed integer nonlinear program
problem (Abdolmaleki et al., 2021), where the decision
variables included the itinerary and the velocity of the
individual trucks. This research characterized the cost
function as an energy-based piecewise concave function
and presented an exact solution. Furthermore, a fast
dynamic-programming heuristic was applied to real-world
test cases with significant improvement in computational
time as compared with previous studies.
With practical approximated heuristics, researchers

have performed a comparison study between scheduled
planning and real-time opportunistic platooning to explore
the potential in cooperative platooning planning (Sokolov
et al., 2017). An unweighted Hanna grid in the POLARIS
platform was used as a benchmark for comparison with
a relatively large-scale test set (Auld et al., 2016). Further-
more, using a specific road networkwith only one path, the
profitability of truck platooning was investigated in Boy-
sen et al. (2018), which suggested that with an inefficient
process to form a platoon, the benefits of fuel saving are
limited.
All the aforementioned studies in this category assume

that all trucks are identical and share a common global cost
function, that is, they are cooperative. A centralized service
provider is also necessary, which must handle a complex
and computationally expensive centralized optimization
problem.

2.4 Noncooperative centralized
coordination

Taking the competitive nature of the transportation indus-
try into account, a noncooperative case where all trucks
start at the same point with different preferred departure
times and are coordinated by a centralized service provider
has been studied (Johansson et al., 2018). Johansson et al.
(2018) prove that when trucks are identical and noncoop-
erative, the coordination problem is a congestion game, a
classic problem inwhich a pure strategic Nash equilibrium
can be searched by best response dynamics. The numer-
ical simulation suggests that in a noncooperative setup,
the overall benefits are less, compared to a cooperative
case, showing that the self-interested property does not
fully utilize the potential in truck platooning, although still
improving the fuel efficiency, compared to nonplatooning
scenarios (Johansson et al., 2018).
Noncooperative trucks are interested in knowing their

exact position in a platoon since no air-drag reduction is
available for the leading truck. Themechanisms of forming
a platoon impact the profitability of each truck.A compara-
tive study on the interaction mechanisms between leading
and tailing trucks is carried out in Johansson andMårtens-
son (2019), which suggests that the overall fuel savings are
subject to the leading truck selection mechanism.
The models in the aforementioned studies assume all

trucks start at the same node and the only adjustable
decision is the departure time (Johansson & Mårtensson,
2019; Johansson et al., 2018), which may not be practically
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TABLE 2 A review of state-of-the-art solutions for truck platoon coordination and their simulation setup

Max fleet size under
Author (year) Solution Network Exact solution Approximate solution
Larson et al. (2013) Exact and Local search

heuristic
German autobahn
network

– 8000

Larsson et al. (2015) Exact and Local search
heuristic

German autobahn
network

10 200

Nourmohammadzadeh and
Hartmann (2016)

Exact and genetic
algorithm

Simplified German
intercity map

20 50

Sokolov et al. (2017) Exact 10 × 10 grid 50 –
Zhang et al. (2017) Exact Identical path 2 –
Nourmohammadzadeh and
Hartmann (2018)

Exact and particle
swarm optimization

Chicago road network – 1000

This study Exact and
decentralized
heuristic

3 × 3, 4 × 4, 6 × 6, and
10 × 10 grid

50 50

feasible. Moreover, trucks belonging to the same company
may compete with each other under these noncooperative
assumptions, resulting in a suboptimal result for the
company. Last but not the least, since trucks are nonco-
operative, a centralized node is required for coordination.
A trustworthy service provider must exist to enable non-
cooperative centralized coordination, which may require
extra service costs with the risk of losing privacy.

2.5 Knowledge gap and proposed
contribution

The existing literature has limitations in three major
areas.

1. Restrictive assumptions, objective function, and deci-
sion variables: In previous studies, trucks are typically
assumed to be identical for a favorable structure of the
formulation, which may not be practical for a large
fleet. Most studies focus only on fuel cost, which is not
sufficiently representative for multidimensional inter-
ests of logistic operations. Furthermore, most studies
have focused on departure time coordination, but few
consider truck speed as a decision variable.

2. Infeasible exact solution method and lack of determin-
istic performance guarantees: With integer variables,
the previously proposed models are generally computa-
tionally expensive to solve. Researchers have attempted
to reduce the computational time using various approx-
imation and stochastic methods. However, most of
them are unable to offer deterministic performance
guarantees of their solutions. An overview of these
issues is summarized in Table 2.

3. Decision making limited to the centralized con-
troller: Automated trucks today are equipped
with considerable computational capability. To
the best of our knowledge, there are no existing
studies utilizing this resource in the coordination
problem.

To address the limitations mentioned above, this paper
develops a decentralized computational model for the
multicriteria heterogeneous truck platooning coordination
problem. Themain contribution is as follows: A decentral-
ized algorithm for solving the multifleet truck platooning
coordination problem.
We also propose a mathematical model for coopera-

tive truck platooning, in which our objective cost function
consists of not only fuel usage but also travel time and
schedule preference, and the truck routes, speed, and
departure time are decision variables to be optimized. The
proposed decentralized algorithm is compared to a cen-
tralized algorithm, and its performance is evaluated with
varying problem sizes.
The rest of the paper is organized in the following

structure. In Section 3, a mathematical model of the coor-
dination problem is built with a generic cost function
and the compatibility of having various types of trucks
in the fleet of interest. Section 4 introduces the relax-
ation methods to reformulate the model, followed by
numerical examples for the performance analysis. Sec-
tion 5 introduces a decentralized method for solving the
model and demonstrates the result of a numerical simu-
lation for comparison with the centralized solver. Section
6 discusses the conclusion and future work. The gen-
eral symbols and operators in this paper are explained in
Table 3.
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TABLE 3 Mathematical symbols and operators

𝑎,𝐴 Upper or lower case in plain text denotes scalars
𝑎(⋅) Functions
𝐀 Bold symbol upper case denotes matrices
𝐚 Bold symbol lower case denotes column vectors
 Calligraphic letters denote a graph or a set
 Bold-symbol calligraphic letters denote an

optimization problem
ℝ Blackboard style denotes the set of real number
ℝ𝑚×𝑛 Real-valued matrix withm rows and n columns
ℝ𝑛 n-Dimensional real-valued one-column vectors
ℤ𝑛 n-Dimensional integer-valued one-column vectors
[0, 1]

𝑛 Set for n-dimensional one-column vectors with
elements being 0 or 1

1𝑛, 0𝑛 All one or zero one-column vectors of length n
𝐈𝑛×𝑛 Identity matrices of size𝑛 × 𝑛

(⋅)
𝑇 Transpose

× Cartesian product for nonscalars
≤,≥ Components-wise inequalities for nonscalars

3 PLATOON COORDINATION
PROBLEM FORMULATION

In this section, we formulate the truck platooning coordi-
nation problem. A discrete spatiotemporal road network is
constructed, enabling the representation of truck traveling
plans with binary decision vectors.

3.1 Spatiotemporal road network

The network model, also known as STEN, is frequently
seen in transportation network modeling as introduced by
Tong et al. (2015). We adopt the notation for road network
from Abdolmaleki et al. (2021), with minor modifications.
The physical road network is given with  as the set of
all physical nodes, where 𝑠𝑖 ∈  is the 𝑖th ordered physi-
cal node. A physical node may be a parking lot, a city, or
a point on the road. The study time period is divided into
a sequence of successive intervals, which are represented
by the set  , and we denote 𝑡𝑖 ∈  as the 𝑖th ordered time
interval. The spatiotemporal road network  is constructed
with nodes defined as (𝑡𝑖, 𝑠𝑖), which represents a truck that
may be at 𝑠𝑖 at time interval 𝑡𝑖 . The set of all nodes in  is
defined as (), and the set of all links in  is denoted by
(). An example of  is shown in Figure 1.
A link 𝑙 ∈ () connects two nodes; hence, 𝑙 ≔

(𝑡𝑖, 𝑠𝑖, 𝑡𝑗, 𝑠𝑗) means a truck leaves 𝑠𝑖 at time 𝑡𝑖 to arrive 𝑠𝑗
at time 𝑡𝑗 if either there is a physical link between 𝑠𝑖 and 𝑠𝑗
or 𝑠𝑖 = 𝑠𝑗 . Due to the physical limitation that a truck can-

F IGURE 1 The figure shows the spatiotemporal
representation of the road network, where  shows the physical
nodes and  shows a collection of all possible graphs. Here, 𝑙1
represents a vehicle that waits at 𝑠𝑖 from time 𝑡𝑖 to 𝑡𝑖+1. 𝑙2 represents
leaving 𝑠𝑗 at 𝑡𝑖 and arriving at 𝑠𝑗+1 at 𝑡𝑖+1

not travel back in time, 𝑡𝑖 is always smaller than 𝑡𝑗 , that is,
 is a directed graph. The total number of links in () is
denoted by 𝐿. All the information about  is assumed to be
known by all trucks.

