
TU DELFT

MASTER THESIS

Decision diagrams for decomposed
mixed integer linear programs

Author:
Koos van der Linden
4133145

Supervisor:
Dr. Mathijs de Weerdt

Other members of the thesis committee:
Dr. Matthijs Spaan

Dr. Ir. Leo van Iersel

A thesis submitted in partial fulfilment of the requirements
for the degree of Master of Science

in the

Algorithmics Research Group
Department of Software and Computer Technology

August 30, 2017

http://www.tudelft.nl
http://alg.ewi.tudelft.nl
http://www.st.ewi.tudelft.nl

iii

TU DELFT

Abstract
Faculty Electrical Engineering, Mathematics and Computer Science

Department of Software and Computer Technology

Master of Science

Decision diagrams for decomposed mixed integer linear programs

by Koos van der Linden

A recent development in the field of discrete optimization is the com-
bined use of (binary) decision diagrams (DD) and branch and bound for
optimization. This method has been shown to outperform integer linear
programming on several classic problems. The performance of DDs in inte-
ger optimization raises the question if this method can be extended to solve
mixed integer problems (MIP), because of the prevalence of MIP modelling.
This thesis is an effort to answer that question.

Currently DD-based optimization does not allow for continuous vari-
ables. We propose a method that uses Benders Decomposition to divide
MIP problems into a discrete master problem and a continuous subprob-
lem. DD-based optimization is used to solve the master problem. The sub-
problem can be solved by linear programming.

The results presented in this thesis show that our method can be used
for MIP problems whose integer variables play a dominant role, and are
hard to solve by MIP solvers. An advantage of our method is that it pro-
vides feasible solutions as early as the first iteration.

HTTP://WWW.TUDELFT.NL
http://ewi.tudelft.nl
http://www.st.ewi.tudelft.nl

v

Acknowledgements
Six years ago I started to study computer science in Delft for this reason.

With algorithms a person can use his intelligence and creativity to exploit
the speed and power of a computer. Now at the end of my thesis project, I
can look back with a grateful heart. My thanks is mostly directed to God,
or as one would say in the past: Soli Deo Gloria. Creativity, inspiration and
motivation are critical in a project such as this, and for me He is the source
of all three. What helped me especially, was His encouragement to work
wholeheartedly on the project as if it were for Him.

My motivation during this project may very well be described by a co-
sine function, with ups and downs. My daily supervisor Mathijs de Weerdt
has always been positive during the whole project. His positive attitude
was of great help, and quite often changed the tide of the cosine. I want to
thank him for that. He has helped me a lot during our frequent meetings,
and by all the feedback that he gave to me.

A special thanks is also directed to Willem-Jan van Hoeve, one of the
authors of the book on Decision Diagrams that I frequently refer to. His
critical feedback and profound knowledge of decision diagrams helped in
assessing the contribution of this thesis. I want to thank him for the time he
spent in providing feedback.

I also want to thank Jan Elffers, Chris van Vliet and Germán Morales-
España for their effort, for the feedback that they gave me and for helping
me during the process. In the same way I want to thank Matthijs Spaan and
Leo van Iersel for partaking in the thesis committee.

At last I want to thank my family and friends and the Navigators com-
munity. They have supported me in all other ways.

Koos van der Linden
Delft, August 2017

vii

Contents

1 Introduction 1

2 Background 5
2.1 Decision Diagrams for Optimization 5

2.1.1 Formal description . 6
2.1.2 Dynamic Programming Formulation 7
2.1.3 Compilation of a Decision Diagram 7

2.2 Branch and bound with decision diagrams 9
2.2.1 Restricted Decision Diagrams 9
2.2.2 Relaxed Decision Diagrams 10
2.2.3 Branch and Bound procedure 11

2.3 Threshold diagram . 13
2.4 Benders Decomposition . 14

3 Decision Diagrams with Benders Decomposition 17
3.1 Decision Diagrams and Benders Decomposition 18

3.1.1 Cuts using the threshold diagram 20
3.1.2 Finding an exact cutset 21

3.2 Cuts on the optimal value . 24

4 Evaluation 27
4.1 Threshold diagram . 27

4.1.1 Threshold versus Custom 28
4.1.2 Number of constraints 29

4.2 Cost tuples . 30
4.3 Decomposition . 31

4.3.1 Scheduling with independent sets 32
4.3.2 Market Share Split (adapted) 35
4.3.3 Other problems . 38

5 Discussion 39
5.1 Conclusions . 39
5.2 Recommendations . 41

A Implementation details 43
A.1 State description . 43
A.2 Variable ordering . 44

Bibliography 45

1

Chapter 1

Introduction

Decision diagrams for optimization by using branch and bound is a novel
approach in discrete optimization. It has been proved that decision dia-
gram based solvers can outperform state of the art integer programming
solvers for several classic problems, such as independent set, vertex cover,
the maximum cut problem, and the maximum 2-satisfiability problem [5,
6]. These results in integer optimization raise the question if this method
can be extended to solve mixed integer problems.

Mixed integer programming (MIP) can be used to model all kinds of
problems. One can think of problems such as the map labeling problem, op-
timal transmission switching and scheduling problems. These kind of prob-
lems occur in numerous fields, for example in logistic companies, chemical
process optimization, and power engineering. Optimal solutions for these
problems help to increase efficiency, for example in reducing traffic time
and reducing system cost.

However, integer programming and, as a consequence, mixed integer
programming is an NP-hard problem. Therefore some of the MIP problem
instances are hard to solve. A more efficient algorithm in terms of runtime
would allow for solving larger instances of a difficult problem, or would
allow for more complex models.

A decision diagram (DD) is a graphical representation of a discrete func-
tion. The paths from root to terminal in the diagram represent all the fea-
sible assignments in an optimization problem. The weights of the edges
are the contribution to the objective. The length of the path is the objective
value of a solution, and therefore the shortest path (in case of minimization)
is the optimal feasible solution. By using restricted and relaxed versions of
a decision diagram, lower and upper bounds on the optimal solution can be
computed rapidly. Because of this ability to find bounds, decision diagrams
can be used in a branch and bound procedure. This allows for solving large
discrete optimization problems.

There are several advantages of DD-based optimization. Firstly, it may
provide tighter bounds (than provided by a continuous relaxation). Sec-
ondly, these bounds and (a first) feasible solution can be computed rapidly.
Thirdly, it does not require an inequality formulation (in some cases the in-
equality formulation is exponential in the problem size). With DD-modeling
the recursive structure of a problem is used instead. Lastly, DD-modeling
can also deal with non-linear and non-convex constraints, which means that
linearization is not required.

2 Chapter 1. Introduction

DDs can (currently) only be used to solve integer programs. However,
real world applications may contain continuous decision variables which
cannot be discretized, or whose discretization provides a bad approxima-
tion. Consider the example MIP problems mentioned above. Also, some
problems with continuous decision variables are clearly an extension of a
typical integer problem, such as the asymmetric travelling salesman prob-
lem with time windows.

MIP problems are mostly solved by mixed integer programming using
branch and bound. This technique is based on a relaxation of the integrality
constraints. This relaxed problem can then be solved as a Linear Program
(LP). Solving an LP can be done in polynomial time. The relaxed LP solu-
tions are used in the branch and bound. The performance of this method
therefore relies mainly on the quality of the relaxation. The integer vari-
ables, and the constraints on the integer variables are the main reason that
these problems are hard to solve. Especially for problems where the integer
variables play a dominant role and where the LP relaxation of a problem is
bad, another method that does not rely on LP relaxation could be useful.

Because of the good performance of DDs in discrete optimization, it is
interesting to see what contribution DDs can offer for mixed integer prob-
lems. The question, however, that needs to be answered is how to deal with
the continuous variables and constraints. A DD can only describe a finite
amount of assignments to the variables and therefore can not trivially deal
with continuous variables.

One possible option could be to extend the use of Interval Automata
(IA) [16] (or multi-data type interval decision diagrams [15]). IAs are a gen-
eralization of DDs that can have both discrete and continuous variables. At
this moment (at least to our knowledge), IAs can only be used for decision
problems, and not yet for optimization. The possibility of this option has
been tested during the research for this thesis, but no successful results can
yet be reported. IA-based optimization however, is still recommended for
further research.

Another promising option, which is explored successfully in this the-
sis, is to use a decomposition technique that separates the problem into a
discrete problem and a continuous problem. This means that the decompo-
sition splits the set of decision variables.

Benders decomposition [3] is a technique that achieves precisely this.
Benders decomposition (BD) is often used successfully for decomposing
large problems and can also be used to decompose a mixed problem into
a discrete master problem and a continuous subproblem (see for example
[9]). BD is a constraint generating decomposition that iteratively updates
the master problem until the optimal solution to the master problem is also
optimal to the subproblem.

However, the contribution of continuous variables to the objective re-
sults in a (convex) piecewise linear objective when translated into constraints
in the master problem by Benders decomposition. The question that needs
to be answered now, is how to deal with a piecewise linear objective in a
decision diagram. This same question may also arise when dealing with
other problems. Piecewise linear objectives are also often used in practice
for example to describe more accurately a cost function.

Chapter 1. Introduction 3

The method that is proposed in this thesis includes a solution to this
problem. To be able to deal with a piecewise objective, the decision dia-
grams use cost tuple labels, instead of just scalar cost labels. Each element
in the cost tuple represents a piece of the objective.

A decomposition for DDs that divides the set of constraints is also pro-
posed in [4]. In this article the Lagrangian relaxation is used to relax a sub-
set of the constraints. These relaxed constraints are considered by solving
the Lagrangian dual. A notable difference between this decomposition and
BD is that BD also divides the set of variables. Apart from that, the method
proposed in this thesis also presents how a DD-based branch and bound
can work even when the set of constraints describing the DD is a subset of
all the constraints.

The research question is whether decision diagrams in combination with
Benders decomposition can be used as a method for solving mixed integer
problems, and if so, for what kinds of problems this combination of DD-
based optimization and Benders decomposition can be used. Because the
method is proposed as a general-purpose solver, it is compared with mixed
integer programming solvers. Relevant subquestions are the following: 1)
How do the threshold diagrams (used for generated constraints) perform?
2) How does the idea of cost tuples perform for an integer problem with a
convex piecewise linear objective? 3) What number and kind of constraints
are generated in the decomposition? 4) What elements contribute to the
runtime of the proposed method?

This thesis has two main contributions. The first contribution is the idea
to combine DD-based optimization with Benders Decomposition (BDDD)
to solve hard mixed integer problems. The master problem is solved by DD-
based optimization, the subproblem is solved by a linear programming (LP)
solver and generated constraints are represented by a so called threshold
diagram. The second idea (used in the first) is to use cost tuples in DDs to
deal with convex piecewise linear objectives.

The following sections are organized as follows. Chapter 2 presents the
required background, namely DD-based optimization and Benders decom-
position. Chapter 3 introduces the proposed method. This chapter shows
how DDs for optimization can be combined with Benders decomposition
and how cost tuples can be used to deal with a convex piecewise linear ob-
jective. Chapter 4 introduces the tests and problems that are used to evalu-
ate the model and also presents the computational results of these tests. The
test results contribute to the subquestions asked above. Finally, Chapter 5
discusses these results, answers the research question and presents some
recommendations for future work.

5

Chapter 2

Background

This chapter provides the main background information that is required for
the method proposed in Chapter 3. The main building blocks are decision
diagrams for optimization and benders decomposition. Also a specific kind
of decision diagram, namely the threshold diagram is introduced.

Firstly, the general idea of a decision diagram is discussed (called an
exact diagram). Secondly, the branch and bound procedure with decision
diagrams is explained. Thirdly, the threshold diagram is introduced, and
lastly, an explanation of Benders decomposition is given.

2.1 Decision Diagrams for Optimization

Decision Diagrams, originally meant for graphical representation of boolean
functions, can be a useful tool in optimization and constraint programming.
In this thesis only binary decision diagrams (BDDs) are considered. How-
ever, the theory can easily be extended to multi-valued decision diagrams
(MDDs).

This section explains (summarized from [5]) how to use DDs in opti-
mization. First a formal description of a decision diagram is given. Then
the dynamic programming formulation is introduced. This formulation is
required for compiling the decision diagram. After that the compilation of
a decision diagram based on such a formulation is explained.

FIGURE 2.1: Example graph (from [5])

6 Chapter 2. Background

FIGURE 2.2: Example exact decision diagram for MISP
(from [5]). A dashed line means a zero-label. A solid line

means a one-label.

