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HIGHLIGHTS

® New parameter identification algorithm is introduced for ground source heat pumps.
® The parameter identification algorithm can handle short and long duration measurement.
® The proposed parameter identification algorithm can handle multilayer systems.

® The parameter identification algorithm can identify multiple parameters.

® The parameter identification algorithm is consistent, fast converging and robust.
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This paper presents a new parameter identification (PI) algorithm for estimating effective and detailed thermal
parameters of ground source heat pump systems using data obtained from the well-known thermal response test.
The PI comprises an iterative scheme coupling a semi-analytical forward model to an inverse model. The forward
model is formulated based on the spectral element method to simulate transient 3D heat flow in ground source
heat pump (GSHP) systems, and the inverse model is formulated based on the interior-point optimization
method to minimize the system objective function. Compared to existing interpretation tools for the thermal
response test, the proposed PI algorithm has several advanced features, including: it can handle fluctuating heat
pump power and inlet temperatures; interpret data obtained from multiple heat injection or extraction signals;
produce accurate backcalculation for short and long duration experiments; and handle multilayer systems. The
PI algorithm is tested against synthesized data, using a wide range of random noise, and versus an available
laboratory experiment. The computational results show that the PI algorithm is accurate, stable and exhibiting

relatively high convergence rate.

1. Introduction

The use of the ground source heat pump technology for heating and
cooling of buildings is rapidly rising worldwide, and engineers are
striving to improve its design. Efficient design of a GSHP system de-
pends in part on the accuracy of the thermal parameters of the borehole
heat exchanger and the soil mass [1], and in another on the optimiza-
tion of the energetic, exergetic and economic performance of the system
as a whole [2-4]. This paper focuses on the first part.

Thermal parameters of the borehole heat exchanger (BHE) compo-
nents are usually known a priori, but thermal parameters of the soil
mass and the borehole thermal resistance are not readily known and
need to be determined. Laboratory and field experiments have been
devised for estimating the soil thermal parameters. Thermal properties
estimated from laboratory experiments are in principle more accurate.

However, the drawback in here is that only a small volume of the soil is
tested, ignoring the inhomogeneity of the soil layers. Also, disturbances
in the soil samples can lead to erroneous estimate [1]. Following this,
the in-situ Thermal Response Test (TRT), first introduced by Mogensen
[5], has become the tool for estimating the GSHP parameters [6]. The
TRT became popular because in addition to determining the thermal
properties of the soil without the need for taking samples to the lab, it
determines the borehole thermal interaction coefficient, a property that
is quite difficult to be quantified in the lab.

A typical TRT consists of a vertical borehole heat exchanger em-
bedded in which a single U-tube, and equipped with thermometers to
measure the fluid temperatures at the inlet and outlet of the U-tube.
Modern TRT devises are equipped with fiber optics to measure the fluid
temperature along the BHE [7]. Spitler and Gehlin [8] provided a his-
torical review of the thermal response test, and Zhang et al. [9] and
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Nomenclature

BHE Borehole heat exchanger

TRT Thermal response test

DTRT Distributed thermal response test

b Thermal interaction coefficient (W/(m?2.K))
c Specific heat capacity (J/(kg.K))

0 Mass density (kg/m>)

A Thermal conductivity (W/(m.K))

o Thermal diffusivity (m?/s)

av Control volumes (m?)
ds Associated surface areas (m?)
R Thermal Resistance (m.K/W)

Radial distance (m)

Temperature (K; °C)

Average fluid temperature (K; °C)
Heat flux (W/m)

Angular frequency (rad/sec)

ISEEST s

Subscripts

The BHE pipe-in
The BHE pipe-out
The BHE grout
The soil film

soil The soil mass

v g © 9~

Witte [10] provided a comprehensive review on the state-of-the-art of
TRT and its parameter identification algorithms.

An important element of the thermal response test is the inter-
pretation procedure of the measured data. This experiment is relatively
expensive but can only be useful if the utilized parameter identification
algorithm is able to produce accurate estimate of the involved thermal
parameters. Basically, parameter identification algorithms employ for-
ward and inverse models to obtain effective or detailed parameters,
depending on the rigor of the algorithm. The forward model is a
mathematical expression which describes the physical system and
predicts the response of the system for any given values of the model
parameters. The inverse model is a mathematical optimization algo-
rithm designed for inferring the values of the model parameters from
measured and theoretical response quantities. The competence of a
parameter identification algorithm depends on several factors, in-
cluding:

1. The adequacy of the forward model to describe the physics of the
problem, and its computational efficiency for utilization in iterative
schemes for inverse calculations.

2. The consistency, stability, convergence rate and uniqueness of the
inverse model for solving the objective functions.

Based on these factors, parameter identification algorithms utilized
for TRT interpretation can be put in three categories:

1. Forward analytical — Inverse graphical interpretation (GI) algorithm
(also denoted as curve fitting method). This algorithm employs the
well-known infinite line source (ILS) model [11] for the forward
calculation. The inverse calculation is conducted via curve fitting of
the measured data to estimate the effective soil thermal conductivity
and the borehole thermal resistance, as shown in Fig. 1. This method
is widely used because of its simplicity; simple mathematical tools
(such as MS Excel) can be used to interpret the measured data.
Works fall in this category, among many others, are: Witte et al. [1],
Busso et al. [12], Sanner et al. [13] and [14], Witte [15], Focaccia
et al. [16], and Bujok et al. [17]. In Section 3 this algorithm is
discussed in detail, and its performance is examined in Section 5.
The study shows that this algorithm has fundamental shortcomings,
mainly in its non-uniqueness in determining two physical para-
meters (soil thermal conductivity and borehole thermal resistance)
from one equation.