3.2 Individual truck path and fleet plan

We denote  as the set of trucks planning to operate on 

and𝐾 as the total number of trucks in. A binary decision
variable is denoted by 𝑥𝑘,𝑙, which indicates whether truck
𝑘 transverses on route 𝑙 as

𝑥𝑘,𝑙 =

{
1 Truck 𝑘 traverses through link 𝑙

0 otherwise
(1)

We stack all decision variables of truck 𝑘 in the order of
links into a vector

↼
𝐱𝑘 ∈ ℝ𝐿, which represents the path of

truck 𝑘,

𝐱̄𝑘 =
[
𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝐿

]𝑇
∀𝑙 ∈  () (2)

Each truck 𝑘 ∈ has a local trip schedule specifying the
origin 𝑜𝑘 ∈  , the destination 𝑑𝑘 ∈  , the earliest depar-
ture time 𝑡𝐸𝐷

𝑘
∈  , the preferred arrival time 𝑡𝑃𝐴

𝑘
∈  and

the latest arrival time 𝑡𝐿𝐴
𝑘

∈  .
Clearly, with physical limitations, a considerable num-

ber of links in  are infeasible for truck 𝑘 to transverse
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F IGURE 2 The example graph is a spatiotemporal extension
of a one-dimensional geographical map from 𝒔1 to 𝒔3, which is on
the horizontal axis. The vertical axis represents the time dimensions
at each interval

within operating time limitations and limited speed
options. For the sake of computational efficiency, a refining
process is applied to  proposed by Masoud and Jayakrish-
nan (2017). Let 𝑘 be the subgraph of  after the refining
process, in which two kinds of nodes and their connected
links are removed as shown in the simple example given
in Figure 2. Nodes in the lower right gray area are infeasi-
ble because a truck cannot arrive at the destination within
physical speed limits before 𝑡𝐿𝐴

𝑘
once it travels to one of

these nodes. Second, nodes in the upper left gray area
are too far from the origin and are not reachable due to
departure time 𝑡𝐸𝐷

𝑘
and speed constraints.

Let 𝐿𝑘 be the number of links in 𝑘. The decision vector
is refined as

𝐱𝑘 =
[
𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝐿

]𝑇
∀𝑙 ∈  (𝑘) (3)

A fleet is a subset of trucks. For the 𝑐th fleet, 𝑐 is
a set of 𝐾𝑐 trucks and belongs to fleet 𝑐, where 𝑐 ⊆ .
Consequently, let 𝐚𝑐 denote the path of all trucks in fleet 𝑐

𝐚𝑐 =
[
𝐱𝑇1 , 𝐱

𝑇
2 , … , 𝐱𝑇𝐾𝑐

]𝑇
∀𝑘 ∈ 𝑐 (4)

The spatiotemporal nature of graph  entails that the
decision vector captures departure time, route, and link
speed adjustments.

3.3 Cost function

In this subsection, the cost of a truck is formulated as a
function of the travel plan. Inspired by Zhang et al. (2017),
we consider three terms in the cost function, namely,
(a) fuel cost, (b) travel time cost, and (c) the schedule
preference penalty. However, we propose a more gen-

eral model with a tunable cost for each truck in the
fleet.

3.4 Fuel cost

Truck platooning saves fuel for the following trucks but not
the platoon leader. A mechanism to balance the savings is
assumed to be applied, such that all trucks in the platoon
are assumed to have the same average air drag reduction
factor during the platooning trip. Let φl denote the aver-
age air drag reduction factor as a function of the number
of trucks 𝑁𝑙 on link 𝑙 ∈ (), which is given by

𝜑𝑙 (𝑁𝑙) = 𝜑𝑜 −
𝜑𝑜

𝑁𝑙
(5)

where 𝜑𝑜 is the air reduction factor for all platooning
trucks and is assumed to be constant and equal for all
trucks during the platooning.
To model the fuel cost on link 𝑙 = (𝑡𝑖, 𝑠𝑖, 𝑡𝑗, 𝑠𝑗), let 𝐿𝑙 be

the distance between physical nodes 𝑠𝑖 and 𝑠𝑗 and 𝑇𝑙 =

𝑡𝑗 − 𝑡𝑖 denote the travel time from 𝑠𝑖 to 𝑠𝑗 . The fuel cost
𝑓𝑘,𝑙 on link 𝑙 for truck 𝑘 is given by (6), which is com-
posed of the fuel consumption, air drag, and other friction
(Franceschetti et al., 2013).

𝑓𝑘,𝑙(𝜑𝑙) =
𝑤𝑓𝜉

𝜅

(
𝜇𝑘𝐸𝑘𝑉𝑘𝑇𝑙 + 0.5

𝑐𝑑,𝑘𝜌𝐴𝑘(1 − 𝜑𝑙)

𝜀𝑘𝜛𝑘

𝐿3
𝑙

𝑇2
𝑙

+
𝑀𝑘𝑔(sin 𝜃𝑙 + 𝑐𝑟,𝑘 cos 𝜃𝑙)

𝜀𝑘𝜛𝑘
𝐿𝑙

)
(6)

with the physical constants defined as 𝑤𝑓, price of oil
(€/kg); 𝜉, fuel-to-mass ratio; 𝜅, heating value of the fuel
(J/kg); 𝜌, density of air (kg/m3); 𝑔, gravitational constant
(m/s2); and vehicle-dependent (⋅)𝑘 or link-dependent (⋅)𝑙
parameters are defined as 𝜃𝑙, road gradient (◦); 𝐸𝑘, engine
speed (rev/s); 𝐿𝑙, distance between the physical nodes (m);
𝑇𝑙, engine working time spent on the link (s); 𝜇𝑘, engine
friction factor; 𝑉𝑘, engine displacement (m3); 𝑐𝑑,𝑘, coef-
ficient of aerodynamic drag; 𝐴𝑘, front area of the truck
(m2); 𝑐𝑟,𝑘, coefficient of rolling resistance; 𝑀𝑘, total vehi-
cle weight (kg); ε𝑘, drive train efficiency;𝜛𝑘, an efficiency
parameter for the engine.
The only unknown variable in (6) is 𝜑𝑙 for a given link 𝑙

and truck 𝑘; therefore, (6) may be rewritten as

𝑓k,l (φ𝑙) = 𝐶𝑘,𝑙,𝑓𝑙 𝜑𝑙 + 𝐶𝑘,𝑙,𝑓2 (7)

where

𝐶𝑘,𝑙,𝑓1 = −0.5
𝜉

𝜅

𝑐𝑑,𝑘𝜌𝐴𝑘𝐿
3
𝑙

𝜀𝑘𝜛𝑘𝑇
2
𝑙

(8)
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𝐶𝑘,𝑙,𝑓2 =
𝜉

𝜅

(
𝜇𝑘𝐸𝑘𝑉𝑘𝑇𝑙 + 0.5

𝑐𝑑,𝑘𝜌𝐴𝑘

𝜀𝑘𝜛𝑘

𝐿3
𝑙

𝑇2
𝑙

+
𝑀𝑘𝑔(sin 𝜃𝑙 + 𝑐𝑟,𝑘 cos 𝜃𝑙)

𝜀𝑘𝜛𝑘
𝐿𝑙

)
(9)

Notably, in the case that for 𝑙 = (𝑡𝑖, 𝑠𝑖, 𝑡𝑗, 𝑠𝑗), where 𝑠𝑖 =
𝑠𝑗 , the above equation indicates that the vehicle is waiting
at a certain physical node. We assume that the vehicle is
shut down and that there is no fuel cost. Substituting (5)
into (7), we have

𝑓𝑘,𝑙 (𝜑𝑙) = 𝑓𝑘,𝑙 (𝑁𝑙) =

{𝑎𝑘,𝑙

𝑁𝑙
+ 𝑏𝑘,𝑙 𝑁𝑙 ≥ 1

0 𝑁𝑙 = 0
(10)

where𝑁𝑙 is the number of trucks traversing on 𝑙. In (10), we
convert the function 𝜑𝑙 to the cost 𝑓k,l to a function from
𝑁𝑙 to the cost, 𝑓𝑘,𝑙(𝑁𝑙).