2.1.1 Formal description

For a discrete optimization problem P with objective function f(x) and
variables x1, ..., xn one can define a decision diagram (DD). Formally a deci-
sion diagram is a tuple B = (U,A, d, v) describing a directed acyclic graph.
U is the node set, A the arc set, d the arc labels and v the arc weights. The
node set U is subdivided in layers L1,, Ln+1. L1 and Ln+1 consist of pre-
cisely one node, the root node r and the terminal node t respectively. The
width |Li| of layer Li is the number of nodes in the layer. The width of a
DD is maxi{|Li|}.

Each arc a ∈ A is directed from a node in some layer Li to a node in
layer Li+1. Each arc also has a label d(a) ∈ D(xi), where i is the layer
number, andD(x) the set of all possible values for the variable x. Let a path
be denoted by p = (a(1), ..., a(n)) from r to t. This encodes an assignment
to the variables x1, ..., xn: xi = d(a(i)) for each variable. This assignment is
denoted by xp. The length of a path is the sum of the lengths of the arcs so
v(p) =

∑n
i=1 v(a(i)). All r-t paths encode precisely the feasible solutions of

P and for each path it holds that f(xp) = v(p).
When P is a minimization problem and Sol(B) gives the shortest path(s)

of the DD B and Sol(P) = Sol(B) then B is called exact for P (i.e. all fea-
sible solutions are represented by paths in the diagram and every path in
the diagram resembles a feasible solution). So an exact DD reduces a dis-
crete optimization problem to a shortest-path problem (on a directed acyclic
graph). The shortest path of the DD is the optimal solution for the optimiza-
tion problem.

2.1. Decision Diagrams for Optimization 7

Take the maximum independent set as an example problem. The max-
imum independent set problem (MISP) is the task to select vertices with
maximum total value without selecting any two vertices that share an edge.
Let the graph in Figure 2.1 be the input graph. Figure 2.2 is an exact DD that
solves MISP for the given graph. The longest path in the diagram makes the
assignment x2 = 1, x5 = 1. This indeed is the maximum independent set in
the graph.

In a decision diagram every node has a state. In Figure 2.2 the state
describing a node is the set of vertices in the input graph that can still be
selected. The weights of the arcs in the graph are the weights of the vertices
in the input graph when it is has one-label, and zero when it has a zero-
label.

2.1.2 Dynamic Programming Formulation

As can be seen from Figure 2.2 the MISP is solved with help of a dynamic
programming formulation. In a dynamic programming formulation (dp-
formulation) a problem is described recursively. The formulation consists
of a number of states sj and variables xj . The states are Markovian, that
is, the state sj+1 only depends on the variable xj and the previous state sj .
Each transition has a cost.

Formally, a dp-formulation consist of the four following elements:

1. A state space S with root state r̂ and a set of terminal states t̂1, ...t̂k. For
notational ease, let 0̂ be the infeasible state representing all infeasible
solutions.

2. Transition functions tj representing how variables control the transi-
tion between states. An infeasible state always leads to an infeasible
state.

3. A transition cost function hj .
4. A root value vr (to take care of constants in the objective function),

which is added to the transition costs directed out of the root state.

As an example take again the MISP. Let V be the set of vertices in the
input graph, and let N(j) be the function that returns all the neighboring
vertices of vertex j including j itself, and wj the weight of vertex j. Then
the dp-formulation of MISP has the following components:

1. The state space S = 2V , i.e. the power set of the V . r̂ = V , and t̂ = ∅.
2. The transition functions: tj(sj , 0) =sj \ {j},

tj(sj , 1) =

{
sj \N(j), if j ∈ sj
0̂, if j /∈ sj

3. Cost functions: hj(sj , 0) = 0 , hj(sj , 1) = wj

4. A root value of 0.

2.1.3 Compilation of a Decision Diagram

When a dp-formulation for a problem is known, this formulation can be
used to build a decision diagram. This is called top-down compilation of
a decision diagram. Because the state of each node is Markovian only the
state of this node and the value of the decision variable is needed to de-
fine the next node. The resulting diagram is an exact diagram representing

8 Chapter 2. Background

the original problem. Building this DD then can be done by algorithm 1.
Algorithm 1 relies heavily on the dp-formulation of the problem.

Most of the notation has already been introduced, except for bd(u). The
function bd(u) gives the destination of the edge leaving node u with label d.
The set Dj in this case is short for D(xj).

Algorithm 1 works as follows: One layer at the time is built. The first
layer consists of the root node r with the root state r̂. The next layer of the
diagram is built by iterating over all nodes in the layer. For every node u
in layer j a new node is created for every possible value that variable xj
can take (the set Dj ; in the binary case Dj = {0, 1}) without resulting in
the infeasible state. The state of the new node is computed with help of the
transition function tj . The edge costs are set with help of the the transition
cost function hj .

In the last layer, all nodes are merged into one node, the terminal node.

Algorithm 1: Exact DD top-down compilation
Input: A dp-formulation with root state r̂, transition functions tj and

transition cost functions hj .
Output: An exact DD for this dp-formulation.

1 Create node r = r̂ and let L1 = {r};
2 for j = 1 to n do
3 let Lj+1 = ∅;
4 forall the u ∈ Lj and d ∈ Dj do
5 if tj(u, d) 6= 0̂ then
6 let u′ = tj(u, d), add u′ to L(j+1), and set bd(u) = u′,

v(u, u′) = hj(u, u
′).;

7 end
8 end
9 end

10 Merge nodes in L(n+1) into terminal node t;

Another method for building a decision diagram is compilation by sep-
aration. In Algorithm 2 the pseudocode of this procedure is given. Compi-
lation by separation assumes an already existing (relaxed) decision diagram
B and a constraint C that is violated or needs to be added. This constraint
has transition function tC and root state r̂C . The DD B is updated layer
by layer. First all nodes are labelled as unvisited by setting the state to χ.
Then all outgoing edges per layer are visited. For each edge there are four
options: 1) The edge leads to node with an infeasible state according to tC

in which case the edge is removed from the diagram. 2) The edge leads to
a node that is unvisited and feasible according to tC . In this case the state
of the node is updated according to tC . 3) The edge leads to a node that is
already visited, but the state of the node is not the same as according to tC .
(this can only occur in diagrams that are (partly) reduced). In this case that
node is copied. This edge is set to lead to the new node. All outgoing nodes
of the node are copied to the new node. 4) The edge leads to a node that
is already visited (and the state is as expected according to tC . In this case
nothing happens. This last case is not in Algorithm 2.

2.2. Branch and bound with decision diagrams 9

Algorithm 2: Exact DD Compilation by Separation

Input: A constraint C with transition functions tC and root state r̂C

and a DD B
Output: B updated so that it does not violate C.

1 Let s(u) = χ for all nodes u ∈ B
2 s(r) = r̂C

3 for j = 1 to n do
4 for u ∈ Lj do
5 for each arc a = (u, v) leaving node u do
6 if tCj (s(u), d(a)) = 0̂ then
7 Remove arc a from B
8 else if s(v) = χ then
9 s(v) = tCj (s(u), d(a))

10 else if (s(v) 6= tCj (s(u), d(a)) then
11 Remove arc (u, v) from B
12 Create new node v′ with s(v′) = tCj (s(u), d(a))

13 Add arc (u, v′)
14 Copy outgoing arcs from v as outgoing from v′

L(j+1) = L(j+1) ∪ {v′}
15 end
16 end
17 end

2.2 Branch and bound with decision diagrams

An exact diagram contains all and only feasible solutions to the original
problem. Because the width or size of an exact diagram may increase rapidly
in proportion to the problem input size, it is possible that it does not fit in
memory. A large diagram also takes longer to build. Because of constraints
on memory usage or computation time, it is not feasible to build an exact
representation of the problem. Branch and bound is a procedure that re-
duces the total search space into subproblems that are more easy to solve.
The solutions of the subproblems provide lower and upper bounds to the
original problem. These bounds can be used for branching decisions in the
search tree and to exclude parts of the search tree. With decision diagrams,
restricted and relaxed diagrams can be used to find these bounds.

In the subsequent sections, first the compilation of restricted and relaxed
diagrams (for upper and lower bounds) is explained. After that the branch
and bound procedure itself is introduced. Again, this section is summa-
rized from [5].

2.2.1 Restricted Decision Diagrams

A restricted diagram is a decision diagram that does not contain all feasible
solutions. However, all the paths in a restricted diagram still are feasible
solutions. This diagram is called restricted, because the diagram is more
restricting than the original problem. Apart from this it should also hold
that every path length (in the case of minimization) is at least equal to the

10 Chapter 2. Background

value of that feasible solution. So in short, for a restricted diagram B′ the
following two points hold:

1. Sol(B′) ⊆ Sol(P)
2. v(p) ≥ f(xp) for each path p in B′

FIGURE 2.3: Example of a restricted
decision diagram for MISP (adapted

from [5]).

If these two properties hold, the restricted diagram
yields an upper bound to the original problem (when
minimizing).

In practice one would want the width of the dia-
gram not to exceed some maximum width wmax. Dur-
ing the top down compilation of a decision diagram
according to Algorithm 1 this can be easily achieved.
When the width of a layer exceeds wmax, one can se-
lect nodes in the layer to be removed. Doing so, all the
paths that go through this node are also removed, but
no new path is added. Requirement 1 is achieved. Re-
quirement 2 is also achieved trivially because none of
the edge weights is changed.

In Figure 2.3 an example of such a restricted dia-
gram is shown. In this figure the MISP from Figure 2.2
is reduced to a diagram with wmax = 2. In this case
only one node (with its edges) is removed. Accord-
ing to the restricted diagram, the independent set with
highest value is node 1 and node 5, with a total value
of 10. This is a lower bound to the original problem,
because MISP is a maximization problem.

The selection of nodes for removal is done by a heuristic. There are
several heuristics that can be used for this task. In [5] the performance of
several heuristics is shown. MAXLP is shown to be best for general use,
and therefore in this thesis the MAXLP heuristic is used. With MAXLP all
nodes in a layer are sorted based on the length of the shortest path from
the root to that node. Those nodes are selected to be removed that have the
maximum shortest path. The intuition of MAXLP is that the partial paths
with longest length are less probable to be part of the optimal solution.

2.2.2 Relaxed Decision Diagrams

Relaxed decision diagrams are similar to restricted diagrams. With a min-
imization problem a restricted diagram provides an upper bound to the
solution, and a relaxed diagram provides a lower bound to the solution. A
restricted diagram contains only feasible paths, but not all paths, a relaxed
diagram contains all feasible paths but not all paths are feasible. Apart from
this it should also hold that every path length (in the case of minimization)
is at most equal to the value of that assignment. So in short, for a relaxed
diagram B̄ the following two points hold:

1. Sol(B̄) ⊇ Sol(P)
2. v(p) ≤ f(xp) for each path p in B̄

If these two properties hold, the relaxed diagram yields a lowerbound
to the original problem (when minimizing).

2.2. Branch and bound with decision diagrams 11

FIGURE 2.4: Example of a relaxed
decision diagram for MISP (adapted
from [5]) with the frontier cutset

highlighted.

Again, the goal is to limit the width of the diagram
to wmax. With a restricted diagram this was achieved
by removing nodes from the diagram. With relaxed di-
agrams this is not the case because no feasible path may
be removed from the diagram. To reduce the width
of the diagram nodes in the same layer can be merged
during the top down compilation. When the width of a
layer exceeds wmax, one can select nodes in the layer to
be merged. For every dp-formulation a merge function
must be defined such that the subtree of the merged
node contains the subtree of all merged nodes. For ex-
ample the merge function for the MISP is the set union.
(The transition function only leads to an infeasible state
if j /∈ sj . The set union does not remove any node from
any of the merged states, and therefore no feasible so-
lution is lost). In Figure 2.4 an example of such a re-
laxed diagram is shown. In this figure the MISP from
Figure 2.2 is relaxed to a diagram with wmax = 2. In
this case, only two nodes are merged into one (u′). The
longest path in this restricted diagram means selecting
node 2, node 3 and node 5, with a total value of 13. This
is an upper bound to the original problem, because MISP is a maximization
problem. This solution however is not feasible in the original problem be-
cause node 2 and node 3 are adjacent to each other. Again, following [5],
the choice is made to select the nodes that are merged based on the MAXLP
heuristic.

2.2.3 Branch and Bound procedure

Branch and bound is a technique that finds the global optimum for a prob-
lem by branching and bounding a full enumeration of all feasible solutions.
The search space of all possible configurations is displayed as a tree. The
root node contains all possible configurations. Every branch in the tree fixes
a part of the configuration. Bounds on subtrees in the search space are used
to determine where to search (branch). If (with minimization) the lower
bound of a subtree is greater than the current incumbent (the upper bound),
then that subtree does not contain an improvement on the incumbent and
can be skipped. If the lower bound is lower than the incumbent, then that
subtree is a good candidate for further investigation. If the subtree still con-
tains too many possible configurations, the subtree can be split by another
branch operation. This procedure continues until there is no subtree with a
better lower bound than the incumbent. In that case, a global optimum has
been found.