2. Forward analytical — Inverse optimization algorithms. This kind of
algorithms employ analytical models such as the infinite line source
(ILS), infinite cylindrical source (ICS) [11], thermal resistance and
capacitance (TRC) [18], or alike, for the forward calculation. The
inverse calculation is conducted using some sort of optimization
techniques, as shown in Fig. 2. Works fall in this category, among
others, are: Fujii et al [19], Li and Lai [20], Wagner et al. [21],
Raymond and Lamarche [22], Choi and Ooka [23], Pasquier [24]
and [25], Zhang et al. [26], Choi et al. [27], and Pasquier et al. [28].
In this category, the use of optimization techniques for minimizing

ILs 7—;11 (f)

Temperature (°C)

Z=00

TRT
Tout Tin
U-tube BHE
Soil mass
];II (r)
v
14
10 Thermal
parameters
Log scale
51 5 15 30 72
Time (h)

Fig. 1. A schematic representation of the Forward analytical — Inverse graphical interpretation (GI) algorithm.
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the system objective functions overcomes some of the shortcomings
of the previous category. However, most of the analytical forward
models are not formulated to describe the detailed heat flow in the
GSHP systems, making backcalculations based on such models
limited in accuracy.

3. Forward numerical — Inverse optimization algorithms. This kind of
algorithms employ numerical models based on the finite element
method, finite difference method or finite volume method for the
forward calculation. The inverse calculation is conducted using
some sort of optimization techniques, as shown in Fig. 3. Works fall
in this category, among others, are: Spitler et al. [29], Austin et al.
[30], Wagner and Clauser [31], Signorelli et al. [32], and Marcotte
and Pasquier [33]. In general, the parameter identification models
of this category are more advanced, but the use of the numerical
models for forward calculations make them computationally in-
efficient for utilization in iterative schemes for inverse problems.

In this paper, we adopt the second category (Forward analytical —
Inverse optimization algorithm). A new parameter identification (PI)
algorithm capable of estimating effective and detailed thermal para-
meters of GSHP systems is introduced. The PI comprises an iterative
scheme, coupling a semi-analytical forward model to an inverse model.

The forward model is formulated based on the spectral element
method [34] and the superposition principle to simulate transient 3D
heat flow in multiple borehole heat exchangers embedded in multilayer
systems. The spectral element method (SEM) solves linear partial dif-
ferential equations for a homogeneous domain analytically, and for a
layered domain it solves the governing equations by means of the finite
element technique. It elegantly combines the exactness of the analytical
methods to a great extent of generality of the numerical methods in
describing the geometry and boundary conditions. It requires one ele-
ment per layer, making the mesh size equivalent to the number of
layers. These features make the proposed forward model accurate and
computationally efficient, and thus suitable for utilization in iterative
schemes for inverse problems.

The inverse model is formulated based on the interior-point method
(IPM), a technique capable of optimizing multi-dimensional, sparse
linear, quadratic or general nonlinear objective functions and con-
straints [35]. Optimization algorithms based on the IPM are usually
implemented on the basis of the predictor-corrector technique, Cho-
lesky decomposition and Newton’s method. These features make the
inverse model capable of identifying multiple variables problems with
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relatively high convergence rate.

Details of the PI algorithm is given in Section 4, followed by ver-
ifications and analyses in Section 5 and 6. But first, we elaborate on the
challenges involved in interpreting the TRT measurements (Section 2)
and discuss the current GI algorithm (Section 3).

2. TRT interpretation challenges

Despite the bulk of research work in this field, there are yet many
challenges that affect the accuracy of the TRT interpretation proce-
dures, including:

A) Heat pump power fluctuation

Heat pumps used in GSHP systems usually produce fluctuating
thermal loads, leading eventually to fluctuations in the measured inlet
and outlet temperatures. As it will be shown in Section 3 and the
subsequent sections, the GI algorithm is directly related to the heat
power, and if this power is not constant, the temperature can be mis-
represented, giving rise to inaccurate curve fitting. Two solutions have
been employed for this problem. One is modifying the hardware by
using electric resistance heaters for heating the circulating fluid
[13,36]; and another is modifying the interpretation method by using
numerical forward models which are usually capable of handling fluc-
tuated heat fluxes. Witte and van Gelder [37], for instance, employed
TRNSYS simulator to estimate the soil thermal parameters using a time
varying heat flux injection. Raymond et al. [38] and Choi and Ooka
[23] tackled this problem by using a temporal superposition technique
combining the ILS model to an optimization algorithm.

D) TRT duration

In practice, the TRT is conducted for 72 h in an effort to let the
system reaches the steady state and guarantee better interpretation
[37]. This duration is particularly crucial for the GI algorithm, as will
be explained in Section 3 and verified in Section 5.1. However, per-
forming the experiment for 72 h can be expensive. Spitler et al. [29]
have shown that the cost of performing TRT increases significantly with
the increase of the TRT duration. As a consequence, recently, several
studies are initiated to investigate the possibility of shortening the TRT
duration. Bujok et al. [17] performed several TRT in a field containing
16 boreholes to analyze the effect of shortening the TRT durations on

TRT

Tout Tin

U-tube BHE
Soil mass

NQ)

Analytical
Model

VA

Objective function

Thermal
parameters

Fig. 2. A schematic representation of the Forward analytical — Inverse optimization algorithms.
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the accuracy of the thermal parameter identification. Their study shows
that shortening the test to 24 h can bring an acceptable amount of in-
accuracy. Pasquier [25] introduced an interpretation technique that can
make use of the measured temperatures during the first three hours to
produce an effective thermal conductivity accurate within 10% of a
reference value.