𝑎𝑘,𝑙 = 𝜑𝑜𝐶𝑘,𝑙,𝑓1 (11)

𝑏𝑘,𝑙 = 𝐶𝑘,𝑙,𝑓2 − 𝜑𝑜𝐶𝑘,𝑙,𝑓1 (12)

Let us denote 𝜂𝑙(⋅) ∶ 𝐙𝐿𝑐 → ℝ for every link 𝑙, which is
a linear transformation from the overall planning to the
number of vehicles on a certain link:

𝑁𝑙 = 𝜂𝑙(𝐚𝑐, 𝐚−𝑐) (13)

where 𝐚𝑐 is the decision vector for fleet 𝑐, while 𝐚−𝑐 is the
decision vector for all fleets other than 𝑐. Finally, the fuel
cost of truck 𝑘 on link 𝑙 is given by

𝑓𝑘,𝑙(𝐚𝑐, 𝐚−𝑐) =

{ 𝑎𝑘,𝑙

𝜂𝑙(𝐚𝑐,𝐚−𝑐)
+ 𝑏𝑘,𝑙 𝜂𝑙(𝐚𝑐) ≥ 1

0 𝜂𝑙(𝐚𝑐) = 0
(14)

3.5 Travel time cost

The real-world stakeholders of freight transportation are
concerned with various multidimensional costs in addi-
tion to the fuel cost (Significance Quantitative Research,
V. U. University Amsterdam & John Bates Services, 2013).
For example, the process of forming platoonsmay increase
time-related costs, including travel time cost and sched-
ule preference penalty. Furthermore, the value of cargoes
could also impact the travel time cost, which is assumed
to be identical in all trucks and hence discarded in the
formulation. The travel time cost is given by

𝑔𝑘(𝐱𝑘) = 𝑤𝑡,𝑘𝟏
𝑇
𝐿𝑘
𝐱𝑘 (15)

where 𝑤𝑡,𝑘 is a weight for the travel time cost for the
truck. The definition of 𝐱𝑘 makes each nonzero element
in 𝐱𝑘 represent a certain time duration in the truck’s oper-
ation. Thus, by adding all elements in 𝐱𝑘 and assigning a
proper weight 𝑤𝑡,𝑘, (15) delivers the value of the time cost
of truck 𝑘.

3.6 Schedule preference penalty

The schedule preference penalty represents the preferred
arrival time, which for truck k is given by

ℎ̃𝑘(𝐱𝑘) = max
{
𝑤𝑘,𝑙

(
𝟏𝑇𝐿𝑘

𝐱𝑘 + 𝑡𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

)
,

− 𝑤𝑘,𝑒(𝟏
𝑇
𝐿𝑘
𝐱𝑘 + 𝑡𝐸𝐷

𝑘
− 𝑡𝑃𝐴

𝑘
)
}

(16)

where 𝑤𝑘,𝑙, positive weight for later than schedule pref-
erence penalty; 𝑤𝑘,𝑒, positive weight for earlier than
schedule preference penalty; 𝑡𝐸𝐷

𝑘
, earliest departure time;

𝑡𝑃𝐴
𝑘

, preferred arrival time.
Note that the term 1𝑇𝐿𝑘

𝐱𝑘 + 𝑡𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

calculates the
errors between the real arrival time and preferred arrival
time in seconds. The weights for early and late arrival may
be different since the stakeholders may value them differ-
ently. The maximizing manipulation in (16) is to combine
two parts of the schedule preference penalty into a uniform
formulation.
The total cost function 𝐹𝑐 ∶ 𝐳𝐿𝑐 → ℝ is a function of 𝐚𝑐;

therefore, (15) and (16) require reformulation. Based on (4),
a selection matrix 𝐒𝑘 of the proper size can be chosen such
that the following holds:

𝐱𝑘 = 𝐒𝑘𝐚𝑐 (17)

where 𝐱𝑘 is the decision vector for truck 𝑘, and 𝐚𝑐 is the
decision vector of fleet 𝑐, defined in (3) and (4), respec-
tively. To convert (15) into a function of 𝐚𝑐, we substitute
(17) into (15)

𝑔𝑘(𝐱𝑘) = 𝑔𝑘(𝐚𝑐) = 𝑤𝑡,𝑘𝟏
𝑇
𝐿𝑘
𝐒𝑘𝐚𝑐 (18)

and likewise for (16), we have

ℎ̃𝑘(𝐱𝑘) = ℎ𝑘(𝐚𝑐) = max
{
𝑤𝑘,𝑙

(
𝟏𝑇𝐿𝑘

𝐒𝑘𝐚𝑐 + 𝑡𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

)
,

− 𝑤𝑘,𝑒

(
𝟏𝑇𝐿𝑘

𝐒𝑘𝐚𝑐 + 𝑡𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

)}
(19)

The cost function of truck 𝑘 is given by summing up all
pieces on all links,

𝑓𝑘(𝐚𝑐) =
∑

𝑙∈(𝑘)

𝑓𝑘,𝑙(𝐚𝑐) + 𝑔𝑘(𝐚𝑐) + ℎ𝑘(𝐚𝑐) (20)
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Consequently, the cost for the fleet is given by summing
the cost of all related trucks

𝐹𝑐(𝐚𝑐) =
∑
𝑘∈𝑐

[ ∑
𝑙∈(𝑘)

𝑓𝑘,𝑙(𝐚𝑐) + 𝑔𝑘(𝐚𝑐) + ℎ𝑘(𝐚𝑐)

]
(21)

where 𝐚𝑐, the planning of fleet c defined in (4); 𝑓𝑘,𝑙(⋅), fuel
cost of truck k on link l defined in (14); 𝑔𝑘(⋅), time cost of
truck k defined in (18); ℎ𝑘(⋅), preference penalty of truck k
defined in (19).

3.7 Constraints

Each fleet attempts to minimize its own cost as described
in (21) while limited by two sets of constraints. The first
set of constraints guarantees that the solution is a feasi-
ble path in  and that the truck obeys the latest arrival
requirement. The constraint is formulated based on the
multicommodity network flow problem (Even et al., 1975).
The flow conservation constraints are written as∑

(𝑡𝑖 ,𝑠𝑖 )∶𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈(𝑘)

𝑥𝑘,𝑙 −
∑

(𝑡𝑗 ,𝑠𝑗 )∶𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗 )∈(𝑘)

𝑥𝑘,𝑙 = 𝑑𝑘
(𝑡,𝑠)

(22)

where

𝑑𝑘
(𝑡,𝑠)

=

⎧⎪⎨⎪⎩
−1 (𝑡, 𝑠) = (𝑡𝐸𝐷

𝑘
, 𝑜𝑘)

1 (𝑡, 𝑠) = (𝑡𝐿𝐴
𝑘

, 𝑑𝑘)

0 otherwise

and 𝑥𝑘,𝑙 is the binary decision variable as described in (1).
We convert the formulation into a matrix form to simplify
the notation,

𝐀𝑘 =
[
𝐞𝑇
(𝑡1,𝑠1)

, … , 𝐞𝑇
(𝑡𝑖 ,𝑠𝑖)

]𝑇
, ∀(𝑡, 𝑠) ∈ 𝑘 (23)

where 𝐞(𝑡,𝑠) is a vector of length 𝐿𝑘, which is the number of
links in 𝑘 defined as

𝐞𝑇
(𝑡,𝑠)

𝐱𝑘 =
∑

(𝑡𝑖 ,𝑠𝑖 )∶𝑙=(𝑡𝑖 ,𝑠𝑖 ,𝑡,𝑠)∈(𝑘)

𝑥𝑘,𝑙 −
∑

(𝑡𝑗 ,𝑠𝑗 )∶𝑙=(𝑡,𝑠,𝑡𝑗 ,𝑠𝑗 )∈(𝑘)

𝑥𝑘,𝑙

(24)
Meanwhile, let 𝐛𝑘 be a vector of an appropriate size,

where

𝐛𝑘 = [𝑑𝑘
(𝑡𝑖 ,𝑠𝑖)

, … , 𝑑𝑘
(𝑡𝑖 ,𝑠𝑖 )

]
𝑇
, ∀(𝑡, 𝑠) ∈ 𝑘 (25)

In this way, (22) is rewritten as

𝐀𝑘𝐒𝑘𝐚𝑐 = 𝐛𝑘 ∀𝑘 ∈ 𝑐 (26)

where 𝐒𝑘 is a selection matrix that satisfies (17). By assign-
ing (𝑡𝐸𝐷

𝑘
, 𝑑𝑘) as the spatiotemporal destination, the path is

guaranteed to terminate at the node before a certain time
period.
The other constraint simply follows the definition of

binary decision variable 𝑥𝑘,𝑙, which is defined in (1). Com-
bining the abovementioned constraints, the best-response
subproblem, denoted as  , is given in

min
𝐚𝑐

𝐹𝑐(𝐚𝑐, 𝐚−𝑐)

subject to 𝐀𝑘𝐒𝑘𝐚𝑐 = 𝐛𝑘 ∀𝑘 ∈ 𝑐 ( )

𝐚𝑐 ∈ [0, 1]
𝐿𝑐

where 𝐚−𝑐 is considered constant and 𝐚𝑐 is defined in (4).
𝐹𝑐(𝐚𝑐, 𝐚−𝑐) is defined in (21). 𝐿𝑐 =

∑
𝑘∈𝑐

𝐿𝑘 is the sum of
the quantity of all links in all 𝑘.
In the following sections, we aim to solve this opti-

mization problem using centralized and decentralized
solutions.

4 CENTRALIZED SOLUTION

Observe that the cost function in  lacks structure since
𝑓𝑘,𝑙 is discontinuous, although the remaining part of this
function is linear. In this section, we discuss the details
of applying relaxations to preserve the linear form of
the problem and confirm the problem to be solved as a
standard mixed integer linear program (MILP) problem.