The algorithm for branch and bound with decision diagrams is based
on the compilation of restricted and relaxed diagrams. Restricted diagrams
are used to find feasible solutions to improve the incumbent and the relaxed
diagrams are used to find lower bounds (with minimization) to subspaces
of the solution space. If the lower bound exceeds the incumbent, then it is
not required to explore that part of the solution space any further.

If the lower bound is lower than the incumbent the subspace of the dia-
gram needs to be further explored. This is done by finding an exact cutset

12 Chapter 2. Background

in the relaxed diagram and adding each of the nodes in this exact cutset to
a list of nodes that need to be explored further. An exact cutset provides an
exhaustive enumeration of sub-problems. Each of the nodes in the subset
can be used as the root of a decision diagram. A decision diagram starting
from such a root is a subproblem of the original problem.

A cutset to the diagram is a set of nodes that cuts the diagram. This
means that any path from root to terminal should go through at least one
of the nodes in the cutset. An exact cutset is such a cutset with only exact
nodes. A node is exact iff all paths from the root to the node are exact and
the node is not a merged node. In any other case the node is called relaxed.
Two heuristics for finding such a cutset are explained here.

The first of these two heuristics is called LASTEXACTLAYER. With this
heuristic the last layer in the relaxed diagram that does not contain a relaxed
node is selected as the exact cutset. This layer can be easily found during
compilation because it is the layer preceding the first merged node.

A second heuristic is called FRONTIERCUTSET. For the algorithm, any
exact cutset would do, but in this thesis the frontier cutset is used (just as in
[5]). A formal definition for the frontier cutset is given in equation 2.1.

FC(B̄) = {u ∈ B̄|u is exact and b0(u) or b1(u) is relaxed}. (2.1)

An example of such a frontier cutset can be seen in Figure 2.4. In this
figure the nodes in the cutset are encircled. The red line divides the diagram
in two parts. All nodes in the upper part are exact. All nodes in the lower
part are relaxed.

Algorithm 3: Branch and Bound with Decision Diagrams
Input: A dp-formulation with root state r̂.
Output: The optimal solution zopt.

1 Initialize Q = {r}where r = r̂;
2 Let zopt =∞, v∗(r) = 0 ;
3 while Q 6= ∅ do
4 u = select_node(Q), Q = Q \ {u} ;
5 Create restricted DD B′ut using Algorithm 1 with root u and

vr = v∗(u) ;
6 if v∗(B′ut) < zopt then
7 zopt = v∗(B′ut) ;
8 end
9 if B′ut is not exact then

10 Create relaxed DD B̄ut using Algorithm 1 with root u and
vr = v∗(u) ;

11 if v∗(B̄ut) < zopt then
12 Let S be an exact cutset of B̄ut ;
13 foreach u′ ∈ S do
14 Let v∗(u′) = v∗(u) + v∗(B̄uu′), add u′ to Q ;
15 end
16 end
17 end
18 end
19 return zopt ;

2.3. Threshold diagram 13

The algorithm for branch and bound with decision diagrams is shown
in Algorithm 3. In this algorithm, v∗(u) is the best (shortest) distance from
the root to u. The value vr in a DD is the start distance of a diagram.

2.3 Threshold diagram

A special kind of decision diagram is the threshold diagram. A threshold
diagram is a diagram for a linear constraint (with only integer decision vari-
ables). More formally, a BDD representing the set T = {x ∈ {0, 1}n : aTx ≤
b} is the threshold diagram of the constraint aTx ≤ b. Although it is com-
mon to restrict the coefficients of the constraints to integer constraints, in
this thesis that is not the case. The coefficients a have real values.

The size of such a diagram is bounded by O(n(|a1| + |a2| + ... + |an|))
[17]. This means that when the weights in a are polynomially bounded in
n, then the size of the diagram is polynomially bounded in n. However,
when top-down compilation (as in Algorithm 1) is used, this result is not
achieved.

A threshold diagram is built as follows (see also [2]). W.l.o.g suppose
that ∀i ai ≥ 0. If not, one can substitute xi with 1 − x̄i in this constraint. (x̄
here means the negation of x). No extra variables need to be added for the
negative coefficients.

The state of a node is the slack s of the constraint (s = b − aTx with
all unset decision variables in x set to zero). When s < 0 the constraint is
violated.

Take for example the constraint 2x0 − 3x1 + 4x2 ≤ 3. This constraint
can be rewritten to 2x0 + 3x̄1 + 4x2 ≤ 6. The root node is initialized with
s = b = 6. While building the DD, the slack s is updated based on the
decisions made. So with this constraint s is decreased with 2 if x0 = 1, and
with 3 if x̄1 = 1. When deciding on the value of x2, s is compared with
4. If s < 4, then that decision is invalid and not included in the diagram.
With previous decisions setting x0 = 0 and x1 = 0, the remaining slack s is
6− 0− 3 = 3. Deciding x2 = 1 therefore is invalid. Setting x2 = 0 of course
is valid.

In short (assuming all coefficients are positive) the dp-formulation is:

1. The state space S = R+. r̂ = b
2. The transition functions: tj(sj , 0) =sj

tj(sj , 1) =

{
0̂, if sj < 0

sj − aj , else

If the constraint has an equality sign and not an inequality sign, then one
change must be made. The check sj < 0 should be replaced by Equation 2.2.

sj < 0 ∨ sj >
n∑

i=j

ai (2.2)

When nodes are merged, the state of the new node is the maximum of all
states that are merged. If the maximum slack of all selected nodes is taken,
then no feasible path is removed from the diagram.

14 Chapter 2. Background

With this dp-formulation, any linear constraint can be described and
multiple constraints can be trivially combined by extending the state de-
scription with one variable for each constraint. So this dp-formulation can
be used for any integer linear program, without requiring any specific prob-
lem domain knowledge, or a specific recursive formulation.

2.4 Benders Decomposition

In the method that is proposed in Chapter 3, the DD-based optimization
presented above is combined with the Benders decomposition. Benders de-
composition is explained in this section. First a general description of the
Benders decomposition is given. Then a typical mixed integer program-
ming (MIP) problem is introduced and rewritten into a master and sub-
problem. Lastly, the pseudocode of Benders decomposition is given that
solves the introduced MIP problem.

Benders decomposition [3] is a common used decomposition technique
used for solving large (mixed integer) (linear) problems. The decomposi-
tion splits the problem into a master and a subproblem. The master prob-
lem is a relaxation of the original problem. Solutions to the master problem
are used to build a subproblem. The solution to the subproblem then is used
to add a constraint to the master problem. This is repeated until the solution
to the master problem is feasible to the original problem. The constraints
that are returned by the subproblem typically exclude partial assignments,
i.e. some combination of variable assignments is forbidden.

A formal explanation of Benders decomposition is as follows (from [12]):
Suppose the following MIP problem:

minimize cTx+ fT y
subject to Ax+By ≥ b

x ∈ X
y ≥ 0

(2.3)

In Equation 2.3 the setX is the set of all feasible (integer) assignments to
x. Therefore x denotes the integer decision variables and y the continuous
variables.

With x = x̄ fixed to a feasible integer configuration, this results in:

minimize cT x̄+ fT y
subject to By ≥ b−Ax̄

y ≥ 0
(2.4)

The complete problem then is:

min
x∈X

[
cTx+ min

y≥0
{fT y|By ≥ b−Ax}

]
(2.5)

The inner minimization problem in Equation 2.5 is an LP. Because it is
an LP, its dual can be formulated as follows:

maximize ZD = (b−Ax̄)Tu
subject to BTu ≤ f

u ≥ 0
(2.6)

2.4. Benders Decomposition 15

Now the problem in Equation 2.6 can be used as the (dual) subproblem
in the Benders Decomposition. Its solutions are upper bounds to the orig-
inal problem. In the master problem the constraints of the subproblem are
removed and the objective is replaced by min z. The goal is to optimize the
variable z. When the dual subproblem is feasible it returns constraints on
the value z. The Benders Decomposition algorithm is then as presented in
Algorithm 4.

Algorithm 4: Benders Decomposition
Input: a MIP problem as presented in Equation 2.3
Output: The optimal solution zopt.

1 x̄ = Initial feasible integer solution (to the master problem). ;
2 LB = −∞ ;
3 UB =∞ ;
4 cuts = ∅ ;
5 while UB−LB > ε do
6 (ū, zD) = maxu{cT x̄+ (b−Ax̄)Tu|BTu ≤ f, u ≥ 0} ;
7 if Unbounded then
8 ū = an unbounded ray ;
9 Add cut (b−Ax)T ū ≤ 0 to cuts ;

10 else
11 Add cut z ≥ cTx+ (b−Ax)T ū to cuts. ;
12 UB = min{UB, zD} ;
13 end
14 (x̄, zI) = minx{z| cuts, x ∈ X} ;
15 LB = zI ;
16 end
17 return zI ;

What you can see in Algorithm 4 is that iteratively a feasible integer so-
lution to the relaxed master problem is used to build a dual subproblem.
The subproblem returns a feasible solution ū with value zD. This subprob-
lem maximizes the objective and the master problem minimizes the objec-
tive. This respectively results in the upper and the lower bounds. When
these bounds are equal an optimal feasible solution to the original problem
is found. Every subproblem that is solved is either unbounded or bounded.

If the dual subproblem is unbounded (and therefore primal infeasible),
an unbounded ray is used to add a new constraint to the set cuts. An un-
bounded model has a solution. However, a multiple of a ray (called an
unbounded ray) can be added any number of times to the solution to give
another feasible solution with a better objective.

If the dual subproblem is bounded, then the optimal solution is used to
add a new constraint on the objective z to the set cuts. With this new cut
added, the master problem can be solved again.

One thing to note is that the set of the constraints of the subproblem
remains the same throughout the algorithm. Only the objective of the sub-
problem changes every iteration. Also, during the execution the upper
bound represents a feasible solution to the original problem.

In [9] an extra constraint is proposed for the subproblem when the prob-
lem’s objective relies only on the continuous variables (that is c = 0 and

16 Chapter 2. Background

f 6= 0). The constraint that is added to the primal subproblem is fT y ≤ UB
(with UB the current incumbent). With this added constraint both the fea-
sibility and the optimality is checked in the subproblem.

17

Chapter 3

Decision Diagrams with
Benders Decomposition

MIP solvers are good at dealing with continuous variables. Integer vari-
ables however, often make a problem much harder to solve. It is known
that decision diagrams perform especially well with discrete optimization
(but are also limited to discrete optimization). Therefore the question arises
whether the use of DDs can be extended to also solve hard MIP problems.
For most (practical) problems both kind of variables are connected through
constraints and therefore the discrete and continuous part of the problem
are strongly connected.

One possibility is to split the set of variables (and the problem) into a
part that has only discrete variables, and a part that has only continuous
variables. A decision diagram can then be used to solve the discrete part.
The continuous problem could for instance be solved as an LP. The ques-
tion that still remains is how to deal with the connection between the two
problems.

This section proposes a method that uses Benders Decomposition (BD).
Benders Decomposition can be used to split the set of variables and con-
straints into a master problem and a subproblem. The master problem can
contain all the integer variables and constraints. The subproblem is an LP.
It is now possible to iteratively ’translate’ constraints with continuous and
mixed variables into constraints with only integer variables. The previous
chapter provides the building blocks for this method.

The proposed method consists primarily of three ideas. The first idea
is to combine the iterative procedure of Benders Decomposition with the
iterative procedure of branch and bound with decision diagrams. This idea
is explained in the first section of this chapter. The second idea, which is
strongly linked to the first, is to use threshold diagrams and compilation
by separation to add the cuts to the diagram. This is also discussed in the
first section of this chapter. The third idea is to use cost tuples in decision
diagrams to be able to deal with a piecewise linear objective, because the
constraints generated by the subproblem may result in a piecewise objec-
tive. This idea is discussed in the second section of this chapter.

Some implementation choices and details have been left out of this sec-
tion, such as (partial) reduction of diagrams, variable ordering and others.
These implementation details can be found in Appendix A.

18 Chapter 3. Decision Diagrams with Benders Decomposition

3.1 Decision Diagrams and Benders Decomposition

Branch and bound with decision diagrams and Benders decomposition have
been introduced in Sections 2.2 and 2.4 respectively. In this section a method
is proposed to combine these two procedures into one. First pseudocode
is provided that gives a general overview of how the combined method
works. After that, some important parts of the algorithm are explained in
more detail.