E) Nonhomogeneous soil mass

Most TRT parameter identification algorithms assume that the soil
mass consists of a homogeneous layer, which can be described by ef-
fective soil thermal conductivity and borehole thermal resistance.
Obviously, this assumption is not realistic as the borehole can go as
deep as 200 m into the ground, which most probably consists of layers
with varying soil types, geometry and thermal properties [37,8]. An
attempt to backcalculate the thermal properties of a multilayer system
necessities two main requirements:

1) The TRT needs to include temperature measurements, not only at
the inlet and outlet of the borehole, but also along its depth.
Currently, this is gradually becoming a common practice, especially
by the introduction of what is known as the Distributed Thermal
Response Test (DTRT), where measurements are made along the
BHE using optical fiber [19,7,39].

2) The forward model needs to be able to simulate multilayer systems.
Raymond and Lamarche [22] presented a noteworthy attempt to
estimate the thermal parameters of a multilayer soil mass system.
They utilized the MLU simulator (an analytical tool for hydraulic
pumping test in layered domains) for the forward calculation. The
inverse calculation is conducted using the Levenberg-Marquardt
algorithm [40]. They backcalculated thermal parameters for three
layers and showed that the results were, for most cases, within 20%
accuracy.

As indicated above, these challenges have been addressed in the
literature, but most of the models can only deal with one or two chal-
lenges at a time. In this paper we address these challenges, together
with the possibility to identify parameters other than the conventional
thermal conductivity and borehole thermal resistance.
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3. Current graphical interpretation (GI) algorithm

The GI algorithm estimates the effective soil thermal conductivity
and borehole thermal resistance based on the infinite line source model
(ILS) and the least square curve fitting method. For a sufficiently long
time, Carslaw and Jaegar [41] solved the ILS partial differential equa-
tion for a constant heat flow rate per unit length, g, giving:

@

q dat
T, t)~Ty+ —|In— —
(r. 0) 0 47r/1(nr2 )

in which T(r, t) is the temperature of the medium (soil mass in this
case) at radial distance r from the heat line source, A(W/(m.K)) is the
medium thermal conductivity, a(m?/s) is the thermal diffusivity and
y = 0.5772 is Euler's constant.

At the borehole boundary surface, r = n,, the temperature is [42],
and [31]:

T(t) = Tlr:rb + qu (2)
where

Tin (8) + Tou ()
2 3)

in which T, (t) and T, (t) are the inlet and outlet temperatures, and R,
is the borehole thermal resistance.
Substituting Eq. (1) into Eq. (2), and rearranging, gives

T@) =

= q q 4a
T(t)=—=In(t) + |qRy + —|In = —y || + T
® 47l n(®) [q b 47rl(nrb2 y)] 0

()]
In a compact format, Eq. (4) can be written as
T()=aln(t)+b 5)

which represents a line in a semi-log scale with a its slope and b its
T-intercept. Relating a to the coefficient of the first term on the right-
hand side of Eq. (4), and knowing the heat pump g, the soil thermal
conductivity 4 can readily be determined. Then, relating b to the second
and third terms on the right-hand side of Eq. (4), and known A from the
previous step together with all other known parameters, R, can be
determined.

TRT

Tout Tin

U-tube BHE
Soil mass

1,0

Numerical
Model
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Fig. 3. A schematic representation of the Forward numerical - Inverse optimization algorithms.
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Apparently, the GI algorithm is easy to implement, making it at-
tractive for daily engineering practice. However, it suffers from fun-
damental shortcomings, including:

1. This method is undetermined. It entails determining two physical
parameters from one equation in two steps: not by solving two
equations simultaneously. An error in determining 4 would in-
evitably lead to error in R;. Basically, the parameter identification
procedure requires either determinate systems (number of equations
is equal to the number of unknowns) or over-determinate systems
(number of equations is more than the number of unknowns).

2. The time when the curve fitting begins can have a crucial effect on
the values of a and b, and hence on A and R,

3. The solution given in Eq. (1), provided by Carslaw and Jaegar[41],
is applicable for “sufficiently” long time, necessitating conducting
the experiment for several days to be valid.

4. Proposed PI algorithm

The proposed PI algorithm consists of a forward model and an in-
verse model, described hereafter.

4.1. Forward model

The background theory of the forward model has been thoroughly
presented in a string of publications, mainly Al-Khoury [43], BniLam
and Al-Khoury [44-46] and BniLam et al. [47]. Here, we present the
governing heat equations, the associated thermal resistance between
GSHP components and their correspondence to the commonly used
formulation for the borehole thermal resistance.

The governing heat equations of a ground source heat pump con-
sisting of a single U-tube borehole heat exchanger embedded in a soil
mass, Fig. 4, can be described as

Pipe-in

oT; 9°T; oT;
pca—[’dVi - /I?Z’dVi + pcua—Z‘dV,- + b (T, — Tp)dSg =0 ©)
Pipe-out

oT, 9T, oT,
pca—:dVo -1 azzo dv, — pcua—z"dl/; + bog (T, — Ty)dS,s = 0 o

\s
- Soil mass

Soil film
Grout
Pipe out
Pipein

<

Fig. 4. A schematic representation of a single U-tube BHE and its surrounding
soil mass.
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Grout
Py Rk dVy — 2, 2 5dV, + by (T, — T)dSg
g (Ty — T,)dSyg + bgs (Ty — T,)dSgs = 0
®
Soil film
@Q%%m—agguyu@m—vaﬁ+mxn—nmm&=o
©
Soil mass
10Ty _ ST _ 10T _
a ot ar? r or (10)

The soil film (Eq. (9)) is introduced in this model to couple the
borehole heat exchanger to the soil mass. The essence of this coupling has
been discussed in BniLam and Al-Khoury [45] and BniLam et al. [47].