4.1 Relaxation for the fuel cost function

In this section, we aim to convert the original cost function
into an integer linear program. The reformulation begins
with fitting (10) with piecewise linear segments, which we
restate here for the sake of completion:

𝑓𝑘,𝑙 (𝑁𝑙) =

{𝑎𝑘,𝑙

𝑁𝑙
+ 𝑏𝑘,𝑙 𝑁𝑙 ≥ 1

0 𝑁𝑙 = 0

where 𝑎𝑘,𝑙 and 𝑏𝑘,𝑙 are constants depending on the truck
and the link as described in (11) and (12). Here,𝑁𝑙 is a non-
negative integer by definition; thus, this method is not an
approximation since the values are exact at feasible points
as shown in Figure 3.
The function is fitted with several linear segments.

The 𝑗th linear segments of total 𝐽 pieces is denoted as
(𝛼𝑘,𝑙,𝑗𝑁𝑙 + 𝛽𝑘,𝑙,𝑗) for truck 𝑘 on link 𝑙, in which

𝛼𝑘,𝑙,𝑗 =
𝑎𝑘,𝑙
𝑗 + 1

−
𝑎𝑘,𝑙
𝑗

(27)
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F IGURE 3 An example of applying piecewise fitting to 𝑓(𝑁𝑙)

𝛽𝑘,𝑙,𝑗 =
𝑎𝑘,𝑙
𝑗

+ 𝑏𝑘,𝑙 − 𝑗

(
𝑎𝑘,𝑙
𝑗 + 1

−
𝑎𝑘,𝑙
𝑗

)
(28)

where 𝑗 = 1, 2, … , 𝐽. Subsequently,

𝑓𝑘,𝑙(𝐚𝑐) = max{𝛼𝑘,𝑙,𝑗𝜂𝑙(𝐚−𝑐) + 𝛽𝑘,𝑙,𝑗} 𝑗 = 1, 2, … , 𝐽 (29)

where 𝜂𝑙(𝐚𝑐, 𝐚−𝑐) (introduced earlier in Equation 13) is a
linear function given by

𝜂𝑙(𝐚𝑐, 𝐚−𝑐) =
∑
𝑘∈𝑐

𝑥𝑘,𝑙 + 𝑁−𝑐 (30)

𝑁−𝑐 is the number of trucks belonging to other fleets,
which we consider to be a constant. Observe that (29)
is convex but makes a major change in the cost of
𝜂𝑙 (𝐚𝑐, 𝐚−𝑐) = 0. A new formulation is then proposed to
eliminate this effect. Substituting (30) into (29), we have
∀𝑗 = 1, 2, … , 𝐽,

𝑓𝑘,𝑙(𝐚𝑐, 𝐚−𝑐) =

max
{
𝛼𝑘,𝑙,𝑗

((∑
𝑘′∈𝑐∖𝑘

𝑥𝑘′,𝑙 + 𝑥𝑘,𝑙

)
+𝑁−𝑐

)
+ 𝛽𝑘,𝑙,𝑗

}
(31)

Taking advantage of the binary nature of 𝒙𝒌,𝒍, we have

𝑥𝑘,𝑙𝑓𝑘,𝑙(𝐚𝑐, 𝐚−𝑐) =

{
𝑓𝑘,𝑙(𝐚𝑐, 𝐚−𝑐) 𝑥𝑘,𝑙 = 1

0 𝑥𝑘,𝑙 = 0
(32)

We now introduce an auxiliary 𝑢𝑘,𝑙 to relax the fuel cost,
that is,

𝑥𝑘,𝑙𝑓𝑘,𝑙(𝐚𝑐, 𝐚−𝑐) ≤ 𝑢𝑘,𝑙 (33)

By further applying the pointwise maximum method,
we have

𝛼𝑘,𝑙,𝑗𝑥
2
𝑘,𝑙

+ 𝛼𝑘,𝑙,𝑗𝑥𝑘,𝑙
∑

𝑘′∈𝑐∖𝑘
𝑥𝑘′,𝑙

+ (𝛼𝑘,𝑙,𝑗𝑁−𝑐 + 𝛽𝑘,𝑙,𝑗)𝑥𝑘,𝑙 ≤ 𝑢𝑘,𝑙 (34)

where 𝑗 = 1,… , 𝐽. Again, since𝑥𝑘,𝑙 is binary,𝑥2
𝑘,𝑙

= 𝑥𝑘,𝑙. Let
us apply another auxiliary variable 𝑣𝑘,𝑙 to replace bilinear
terms 𝑥𝑘,𝑙

∑
𝑘′∈𝑐⧵𝑘

𝑥𝑘′,𝑙. The constraints are reformulated
as

(𝛼𝑘,𝑙,𝑗 + 𝛼𝑘,𝑙,𝑗𝑁−𝑐 + 𝛽𝑘,𝑙,𝑗)𝑥𝑘,𝑙 + 𝛼𝑘,𝑙,𝑗𝑣𝑘,𝑙 ≤ 𝑢𝑘,𝑙

𝑗 = 1, … , 𝐽
(35)

with

𝑣𝑘,𝑙 ≤ (𝐾𝑐 − 1)𝑥𝑘,𝑙 (36)

𝑣𝑘,𝑙 ≤
∑

𝑘′∈𝑐∖𝑘

𝑥𝑘′,𝑙 (37)

Note that (36) guarantees that there is no platooning
effect on links where the truck does not traverse, meaning
that if 𝑥𝑘,𝑙 = 0, 𝑣𝑘,𝑙 is no greater than 0 and thus no saving
is achieved in the term 𝛼𝑘,𝑖,𝑗𝑣𝑘,𝑙. Otherwise, when 𝑥𝑘,𝑙 = 1,
(36) does not bound 𝑣𝑘,𝑙 since

∑
𝑘′∈𝑐⧵𝑘

𝑥𝑘′,𝑙 ≤ 𝐾𝑐 − 1 by
definition. Equation (37) limits the platooning effects by
bounding the maximum platooning partners.

4.2 LP relaxation on the schedule
preference penalty

The schedule preference penalty ℎ𝑘(𝐚𝑐), which is defined
in (19), may be relaxed by introducing an auxiliary param-
eter 𝑝𝑘 ∈ ℝ as follows:

𝑤𝑘,𝑙

(
𝟏𝑇𝐿𝑘

𝐒𝑘𝐚𝑐 + 𝑡𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

)
≤ 𝑝𝑘 (38)

−𝑤𝑘,𝑒

(
𝟏𝑇𝐿𝑘

𝐒𝑘𝐚𝑐 + 𝑡𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

)
≤ 𝑝𝑘 (39)

where the variables are defined in (16).

4.3 Overview of the relaxed problem

We now combine the original problem  with the con-
straints (38), (39), (34), (36), and (37) to arrive at a relaxed
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problem formulation as given in

min𝐚𝑐

∑
𝑘∈𝑐

[ ∑
𝑙∈(𝑘)

𝑢𝑘,𝑙 + 𝑔𝑘(𝐚𝑐) + 𝑝𝑘

]
subject to (38), (39), (34), (36), (37) ()

The feasible solutions of are at integer points, making
the piecewise fitting equal to the original objective values
at all feasible points. Relaxation methods introduce three
types of auxiliary variables, which only serve as place-
holders without changing feasible objective values.  is
guaranteed to have the same optimum objective value as
 . It also matches the form of a standard MILP problem.
The integer value constraints make the problem generally
difficult to solve. A few examples in the following section
show the trend of increasing computational time against
increasing number of nodes and fleet size for solving the
problem formulation.

4.4 Numerical examples with
centralized solution

In this section, we focus on simulating the computational
time for solving the formulation  with a centralized
solver. The computational time is defined as the time dura-
tion from the demand set input to the delivery of the travel
plan set.

4.4.1 Simulation setup

To simulate the highway network, we assume there are a
set of nodes on a plane, which represent the set of nodes
in . The nodes are connected by horizontal and vertical
unweighted links to represent a connected transportation
network. The graph is also known as the Hanan grid,
which is adapted for similar simulations in previous stud-
ies (Abdolmaleki et al., 2021; Sokolov et al., 2017). The
number of nodes used in the simulations is 9, 16, 36, and
100 to represent the enlargement of the graph size. The
size of the fleet increases from 5 to 50 at a step size of
5. The assignments for trucks are randomly chosen from
the graph. The latest arrival time is chosen in such a way
that feasible paths exist. The preferred arrival time is also
randomly selected during the time window that is possi-
ble to satisfy. There are two speed options, high and low.
A truck may choose to spend one time interval or two
on traveling through one link. We use simple integers for
the simulation to test the performance of the centralized
solving method. The piecewise fitting parameters are cal-
culated based on the assumption that for a truck to travel

TABLE 4 Parameter settings for the numerical example
simulation with centralized solution

Truck parameters
Fleet size 𝑲𝒄 Range Step size

[0,50] 5
Time cost weight 𝑤𝑘,𝑡 5
Preference penalty–late 𝑤𝑘,𝑙 5
Preference penalty–early 𝑤𝑘,𝑒 5
Piecewise linear fitting parameters
Speed High Low
Segment 1 constants 𝛼 −1.617 −1.47

𝛽 33.957 30.87
Segment 2 constants 𝛼 0 0

𝛽 30.723 27.93

through one edge, it takes 22 and 20 units of fuel for high
and low speeds, respectively, and each unit of fuel weighs
1.47. The constants and assumptions used in this exper-
iment are shown in Table 4. The numericals are solved
using the CVX solver (Grant & Boyd, 2008, 2014), and
the simulations on each fleet size have been repeated for
50 runs.