The proposed solution is as follows. The problem is decomposed in two
sets of variables and constraints by using Benders decomposition. In the
decomposition the master problem deals only with integer variables (and
all the constraints on only the integer variables) and is represented by a
decision diagram. The subproblem deals only with continuous variables
(and all constraints with any continuous variable) and is represented by an
LP. Just as in the classical Benders Decomposition, solutions to the master
problem are used to configure and build subproblems. The solutions of
the subproblems are used to derive cuts and these cuts are used to update
the master problem until the solution value of the master and subproblem
coincide.

Decision diagram based branch
and bound can be summarized as
follows: Iteratively one node u is
popped from a queue Q of nodes.
The queue Q is initialized with the
root node. A restricted diagram is
built starting in u to provide a fea-
sible integer solution. The incum-
bent is replaced if it is improved. If
the restricted diagram is not exact
(that is, it does not contain all fea-
sible paths from u to the terminal),
a relaxed diagram is built starting
in u to provide a lower bound. If
the lower bound indicates that the
incumbent might be improved, then
an exact cutset is sought and added
to the queue Q. This procedure is re-
peated until the queue Q is empty.
A longer explanation can be found
in Section 2.2.

The method that is presented here is a combination
of Benders decomposition and decision diagram based
branch and bound (and is called Benders Decompo-
sition for Decision Diagrams, or BDDD abbreviated).
Both Benders Decomposition and Branch and Bound
are iterative procedures, and in this case the two can
be combined into one. BDDD is based on DD-based
branch and bound (see the short summary on the side).
The compilation of the restricted diagram however is
now extended with subsequent subproblem generation
and calls. This is required as the decision diagram only
enforces a subset of the constraints, namely those of
the master problem. A (number of) subproblem(s) is
solved and the resulting cuts are used to update the re-
stricted diagram until the restricted diagram and the
subproblem yield the same result. Each subproblem is
configured with a different fixed assignment of the dis-
crete variables based on the solution of the restricted
diagram. The generated cuts are stored in a set called
C and are used in every subsequent compilation of a

diagram (restricted and relaxed).
The pseudocode of this algorithm is presented in Algorithm 5. Algo-

rithm 5 is clearly a combination of Algorithm 3 (Branch and bound opti-
mization with DDs) and Algorithm 4 (Benders Decomposition). Its notation
is introduced in Chapter 2. One can also clearly see that the BD is inserted
in the branch and bound procedure where the restricted diagram was made
in Algorithm 3.

More elaborately, BDDD works as follows: In the initialization the set
of derived cuts C is empty. The objective of the decision diagram is set to
minimize the variable z. This is done because the objective also relies on
the continuous variables. Cuts on the objective variable, that are generated

3.1. Decision Diagrams and Benders Decomposition 19

Algorithm 5: Branch and bound with DDs and Benders Decomposi-
tion.

Input: A MIP minx,y{cTx+ fT y | Ax+By ≤ b, x ∈ X, y ≥ 0} and a
dp-formulation for x ∈ X with root state r̂

Output: The optimal solution zopt.
1 Initialize Q = {r}where r = r̂
2 Initialize C = ∅
3 Let zopt =∞
4 while Q 6= ∅ do
5 u = select_node(Q), Q = Q \ {u}
6 Create restricted DD B′ut with root u s.t. x ∈ X and C .
7 Initialize UB =∞
8 while UB > v∗(B′ut) do
9 Let x̄ be the optimal solution in B′ut.

10 Let (zD, B
′
ut,C) = SUBPROBLEM(B′ut, x̄,C).

11 UB = min{UB, zD}
12 end
13 if v∗(B′ut) < zopt then
14 zopt = v∗(B′ut)
15 if B′ut is not exact then
16 Create relaxed DD B̄ut with root u s.t. x ∈ X and C .
17 if v∗(B̄ut) < zopt then
18 Let S be the last exact layer according to B′ut and B̄ut

19 Let (S,B′ut,C) =MAKEEXACTCUTSET(S,B′ut,C)
20 foreach u′ ∈ S do add u′ to Q
21 end
22 return zopt

by the results of the subproblems, may constrain the objective variable z.
Because C is initially empty, the variable z is initially unconstrained. In this
way the original objective is in time represented by the objective cuts solely
in the integer variables. The result is a piecewise convex linear objective.

So the master problem is solved by means of a decision diagram op-
timizing min z subject to C and x ∈ X . The constraints x ∈ X can be
represented by a DD using a custom design (i.e. custom state description,
transition function and merge function). The master problem is first solved
with a restricted diagram. The solution to the restricted diagram is a fea-
sible solution to the master problem, and in the Benders Decomposition
this solution is a lower bound (to the restricted problem, not to the original
problem). The subproblem is solved with this solution as a fixed configura-
tion for the x variables. A feasible subproblem gives an objective value zD
which is an upperbound in the decomposition, but is also a lowerbound to
the original problem because it is both feasible to the master problem and
the subproblem.

The execution of a subproblem can be seen in Algorithm 6. As explained
in Section 2.4, the subproblem is either unbounded or bounded. If it is un-
bounded, the unbounded ray is used to formulate a new constraint on the
discrete x variables. If it is bounded, the optimal solution in the subprob-
lem is then used to build a new constraint on the discrete x variables and

20 Chapter 3. Decision Diagrams with Benders Decomposition

Algorithm 6: SUBPROBLEM

Input: A restricted diagram B′ and a fixed assignment to x = x̄.
Output: The objective value zD, and an updated diagram B′ and C

1 Let (ū, zD) = maxu{cT x̄+ (b−Ax̄)Tu | BTu ≤ f, u ≤ 0}.
2 if zD is unbounded then
3 Let ū be an unbounded ray in the subproblem
4 Add (b−Ax)T ū ≤ 0 to C

5 else
6 Add z ≥ cTx+ (b−Ax)T ū to C
7 Update DD B′ with the new cut.
8 return (zD, B

′,C) ;

the objective variable z (this is called an objective cut in the rest of this the-
sis). These constraints are added to the master problem in two ways: by
adding the constraint to the set C and by updating the restricted diagram
accordingly by separation (Algorithm 2). This procedure is repeated until
the subproblem results in the same solution as the master problem. If the
subproblem returns the same objective value as the master problem, then
the solution to the master problem satisfies all the constraints of the sub-
problem.

Cuts are added by Separation. The
full procedure is explained in Algo-
rithm 2. In short, the new cut can
be described by the transition func-
tions of a threshold diagram. These
transition functions are used to up-
date the state of every node in the
diagram top-down. If a node be-
comes infeasible it is removed from
the diagram. If two edges lead to
the same node in the diagram, but
to two different nodes according to
the transition function, then a node
is separated. A new node is created
having the same outgoing edges.
The states of the two nodes differ ac-
cording to the transition functions,
and on edge lead to the one and the
other to the other.

After this the basic idea of the branch and bound
procedure is continued. A relaxed DD is built (con-
strained by both x ∈ X and by the set of cuts
C) if necessary and the nodes in an exact cutset are
added to the list of nodes that are still to be eval-
uated (this is explained more elaborately in a sub-
section below). These nodes are handled as new
root nodes as described before. A restricted DD is
built and updated with all the required cuts, and
also solved with the relaxed DD. This procedure is
continued until there are no nodes left to evalu-
ate.

In the following two subsections, two points that
are mentioned before are elaborated. The first point is
how to use a threshold diagram to represent the con-
straint on only the x variables, and how to update the
current restricted diagram. (The other kind of con-

straint is discussed separately in Section 3.2). The second point is about
finding the exact cutset.

3.1.1 Cuts using the threshold diagram

The cuts returned by the subproblem can have two forms. The first form
(that occurs when the dual subproblem is unbounded) results in a con-
straint of the form aTx ≤ b. If the continuous variables do not contribute to
the objective, then all constraints are of the first form. All the cuts of the first
form can be described by the constraints Ax ≤ b with x the integer (binary)

3.1. Decision Diagrams and Benders Decomposition 21

variables of the master problem. A decision diagram that describes the fea-
sible space subjected to such a constraint can be built using the threshold
diagram described in Section 2.3. But instead of building this threshold
diagram explicitly, compilation by separation (Algorithm 2) can be used to
update the restricted diagram. The transition functions tC , required to com-
pile by separation, are given by the threshold diagram formulation. The
new cut is also added to the set of cuts C so that decision diagrams that are
built later in the iterative procedure do not violate the constraint.

There is an exception that may occur which is not dealt with in the de-
scribed compilation by separation (Algorithm 2) and in the BDDD algo-
rithm (Algorithm 5) because Algorithm 2 is written for an exact decision
diagram, and not for a restricted diagram. This exception occurs when the
new cut removes all paths to the terminal from the restricted diagram. This
would mean that the problem is not feasible, but this need not be the case.
When all paths to the terminal have been removed by the added cut, one
has to check if there is indeed no feasible path from the current root to the
terminal. An easy method to do this, is to build a new restricted diagram.
If this new diagram has no path from the root to the terminal, then the dia-
gram is indeed infeasible. If however the new diagram is feasible, then the
iterative Benders decomposition can be continued.

A special case of this exception is when the root node u of the restricted
diagram itself is infeasible to the new cut. In that case the iteration can be
stopped and the next node from the list Q can be considered. This excep-
tion may also occur at a different point in the algorithm. When a new root
node u is selected from the list Q, it is possible that new cuts have been
introduced in the mean time. The state of the node u needs to be updated
according to these cuts. Again, it is possible that there does not exist a fea-
sible path from node u to the terminal. In that case a new node from Q is
selected.

Apart from this, one other alteration should be made to Algorithm 2.
When a cut is added by separation, it may occur that a decision diagram
exceeds its maximum width. A solution to this problem is to simply ignore
the step in the algorithm that creates the new node. More precisely in terms
of the pseudocode in Algorithm 2: When a new node v′ is added to a layer
this may have as a result that the maximum width wmax of the restricted
diagram is exceeded. In that case the new node v′ can be left out of the
diagram.

3.1.2 Finding an exact cutset

A cutset of a diagram is a set of
nodes that cuts the diagram. This
means that any path from root to
terminal should go through at least
one of the nodes in the cutset. An
exact cutset is such a cutset with
only exact nodes. An exact cut-
set provides an exhaustive enumer-
ation of sub-problems.

In the presented branch and bound with DDs (Algo-
rithm 3) it can easily be decided if a node is exact or not.
This is required for finding the exact cutset. A merged
node and all its descendants are always relaxed. There-
fore, a node is exact iff it is not merged and all paths
from the root to that node only contain exact nodes. An
exact cutset is a set of exact nodes that cuts the diagram,
that is, all r-t paths go through one of the nodes in the
cutset.

One change to this idea is made with the introduc-
tion of the decomposition. Some of the constraints of the problem are not in

22 Chapter 3. Decision Diagrams with Benders Decomposition

the master problem and only in the subproblem. The master problem itself
is relaxed. Because the master problem itself is relaxed, the ’exact’ nodes in
the relaxed diagram and in the restricted diagram may also be relaxed. In
the relaxed diagram it is possible that a node u is labelled as ’exact’ even
though the length of the shortest path to u does not equal the cost of that
assignment in the original problem. In the extreme case a relaxed diagram
does not contain any relaxed node, although its shortest path does not cor-
respond to a feasible solution. This is possible because not all constraints of
the original problem are considered.

The question that is at stake is whether BDDD always returns the op-
timal solution. Because of the properties of Benders decomposition, the
(updated) restricted diagram provides a solution that is feasible to both the
master and the subproblem. The compiled relaxed diagram should now be
used to check if further investigation of this part of the diagram is needed.
If further investigation is needed, then an exact cutset is required to know
from which points this further investigation should start. Therefore it is
important to be sure that the exact cutset indeed is an exact cutset.

In the BDDD algorithm (Algorithm 5) you can see a small change in
finding the exact cutset compared to the normal DD-based branch and bound
(Algoritm 3). The nodes in the cutset should now be exact for both the re-
stricted and the relaxed diagram. For the relaxed diagram the same rule
can be used as presented before to determine exactness. For a node in the
restricted diagram the following rule can be used: every partial path lead-
ing to the node should be part of an exact path in the restricted diagram. A
path p in the restricted diagram is exact iff the length v(p) is the same as the
objective value of the subproblem with x fixed to xp (Consider the objective
value of an unbounded subproblem to be infinite).

In short the new definition for an exact node (according to both the re-
laxed and the restricted diagram):

Exact node A node u is exact iff it is not a merged node, and every partial
r-u path is exact in the relaxed diagram and is part of an r-t exact path
p in the restricted diagram.

To determine the exactness of a node in the restricted diagram it needs
to be part of an exact path. If a node in the relaxed diagram is not part of
the restricted diagram, its exactness cannot be determined. Therefore such
a node is considered to be relaxed.

With the top-down compilation presented in Algorithm 1, every node
has only one partial path leading to it. If this indeed is the case, as it is in
the method presented here, then the rule to determine exactness in the re-
stricted diagram is simplified: a node u is exact in the restricted diagram iff
there is an exact path p through u (in the restricted diagram).