The initial condition is

T (z, 0) = T,(z, 0) = T,(z, 0) = T;(z, 0) = Ty (r, 0) (11)

The boundary condition at the inlet of pipe-in might be any of two

types:
a Neumann boundary condition:
at;

q,(0, 1) = g, (1) = —lEdAi az)

or a Dirichlet boundary condition:
T(0, £) = Tin(£) a3

where g, is the prescribed heat flux and T, is the prescribed inlet
temperature, that might have any arbitrary distribution in time.

Egs. (6)-(9) are coupled via local thermal interaction terms de-
scribing heat flow at the contact surfaces between neighboring BHE
components. At the boundary between pipe-in and grout, the heat flow is
described in terms of the thermal interaction coefficient, b;,, expressed as

o= L
& dS, Ry a4

where dS;, is the surface area of pipe-in in contact with the grout, and R;,
is the corresponding thermal resistance, expressed analytically as

1 + In (rpo/rpi)

R, = R ion + Rpipe material = P
ig convection pipe material 27nLh 271'L1p (15)

in which r,; and r,,, are the inner and outer radius of pipe-in, respectively;
L is the length of the spectral element; 4, is the thermal conductivity of
pipe-in material; and & = Nui/D is the convective heat transfer coeffi-
cient, where D is the inner diameter of the pipe, Nu and 1 are the Nusselt
number and thermal conductivity of the circulating fluid. A similar for-
mulation is used for b,g: pipe out — grout thermal interaction.

The thermal interaction coefficient for the soil film - soil mass is
expressed as

1
T dS, Ry (16)

bsS

where dS; is the surface area of the soil film in contact with the soil
mass, and Ry is the corresponding thermal resistance, expressed ana-
lytically as

_ In(ry/ry)

* 27LA a7
in which r is the radius of the soil film and r, is the borehole radius.
The thermal interaction coefficient for grout —soil film is expressed as

1

b,. =
¢ dSgs Res (18)




N. BniLam and R. Al-Khoury

a) b) c)

=~

Ry

Tsoil Tsoil

Fig. 5. a) BHE-soil top view, b) BHE-soil Y—configuration thermal circuit, c)
equivalent borehole thermal resistance.

where dS,; is the surface area of grout in contact with the soil film, and
Ry is the corresponding thermal resistance. Unlike R;, Rog and Ry, Rgs
does not have an analytical expression due to the acentric positions of
pipe-in and pipe-out inside the grout. This coefficient is usually ap-
proximated using an equivalent centric pipe with an equivalent cross-
sectional area of pipe-in and pipe-out [43]. Here, Ry is backcalculated
using the inverse model.

The above local thermal interaction terms are unique to this model,
Egs. (6)-(9). Different models can have different local thermal inter-
action arrangements and formulations. Nevertheless, regardless of the
local interaction terms, models that are utilized to interpret the thermal
response test (TRT) are required to back calculate the borehole thermal
resistance, R,. The usual practice is to lump the local thermal interac-
tion coefficients into an equivalent coefficient using some sort of ar-
rangements, such as the Delta- or Y-configuration analogy to Ohm’s
law [43]. The governing BHE heat equations (Egs. (6)—(9)) are a typical
Y- configuration, where pipe-in and pipe-out are interacting with each
other via the grout, which is in contact with the soil, Fig. 5a. Fig. 5b
shows the thermal resistance configuration, where R;; and R, are in
parallel to each other and in series with Ry and Ry. The equivalent
thermal resistance for this configuration is given in Fig. 5c that can be
expressed as

Ry = RigHRog + Rgs + Ry 19)

where R, Ro; and Ry, are determined analytically using Eqs. (15) and
(17), respectively, and Ry is backcalculated.

4.2. Inverse model

The procedure for parameter identification entails minimizing the
objective function of a system subjected to predefined constraints, such
that:

minimize f (x)
subjected x € Q (20)

where f(x) is the objective function that needs to be minimized;
X =[x, %, ---] is the vector of the unknown parameters that need to be
estimated, such as the soil thermal conductivity and the borehole
thermal resistance; and Q represent the constraints of x.

For a ground source heat pump, the objective function can be ex-
pressed as the Euclidean distance (norm 2) between the measured and
computed temperatures. Using the spectral analysis, the Euclidean
distance is described in the frequency domain, as

F o= 11T (@, 2) = Tn (@, 2, O
A A 1/2
= (2 Tn(@n, 2) = Tin(@n, 2, Xy (21)
transformed measured

in which T, (ws z) is the frequency
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temperature, as typically obtained from TRT, and T, (wy, z, X) is its
equivalent theoretical temperature, as computed by the forward model.
Theoretically, fm (wy, z) and T[h (wns 2, X) can be at any frequency, w,,
at any depth, z, and for any component of the GSHP system, including
the soil mass. However, in typical TRT, only the temperatures at the
inlet of pipe-in and outlet of pipe-out are measured. The summation
over n in Eq. (21) indicates that the objective function can contain any
number of frequencies. This constitutes an important advantage of the
spectral analysis compared to the time domain. In the time domain the
whole signal must be considered and the whole system must be calcu-
lated in every iteration, while in the spectral analysis the system can be
calculated for only few frequencies. This stems from the fundamental
property of the frequency domain which describes the characteristic of
the system to respond to a range of frequencies regardless of the time of
occurrences. In the time domain, the sequence of occurrences de-
termines the response of the physical system, specifically for that event.
The verification and numerical examples given in later sections are
conducted using 20 frequencies for each reading set. For more in-
formation regarding the frequency response of a signal, the reader is
referred to Doyle [34].