4.4.2 Performance analysis of the
centralized solver

It is worth mentioning that the simple case in this simula-
tion focuses on the increasing trend and the variation in the
solving time. The absolute time in the result does not rep-
resent a real case. The results regarding the solving time in
the small- and medium-size graph are shown in Figure 4,
where the plots indicate time versus fleet size. In subgraphs
Figure 4a,b for nodes 9 and 16, although the fleet sizes
increase, the elapsed time is relatively short. In Figure 4d,
we enlarge the regions of 0–800 s to show that the required
computational time does not increase exponentially in this
range in a majority of cases. However, depending on the
feature of the demand from trucks, extreme cases may
occur, leading to impractical computation time.
In a large-scale problem with 100 nodes in the graph,

the extreme cases take significantly more time to com-
pute; thus, the simulation terminates before raising the
fleet size to 20. As shown in Figure 5a, there are extreme
cases that cost different orders of magnitude of time for
solving even with the same fleet size. The subplot is
then enlarged, as shown in Figure 5b, suggesting that the
solving time may vary significantly with increasing fleet
size. Three histograms of fleet sizes 5 to 15 are given in
Figure 5c–e, in which the y-axis represents the number
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F IGURE 4 Computational time simulation result with
centralized solver for varying numbers of trucks and nodes

of cases that fall into certain ranges of elapsed time. In
all three scenarios, the majority of cases finish in a rela-
tively short time, while there are about 10% of cases that
are outliers. The result also suggests that the solving time
is affected by the features of the demand, as well as the
problem size. In fact, in a real-world problem, the graph
and fleet numbers are likely to be fixed. A representative
demand set may reveal a more practical solving time chal-
lenge in truck platooning coordination. On the other hand,
the increasing computation time for increasing nodes and
fleet size is not acceptable for various stakeholders—
one of the challenges that we address in the following
sections

5 DECENTRALIZED SOLUTION

In this section, we implement the decentralized method to
the coordination problem formulated in . We introduce
the principle behind this method and present a simulation
in comparisonwith the results of the centralized solver.We
summarize this section with a discussion of the proposed
algorithms.

F IGURE 5 100-node graph computational time simulation result with centralized solver for varying numbers of trucks. (a) and (b) show
the time complexity for 100 nodes, and (c)–(e) show the distribution of the solver operating time when the number of trucks = 5, 10, and 15
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5.1 Reformulation for the decentralized
solution

The coordination problem is restated as

min𝐚𝑐

∑
𝑘∈𝑐

[ ∑
𝑙∈(𝑘)

𝑢𝑘,𝑙 + 𝑔𝑘(𝐚𝑐) + 𝑝𝑘

]
()

subject to 𝐀𝑘𝐒𝑘𝐚𝑐 = 𝐛𝑘 ∀𝑘 ∈ 𝑐 (40)

𝐚𝑐 ∈ [0, 1]
𝐿𝑐 ∀𝑘 ∈ 𝑐 (41)

𝑤𝑘,𝑙(𝟏
𝑇
𝐿𝑘
𝐒𝑘𝐚𝑐 + 𝑡𝐸𝐷

𝑘
− 𝑡𝑃𝐴

𝑘
) ≤ 𝑝𝑘 ∀𝑘 ∈ 𝑐 (42)

−𝑤𝑘,𝑒(𝟏
𝑇
𝐿𝑘
𝐒𝑘𝐚𝑐 + 𝑡𝐸𝐷

𝑘
− 𝑡𝑃𝐴

𝑘
) ≤ 𝑝𝑘 ∀𝑘 ∈ 𝑐 (43)

(𝛼𝑘,𝑙,𝑗 + 𝛼𝑘,𝑙,𝑗𝑁−𝑐 + 𝛽𝑘,𝑙,𝑗)𝑥𝑘,𝑙 + 𝛼𝑘,𝑙,𝑗𝑣𝑘,𝑙 ≤ 𝑢𝑘,𝑙

∀𝑗, ∀𝑘 ∈ 𝑐, 𝑙 ∈ (𝑘)
(44)

𝑣𝑘,𝑙 ≤ (𝐾𝑐 − 1)𝑥𝑘,𝑙 ∀𝑘 ∈ 𝑐, 𝑙 ∈ (𝑘) (45)

𝑣𝑘,𝑙 ≤
∑

𝑘′∈𝑐∖𝑘

𝑥𝑘′,𝑙 ∀𝑘 ∈ 𝑐, 𝑙 ∈ (𝑘) (46)

where constraints (40) to (46) are based on (38), (39), (34),
(36), and (37). By reformulating into a matrix form, the
formulation is compact and easier to denote. On the other
hand, by placing the constants and parameters with phys-
ical significance within a matrix, we may temporally focus
only on the mathematical structure. We will introduce the
details of the reformulation in the rest of this section. We
will introduce the details of the reformulation in the rest
of this section. Let 𝐳𝑘 ∈ ℤ𝐿𝑘 × ℝ(2𝐿𝑘+1) be a vector for each
truck,

𝐳𝑘 =
[
𝐱𝑇
𝑘
, 𝑝𝑘, 𝐮

𝑇
𝑘
, 𝐯𝑇

𝑘

]𝑇
(47)

where

𝐮𝑘 = [𝑢𝑘,1, … , 𝑢𝑘,𝑙]
𝑇

∀𝑙 ∈ (𝑘) (48)

𝐯𝑘 = [𝑣𝑘,1, … , 𝑣𝑘,𝑙]
𝑇

∀𝑙 ∈ (𝑘) (49)

where 𝐮𝑘 is the vector of fuel cost of truck 𝑘 for all links
𝑙, and 𝐯𝑘 represents the product of the decision variable
𝑥𝑘,𝑙 and the number of platoon partners. This indicates the
level of platooning benefits for truck 𝑘 and thus equals
0 (since 𝑥𝑘,𝑙 = 0) when truck 𝑘 is not present on link 𝑙.

Finally, 𝐳𝑘 is considered as the extended decision vector of
each truck.
For each truck 𝑘, we may have a cost vector 𝐜𝑘 based on

the cost function in,

𝐜𝑇
𝑘
𝐳𝑘 = 𝑔𝑘(𝐚𝑐) + 𝑝𝑘 +

∑
𝑙∈(𝑘)

𝑢𝑘,𝑙 = 𝑤𝑡,𝑘𝟏
𝑇
𝐿𝑘
𝐱𝑘 + 𝑝𝑘 + 𝟏𝑇𝐿𝑘

𝐮𝑘

(50)
where 𝐜𝑘,

𝐜𝑘 = [𝑤𝑡,𝑘𝟏
𝑇
𝐿𝑘
, 1, 𝟏𝑇𝐿𝑘

, 𝟎𝑇
𝐿𝑘
]
𝑇

(51)

Likewise, we reformulate the equality constraint in (40)
as

𝐀𝑘𝐳𝑘 = 𝐛𝑘 (52)

where

𝐀𝑘 = [𝐀𝑘, 𝟎𝐿𝑘×(2𝐿𝑘+1)] (53)

𝐛𝑘 =
[
𝐛𝑇
𝑘
, 𝟎𝑇

(2𝐿𝑘+1)

]𝑇
(54)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤𝑘,𝑙𝟏
𝑇
𝐿𝑘

−1 𝟎𝑇
𝐿𝑘

𝟎𝑇
𝐿𝑘

−𝑤𝑘,𝑒𝟏
𝑇
𝐿𝑘

−1 𝟎𝑇
𝐿𝑘

𝟎𝑇
𝐿𝑘

𝐂𝑘,𝑥 𝟎𝐽𝐿𝑘 𝐂𝑘,𝑢 𝐂𝑘,𝑣

(𝐾𝑐 − 1)𝐈𝐿𝑘×𝐿𝑘 𝟎𝐿𝑘 𝟎𝐿𝑘 −𝐈𝐿𝑘×𝐿𝑘

−𝐈𝐿𝑘×𝐿𝑘 𝟎𝐿𝑘 𝟎𝐿𝑘 𝟎𝐿𝑘

𝐈𝐿𝑘×𝐿𝑘 𝟎𝐿𝑘 𝟎𝐿𝑘 𝟎𝐿𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝐇𝑘

⎡⎢⎢⎢⎢⎢⎣

𝐱𝑘

𝐩𝑘

𝐮𝑘

𝐯𝑘

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟
𝐳𝑘

≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑤𝑘,𝑙(𝑡
𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

)

𝑤𝑘,𝑒(𝑡
𝐸𝐷
𝑘

− 𝑡𝑃𝐴
𝑘

)