By using the method to determine exactness as presented above, an ex-
act cutset can now be found using the LASTEXACTLAYER heuristic. Here it
is assumed that top-down compilation (as in Algorihtm 1) is used for both
the restricted and the relaxed decision diagram. It is also assumed that the
compilation is performed with the same maximum width. A result of this
assumption is that the last layer in the restricted diagram B′ut from which
no node is removed, is the same layer as the last layer in the relaxed dia-
gram B̄ut in which no nodes are merged. This layer is called the last exact

3.1. Decision Diagrams and Benders Decomposition 23

layer. Normally the LASTEXACTLAYER heuristic selects the last layer in the
relaxed diagram. Now one should also look at the restricted diagram. The
nodes in the cutset should also be exact in the restricted diagram.

For the cutset to be exact, it should meet three requirements. The first
requirement is that all nodes in the cutset should be present in both the re-
stricted and the relaxed diagram. This is the case because both diagrams
are compiled by the same algorithm and no deletion or merging is done on
the layer. The second requirement is that all the nodes are exact according
to the relaxed diagram. As can be easily seen this is the case as no node
has been merged in this layer or in any layer before, so all the nodes in
this layer and in all the previous layers in the relaxed diagram. The third
requirement is that all the nodes in the cutset are exact according to the
restricted diagram. To ensure that this is the case extra runs of the subprob-
lem are required to make all the nodes in the cutset exact. This is achieved
by running Algorithm 7 on the cutset.

Algorithm 7 ensures that every node u in a cutset is exact in the re-
stricted diagram. This is achieved by running a subproblem configured by
a path p through u for every path from the root r to u. The execution of
this subproblem is repeated until the subproblem and the decision diagram
give the same objective value.

Algorithm 7: MAKEEXACTCUTSET

Input: A cutset S in a diagram B′ and the set C .
Output: The exact cutset S and an updated B′ and C .

1 for u ∈ S do
2 for every r-u path q do
3 Let p be any r-u-t path starting with path q.
4 repeat
5 Let (zD, B

′,C) = SUBPROBLEM(B′, xp,C).
6 until v(p) = zD
7 end
8 end
9 return (S,B′,C)

One special note on the execution of MAKEEXACTCUTSET should be
made. When another compilation technique is used than the top-down
compilation, a problem may arise. When a new cut is added by SUBPROB-
LEM, the compilation by separation may cause the width of the last exact
layer or any preceding layer to exceed the maximum width. There are two
options to solve this problem. The first is to delete the newly created node,
reset the last exact layer to the layer preceding the deleted node and restart
MAKEEXACTCUTSET on this preceding layer. The other option is to keep
the newly created node and let the layer exceed the maximum width. This
counts only for the layers up and until the last exact layer. In the case pre-
sented in this thesis, reduction is not applied and this problem will not
arise.

24 Chapter 3. Decision Diagrams with Benders Decomposition

Using a relaxed cutset

The execution of MAKEEXACTCUTSET can be time consuming, especially
when the subproblems are large. This section presents a method that is
simpler than the one presented above, and that might provide faster run-
times in some cases.

The method described above is designed and analysed to work with
any decision diagram, also with reduced diagram. However, in the case
presented here DDs are compiled top-down by Algorithm 1 without any re-
duction. The DDs resulting from this compilation show very specific prop-
erties such as that every node (except the terminal and merged nodes) has
only one incoming edge and only one partial path leading to it. Because of
these properties the extensive method described above can be simplified.
The intuition of this method is that the execution of the subproblems by
MAKEEXACTCUTSET is postponed. In fact, the execution of MAKEEXACT-
CUTSET is skipped.

The restricted diagram is still needed to determine the exactness of a
node to ensure that a node is not considered as exact based on simply the
relaxed diagram. As a conclusion, if the LASTEXACTLAYER is used, even
when the execution of MAKEEXACTCUTSET is skipped, the last exact layer
is determined based on the restricted diagram. The last exact layer of the
restricted diagram is used as the cutset that is added to the list Q.

3.2 Cuts on the optimal value

The constraints that are discussed here can be described by a linear con-
straint of the form z ≥ aTx + b, where z is the variable that is optimized.
The presence of the variable z in the constraint makes this constraint type
more complicated to handle. Because z is part of this constraint, it cannot
be added as a constraint of the first form. The effect of multiple such con-
straints is that the objective becomes a piecewise linear (and convex) func-
tion. The question that needs to be answered is how a decision diagram can
deal with a piecewise linear objective.

The idea presented in this section, namely cost tuples, can be used to ac-
commodate for the constraints of the second form. This constraint form is
discussed first, and after that the cost tuples are introduced and explained.
Finally, a method is described by which the constraints can be used to
bound the feasible space.

To allow for this kind of constraints (and for a piecewise linear objective)
the objective min cTx + fT y can be replaced by min z. The constraints (or
objective cuts) do not reduce the DD, but alter the edge weights in the DD.
The edge weights can be described by a tuple with one value for each of the
objective cuts.

When fT y is not a part of the objective, objective cuts never occur. If the
continuous variables do not contribute to the objective the subproblem is
either infeasible (i.e. the dual is unbounded), or returns the same solution
as the master problem. In that case the objective is not replaced by min z
but remains min cTx.

In the terminal node one can now find the shortest path. The objective
cuts provide a lower bound for the length of each path. The lower bound
of the path is the maximum value assigned by all the objective cuts, for this

3.2. Cuts on the optimal value 25

maximum value satisfies all objective cuts. The shortest path is the path
which has minimal lower bound.

Cost tuples

The following explains how the decision diagram is compiled and solved
with cost tuples. This explanation is for binary decision diagrams, but can
easily be extended for multivalued DDs. However, this method works only
for diagrams that are not reduced (and are compiled top down by Algo-
rithm 1).

Firstly, the objective of the master problem is to minimize the objective
variable z. The variable z is constrained by all the objective cuts in the set
C . Denote this subset of C as Z . In the initialization Z is initialized as an
empty set. When a feasible dual solution to a subproblem has been found
an objective cut (constraint) is added to Z . In the master problem a tuple
zn with size |Z | is part of the state of each node. Also each edge has a cost
tuple ze with size |Z |. The elements of the tuples are determined by the
cuts. For example, if the second cut in Z is z ≥ −4 + 2x1 + 3x4, then the
second element of the cost tuple for the edge with label 1 deciding on x4 is
3. One can also describe this as follows: The set of objective cuts in Z can
be represented as z ≥ Gx̂. The vector x̂ here is equal to [1;xT]T (the first
element is needed for the constant terms in the cuts), and the inequality is
element-wise. Each constraint is a row in G. The columns of G determine
the cost tuples of the edges. The first column of G (for the constant terms in
the cuts) is the value for the initial tuple zroot in the root state. The consec-
utive columns are for the edges deciding the variables x1, x2, ... with label
1. At each step the cost state of a node zn is the cost state of the previous
node zm plus the cost label of the connecting edge ze (e = (m,n)). The cost
of the node is equal to the largest element in zn because z has satisfy all the
constraints in Z .

If no reduction is applied, then only when nodes are merged does a
node have multiple incoming edges. If there are multiple incoming edges

FIGURE 3.1: Example decision diagram with cost tuples
and its shortest path.

26 Chapter 3. Decision Diagrams with Benders Decomposition

to a merged node, zn is the piecewise minimum of zm + ze for each edge
e = (m,n). The result of this is that the lower bound of the cost of the paths
through the merged node is the minimum of the lower bounds.

The terminal is also a merged node, but the value of this node should
be exact. The procedure to find the shortest feasible path is as follows: For
each node n that is merged into the terminal, find the maximum value in
zn. That value is the lowerbound of the path through node n. The smallest
lower bound is the objective value. If the diagram is restricted (and there-
fore no merge operation is done), then the path through the node belonging
to that lower bound is the optimal feasible assignment in that diagram.

Figure 3.1 is an example of how a decision diagram with cost tuples
might look like. This graph represent the set of cuts in Equation 3.1.

z ≥ 0 + 4x1 + 3x2 + 2x3

z ≥ 3 + 2x1 + 3x2 + 4x3

z ≥ 5 + 2x1 + 0x2 + 1x3

(3.1)

The terminal in Figure 3.1 has four incoming edges. They represent four
nodes with cost tuple (3, 6, 5), (2, 7, 6), (6, 9, 8) and (4, 5, 7). The leftmost in-
coming edge (path x = (0, 1, 0)) leads to the state (3, 6, 5) with value 6. This
is the shortest path satisfying all objective cuts.

Bounding the feasible space

The problem with the objective cuts is that they provide lower bounds on
the objective, but do not constrain the feasible space. The objective variable
z is bounded from below, but no assignment to the x-variables is made
infeasible.

When a feasible solution to the problem has been found, the incumbent
zopt can be used to bound the feasible space. If the incumbent is not the op-
timal solution then for finding the optimal solution the constraint z < zopt
should hold (z is, as before the objective variable, and zopt the current in-
cumbent). This constraint bounds the feasible space.

Because the objective variable z is bounded from below by all the objec-
tive cuts, the following equation holds: Gx̂ < zopt (the inequality is element
wise). This bound can be added to the diagram as a constraint of the first
form (aTx ≤ b).

27

Chapter 4

Evaluation

This section evaluates the performance of the proposed method. This eval-
uation is done according to the subquestions asked in the introduction.
These four questions are 1) How do the threshold diagrams perform? 2)
How does the idea of cost tuples perform for an integer problem with a
convex piecewise linear objective? 3) What number and kind of constraints
are generated in the decomposition? And 4) what elements contribute to
the runtime of the proposed method?

The evaluation of these questions in this chapter is divided in three
parts. Because the decomposition relies on threshold diagrams, the thresh-
old diagram itself is tested first with typical integer optimization problems
without any decomposition. This answers the first question. Secondly the
cost tuple method is tested with typical integer optimization problems that
are altered in such a way that they have a piecewise linear objective. This
answers the second question. Thirdly the decomposition is tested with sev-
eral mixed integer optimization problems to answer the third and fourth
question.

In all cases where a comparison is made with MIP, the Gurobi solver [11]
has been used. For a more fair comparison to simple branch and bound,
the parameters for gurobi are set such that presolve and cuts are turned
off, heuristics are disabled and gurobi runs on at most one thread. The
tests are run on a 2.27 GHz Intel Core i5 M430 with 2 cores and 4 GB RAM
(of which at most 2GB is used for the tests). In all the tests where the LP
subprocedure is called, the LP subproblem is solved by the same Gurobi
solver with also the same parameter settings (no presolving, at most one
thread and heuristics disabled). For most of the tests presented below the
GLPK solver [10] has also been used. Because the results with this solver
mostly did not differ considerably, these results have been left out.

For the DD and BDDD solvers the following parameters have been used
(except when else is mentioned). Because of the results shown in [5]: the
maximum width of every diagram is set to the number of undecided vari-
ables; the merge heuristic is MAXLP; no variable reordering is done; no
diagram reduction is performed; for BDD the FRONTIERCUTSET heuristic
is used; and for BDDD the LASTEXACTLAYER heuristic is used.

4.1 Threshold diagram

To answer the first question, namely how the threshold diagram performs,
the threshold diagram as introduced in section 2.3 is evaluated in this sec-
tion. Two tests are performed. The first test is on the maximum indepen-
dent set problem (MISP) that was introduced before. With this test the

28 Chapter 4. Evaluation

threshold diagram formulation is tested against a custom dp-formulation.
The second test is on the multidimensional knapsack problem (MDKP).
This test evaluates mainly the influence of the number of constraints.

4.1.1 Threshold versus Custom

In section 2.1.2 a dp-formulation for MISP was introduced. This formula-
tion is designed specifically for MISP and one may expect that it outper-
forms the threshold formulation introduced in section 2.3. The main rea-
son to expect this, is that the custom MISP dp-formulation is much smaller
in memory, and computationally simpler. The feasibility check is one bit
check, and the state update is one substraction opeartion. The threshold di-
agram formulation however is much larger in memory, and has to do mul-
tiple checks (each constraint whose slack is changed, might be violated).

The MISP problem is known to be a problem that can be well handled
by DDs. Therefore this problem is chosen as a test candidate. The test
presented below is set up to see how the proposed threshold formulation
performs for the MISP problem.