Solving the objective function, Eq. (21), requires a minimization
algorithm capable of solving complex, multidimensional, nonlinear
equations. The interior-point optimization method [48], which can
handle large and sparse problems, is employed for this purpose. It sa-
tisfies bounds at all iterations and can recover from NAN (Not a
Number) or Inf (Infinity) results. This algorithm has been implemented
and optimized in the MATLAB nonlinear programming solver called
fmincon [49].

The proposed PI algorithm can be summarized as

PROGRAM PI Algorithm

1: Transform measured temperatures into frequency domain:
fm (wn, 2)
2: Set initial values for the required parameter: x°
3: Call fmincon
4: Loop_z DO m =1, M ; M is the number of temperature readings along
BHE or in soil
5: Loop_freq DO n =1, N ; N is the number of selected frequencies
6: Calculate T (wn, z, X) using the forward model, Section 4.1
7: ENDDO Loop_freq
8: ENDDO Loop_z
9: Calculate the objective function, Eq. (21):
N 1/2
fe= ( 3 (@m0 = Tn(on 2 x)lZ)
n=1
10: IF f(x) > € ; € some tolerance
fmincon determines new guess for x
GOTO Loop_z
ENDIF
11: Outputx
ENDPROGRAM PI Algorithm

5. Performance of PI algorithm

The performance of the proposed PI algorithm is examined by
means of numerical experiments using synthetic data generated by the
forward model to represent measurements of a typical TRT experiment.
Synthetic data is usually smooth, but to make it comparable to mea-
sured data, random noise with different contamination levels is applied.
The advantage of using synthetic data is that the input parameters are
known a priori that enables quantifiable verification of the inverse
model. The PI algorithm is tested in terms of its accuracy; stability,
which is a measure of the ability of an algorithm to converge even in
the presence of contaminated data; and convergence rate, which is a
measure of the speed at which a convergence sequence reaches the
desired accuracy.

Typical TRT heat pumps exhibit fluctuations in their power signal,
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Table 1

BHE material and physical parameters.
Parameter Value
Borehole:
Borehole length 100m
Borehole diameter 0.1m
Pipe external diameter 0.03m
Pipe thermal conductivity 0.42W/(m. K)
Fluid:
Density,p 1000 kg/m?3
Specific thermal capacity,c 4186 J/(kg. K)
Thermal conductivity,1 0.56 W/(m. K)
Dynamic viscosity,u 0.001 Pa. s
Velocity,u 0.5 m/s
Grout:
Density, o, 1400 kg/m?3
Specific thermal capacity,cg 2000 J/(kg. K)
Thermal conductivity, A, 0.8 W/(m. K)

with standard deviation (std) ranging between 2% and 10% [50] and
[1]. To mimic this, we contaminate the synthetic heat pump power
using an additive white Gaussian noise (AWGN), such that

Ron = P;y + U(I,Std) (22)

in which R,, is the contaminated heat pump signal, Ry is the synthetic
heat pump power and 7 is a zero-mean random AWGN with standard
deviation, std. Here, the synthetic heat pump power is assumed 5000 W.
To generate a wide range of randomness, 150 random AWGN with three
levels of std are applied:

100
std = {300W
500 (23)

The heat pump is assumed to be connected to a 100 m BHE, con-
stituting a single U-tube embedded in a soil mass. Details of the BHE
parameters are given in Table 1.

Two numerical TRT experiments have been conducted: 1) for a BHE
embedded in a half space; and 2) for a BHE embedded in a three-layer
system. Parameter identifications have been performed on the con-
taminated data using the GI method and the proposed PI algorithm. The
performance of these two algorithms is compared based on:

. accuracy in predicting the parameters;
. noise effect;

. duration of experiment; and

. number of backcalculated parameters.

A WN -
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5.1. Numerical TRT in a half space

In this set up, the BHE is assumed to be embedded in a half space
constituting a homogeneous soil layer with thermal conductivity
As = 2W/(m.K), and volumetric heat capacity p,c; = 2.6 MJ/(m3.K).

150 numerical TRT experiments were conducted for 72 h. They
were divided into three sets, each representing 50 numerical experi-
ments subjected to randomly contaminated power signal (Eq. (22))
with a specific standard deviation (Eq. (23)). Fig. 6 shows an example of
one of the three sets. It shows randomly contaminated power with 300
W standard deviation (Fig. 6a), and the associated computed inlet and
outlet temperatures (Fig. 6b). This figure evidently demonstrates that
the use of AWGN makes the synthetic data comparable to measured
data.

The borehole thermal resistance is calculated based on the forward
model results, via [22]:

-1
q 24

Ry =

where T is the average fluid temperature (Eq. (3)), and T, the borehole
temperature (7; in Eq. (8)). Figure (6c¢) is a plot of R;, versus time, which
clearly shows that, upon the end of the transient period, R, becomes
nearly constant at 0.2 m.K/W.

