
 
 

Delft University of Technology

A computationally efficient thermo-mechanical model for wire arc additive manufacturing

Yang, Yabin; Zhou, Xin; Li, Quan; Ayas, Can

DOI
10.1016/j.addma.2021.102090
Publication date
2021
Document Version
Accepted author manuscript
Published in
Additive Manufacturing

Citation (APA)
Yang, Y., Zhou, X., Li, Q., & Ayas, C. (2021). A computationally efficient thermo-mechanical model for wire
arc additive manufacturing. Additive Manufacturing , 46, Article 102090.
https://doi.org/10.1016/j.addma.2021.102090

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.addma.2021.102090
https://doi.org/10.1016/j.addma.2021.102090


A Computationally Efficient Thermo-mechanical Model for Wire Arc Additive
Manufacturing

Yabin Yanga,b,∗, Xin Zhouc, Quan Lid, Can Ayase,∗

aSchool of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
bGuangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Guangzhou, China

cScience and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi’an, China
dCapital Aerospace Machinery Corporation Limited, Beijing, China

eDepartment of Precision and Microsystems Engineering, Faculty of Mechanical, Maritime and Material Engineering, Delft University of
Technology, Delft, the Netherlands

Abstract

Residual stresses and distortions are major obstacles against the more widespread application of wire arc additive
manufacturing. Since the steep temperature gradients due to a moving localised heat source are inevitable in this
process, accurate prediction of the thermally induced residual stresses and distortions is of paramount importance. In
the present study, a computationally efficient thermo-mechanical model based on a semi-analytical thermal approach
incorporating Goldak heat sources is developed for the process modelling of wire arc additive manufacturing. The
semi-analytical thermal model makes use of the superposition principle, and thereby decomposes the temperature
field into an analytical temperature field to account for the heat sources in a semi-infinite space and a complementary
temperature field to account for the boundary conditions. Since the steep temperature gradients are captured by the
analytical solution, a coarse spatial discretisation can be used for the numerical solution of the complementary T̂
field. Thermal evolution is coupled to an elasto-plastic mechanical boundary value problem that computes the thermal
stresses and distortions. The accuracy of the proposed model is evaluated extensively by comparing the thermal and
mechanical predictions with the corresponding experimental measurements as well as the simulation results obtained
by a non-linear transient model from the literature. A thin wall structure with a length of 500 mm and consisting of 4
layers is modelled. The peak normal stress along the deposition direction can be predicted with less than 10% error.
Furthermore, the simulations show that the part distortions are very sensitive to the boundary conditions.

Keywords: Wire arc additive manufacturing, thermo-mechanical modelling, computationally efficiency, Goldak heat
source.

1. Introduction

Wire Arc Additive Manufacturing (WAAM) is a wire-based welding process, which has recently emerged as a
prominent additive manufacturing technique to fabricate large metallic components. In WAAM, metallic material of
choice is deposited in the form of beads at designated positions by melting a filler wire using electric arc as the heat
source. The heat source path is controlled by a robotic arm to build 3D objects. WAAM is suitable for a wide range
of materials, such as mild steel, titanium, and aluminium [1]. Compared to Laser Powder Bed Fusion (LPBF), the
deposition rate of WAAM (2 – 10 kg/hour) is two orders of magnitude higher whereas the minimum feature size is
also considerably bigger [2]. As a result, WAAM allows for the production of large scale products up to several
meters.

Localised high energy input during the WAAM process leads to steep temperature gradients in the vicinity of
the moving heat source. As a result, substantial levels of thermally induced residual stresses develop within the
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component. Residual stresses lead to undesired distortions during subsequent machining operations and when cutting
the part from the baseplate [3, 4]. Although residual stresses are unavoidable, proper process parameters and, a
favourable deposition path can keep the residual stresses and the distortions below an acceptable level. Since it is
expensive and time consuming to optimise process parameters and deposition path by experimental trial and error,
modelling and simulation play a critical role for this purpose.