Take a graph G(V,E) with n = |V | the number of vertices and wj the
weight of vertex j. The MISP problem for this can be formulated as an
integer program with decision variable xj meaning vertex j is selected:

maximize
∑
j∈V

wjxj (4.1)

subject to xi + xj ≤ 1, ∀(i, j) ∈ E (4.2)
xj ∈ {0, 1}, ∀j ∈ V (4.3)

But one can also formulate this problem in another more compact way.
This formulation makes use of the cliques that are in the graph. Instead of
writing one constraint for each edge, one can write one constraint for each
clique in the graph. Let C be a set of cliques that covers all edges inE. Then
equation 4.2 can be replaced by equation 4.4.∑

i∈C
xi ≤ 1, ∀C ∈ C (4.4)

Test instances of this problem were created by generating random graphs
with a density p = 0.8. This density is chosen because previous results
have shown that DDs have good performance on MISP with high density.
For each pair of vertices in V an edge is constructed with probability p.
For each graph size ten instances are created and the runtime shown in the
graph is the average runtime.

In Figure 4.1 the relative performance of MIP and the decision diagram
with the custom dp-formulation and the threshold dp-formulation can be
seen. Both MIP and the DD threshold formulation have been tested twice:
once with the edge constraint formulation and once with the clique formu-
lation. It can be seen from the graph that all five methods show exponential
growth in the runtime.

The results show that the performance of the threshold diagram DD
is slow compared to the custom state DD, but is still faster than MIP for
most instances. The results also show that another constraint formulation

4.1. Threshold diagram 29

0.001

0.01

0.1

1

10

100

10 30 50 70 90 110 130 150

R
u

n
ti

m
e

(s
)

graph size

MIP MIP clique BDD BDD clique BDD custom

FIGURE 4.1: Runtime performance for MISP of DDs with
custom dp-formulation and threshold formulation com-
pared to MIP with edge constraints and clique constraints.

results in a lower runtime for both MIP and BDD solved by a threshold
formulation.

One special note should be made here. For the larger MISP instances the
BDD using the threshold formulation spent a large and increasing amount
of time in garbage collection. For some of the larger instances this was even
up to half of the total runtime. This is of course the result of an inefficient
implementation. At the moment each compiled diagram is built in newly
allocated memory and the old diagram is left for the garbage collector to
clean. A more efficient implementation would be to build the new diagram
in the same allocated memory as the old diagram. Because of lack of time,
this implementation is not yet improved.

4.1.2 Number of constraints

The test presented in this section tests the influence of the number of con-
straints on the runtime of the threshold diagram. The problem selected for
this evaluation is the multidimensional knapsack problem (MDKP). The
number of dimensions in this problem is the number of constraints and
therefore this problem is well suited to test the influence of the number of
constraints.

For a problem withD dimensions, the MDKP can be formally described
as follows:

maximize
∑
i∈I

vixi (4.5)

subject to
∑
i∈I

wdixi ≤Wd, d = 1...D (4.6)

xi ∈ {0, 1}, ∀i ∈ I (4.7)

30 Chapter 4. Evaluation

In Equations 4.5-4.7 Wd is the weight limit in dimension d, wdi is the
weight of item i in dimension d, vi is the value of item i, I is the set of all
items and n = |I| the number of items.

The test setup is as follows. Every weight wid is chosen randomly from
the interval [0, 6), and the capacityWd is chosen randomly from the interval
[n/3, 4n/3). If as a result the weight of all items does not exceed the capacity
(
∑

iwid ≤ Wd), then a new capacity is randomly chosen from the same
interval until the capacity is exceeded.

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

ru
n

ti
m

e
(s

)

constraints

mip20 mip30 mip40 bdd20 bdd30 bdd40

FIGURE 4.2: Runtime for MIP and BDD for MDKP for an
increasing amount of dimensions/constraints.

In Figure 4.2 the results of a test are shown with 20, 30 and 40 items with
an increasing number of dimensions/constraints. The results show that
solving the knapsack problem with only few dimensions is inefficient with
a BDD. The feasible space is large and the relaxation is not good. An in-
creasing number of dimensions (and constraints) reduce the feasible space
and number of branch operations required to solve the problem. This is not
shown in the graph, but for the MDKP with 20 items and a large number of
dimensions the number of required branch operations reduces even to only
one.

When the number of constraints is increased even more, the runtime of
BDD increases again, although the results show that the number of branch
operations still decreases or stay constant. This increase in runtime is caused
by the increased number of constraints. Each constraint is represented by
one variable in the BDD state description. With as many as 1000 or more
constraints it is easy to imagine that the transition function takes more and
more time to be executed.

4.2 Cost tuples

In section 3.2 the idea of assigning cost tuples to the edges is introduced.
This is done to be able to deal with constraints of the form z ≥ ax+ b with
z the variable in the objective (objective cuts). In this section this method is
evaluated separated from the decomposition. By this evaluation the second
subquestion is answered. This question is ’How does the idea of cost tuples
perform for an integer problem with a convex piecewise linear objective?’.

4.3. Decomposition 31

First a test is introduced to test the contribution of the objective cuts to the
runtime. Then the test results are shown.

For testing the contribution of the objective cuts to the runtime, the
MISP introduced before is extended in such a way that the new problem
has multiple constraints on the objective value z. The objective in equa-
tion 4.1 is replaced by max z. New constraints are added as formulated in
equation 4.8 withm the number of objective cuts. The test setup is the same
as in Section 4.1.1. The BDD solver uses the custom state description in-
troduced in Section 2.1.2. The diagrams are not reduced in this test. The
density is set to p = 0.8.

z ≤ aix+ bi ∀i ∈ {1, ...,m} (4.8)

The test described above is executed with graphs of size n = 75, 100,
and 125. The test results for MIP and BDD can be seen in Figure 4.3.

0.1

1

10

100

1 10 100 1000

ru
n

ti
m

e
(s

)

number of objective cuts

MIP75 MIP100 MIP125 BDD75 BDD100 BDD125

FIGURE 4.3: Runtime of MIP and BDD (with custom state)
for MISP with increasing number of objective cuts (Equa-

tion 4.8) for n = 75, 100, and 125.

What can be seen in Figure 4.3 is that an increase in the number of ob-
jective cuts also means an increase in runtime for both MIP and BDD. The
increase in runtime for bdd was to be expected. When a new node is made,
the state and cost tuple of the previous node is copied and altered. The size
of the cost tuple is the number of objective cuts. With an increasing number
of objective cuts and everything else constant, it is to be expected that the
number of objective cuts at some point becomes the dominant factor. What
is interesting is that the increase in runtime of MIP is almost as much as the
one of bdd.

4.3 Decomposition

The Benders decomposition combined with the branch and bound intro-
duced in Section 3.1 is tested in this section. With the evaluation in this sec-
tion two questions are answered: 1) What number and kind of constraints
are generated in the decomposition? And 2) what elements contribute to

32 Chapter 4. Evaluation

the runtime of the proposed method? Two problems are chosen for this
evaluation. The first problem is a scheduling problem with the indepen-
dent set problem as its basis. The second problem is a problem related to
the multi dimension knapsack problem. In the final section of this chapter
some other problems are mentioned that have also been tested.

To answer the two mentioned questions, several subquestions can be
asked:

1. What is the effect of constraint cuts on the runtime?
2. What number of generated cuts are generated?
3. At what moment do these cuts occur?
4. Which elements contribute for what amount to the runtime of the al-

gorithm?
5. What number of constraints are of the first and second form?
6. What is the effect of the cost tuples in combination with the decom-

position?

(The fifth and sixth items are only tested with the second problem.)

4.3.1 Scheduling with independent sets

The problem in this section is loosely connected to the resource constrained
project scheduling problem (RCPSP). RCPSP is a scheduling problem under
the constraints of a limited number of resources, precedence constraints and
operation durations. More formally, a RCPSP is a optimization problem
defined by a tuple (A,R, P, d, u, c). A is the set of activities (a1, ..., an), R is
the set of resources (r1, ..., rm). P is the set of precedence constraints of the
form ai ≺ aj . This constraint means that aj may start only if ai is already
completed. d : A→ R+ is a function that returns the duration of an activity.
u : (A × R) → N returns the resource usage for each activity of a specific
resource. The function c : R → N+ specifies the capacity of each resource.
In the specific case that is dealt with in this section, the capacity of each
resource is always 1. In the same way the resource usage is also only either
one or zero, i.e. u : (A×R)→ {0, 1}. Now also suppose that the resource is
not from a renewable source, so during the operation of the schedule only
one task can make use of an operation.

In this section the problem is not to schedule all tasks while minimizing
some objective. Rather the objective is to schedule in such a way that the
value of the scheduled tasks is maximized. Let therefore v : A → R+ be a
function that returns the value of an activity.

In [14] the idea is proposed to build a graph for all the task in a schedul-
ing problem with edges between task that cannot both be executed. For
every two tasks ai and aj (ai, aj) ∈ NO iff task i and j cannot both be
executed (for example when they need the same resource). This idea is ex-
ploited in this test. The maximum independent set problem is the basis for
this problem. Each node now is a task that can be executed. Release dates
r̄, due dates d̄, processing times p̄ and precedence constraints P are added
to measure the effect of the decomposition. For reference this problem is
called the independent set scheduling (ISS).

Consider the mixed integer model for ISS below:

4.3. Decomposition 33

maximize:
n∑

i=1

xiv(ai) (4.9)

subject to: xi + xj ≤ 1 ∀(ai, aj) ∈ NO (4.10)
si ≥ r̄i i = 1, ..., n (4.11)
si + p̄i ≤ d̄i i = 1, ..., n (4.12)
si + p̄i ≤ sj + (1− xi)M ∀(ai ≺ aj) ∈ P (4.13)
xi ∈ {0, 1} i = 1, ..., n (4.14)
si ≥ 0 i = 1, ..., n (4.15)

The coupling of the integer and continuous variables occurs in the prece-
dence constraints (equation 4.13). Notice that without any precedence con-
straints the variable si can be assigned any value between r̄ and d̄. In the
test below the effect of the coupling is measured by increasing the number
of precedence constraints.

For the decision diagram state the custom transition functions for MISP
given in Section 2.1.2 are used. For every cut a variable is added to the state
according to the threshold formulation (introduced in Section 2.3). One
should also note that the objective only relies on the integer variables. The
result is that all the generated cuts are of the first form, that is, they can be
modeled by a threshold diagram. No cost tuples are used in this problem.

To test the effect of the decomposition on the runtime, a test is set up
with different number of precedence constraints. The number of prece-
dence constraints define the amount of coupling between the integer and
continuous variables. This test setup is as follows: NO is built in the same
way as the edges were set up in the independent set test. The ’edge’-density
in this test is set to 85%. This density is chosen because previous results
have shown that DDs have good performance on MISP with high density.
The number of tasks n is set to 120. (The same test has also been performed
with n = 100 and n = 150. The tests showed similar results and have there-
fore been left out of this evaluation.) A time horizon is set asH = 2 log10(n).

0

20

40

60

80

100

120

140

160

0.1

1

10

0 2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12

n
u

m
b

er
 o

f
b

ra
n

ch
es

/c
u

ts
 in

 b
d

d
d

ru
n

ti
m

e
(s

)

number of precedence constraints

MIP BDDD branches cuts

FIGURE 4.4: Performance of MIP and BDDD for ISS. n =
120

34 Chapter 4. Evaluation

Release dates are uniformly set in the interval [0, 0.75H), due dates uni-
formly in the interval [r̄i, H) and processing times in uniformly in the in-
terval [0.75(d̄i− r̄i), (d̄i− r̄i)). Precedence constraints are created randomly
but only in such a way that no circular precedence constraints occur.

The results of this test can be seen in Figure 4.4 (The label bddd refers
to the benders decomposition with decision diagrams method). Each dot
in this figure is the average of ten runs. The number of cuts in the benders
decomposition and number of branches in the branch and bound is also
plotted. One can see that not every precedence constraint results in a cut.
The number of cuts remain small. Furthermore, one of the first things that
can be noticed is the large reduction in runtime of MIP with an increased
number of precedence constraints. The added precedence constraints at
first do not influence the runtime of BDDD that much. When the number
of cuts increase one can see that the runtime of MIP decreases while at the
same time the runtime of BDDD increases. From the decreasing number
of branches one can see that the introduction of the cuts does make the
size of the decision diagram smaller. It can be concluded that the increase
in runtime of BDDD is caused by the cuts. With even larger number of
precedence constraints the number of branches grows even close to one.
This also means that cuts are already introduced in or near to the root node
of the branch and bound.

As said before, all the cuts are of the first form. A closer look at the
cut shows that (most of) the cuts prohibit a partial assignment. What is in-
teresting to see is that a large portion of the constraints involves only one
decision variable. This means effectively that this variable is fixed. Most
other constraints are also on only a small number of variables. Some of
these constraints are also fixing the variables. As an example take a con-
straint of the form a1x1 + a2x2 ≤ b with both a1, a2 > b. Other constraints
have the form a1x1 + a2x2 ≤ b with a1, a2 ≤ b and a1 + a2 > b, which is the
same constraint as x1 + x2 ≤ 1 (another independent set constraint). Only
very rarely a constraint is generated that is more complex and cannot be
written as an independent set constraint.