5.1.1. Backcalculation based on GI algorithm

The GI algorithm is utilized to backcalculate the effective soil
thermal conductivity, 4, and the borehole thermal resistance, R, for
the 150 numerical experiments. Fig. 7 shows an example of one of the
numerical experiments, generated from processing the computed re-
sults of Fig. 6. It displays the average fluid temperature T versus time,
along with the best fitted curves. Four fitted curves, depending on the
start time, were conducted: after 1 h; after 6 h; after 15 h; and after
30 h. The fitted curves are shown in normal scale plots and in semi-log
scale plots (inside the blue boxes). Obviously, the fitted curve which
starts after 1 h is the least accurate due to the high transient gradient at
the beginning of the experiment.

Fig. 8 presents the backcalculated results of these four fitted curves.
Apparently, the GI algorithm exhibits dependency on both the start
time of fitting and the noise level. Knowing the input values (1, = 2W/
(m.K)R, = 0.2m.K/W) the figure qualitatively indicates that the fitted
curve which starts after 30 h and std = 100W (2% std) gave the best
estimate. The boxplots is utilized as a means for descriptive statistics to
observe the estimation errors of the best fitted curve case based on five
quantities: minimum, first quartile, median, third quartile, and max-
imum. Fig. 9 shows boxplots of the 30 h fitting case; and Table 2

a) b) )

7 30
— 0.2
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: ;
'_

a1 12

0 . . . : - 0.1

0 12 24 48 72 0 12 24 48 72 0 12 24 48 72

Time (h)

Time (h)

Time (h)

Fig. 6. a) thermal power with std = 300W, b) inlet and outlet temperatures, c) borehole thermal resistance: Eq. (24).
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presents the associated statistical values. The following can be deduced

from the boxplots:

1. The median error decreases with increasing noise,

2. The interquartile range (IQR, box size) increases with noise level:

IQRyoow = 1.25 IQR300w = 5.5; IQRspow = 5.7.

3. The gap between the minimum and maximum increases with

a)
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increasing noise: MMjoow = 3.9; MMspw = 10.3; MMsoow = 14.3.
4. Noise level 100W has three outliers, while others do not have.

These observations indicate that the GI algorithm depends strongly

on the noise level.

It is worth noting that the error in the backcalculated borehole

0.22¢

thermal resistance has the same statistical description as that for the

50 100 150

Test

—— Gl algorithm, start time =6 h
—— Gl algorithm, start time =15 h
—— Gl algorithm, start time =30 h

Fig. 8. a) backcalculated soil thermal conductivity, b) backcalculated borehole thermal resistance.
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Fig. 9. Boxplot of estimated error of GI algorithm started at 30 h: a) soil thermal conductivity, b) borehole thermal resistance.

Table 2
Statistical values of Fig. 9.

Noise level Minimum (%) First quartile (%)

Median (%) Third quartile (%) Maximum (%)

std = 100W 4.2 5.4
std = 300W 0.3 2.7
std = 500W 0.1 2.6

5.9 6.6 8.1
5.5 8.2 10.6
4.1 8.3 14.4

thermal conductivity (see Fig. 9a and b). This proves the argument
which was raised in Section 3. As the estimation of R, using the GI
algorithm is dependent on 4;, the error in estimating A; is reflected on
Rp.

5.1.2. Backcalculation based on PI algorithm

Here, the proposed PI algorithm was utilized to backcalculate 1; and
R, from the 150 numerical experiments. Fig. 8 shows the back-
calculated results (black lines). The estimated A, is 1.99 W/(m.K) (input
value is 2 W/(m.K)), and R, is 0.207 m.K/W (input value is 0.2 m.K/W).
The figure also shows that the PI algorithm is stable such that it de-
monstrates minor oscillations with noise.

Fig. 10 shows the convergence rate of one of the experiments with
std = 300W. It shows that both parameters were identified in 25 itera-
tions. This relatively high convergence rate can be attributed to several
reasons, including the use of the spectral element method for the for-
ward calculation, and the use of the interior-point optimization method
and Euclidean norm for the inverse calculation. 20 frequencies were
utilized and on average it took 5 s in a normal laptop for the whole
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Fig. 10. Convergence rate of PI algorithm.

backcalculation procedure.
5.2. Numerical TRT in a layered system

In this subsection, a numerical TRT constituting a BHE embedded in
a three-layer soil mass is conducted. Fig. 11 shows the geometry and
material properties of the soil layers. The BHE physical and thermal
properties are as those given in the previous example. Also, 150 nu-
merical experiments with heat pump power and noise levels as for the
previous example were conducted. The borehole thermal resistance is
calculated using Eq. (24).

The PI algorithm is examined in two ways: 1) effective parameter
identification, where the thermal parameters are estimated assuming
that the soil mass consists of a single layer; and 2) detailed parameter
identification, where the thermal parameters of all layers are estimated
assuming that sufficient temperature readings along the pipe are
available.

5.2.1. Effective parameter identification

The soil mass is assumed half space, characterized by effective
(average) thermal parameters. The average thermal conductivity of the
soil mass, as given in Fig. 11, can readily be calculated to give 2.16 W/
(m.K), and the average borehole thermal resistance to give 0.206 m.K/
W. If the layer thicknesses are considered, calculation of the weighted
averages would give 2.3 W/(m.K) and 0.203 m.K/W, respectively.

Fig. 12 shows the backcalculated effective parameters using both
the proposed PI algorithm and the GI algorithm. The backcalculation
due to the PI algorithm gave 2.188 W/(m.K) for the thermal con-
ductivity, and 0.187 W/(m.K) for the borehole thermal resistance;
which are close to both averages of the input values. Additionally, the
figure reveals that the PI algorithm has minor oscillations for all noise
levels. On the other hand, the GI algorithm gave different results de-
pending on the start time of the curve fitting and the noise level. In all
cases it gave underestimated values.