𝟎𝐽𝐿𝑘

𝟎𝐿𝑘

𝟎𝐿𝑘

𝟏𝐿𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝐝𝑘

(55)

which indicates the flow conservation constraints, ensur-
ing that 𝐱𝑘 represents a feasible path. The inequality
constraints (38), (39), (34), and (36) are rewritten in, where
[𝐂]𝑖 denotes the 𝑖th row of matrix 𝐂 and

[𝐂𝑘,𝑥]𝐽(𝑙−1)+𝑙
𝐱𝑘 = (𝛼𝑘,𝑙,𝑗 + 𝛼𝑘,𝑙,𝑗𝑁−𝑐 + 𝛽𝑘,𝑙,𝑗)𝑥𝑘,𝑙 (56)

[𝐂𝑘,𝑣]𝐽(𝑙−1)+𝑙
𝐯𝑘 = 𝛼𝑘,𝑙,𝑗𝑣𝑘,𝑙 (57)

[𝐂𝑘,𝑢]𝐽(𝑙−1)+𝑙
𝐮𝑘 = −𝑢𝑘,𝑙 (58)

Note that the last two rows in the matrix on the left side
in () constrain the binary variable 𝑥𝑘,𝑙 into the range of
[0,1].
The complex formulation in () may be simplified

𝐇𝑘𝐳𝑘 ≤ 𝐝𝑘 (59)
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The matrix 𝐇𝑘 and 𝐝𝑘 represents the feasible half
space defined by inequality constraints The remaining
constraints (37) may be written as∑

𝑘∈𝑐

𝐃𝑘𝐳𝑘 ≤ 𝟎𝐿𝑐 (60)

where 𝐃𝑘 ∈ ℝ(3𝐿𝑘+1)×𝐿𝑐 satisfies and 𝐿𝑐 =
∑

𝑘∈𝑐
𝐿𝑘∑

𝑘∈𝑐

[𝐃𝑘]𝑙𝐳𝑘 = 𝑣𝑘,𝑙 −
∑

𝑘′∈𝑐∖𝑘

𝑥𝑘′,𝑙 (61)

Notably, (59) and (52) are local for a truck; let𝑘 be a set

𝑘 =
{
𝐳𝑘 ∈ ℤ𝐿𝑘 × ℝ2𝐿𝑘+1|𝐇𝑘𝐳𝑘 ≤ 𝐝𝑘,𝐀𝑘𝐳𝑘 = 𝐛𝑘

}
(62)

To summarize, is reformulated as

min
𝐳1,…,𝐳𝐾𝑐

∑
𝑘∈𝑐

𝐜𝑇
𝑘
𝐳𝑘 (𝑑)

subject to
∑
𝑘∈𝑐

𝐃𝑘𝐳𝑘 ≤ 𝟎𝐿𝑐 (𝑑.1)

𝐳𝑘 ∈ 𝑘 ∀𝑘 ∈ 𝑐 (𝑑.2)

𝒅 is an MILP problem with coupled inequality con-
straints among trucks. It is worth mentioning that con-
straint (𝐝.1) is connected to every truck.However, the rest
of the constraints are local. To decompose the problem, we
adopt the decentralized method with minor modification
in the notations, which is proposed by Falsone et al. (2019).

5.2 Dual decomposition

The dual problem of𝒅 is formulated as

max
𝝀

min
𝐳1,…,𝐳𝐾𝑐

∑
𝑘∈𝑐

𝐜𝑇
𝑘
𝐳𝑘 + 𝝀𝑇

∑
𝑘∈𝑐

𝐃𝑘𝐳𝑘

subject to 𝝀 ≥ 𝟎𝐿𝑐 ()

𝐳𝑘 ∈ 𝑘 ∀𝑘 ∈ 𝑐

where 𝝀 ∈ ℝ𝐿𝑐 is the Lagrange multiplier for the coupled
inequality constraints.

𝐿(𝐳1, … , 𝐳𝑘, 𝝀) =
∑
𝑘∈𝑐

𝐜𝑇
𝑘
𝐳𝑘 + 𝝀𝑇

∑
𝑘∈𝑐

𝐃𝑘𝐳𝑘 (63)

=
∑
𝑘∈𝑐

(𝐜𝑇
𝑘
+ 𝝀𝑇𝐃𝑘)𝐳𝑘 (64)

where the Lagrangian is decomposable. Hence, for a given
𝝀, solving for 𝐳𝑘 is equivalent to

𝐳𝑘(𝝀) ∈ arg min
𝐳𝑘∈𝑘

(𝐜𝑇
𝑘
+ 𝝀𝑇𝐃𝑘)𝐳𝑘 (65)

where 𝝀 is now the global variable that should be
exchanged in the communication network. This approach,
also known as the projected dual subgradient method
(Boyd et al., 2003), aims to solve the following equations
iteratively:

𝐳𝑘,𝑖+1 = arg min
𝐳𝑘∈𝑘

(𝐜𝑇
𝑘
+ 𝝀𝑇

𝑖
𝐃𝑘)𝐳𝑘 (66)

𝝀𝑖+1 =

[
𝝀𝑖 + 𝛼(𝑖)

∑
𝑘∈𝑐

𝐃𝑘𝐳𝑘,𝑖

]
+

(67)

where with an abuse of notation, we denote {𝐳𝑘,𝑖 , 𝝀𝑖} as
the values of corresponding {𝐳𝑘, 𝝀} at the 𝑖th iteration. The
operation [⋅]+ is the projection to a nonnegative orthant,
and 𝛼(𝑖) is the step size at iteration 𝑖. With a centralized
fusion center for the 𝝀 update, the problem is separated
into smaller problems for each truck.
However, the dual decompositionmethod does not guar-

antee a feasible solution because of the discrete variables.
Counter examples are given in the Appendix of Falsone
et al. (2019). This approach, however, provides an optimal
solution of a relaxed problem

min
𝐳1,…,𝐳𝐾𝑐

∑
𝑘∈𝑐

𝐜𝑇
𝑘
𝐳𝑘

subjectto
∑
𝑘∈𝑐

𝐃𝑘𝐳𝑘 ≤ 𝟎𝐿𝑐

𝐳𝑘 ∈ conv(𝑘) ∀𝑘 ∈ 𝑐 (LP)

where conv(𝑘) is the convex hull of the local set 𝑘. To
offer more detailed insights into the duality gap between
𝒅 and, we restate a theorem from Vujanic et al. (2016)
in the context of our problem.
Theorem 1. (Bound on duality gap, Theorem 2.3 in

Vujanic et al., 2016). There exists an
↼
𝐳𝑘 ∈ 𝑘 such that

𝑫𝑘

↼
𝐳𝑘 ≤ 𝑫𝑘𝒛𝑘, ∀𝒛𝑘 ∈ conv(𝑘), then

𝐽∗
𝑑

− 𝐽∗

≤ 𝐾𝑐max𝑘∈𝑐

𝛾𝑘, (68)

where

𝛾𝑘 = max
𝐳𝑘∈𝑘

𝐜𝑇
𝑘
𝐳𝑘 − min

𝐳𝑘∈𝑘

𝐜𝑇
𝑘
𝐳𝑘 (69)

The theorem suggests the existence of a feasible solution
within the bound given in (68). However, there is no algo-
rithmic way to produce the solution. To address the issues
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for possible infeasible solutions, a method is proposed by
tightening the primal problem to ensure feasibility for the
dual decomposition solutions (Vujanic et al., 2016). We
present the related parts in the next subsection.

5.3 Primal problemmodification

The method proposed in Vujanic et al. (2016) is based
on tightening the feasible region limited by (60) with an
appropriate contraction. The contraction is to tighten the
inequality constraints to guarantee feasibility, although it
may increase the suboptimal level. The tightened version
of the relaxed problem𝐋𝐏 is given by

min
𝐳1,…,𝐳𝐾𝑐

∑
𝑘∈𝑐

𝐜𝑇
𝑘
𝐳𝑘

subject to
∑
𝑘∈𝑐

𝐃𝑘𝐳𝑘 ≤ −𝝆

𝐳𝑘 ∈ conv(𝑘) ∀𝑘 ∈ 𝑐

𝐋𝐏,𝜌

where 𝝆 ∈ ℝ𝐿𝑐 is nonnegative and the tightening vector.
Consequently, the dual problem of𝐋𝐏,𝜌 is given by

max
𝝀≥𝟎

𝝀𝑇𝝆 +
∑
𝑘∈𝑐

min
𝐳𝑘∈𝑘

(𝐜𝑇
𝑘
+ 𝝀𝑇𝐃𝑘)𝐳𝑘𝜌

Notably, the contraction problem does not affect the
subproblem in (66). Let ρ̃ be a proper selection of ρ

[𝝆]𝑗 = 𝐾𝑐

{
max
𝐳𝑘∈𝑘

[𝐃𝑘]𝑗𝐳𝑘 − min
𝐳𝑘∈𝑘

[𝐃𝑘]𝑗𝐳𝑘

}
(70)

where [⋅]𝑗 is the 𝑗th row of the corresponding matrix.
Now, let 𝑹̃𝑳𝒑,𝝆 and 𝑫̃𝝆be the primal-dual pairs, where