In Figure 4.5 a break down of the runtime of BDDD is shown. In this fig-
ure, lp_sub is the time spent solving the LP subproblem; constraint_time

0

20

40

60

80

100

120

140

160

0

0.5

1

1.5

2

2.5

3

3.5

0 2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12 n
u

m
b

er
 o

f
b

ra
n

ch
e

s/
cu

ts
 in

 b
d

d
d

ru
n

ti
m

e
(s

)

number of precedence constraints

lp_sub constraint_time other branches cuts

FIGURE 4.5: Break down of the runtime of BDDD for ISS,
with n = 120 and an increasing number of precedence con-

straints.

4.3. Decomposition 35

is the time spent applying the cut (changing the restricted diagram by means
of the separation algorithm presented in Algorithm 2 and adapted accord-
ing to Section 3.1.1); other is the rest of the running time. This rest consists
mainly of the building and solving of the (first) restricted and relaxed dia-
gram per iteration.

What can be seen in Figure 4.5 is that at first other is the dominant por-
tion of the runtime of BDDD. When the number of cuts increase lp_sub
and constraint_time increase rapidly. Especially the runtime of the
LP subprocedure should be noted. With larger number of precedence con-
straints the runtime of the LP subprocedure becomes more than half of the
total runtime of BDDD.

4.3.2 Market Share Split (adapted)

In the market share problem (first introduced in [18]) retailers are allocated
to divisions in such a way that one division controls a fraction fi of the
market share for product i and the other division controls 1 − fi. n is the
number of retailers, m is the number of products, with m ≤ n. The demand
of retailer j for product i is described by aij . Let di be the amount of product
i that represent a market share fi of the total amount of that product. The
feasibility problem checks if such an allocation exists (i.e., such thatAx = d,
with x ∈ {0, 1}n). The optimization problem is what is of interests here.
The objective is to minimize the slack required to make a feasible allocation
possible. A simplified version is shown below in equations 4.16 - 4.18. The
problem is simplified in such a way that the slack is assumed always to be
positive.

minimize
m∑
i=1

yi (4.16)

subject to
n∑

j=1

aijxj + yi = di ∀i ∈ {1, ...,m} (4.17)

x ∈ {0, 1}n (4.18)

This problem has no integer constraints, only continuous constraints. To
test the performance of the decomposition random instances of the market
share problem are generated with n = m according to the method described
in [1]. The coefficients aij are determined uniformly from the interval [0, 99].
And di is computes as follows: di = b12

∑n
j=1 aijc. The results can be seen

in Figure 4.6. In this graph the runtime for MIP and DD with Benders De-
composition is shown. In this figure, count is the number of branches per-
formed in the branch and bound; and cuts is the number of cuts returned
by the subproblem. The count and cuts are shown on the secondary axis.

From Figure 4.6 already some conclusions can be drawn. For both MIP
and BDDD an exponential increase in the runtime can be seen. The number
of cuts remains only small (below 100 cuts). The number of branches how-
ever rises quickly. From the results (not in the graph) one can also see that
only a small fraction (even for the larger instances below 0.03s) of the time
is spent on solving the subproblem and applying the cuts. The conclusion
is that most of the runtime is used for branching in the DD-tree.

36 Chapter 4. Evaluation

1

10

100

1000

10000

100000

0.001

0.01

0.1

1

10

100

2 4 6 8 10 12 14 16 18 20 22

n
u

m
b

er
 o

f
cu

ts
 /

 b
ra

n
ch

es
 in

 b
d

d
d

ru
n

ti
m

e
(s

)

problem size n

mip bddd branches cuts

FIGURE 4.6: Performance of MIP and BDDD for the market
share split problem with m = n

The test results in Figure 4.6 are found by solving the DD without fil-
tering the DD based on the current incumbent. A same test has been per-
formed with filtering based on the incumbent. The results were either the
same or worse. The extra effort to check at every need if the incumbent has
been exceeded does not pay back in a largely reduced DD. With filtering the
DD had roughly the same size. For that reason, incumbent based filtering
is also left out of the test presented below.

This test has been performed with running MAKEEXACTCUTSET. Un-
like the ISS problem, with this problem the subproblems are easy to solve.
The intuition is that the cost of solving extra subproblems is worth the bene-
fit that is gained by the cuts from the subproblems. A comparison of solving
AMSS with and without MAKEEXACTCUTSET shows that there is no clear
benefit for either method.

In a previous test it was shown that with an increasing amount of di-
mensions/constraints in the multi dimensional knapsack problem the BDD
performed relatively better. For that reason a new test is performed that
tests the influence of the number of constraints for the market share split
problem. To test this the constraint n ≤ m should be omitted. (This means
that the problem is no longer a market share split problem.) For ease of no-
tation this problem is called the adapted market share split problem (AMSS).
In Figure 4.7 the results are shown with n = 16 the number of binary vari-
ables, and an increasing number m of continuous variables (or constraints).

From Figure 4.7 one can see that for a fixed number of binary variables
the number of branch operations hardly changes. The reason for this is that
the larger number of constraints do not result in more cuts on the feasible
space (constraints of the first form). Almost all generated cuts are objective
cuts (constraints of the second form).

Figure 4.7 also shows that when the number of continuous variables
exceeds 28 the number of cuts does no longer increase. Both for MIP and
BDDD the runtime also stabilizes. The results also show (not in the graph)
that for larger values ofm the sum of the time spent solving the subproblem

4.3. Decomposition 37

1

10

100

1000

10000

0.1

1

10

100

2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10

n
u

m
b

er
 o

f
b

ra
n

ch
es

/c
u

ts

ru
n

ti
m

e
(s

)

m (number of continous variables)

mip bddd branches cuts

FIGURE 4.7: Performance of MIP and BDDD for AMSS with
m on the horizontal axis and n = 16.

increases steadily (from 16% at m = 24 to 57% at m = 210).
Another interesting test is to measure the runtime required to find a first

feasible solution. These results with m = 5n can be seen in Figure 4.8. The
tests with m = n and m = 50n showed similar results.

What can be seen from this figure is that BDDD finds a first feasible
solution much faster than MIP does. The results also show that the number
of cuts in the root node do not increase much in comparison to the problem
size. The question that remains is the quality of these first solutions. For the
instances with m = 5n the relative quality of BDDD’s first solution ranges
from 5% better than MIP’s first (for the smaller instances) to 20% worse than
MIP’s first (for the larger instances).

0.001

0.01

0.1

1

10

100

1000

5 25 45 65 85

ru
n

ti
m

e
(s

)

problem size n

mip n mip 5n mip 50n bddd n bddd 5n bddd 50n

FIGURE 4.8: Runtime required for MIP and BDDD to find a
first feasible solution for AMSS with m equal to n, 5n and

50n.

38 Chapter 4. Evaluation

4.3.3 Other problems

Apart from the two problems mentioned above (ISS and AMSS), other prob-
lems have been evaluated also. The sections below discuss what can be
learned from the evaluation of these problems.

Map labelling problem

The map labeling problem (MLP) was mentioned as an application for the
work presented in [9]. Because of its use of Benders decomposition, this
problem was also evaluated with BDDD. The method presented in [9] how-
ever, is mainly aimed at reducing the negative effect of big-M constraints in
large MIP problems by means of Benders decomposition. MLP was evalu-
ated by using the model presented in [13]. This model uses large set of dis-
crete variables. Because of the large number of variables (in comparison) to
the number of constraints, the feasible space (of discrete configurations) is
large. This makes the problem difficult to solve for DDs. So far, no positive
results can be reported.

Traveling salesman problem with time windows

The traveling salesman problem with time windows (TSPTW) was also
evaluated, but so far no positive results can be reported. This is in con-
trast with the positive results presented in [4] for TSPTW solved with a
DD-based approach. The model presented in [4] is a multi-valued deci-
sion diagram. The current implementation of BDDD however, is only able
to deal with binary variables and because of time limits this is not yet ex-
tended to multi-valued discrete variables. To solve TSPTW a model was
used with binary variables (one for each pair of cities). The resulting DD
was too large to provide good results.

Resource constrained project scheduling problem

The ISS problem introduced before, is a simplified version of RCPSP. In [14]
several methods are proposed for solving scheduling problems. The MIP
model proposed in [14] is quite extensive. It allows for solving a large range
of scheduling problems, among which RCPSPs. This MIP model is based
on the independent set problem.

Two problems were encountered during the testing with this problem.
The first problem is the large number of discrete variables. The second
problem is the low density of the non-overlapping graph. Because the
graph is repeated for every time step (or priority slot), the density of the
non-overlapping graph becomes small. As is known DD-based optimiza-
tion outperforms MIP with MISP only for graphs with high density.

39

Chapter 5

Discussion

In this chapter the results of the previous chapter are discussed. In the first
section of this chapter some conclusions are drawn from the results. In the
second section of this chapter recommendations for future work are given.

5.1 Conclusions

As mentioned in the introduction, the main contribution of this thesis is
twofold. The first contribution is the idea to combine DD-based optimiza-
tion with Benders Decomposition (BDDD) to solve hard mixed integer prob-
lems. The second contribution (used in the first) is to use cost tuples in DDs
to deal with convex piecewise linear objectives.

The evaluation of these two contributions is discussed here, and is struc-
tured as follows: The result in Chapter 4 is divided in three parts: the
threshold diagram, the cost tuples and the decomposition. The results of
these three sections help to answer the subquestions asked in the intro-
duction. Each of those four questions is answered below, and finally the
research question is answered. Can BDDD be used as a method for solv-
ing mixed integer problems, and if so, for what kinds of problems can it be
used?

In Section 4.1 runtime results are shown for the threshold diagram state
formulation. Here these results are summarized. The runtime performance
of a BDD with a threshold formulation (BDDT) was compared to MIP and
to a BDD with a custom state description (BDDC) for the Maximum In-
dependent Set Problem (MISP). The results show that the BDDC outper-
forms the other two at great length. BDDT performs better than MIP for the
smaller instances, but both show an exponential increase in runtime with
increasing graph size. With larger instances the increased size of the state
description (on top of the exponential growing search space) becomes the
main reason for the increase in runtime and eventually this means that the
BDDT solver is slower than MIP for large instances of MISP. This result is
confirmed by using a MIP formulation for the MISP with fewer constraints.
Both MIP and BDDT performed faster using a MIP formulation with fewer
constraints.

The performance of BDDT is also tested with the multi-dimensional
knapsack problem (MDKP). From this problem can be learned that BDDT
performs only good when the feasible space is small enough. When this is
the case, BDDT may perform much better than MIP for randomly generated
MDKP instances.

From the evaluation of the cost tuple method, the conclusion can be
drawn that the method has a good performance. The runtime increases

40 Chapter 5. Discussion

close to linear in the number of constraints on the objective. These con-
straints make the objective a convex piecewise linear objective. The increase
in runtime is only slightly worse than the increase in runtime that is seen
with MIP. A drawback is that the method only works on diagrams that are
not reduced.

The number of constraints that are generated during the decomposi-
tion depends of course on what kind of problem is solved. With the in-
troduced scheduling problem (Independent Set Scheduling, or ISS) that is
closely related to MISP, the number of cuts remains small in comparison to
the number of constraints on the continuous variables. Most derived cuts
are independent set constraints. Only a small number of constraints is more
complex. This means that for ISS the cuts need not be modeled by a thresh-
old diagram. Another solution, for example, would be to model these cuts
as extra edges in the graph. The constraints can be modeled using another
method than the threshold diagram. This conclusion can probably also be
generalized to other problems that have only simple generated cuts.

In a problem related to the market share split problem (AMSS) the num-
ber of cuts was much higher. All of these cuts involved all integer decision
variables. With AMSS the objective is solely expressed in the continuous
decision variables. The result is that almost all cuts are cuts on the objective
value. This means that the feasible space of the integer decision variables is
barely reduced.

The results in this thesis show that BDDD can be used for solving mixed
integer problems. In the tests, two specific mixed integer problems have
been solved by means of this method. For the ISS problem BDDD per-
formed better than MIP under specific circumstances. With an increasing
amount of (continuous) precedence constraints the runtime of BDDD in-
creases slowly, and the runtime of MIP decreases rapidly. Another way of
seeing this, is that as long as the integer constraints are ’dominating’ the
problem BDDD can outperform MIP. Problems where the integer variables
only play a marginal role (for example only to facilitate big-M constraints)
are therefore not suitable to be solved with BDDD. From the ISS problem
one can also learn that the subproblem size should not be too big.