We furthermore examined the performance of the PI algorithm for
different experiment durations: 12, 24, 48 and 72 h. Table 3 presents
the estimated values of the effective A, and R;, backcalculated from the
PI algorithm and GI algorithm for different curve fitting periods (from
1, 6, 15 and 30 h). This independency on the duration of the experiment
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Fig. 11. Schematic presentation of a BHE embedded in a three-layer soil mass.

is attributed to the capability of the forward model to simulate the
highly transient period at the beginning of the experiment, and to the
choice of the minimization procedure. On the other hand, the GI al-
gorithm gave varying estimates with somewhat better performance for
the longer experiment duration and shorter curve fitting. This explains
why the TRT is conducted in practice for 72 h.

5.2.2. Detailed parameter identification

Detailed parameter identification entails estimating the thermal
parameters of all involved layers and/or parameters including the vo-
lumetric heat capacities, p,c;.

As mentioned earlier, the basic principle of the parameter identifi-
cation is that the system of equations must be either determinate or
over-determinate. This implies that the number of measured set of
readings must be equal or more than to the number of backcalculated
parameters. To estimate the thermal parameters of the three-layer
system of Fig. 11, we assume having four measurement sets along the
BHE. One set is the standard inlet and outlet temperatures, and the
other three measurement sets are taken in the U-tube, on the middle of
each layer. Nine parameters are backcalculated: 1; and R, for each layer
together with their associated volumetric heat capacities, o,c;. The TRT
operation time is assumed 12 h.

a)
2.4t

~ 22k

S

A (Wm K
N

1.8¢

165 50 100 150
Test
—— Gl algorithm, start time =1 h
—— Gl algorithm, start time =6 h

b) 02r

Applied Energy 264 (2020) 114712

Table 4 shows the estimated parameters compared to the exact
(input values). It reveals that the estimated thermal conductivities for
the three layers are nearly exact, the borehole thermal resistances have
a maximum 5.5% error, and the volumetric heat capacities have a
maximum 4.6% error.

6. Model verification

Witte et al. [1] and [37] had conducted several in-situ thermal re-
sponse tests to backcalculate the thermal conductivities of a multilayer
soil mass. The borehole heat exchanger is 30 m in depth and 0.25 m in
diameter, filled with soil materials of the surroundings, and embedded
in which a U-tube, 0.025 m in diameter. The working fluid in the U-tube
consists of water with 17% ethylene glycol solution. Detailed descrip-
tion of the geometry and materials can be found in Witte et al. [1].
Fig. 13 and Table 5 (Column TRT) give an overview of the geometry
and show that the soil mass consists of 8 layers of different soil types
and thicknesses.

Witte et al. [1] also provided the range of thermal conductivities of
each soil type, as given in literature, and laboratory results for nine soil
samples taken from the site. Witte and van Gelder [37] conducted non-
conventional experiments comprising three successive heat pump
power pulses: two for heat injection and one for heat extraction. The
power pulses lasted 96 h, followed by a switching off period until 169 h.
The heat pump power together with the temperatures at the inlet and
outlet of the U-tube were recorded for 169 h every 4 min. Figure 14a
shows the heat pump power versus time.

Here, we make use of Witte et al. [37] TRT measurement to back-
calculate the thermal conductivities of the involved soil layers with two
varying level of complexities:

1. Effective parameter identification of the average soil thermal con-
ductivity, assuming that all soil layers can be grouped into one. The
backcalculation results are given in Table 5 (Column Parameter
Identification). The effective thermal conductivity is estimated to be
2.01 W/(m.K). This estimation falls between the weighted average
of the minimum (1.19 W/(m.K)) and maximum (3.4 W/(m.K)),
obtained from the literatures. It also compares well with the average
laboratory results; 2.1 W/(m.K), given by Witte et al. [1].

2. Detailed parameter identification of thermal conductivities of all
layers using the measured inlet and outlet temperatures, and eight
synthetic fluid temperatures obtained from the forward model along
pipe-in and pipe-out. Synthetic data was utilized because no mea-
surements were made along the BHE. Nevertheless, they are com-
puted using the measured inlet temperature, which intrinsically

0.124 50 100 150
Test

—— Gl algorithm, start time =15 h

—— Gl algorithm, start time =30 h

—— Pl algorithm

Fig. 12. GI and PI, a) estimated soil thermal conductivity, b) estimated borehole thermal resistance.
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Table 3
Parameter estimation for different TRT durations.
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Experiment period  PI algorithm GI algorithm starts from 1 h

GI algorithm starts from 6 h

GI algorithm starts from 15 h GI algorithm starts from 30 h

As Ry As Ry As Ry As Rp As Rp
12h 2,188 0.187 1.35 0.1 1.61 0.13 _ _ _ _
24h 2.187 0.187 151 0.116 1.77 0.144 1.85 0.15 _ _
48h 2.184 0.187 1.67 0.13 1.9 0.154 1.95 0.16 1.84 0.149
72 h 2,188 0.187 1.76 0.138 1.96 0.159 2.02 0.165 2.11 0.17
Table 4 Figure (14b) shows the measured inlet and outlet temperatures,

PI algorithm, detailed parameter identification.