Numerical methods accounting for the complex, small-scale physical phenomena such as the melting of the elec-
trode, droplet formation [5], fluid flow and heat transfer within the melt pool [6] are not feasible for modelling
part-scale residual stresses and distortions due to the unacceptable computational costs associated. Finite element
(FE) method, on the other hand, is by far the most widely used tool for this purpose. FE models analysing thermo-
mechanical evolution combined with an element activation scheme to mimic the growing domain during the AM
process are commonly used to predict the overall residual stresses and distortions, e.g. [7, 8]. In such FE models,
phase transitions within the melt pool are usually neglected as a second-order effect [9]. For instance, FE modelling
studies on WAAM presented by Zhao et al. [10] and Bai et al. [11] reported notable accuracy while neglecting the
phase transitions.

The interaction between the heat source and the part being built can also be simplified by a distribution of heat flux
with unit W/m2 or power density with unit W/m3. A 2D surface heat source, which assumes a Gaussian distribution
of the heat flux, is first suggested by Pavelic et al. [12] and subsequently widely used in many studies, e.g. [13, 14].
However, this 2D surface source does not account for the depth of penetration of the heat source and, hence a 3D
volumetric heat source is more realistic. Among the various 3D volumetric heat source models, the double semi-
ellipsoidal heat source presented by Goldak et al. [15] is the most widely accepted one in simulating the welding
based processes. Goldak source captures the steeper temperature gradients in front of the heat source compared to
those at the trailing edge of the melt pool. Ding et al. [16] developed a thermo-mechanical model using Goldak heat
source for simulating WAAM, and the predicted temperature histories, residual stresses and deformations agreed well
with the experimental measurements [16].

However, a common problem for these FE models, including those for other metal additive manufacturing tech-
niques, such as LPBF, is that the computational costs associated remain to be high. This is mainly due to the temporal
and spatial mismatch between the heat source and the part inherent to AM [17, 18]. For WAAM, the heat source
typically has a characteristic size on the order of several millimetres, while the dimension of the built part is on the
order of meters. The total building time can be as long as several hours or days, while melt pool can cool down to
room temperature within seconds to minutes. The above mentioned mismatch of time and length scales in the problem
dictates a very fine spatial/temporal discretisation for a numerical solution of the heat equation thereby resulting in
computationally intractable numerical models. In this regard, Ding et al. [16] developed a so-called ”steady-state”
thermo-mechanical model for WAAM aiming to improve the computational efficiency. In their ”steady-state” mod-
el, the thermal problem is analysed with a single FE solve, based on the observation that a steady state of thermal
history is usually attained in a long weld. Compared to its transient counterpart, the computational efficiency of the
“steady-state” model is remarkably higher. However, this ”steady-state” approach is limited to a long welding based
process only. Ding et al. [16] justified the suitability of steady-state heat equation for a welding length of 500 mm.
In a typical welding based additive manufacturing process, the welding path typically varies, e.g. the contour path
or spiral path [19], and a steady-state of the thermal history may not be established. Therefore, a thermo-mechanical
model which is capable of describing the WAAM process, not only limited to long welding, with notable accuracy
and computational efficiency is a quintessential knowledge gap.