In the runtime analysis it can be seen that either one of two elements
becomes the dominant factor in the runtime of BDDD. With ISS the linear
programming (LP) subproblem execution is the most important factor of
the runtime. With AMSS this is not the case because the LP subproblem
is much easier. With AMSS the feasible solution space is much bigger and
therefore the number of branches in the branch and bound much higher.
For most instances of AMSS the branch count was the dominant factor in
the runtime.

From the AMSS problem the conclusion can be drawn that this problem
class is difficult for both MIP and BDDD. Currently the two solvers have ap-
proximately the same runtime results (BDDD outperforms MIP slightly for
the problems with fewer integer decision variables and MIP outperforms
BDDD slightly for the problems with more decision variables). This is a
surprising result if you consider that AMSS has no integer variables in the
objective and no integer constraints. Another conclusion that can be drawn
from AMSS, is that even with the decomposition BDDD is able to find a
first feasible integer much faster than MIP. This first solution of BDDD has

5.2. Recommendations 41

roughly the same value as the first solution of MIP . This advantage of DDs
over MIP therefore still holds. The long runtime for BDDD is in proving
optimality. From the results of BDDD can be seen that almost a full enu-
meration is required to solve the problem to optimality.

The conclusion is that BDDD can be used to solve mixed integer prob-
lems, but is currently mainly useful for problems that satisfy very specific
properties. Suitable problems should have integer decision variables that
play a dominant role in the problem model. Modeling specifically for DDs
is recommended, instead of using a MIP model. DDs still have the advan-
tage that non-linear and non-convex constraints are allowed. Apart from
that, BDDD can be useful for MIP problems that do not have a good LP
relaxation such as AMSS.

The proposed method BDDD has several advantages. One advantage
is, that in contrast to other DD decomposition techniques such as the La-
grangian decomposition [4], BDDD also provides a way to divide not only
the set of constraints, but also the set of variables. Another advantage is
that BDDD is proven to work in a DD-based branch and bound technique.
A possible advantage of BDDD is that it allows for another way of model-
ing MIP problems. A MIP problem can be modeled ’around’ a typical IP
problem that is solved by DDs. This is a whole other way of thinking than
starting with an LP problem and adding integer variables.

5.2 Recommendations

There are several topics that we suggest as future work. These suggestions
are explained here.

Combinatorial Benders Cuts

In the method proposed in this thesis, the cuts generated by the Benders
decomposition have the form of a knapsack constraint and are modeled
by means of a threshold diagram. In [9] another form of cuts is proposed,
namely combinatorial Benders (CB) cuts. This kind of cut does not use
coefficients in the constraint. The hypothesis is that for this kind of cut
a better custom transition function can be formulated than the threshold
diagram.

Also, in [9] a method is proposed to find an Irreducible Infeasible Sub-
system (IIS) using a fast heuristic. A benefit of this heuristic is that it can
find several violated CB cuts with one run of the subproblem instead of
only one cut per run. The hypothesis is that the addition of these two tech-
niques would allow for a smaller state description, a transition function that
leads to a more compact diagram, and would also lead to less subproblem
invocations.

Scheduling problems with multi-valued decision diagrams

One of the powers of DDs has not been fully utilized in this thesis, namely
the power of sequence constraints with multi-valued decision diagrams. In
[4, 5] the travelling salesman problem with time windows (TSPTW) (and
optionally with precedence constraints) is solved with decision diagrams.
In this test the time parameters are integer.

42 Chapter 5. Discussion

One remaining challenge is to solve TSPTW while minimizing total tar-
diness. The difficulty with this problem is that arrival time is no longer
constrained by the due dates, and can no longer be implicitly incorporated
in the decision diagram. Instead, the arrival time is part of the objective.
An option is to model the arrival times as continuous variables. Now the
assignment of the arrival times is the subproblem. BDDD can be used to
derive the cost tuples for the decision diagram.

Dividing an integer variable set

The application of the method presented here is explicitly directed to mixed
integer problems, with both continuous and discrete variables. However,
there is no specific reason why Benders decomposition should be used to
divide the set of variables in a discrete and a continuous set. The decompo-
sition can also be used to decompose a large integer problem.

The subproblem of a decomposed integer problem of course cannot be
solved by means of an LP. Neither can its dual be trivially formulated. An-
other method for solving the subproblem should be used. Using a logic
based Benders decomposition is an option, as is done for example in [7, 8].

Depth first branch and bound

The reduction of decision diagrams that are compiled by a top-down com-
pilation is not straight forward. Especially for threshold diagrams, a large
reduction in diagram size can be achieved by compiling it depth first in-
stead, as is done in [2]. By compiling the diagram depth first, the theoret-
ical polynomial bound of the size of the diagram in terms of the threshold
weights applies. This is not the case with the two algorithms that are used
in BDDD, namely top-down compilation, and (top-down) compilation by
separation.

A recommended step is to study the depth first compilation of deci-
sion diagrams in a branch and bound setting. A requirement for this is a
method for depth first compilation of a restricted and a relaxed diagram.
Also a depth first compilation by separation method should be formulated.
With depth first compilation methods that work with DD-based branch and
bound, the threshold diagram formulation can be used more efficiently.

43

Appendix A

Implementation details

In this appendix some implementation details and choices that are left un-
mentioned in the main text are further explained.

A.1 State description

One of the drawbacks of the threshold formulation that is mentioned is size
of the state description. For each constraint in the model the state descrip-
tion contains one variable. A newly created node gets a state that is com-
puted from the preceding node and the edge label. With a large state de-
scription, this can be a costly operation. This operation has to be performed
frequently, and therefore it is worthwhile to implement it as efficiently as
possible.

A simple technique that can be used to speed up the computation is to
pre-compute the state changes per layer. With a fixed variable ordering for
each of the diagrams, each layer has a fixed change. This solution works as
follows: for each layer j ∈ {1, ..., n} and each possible label d ∈ Dj , build
a map Mjd of pairs (c, a). In this pair, the variable c is the constraint index
and a is the change in the slack of constraint cwhen xj = d. In the mapping
Mjd all pairs (c, a) with a = 0 are left out, because this means that there is
no change in the slack. When the state of a new node is now computed,
the state of the preceding node is copied and for every pair in the corre-
sponding Mjd map, the state variable with index c is updated by a. Early
tests showed that for the Maximum Independent Set Problem (MISP) this
technique approximately halved the runtime for dense graphs.

An effort was made to improve on this even more. The large state de-
scription was still a problem and therefore a sparser state description was
tried. This sparse state description contained only slack variables for the
currently active constraints. A constraint is active in a layer when the layer
is in between the first and the last decision variable of the constraint. Before
a constraint becomes active its slack is still equal to b, the right hand side of
the constraint, and storing this in the state description is redundant. When
a constraint is inactive again (after its last decision variable has been de-
cided), it is also unnecessary to store the slack of this constraint any longer.
The constraint cannot be violated any more.

To implement this spare state method, more pre-calculation is needed.
A mapping is created for each layer that maps each active constraint to an
index in the state. This index is chosen in such a way that during the active
period of a constraint this index does not change. There are two options for
a newly active constraint. When another constraint becomes inactive, the

44 Appendix A. Implementation details

new constraint gets the index of the inactive constraint. When there is no
inactive constraint to be replaced, the state size is increased by one and the
last index is given to the newly active constraint.

For the sparse state method, the variable ordering is important. For this
reason a heuristic was developed meant to minimize the maximum number
of active constraints.

In Figure A.1 results are shown for a comparison between the two BDD
approaches, both with the threshold diagram formulation. BDD is with a
full state description, BDDs with the sparse state description. The random
graphs are generated as before in the tests presented in Section 4.1.1. The
edge density is 80%. Again two formulations for MISP are tested, the one
with one constraint per edge, and the other with one constraint per clique.

0.001

0.01

0.1

1

10

100

10 30 50 70 90 110 130

ru
n

ti
m

e
(s

)

graph size

BDD BDDs BDD clique BDDs clique

FIGURE A.1: Runtime of BDD and BDDs for MISP for in-
creasing graph sizes.

In these results one can see that in some cases BDDs performs slightly
better than BDD, and in others it performs (much) worse. Similar results
were achieved for the Vertex Cover problem. Because of these results , and
the complexity that BDDs introduces, the choice was made to continue with
full state descriptions.

A.2 Variable ordering

The size of a BDD is heavily dependent on the variable ordering. Therefore
variable ordering can also not be left out of the discussion here. However,
variable ordering is not the main point of concern in this thesis. Finding the
optimal variable ordering is an NP-hard problem. In the presented tests,
only for the threshold diagram BDD MISP solver was the default variable
ordering changed. In all other tests (BDDc for MISP, MDKP, ISS and AMSS)
the variable ordering is left unchanged. The change in variable ordering
by a heuristic however, showed almost no improvement. Because of this
result, and because variable ordering is not the main focus of this thesis, no
further effort was made to improve on this.

45

Bibliography

[1] Karen Aardal et al. “Market split and basis reduction: Towards a so-
lution of the Cornuéjols-Dawande instances”. In: INFORMS Journal
on Computing 12.3 (2000), pp. 192–202.

[2] Markus Behle. “On threshold BDDs and the optimal variable order-
ing problem”. In: Journal of Combinatorial Optimization 16.2 (2008), pp. 107–
118.

[3] Jacques F Benders. “Partitioning procedures for solving mixed-variables
programming problems”. In: Numerische mathematik 4.1 (1962), pp. 238–
252.

[4] David Bergman, Andre A Cire, and Willem-Jan van Hoeve. “Lagrangian
bounds from decision diagrams”. In: Constraints 20.3 (2015), pp. 346–
361.

[5] David Bergman et al. Decision Diagrams for Optimization. 2016.

[6] David Bergman et al. “Discrete optimization with decision diagrams”.
In: INFORMS Journal on Computing 28.1 (2016), pp. 47–66.

[7] André A Ciré, Elvin Coban, and John N Hooker. “Logic-based Ben-
ders decomposition for planning and scheduling: a computational
analysis”. In: COPLAS Proceedings (2015), pp. 21–29.

[8] André A Ciré and John N Hooker. “The Separation Problem for Bi-
nary Decision Diagrams.” In: ISAIM. 2014.

[9] Gianni Codato and Matteo Fischetti. “Combinatorial Benders’ cuts
for mixed-integer linear programming”. In: Operations Research 54.4
(2006), pp. 756–766.

[10] GLPK (GNU Linear Programming Kit). 2006. URL: http://www.gnu.
org/software/glpk.

[11] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016.
URL: http://www.gurobi.com.

[12] Erwin Kalvelagen. Benders decomposition with Gams. http://web.
stanford.edu/class/msande348/papers/bendersingams.
[Online; accessed 29-March-2017]. 2004.

[13] Gunnar W Klau and Petra Mutzel. “Optimal labeling of point features
in rectangular labeling models”. In: Mathematical Programming 94.2
(2003), pp. 435–458.

[14] Sylvain Mouret, Ignacio E Grossmann, and Pierre Pestiaux. “Time
representations and mathematical models for process scheduling prob-
lems”. In: Computers & Chemical Engineering 35.6 (2011), pp. 1038–
1063.

[15] Canh Ngo et al. “Multi-data-types interval decision diagrams for XACML
evaluation engine”. In: Privacy, Security and Trust (PST), 2013 Eleventh
Annual International Conference on. IEEE. 2013, pp. 257–266.

http://www.gnu.org/software/glpk
http://www.gnu.org/software/glpk
http://www.gurobi.com
http://web.stanford.edu/class/msande348/papers/bendersingams
http://web.stanford.edu/class/msande348/papers/bendersingams

46 BIBLIOGRAPHY

[16] Alexandre Niveau et al. “Knowledge Compilation Using Interval Au-
tomata and Applications to Planning.” In: ECAI. 2010, pp. 459–464.

[17] Ingo Wegener. Branching programs and binary decision diagrams: theory
and applications. SIAM, 2000.

[18] H.P. Williams. Model building in mathematical programming. John Wiley
& Sons Australia, Limited, 1978.

	Introduction
	Background
	Decision Diagrams for Optimization
	Formal description
	Dynamic Programming Formulation
	Compilation of a Decision Diagram

	Branch and bound with decision diagrams
	Restricted Decision Diagrams
	Relaxed Decision Diagrams
	Branch and Bound procedure

	Threshold diagram
	Benders Decomposition

	Decision Diagrams with Benders Decomposition
	Decision Diagrams and Benders Decomposition
	Cuts using the threshold diagram
	Finding an exact cutset

	Cuts on the optimal value

	Evaluation
	Threshold diagram
	Threshold versus Custom
	Number of constraints

	Cost tuples
	Decomposition
	Scheduling with independent sets
	Market Share Split (adapted)
	Other problems

	Discussion
	Conclusions
	Recommendations

	Implementation details
	State description
	Variable ordering

	Bibliography