𝝆 = 𝝆. The contractionmethodwith 𝛒̃ is different from the
original formulation in Vujanic et al. (2016), in which the
latter assumes the length of 𝝆 to be considerably smaller
with respect to the number of agents. In general, this
assumption does not hold in the truck platooning problem
as in formulation𝒅, as 𝐿𝑐 ≥ 𝐾𝑐, which implies that there
are significantly more links in the spatiotemporal graph
than the number of trucks. Now, we will prove that the
feasibility of the original method in Vujanic et al. (2016)
remains true with this change in the assumption in the
truck platooning coordination problem.
We may assume that for an optimal solution set 𝒛̃∗𝐿𝑃 =

[𝒛̃∗1,𝑳𝑷; … ; 𝒛̃∗𝐾𝑐,𝑳𝑷
] of 𝐋𝐏,𝜌, a subset 𝑐,1 ⊆ 𝑐 exists such

that

𝐳̃∗
𝑘,𝐿𝑃

= 𝐳𝑘(𝝀̃
∗) ∀𝑘 ∈ 𝑐,1 (71)

where 𝛌̃∗ is an optimal solution of𝝆 and 𝒛𝒌(𝛌̃∗) is the cor-
responding solution given by (65). The subset𝑐,1 contains
the trucks that have the same optimal plan with or with-
out the contraction method implemented. By dividing the
trucks into two sets, we have the following derivations:∑

𝑘∈𝑐

𝐃𝑘𝐳𝑘(𝝀̃
∗) =

∑
𝑘∈𝑐,1

𝐃𝑘𝐳𝑘(𝝀̃
∗) +

∑
𝑘∈𝑐∖𝑐,1

𝐃𝑘𝐳𝑘(𝝀̃
∗)

(72)
Notably, if 𝑧̃∗𝐿𝑃 is unique, we have∑

𝑘∈𝑐

𝐃𝑘𝐳̃
∗
𝑘,𝐿𝑃

≤ −𝝆 (73)

On the conditions that𝐋𝐏,𝜌 has multiple optimal solu-
tions, each truckmay reach a local solution, which is a part
of an optima, but there is no guarantees that all trucks’ iter-
ate to the same optima, which possibly fails the inequality
condition in (73). On the other hand, based on (65), 𝒛𝒌(𝛌̃∗)

is determined by 𝛌̃∗. If 𝛌̃∗ is not unique, this may result
in an uncertainty in the selection of 𝛌̃∗of each truck. In
summary, the following assumption is proposed:
Assumption 1. (Uniqueness, Assumption 2.4 in

Vujanic et al., 2016; 𝑹̃𝑳𝒑,𝝆 and 𝑫̃𝝆 have unique solutions
𝒛̃∗𝑳𝑷 and 𝛌̃∗).
If Assumption 1 holds, we have (73) true and subse-

quently,∑
𝑘∈𝑐,2

(
[𝐃𝑘]𝑗𝐳𝑘(𝝀̃

∗) − [𝐃𝑘]𝑗𝐳̃
∗
𝑘,𝐿𝑃

)
≤ 𝐾𝑐 max

𝑘∈𝐾𝑐

{
max
𝐳𝑘∈𝑘

[𝐃𝑘]𝑗𝐳𝑘 − min
𝐳𝑘∈conv(𝑘)

[𝐃𝑘]𝑗𝐳𝑘

}
(74)

It is straightforward to see that it held since there are at
most 𝐾𝑐 trucks in 𝑐 ⧵𝑐,1. Furthermore, based on (61),
it is clear that [𝐃𝑘]𝑗𝐳𝑘 is either 𝑣𝑘,𝑙 or −𝑥𝑘,𝑙. The linear-
ity of [𝐃𝑘]𝑗𝐳𝑘 guarantees that min𝐳𝑘∈conv(𝑘)[𝐃𝑘]𝑗 𝐳𝑘 =

min𝐳𝑘∈𝑘
[𝐃𝑘]𝑗𝐳𝑘 since the binary elements will be on the

extreme edges, which for truck platooning is either−1 or 0
by definition. This supports that (70) is a reasonable choice.
Following (72),∑

𝑘∈𝑐

𝐃𝑘𝐳̃
∗
𝑘,𝐿𝑃

+
∑

𝑘∈𝑐∖𝑐,1

(
𝐃𝑘𝐳𝑘(𝝀̃

∗) − 𝐃𝑘𝐳̃
∗
𝑘,𝐿𝑃

)
≤ −𝝆 + 𝝆 = 𝟎𝐿𝑐

(75)

To summarize, the following theorem is given.
Theorem 2. (Feasibility guarantees, Theorem 3.1 in

Vujanic et al., 2016). If Assumption 1 is satisfied, 𝑧∗(𝝀̃∗) =

[𝒛∗1(𝝀̃
∗); … ; 𝒛∗𝐾𝑐

(𝝀̃∗)] is feasible for𝒅.
However, it worth mentioning that in the truck pla-

tooning problem, the chosen 𝝆 is unnecessarily large,
compromising on the suboptimal level. We may build a
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tighter 𝝆𝒐 based on (61),

𝝆𝑜 = 2(𝐾𝑐 − 1) ⋅ 𝟏𝐿𝑐 (76)

Evenwith 𝝆𝑜, the tightening is strict and always assumes
the worst case, which may be optimized. A method has
been proposed to combine the dual subgradient method to
the adaptive tighten primal problem with improvement in
the suboptimal level and asymptotic convergence guaran-
tees (Falsone et al., 2019). We modified the algorithm to
meet the properties of our problem.

5.4 Decentralized truck platooning
coordination

A method has been proposed to combine the dual subgra-
dient method to the adaptive tighten primal problem with
improvement in the suboptimal level and asymptotic con-
vergence guarantees (Falsone et al., 2019).Wemodified the
algorithm to meet the properties of our problem. Instead
of fixing the value of 𝝆, the algorithm is adaptive in con-
tracting the primal problem to achieve a better suboptimal
level. There are two main parts of preparing the proce-
dure before the implementation of the algorithm. To satisfy
Assumption 1, a perturbation in the cost vector 𝐜𝑘 may be
needed. However, since in the real world, the fuel on each
link is likely to be unique, leading to unique solutions, the
step may not be necessary.
One of the critical assumptions in previous works is

that in Step 7, the feasible set must be bounded (Falsone
et al., 2019). Since the objective function is modified as
(𝐜𝑇

𝑘
+ 𝝀𝑇𝐃𝑘)𝐳𝑘, proper upper bounds for 𝑢𝑘,𝑙 and lower

bounds for 𝑣𝑘,𝑙 should be assigned. The extra bounds are
given by

𝑣𝑘,𝑙 ≥ 0, 𝑢𝑘,𝑙 ≤ 𝛼𝑘,𝑙,1 + 𝛽𝑘,𝑙,1 (77)

which is nothing but the physical limitation. 𝑣𝑘,𝑙 is a place
holder for 𝑥𝑘,𝑙

∑
𝑘′∈𝑐⧵𝑘

𝑥𝑘′,𝑙, ensuring the positive semidefi-

nite nature. 𝑢𝑘,𝑙 is the placeholder for the fuel cost, limited
by the physical nature. The fuel cost is at most when the
truck transverses through the link alone. Likewise, we
formulate (77) as

[𝟎𝑇
𝐿𝑘
, 0, 𝟏𝑇𝐿𝑘

, −𝟏𝑇𝐿𝑘
]

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
𝐌𝑘

⎡⎢⎢⎢⎢⎣
𝐱𝑘
𝑝𝑘

𝐮𝑘

𝐯𝑘

⎤⎥⎥⎥⎥⎦
⏟⏟⏟
𝐳𝑘

≤

⎡⎢⎢⎢⎢⎣
𝟎𝑇
𝐿𝑘
0

𝜶𝑘,1 + 𝜷𝑘,1
𝟎𝑇
𝐿𝑘

⎤⎥⎥⎥⎥⎦
⏟⎴⎴⏟⎴⎴⏟

𝐧𝑘

(78)

The extra constraints given by (77) are also linear and
local; thus, for a simple notation in the algorithm, we
define

̂𝑘 = 𝑘 ∩ {𝒛𝑘 ∈ ℤ𝐿𝑘 × ℝ2𝐿𝑘+1|𝑴𝑘𝒛𝑘 ≤ 𝒏𝑘} (79)

The algorithm is a variant of the dual subgradient
method for the tighten primal problem. After initializa-
tion, the algorithm locally computes a subproblem in Step
7. The following steps from 9 to 12 are adaptive steps for
finding aminimum 𝝆 for a better suboptimal level. The dif-
ference is quite significantwith the previous (Vujanic et al.,
2016) the contraction is fixed. Since taking values from
finite sets, the sequence of 𝝆(𝑖) converges to some

↼
𝛒 . In a

similar manner, with 𝝆 =
↼
𝛒 , the contraction is still suffi-

cient to ensure feasibility. We recommend that the reader
refer to Falsone et al. (2019) for the proof. With the latest
update on, 𝝆, the centralized node performs an update on
𝝀 in Step 14. 𝛼(𝑖) is a nonsummable diminishing step size
with a positive scalar 𝑎 (Boyd et al., 2003). Since the algo-
rithm is based on a decentralized setup, there may not be
a clear stop criterion unless information is sent to the cen-
tralized node. It is also practical to set upper bounds for
iterations.