Yang et al. [20] developed a semi-analytical thermal approach and demonstrated that it is a computationally
efficient and accurate scheme for thermal modelling of LPBF. In this approach, the moving heat source is discretised
into many individual point heat sources. The closed-form analytical solution for each point heat source is known in
a semi-infinite space. This analytical solution is then utilised to capture steep temperature gradients in the vicinity
of the heat source. Boundary conditions (BCs) are enforced with a complimentary correction field, which is solved
numerically. The key advantage of the semi-analytical approach is that the steep temperature gradients in the vicinity
of a point heat source are captured by the analytical solution, independent of the spatial discretisation applied for
the complementary correction field. Consequently, it is not necessary to use a very fine spatial discretisation to
resolve the temperature fields associated with the point heat source. In contrast, an accurate solution can be obtained
with relatively coarse mesh, which scales with the part dimensions, and the computational efficiency is significantly
improved.
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In LPBF, the part is produced in a layer-by-layer fashion along a fixed building direction orthogonal to the base-
plate. However, in WAAM the building direction may vary during the process due to the capability provided by
the robotic arm and the absence of loose powder covering the part. Hence in WAAM, the building direction is not
necessarily fixed and thus not always orthogonal to the baseplate. Nevertheless, in practice, still, the most common
way to build a component is in a layer-by-layer manner for a given building direction. In this paper, we adopt the
semi-analytical approach to model the thermal evolution during the WAAM for a given building direction. We incor-
porate the Goldak heat source into the fully transient semi-analytical approach presented in [20] and further construct
a computationally efficient thermo-mechanical model to calculate the residual stresses and deformations. Besides,
in [20] the accuracy of the semi-analytical model was only validated by comparing the melt pool dimensions with
the experiments in the literature. In the present paper, the accuracy of the proposed model is more directly evaluated
by comparing the predicted temperature histories, stresses and distortions with the experiment performed by Ding et
al. [16]. The computational cost of the proposed model is also reported.

The outline of the paper is as follows. Section 2 details the proposed superposition based semi-analytical model
and explains how this model is applied for modelling the thermal histories of the WAAM process. The mechanical
model is also briefly explained in this Section. In Section 3, the experiment conducted by Ding et al. [16], which is
employed to validate the accuracy of the proposed model is detailed. The numerical parameters used in the proposed
model are also carefully determined. In Section 4, the simulation results of the proposed model are summarised, and
the accuracy of the proposed model is evaluated by comparing the predicted thermal histories, residual stresses and
distortions with the corresponding experimental measurements. The article concludes with a reiteration of the most
salient points of the study.
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Figure 1: Schematic illustration of the superposition principle. (a) A continuum body containing N point heat sources
is subject to Dirichlet BC on the boundary ∂Vκ and Neumann BC on the boundary ∂VΓ. The temperature due to the N
heat sources can be decomposed as the (b) temperature field T̃ due to N point heat sources in an infinite space and the
(b) complementary correction field T̂ to account for the BCs.

2. Model Description

WAAM process is a one-way coupled thermo-mechanical problem, which implies the effect of mechanical fields
such as stress and strain on the temperature field is negligible. Therefore, for the proposed model, the thermal response
is calculated first and used as an input to calculate the mechanical fields. In Section 2.1, the semi-analytical method
for solving the heat equation based on the superposition principle is briefly presented. The semi-analytical approach
employed for modelling WAAM is then described in Section 2.2. The mechanical model is briefly explained in Section
2.3.

2.1. Semi-analytical thermal approach
Consider the body V illustrated in Fig. 1a which contains N instantaneous point sources. Source I is activated at

time instance t = t(I)
0 . The temperature response of body V to the N heat sources is governed by
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ρcp
∂T
∂t

= ∇ · (k∇T ) + Q̇, (1)

where T is the temperature, Q̇ is the rate of heat input, i.e. the source term. The material density, constant-pressure
specific heat and conductivity are represented by ρ, cp and k, respectively. If these thermal properties are considered
as temperature independent constants, Eq. (1) becomes

∂T
∂t

= α∇2T +
Q̇
ρcp

, (2)

with the thermal diffusivity defined as α = k/ρcp.
Now consider Dirichlet BC is enforced on some portion of the boundary ∂Vκ while Neumann BC is applied on the

remaining boundary ∂VΓ, as expressed by

T = T0, on ∂Vκ, (3a)

k
∂T
∂xi

ni = Φ(T ), on ∂VΓ, (3b)

where T0 is the prescribed temperature and Φ(T ) is the prescribed heat flux which can be a function of temperature.
The xi component of the outward unit normal of ∂VΓ is represented with ni, where i = 1, 2 in 2D and i = 1, 2, 3 in 3D.
The initial temperature T (xi, t = 0) is known represented with Tini(xi).