As Rp PsCs
Exact Estimated Exact Estimated Exact Estimated
Layerl 2.5 2.49 0.19 0.2 3.3 M 32M
Layer 2 1 0.99 0.25 0.24 1.4 M 1.38 M
Layer 3 3 2.99 0.18 0.19 2.14 M 2.04 M
Consolidation :
' /\_/ z=0m
Mixed, low Sandy suppletich layer /\/ 2= —1m
Low Fine grained salid. shells /\/ 2= —4m
Medium Peaty and clayc;' /\/ z=—6m
Medium Fine sand, silty :clay with
) organic matter ! /\/ z=—-13m
Medium Medium coarseisand with
: fine gravel E /\/
Layered, high Medium cnal';e)iﬁlf(f\_\ilfl_lﬁédiﬁﬁf -
i coarse grayef /\/
Medium Fine §!|il’(|. clayey /\/
High ;k’&uun coarse sand with fine gravel

Fig. 13. Schematic presentation of the TRT given by Witte et al. [1]

involves noise. The backcalculation results are given in Table 5
(Column Parameter Identification). It shows that the backcalculated
thermal conductivities are rather close to the laboratory results. The
weighted average of the backcalculated values of all layers is
2.16 W/(m.K).

together with the theoretical outlet temperature calculated based on the
backcalculated thermal conductivities. The theoretical outlet tempera-
tures were calculated in two ways: based on the effective thermal
conductivity (2.01 W/(m.K)), and based on the detailed thermal con-
ductivities, as given in Table 5 (Column Parameter Identification). The
figure obviously shows a very good matching between the measured
temperatures and the computed from both ways. This gives the im-
pression that backcalculating the effective thermal conductivity is suf-
ficient to produce accurate results; avoiding thus the need for detailed
backcalculations. This argument has been highlighted in literature, see
for example Lee [51]. However, matching accurately the fluid outlet
temperature does not necessarily reflect the accuracy in calculating the
temperature distribution in the soil mass. Figure (14c) shows the as-
sociated temperature profiles in the soil mass in the z—direction, 10cm
away from the BHE. The temperature profiles are computed at the end
of heat injection to the soil and the end of heat extraction. The figure
clearly shows that calculations based on the detailed parameter iden-
tification exhibit different temperature distributions in the soil layers,
depending on their thermal conductivities. This implies that relying on
the effective thermal parameters might be useful for individual GSHP
systems, but for regional GSHP systems where the thermal interaction
between adjacent boreholes is crucial, knowing the detailed thermal
properties of the soil layers is unavoidable.

7. Conclusions

The thermal response test (TRT) is an effective tool for quantifying
the thermal parameters of the ground that form the basis for designing
shallow geothermal systems. Despite the bulk of interpretation algo-
rithms to interpret the TRT results, their accuracy and validity are
limited to the duration of the test and the noise level in the measured
data. This paper introduces a new parameter identification algorithm

Table 5
TRT field and laboratory data versus backcalculated.
TRT Witte et al. [1] Parameter Identification
L Range from Laboratory | Effective  Detailed estimation
apers literature samples estimation (8 readings)
Soil type Thickness (m) Min Max
1 Sandy suppletion layer 1 1.11 1.25 2.265 2.1
2 Fine grained sand, shells 3 0.58 1.75 2.535 2.26
3 Peaty and clayey 2 0.9 1.32 1.39% 1.5
4 Fine sand, silty clay with organic matter 7 1.091 1.13
5 Medium coarse sand with fine gravel 5 1.73 5.02 2.447 201 2.34
6  Medium coarse sand with medium coarse gravel 9 1.73 5.02 2.78 2.79
7  Fine sand, clayey 2 1.34 4.8 2.8
8  Medium coarse sand with fine gravel 1 1.73 5.02 2.868 2.85
Weighted average 1.19 34 2.1%* 2.16

e is the mean of two readings at 4 and 6 m.
**Normal average of all the values.
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Fig. 14. a) supplied power, b) inlet and outlet temperatures, c) soil temperature in z direction at radial distance 10 cm from the BHE.
that overcomes most of current limitations. It constitutes a semi-ana- Rafid Al-Khoury: Conceptualization, Methodology, Supervision,

lytical forward model based on the spectral element method and an
inverse model based on the interior-point optimization.
Important features of the PI algorithm are:

1. It can handle fluctuating heat pump power.

2. It can interpret data obtained from multiple heat extraction or in-

jection signals for heating or cooling modes.

It can produce accurate backcalculation for short and long duration

experiments.

. It can handle multilayer systems.

. It can identify multiple parameters.

. It is accurate and computationally efficient, stable and has a high
convergence rate. Additionally, the numerical experiment on the
multilayer system and the verification example demonstrated that
the proposed PI algorithm has remarkable uniqueness even for
multiple parameter identification. These features (accuracy, com-
putational efficiency, stability, high convergence rate and unique-
ness) constitute the essence of any parameter identification tech-
nique. They are manifested in the proposed algorithm due to the
novel coupling between the spectral element method and the in-
terior-point optimization method together with the Euclidean norm.

3.

)]

In practice, these features can help in:

. Reducing the TRT cost by applying short duration experiments. The
proposed forward model is accurate at both, the highly transient
period of TRT and its steady state. This makes the backcalculation
possible for almost any duration.

. Facilitating better GSHP design. Knowing the detailed soil mass
parameters yields accurate calculation of the temperature distribu-
tion in the soil mass, making the PI particularly suitable for regional
GSHP systems design. Combining this parameter identification
technique to a heat pump optimization tool such as that of Jin and
Spitler [52], and to energetic, exergetic and economic performance
optimization tools, such as those of Ozgener and Hepbasli [2], Conti
[3] and Verrax [4], would lead to optimal GSHP designs.

In spite of the extensive testing of the proposed PI algorithm against
noisy data and experimental measurements, it yet requires a study ex-
amining its uniqueness in handling accurate laboratory and field mea-
surements constituting different soil types, heat pulse durations and
noise levels.
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