Algorithm 1. Decentralized truck platooning coordination
1: 𝑖 = 0 ⊳% Rounds of iteration
2: λ (𝑖) = 0

3: 𝑠 (𝑖) = −∞, 𝑘 = 1,… ,𝐊𝐜

4: 𝑠 (𝑖) = +∞, 𝑘 = 1,… ,𝑲𝒄

5: repeat
6: for 𝑘 = 1 to 𝑲𝒄 do
7:𝑧𝑘(𝑖 + 1) ← argmin𝒛𝒌∈𝜘̂k

{(𝒄𝑻
𝒌
+ 𝝀𝑻𝑫𝒌 )𝒛𝒌}

8: end for
9: 𝐬̄𝑘(𝑖 + 1) ← max{𝐬̄𝑘(𝑖), 𝑫𝒌𝒛𝒌(𝑖 + 1)}, 𝑘 = 1,… , 𝐾𝑐

10: 𝐬
𝑘
(𝑖 + 1) ← min{𝐬

𝑘
(𝑖), 𝑫𝑘𝒛𝑘(𝑖 + 1)}, 𝑘 = 1,… , 𝐾𝑐

11: 𝝆𝑘 (𝑖 + 1) = 𝐬̄𝑘 (𝑖 + 1) − 𝐬
𝑘
(𝑖 + 1), 𝑘 = 1,… , 𝐾𝑐

12: ρ (𝑖 + 1) = 𝐾𝑐 max{𝜌1(𝑖 + 1), … , 𝜌𝐾𝑐
(𝑖 + 1)}

13: α (𝑖) = 𝑎∕
√
(𝑖 + 1), 𝑎 > 0

14: λ (𝑖 + 1) = [𝜆(𝑖) + 𝛼(𝑖)(
𝑚∑
𝑖=1

b𝐷𝑘𝑧𝑘
+ 𝜌(𝑖 + 1))]

+

15: 𝑖 ← 𝑖 + 1

16: until some stop criterion is met

To summarize the flowofAlgorithm 1, at iteration 𝑖, each
truck locally updates the tentative solution 𝐳𝑘(𝝀(𝑖 − 1))

and sends the value of 𝐃𝑘𝐳𝑘(𝝀(𝑖 − 1)) to the centralized
node. Based on the latest updates from trucks, a centralized
node updates 𝝆(𝑖), leading to an ascent to 𝝀(𝑖). It is noted
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that the process does not require synchronization (Falsone
et al., 2019), although we build up the algorithm in a syn-
chronous setup for a result comparable to the centralized
result.

5.5 Numerical examples with a
decentralized solution

In this section, we compare the computation time needed
for the decentralized solution versus the centralized solu-
tion for increasing fleet size in the network. In addition,
we address the compromise in optimality as a result of
decomposing the centralized problem and solving it in
a distributed fashion. A simple decentralized method is
applied as the benchmark for Algorithm 1, which is an
opportunistic platooning on each truck’s solo optimal plan.
The simulation is performed on the same setup as intro-

duced in Section 4.4.1 but only for the medium-sized
36-node Hanan graph. At each iteration of Algorithm 1,
Steps 6–8 are considered parallel. Thus, only theworst case
is considered. Assuming all trucks send the result to the
centralized node after the slowest agent finished the com-
putation, a centralized node performed the computation
from Steps 9–14. The computational time of the parallel is
given by the following rules. For each iteration, all trucks
performed the local computation, and the longest time
spent was set as the time of this iteration. The total time
is given by summing up the duration of each iteration.
Latency in communication is assumed to be none.

5.6 Results and discussions

The improvement in computational time is shown in
Figure 6. The computation time of the centralized solver
is significantly influenced by the demand for trucks, with
relatively longer cases and possibly impractical for a large-
scale problem as shown in Figure 6a. In contrast, the
decentralized algorithm shows better consistency in solv-
ing problems with different demands and sizes, as shown
in Figure 6b. The result of the decentralized method is
enlarged to highlight the range from 30 to 90 s as shown in
Figure 6c. Although Algorithm 1 takes more time in small
fleet sizes, it shows the advantage of solving a large-scale
problem. This suggests that in scenarios with smaller fleet
sizes, the centralizedmethodmay achieve an optimal solu-
tion and terminate in a short period of time and hencemay
not need many iterations. It would be an interesting topic
to design a size-dependent iteration limit in future work.
Given the size of the graph, the problem is broken down
into smaller problems with almost the same size, which
are not significantly affected by the number of trucks since

they are conducted on connected vehicles in parallel. The
time increment is mainly the result of centralized node
computation, which is not significant.
The computational time performance is promising even

in the real-world size problem, as the fleet size increment
contributes to the advantages in the decentralizedmethod.
It is likely that Algorithm 1 still outperforms the central-
ized solver in terms of time, even with communication
latency.
In this work, we provided some insights to improve the

computational time of an MILP problem, which is typi-
cally computationally time inefficient. In the decentralized
method, when the problem is broken down to each truck
at each iteration, the problem becomes a special kind of
MILP, which may be considered the shortest simple path
in a weighted and directed graph. In essence, this is a 

problem, which can be solved efficiently and in parallel
using classic off-shelf solvers, such as Dijkstra’s Algorithm
(Dijkstra, 1959).
On the other hand, the improvement in time efficiency

is the result of a compromise in optimality. The result is
given in Figure 7, showing the performance in benefiting
the stakeholders, compared to the centralized solution and
forming platoons without coordination beforehand. The
graph in Figure 7a is the relative gap between the optimal
cost given by the centralized method and the suboptimal
objective value from Algorithm 1. On average, the relative
gap to the optimum is kept below 1%, with no signifi-
cant increment with more trucks in the fleet. To reveal the
benefits of employing the decentralized algorithm, a com-
parison with opportunistic platooning, in which all trucks
operate without coordination beforehand, forms platoons
once encountered during the trip. This comparison is to
rule out the benefits received through the inherent over-
lap. Generally, Algorithm 1 reduces the cost by about 0.2%
on average as shown in Figure 7b. Although the reduc-
tion is insignificant, the lowest subplot indicates that the
algorithm realizes about 20% of the potential as shown in
Figure 7c.
With the result so far, we learn that the implementation

of Algorithm 1 is likely to benefit the stakeholders of the
fleet, as it has a significant improvement in computational
time. However, the absolute and relative objective value
reduction depends on the demand, including the truck
assignment distribution among the geographical graph
and the period.

6 CONCLUSION AND FUTUREWORK

In this paper, we built a mathematical model for the coop-
erative truck platooning problem with different pieces
of the cost function. A series of relaxation methods are
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F IGURE 6 Computational time comparison between the centralized solution and the decentralized solution

F IGURE 7 Suboptimal level and benefits of the decentralized
solution

applied to handle the lack of structure of the problem  ,
leading to the standard MILP form . Even with an effi-
cient centralized algorithm, the problem remains difficult
to solve with increasing scale. The increasing computa-
tional time variation is also a challenge for real companies.
Therefore, a decentralized algorithm is proposed to be
implemented, followed by a numerical analysis. The com-
parison result suggests that the proposed decentralized
algorithm is robust even in large-scale problems. The
elapsed time is relatively insensitive to the size of the fleet,
making it more practical for real-world problems.
There are some interesting future directions to study

on in the further research. By separating the large graph
into smaller subgraphs or dividing the fleet into smaller
groups, the problem is decomposed in another decentral-
ized manner. From another perspective, the problem with
smaller truck setsmaynot requiremuch searching, and the
iterations in the decentralized method may be inefficient,
as all improvements are made in the first few iterations.
A size-dependent stop criterion to improve the current
decentralized algorithm is worth looking at.
It is also noticed that the computational time and the gap

to optimal value are affected by the demand set and setting
of weights, and hence a study involving real-world datasets
should be explored. Real-world scenarios may involve
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congestion effect and uncertainties in time prediction,
which are not taken into consideration in this work. The
trip coordination is performed before the departure, and
a delay in arrival may cause the absence of an expected
platooning partner, leading to a cost increment if the
truck spent extra time or detoured for this platooning.
Robust planning that minimizes the cost of the worst-case
scenario or stochastic planning that ensures platooning
coordination with a high probability threshold are possi-
ble ways to deal with travel time uncertainties explicitly.
They are left for future studies. Moreover, the model is
still limited to the trucks within the same fleet, and inter-
actions among self-interested fleets are not introduced in
this paper, which should be addressed in the next steps.
The model also enables the possibility of preserving the
privacy of participating companies since all decisions are
made locally (Zeng, 2020).
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