Since Eq.(2) is linear, granted Φ(T ) is a linear function of temperature T , and neglecting the phase transitions, the
temperature field T can be obtained using the superposition principle [21, 22], which is given by

T = T̃ + T̂ . (4)

As illustrated in Fig. 1b, the T̃ field is the temperature field due to the I = 1, 2, ...,N heat sources in the infinite space
expressed as

T̃ (xi, t) =

N∑
I=1

T̃ (I)(xi, t), (5)

where T̃ (I) is the temperature field due to heat source I in the infinite space. Since the closed form solution of T̃ (I) is
known, Eq. (5) can be calculated analytically.

The BCs associated with the finite dimensions of body V are accounted for with the complementary temperature
field T̂ (see Fig. 1c), which is governed by

∂T̂
∂t

= α∇2T̂ , (6)

with the BCs

T̂ = −T̃ + T0, on ∂Vκ, (7a)

k
∂T̂
∂xi

ni = −k
∂T̃
∂xi

ni + Φ(T ), on ∂VΓ. (7b)

Eq. (7a) and Eq. (7b) are direct consequences of Eq. (3a) and Eq. (3b), respectively. The initial condition at t = 0
reads

T̂ (xi, 0) = Tini(xi). (8)

Provided T̃ and its gradient are finite on boundary surfaces ∂V , Eqs. (6 –8) define a smooth problem. Consequently,
its numerical solution with FE requires the element size scaling with the dimensions of the body V .
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Figure 2: (a) A moving heat source is applied on the top surface ∂V (P)
top of the body V , which comprises the part V (P)

and the baseplate V (B). The total temperature can be decomposed as the superposition of the (b) field T̃ , which is
the temperature due to a set of point heat sources in a semi-infinite space, and the (c) complementary field T̂ , which
accounts for the BCs. In (b), the straight line from source I = 2 to point P1 is confined within body V , which satisfies
the “convexity” requirement. However, the straight line from source I = 2 to point P2 violates the “convexity”
requirement.

2.2. Thermal modelling of WAAM

It remains to utilise the semi-analytic approach to model the thermal evolution of a part during WAAM. For that
purpose, we consider a 3D body V , which consists of the part V (P) and the baseplate V (B), as shown in Fig. 2a. The
boundary surfaces of body V include the top and lateral surfaces of part V (P), denoted as ∂V (P)

top and ∂V (P)
lat , respectively,

and the top, lateral and bottom surfaces of the baseplate V (B), denoted as ∂V (B)
top , ∂V (B)

lat , and ∂V (B)
bot , respectively. The

baseplate and the part are assumed to have the same thermal properties. We assume the part is built in a layer-by-layer
manner along a fixed building direction that coincides with the x3 axis. Therefore, a moving heat source is introduced
on the top surface ∂V (P)

top of the part.
Recall that in the semi-analytical approach, the governing equation, i.e. Eq. (2), is linear which requires the thermal

material properties to be constant. Although for most materials the conductivity k and specific heat cp are temperature
dependent, it has been demonstrated that the temperature field predictions, as well as the melt pool dimensions can
still be well-approximated with appropriate fixed values of k and cp [20, 23, 24].

Radiation is neglected since the amount of heat lost due to radiation is negligible in comparison to the amount
of heat transferred by conduction and convection. WAAM process takes place in open air, and a cooling system is
usually employed to prevent heat accumulation. There are various cooling approaches used in WAAM, see e.g. [25]
for details. Among these approaches, cooling the baseplate is one of the most convenient methods widely used in
practice. This can be achieved for instance by means of placing a water cooling system underneath the baseplate
(see e.g. [16]). Ding et al. [16] argued that the additional heat loss due to this cooling system can be modelled by
increasing the value of the respective convection coefficient. Therefore, in the present model, convection BC is also
applied to the bottom surface of the baseplate ∂V (B)

bot with a convection coefficient to mimic the cooling effect. For the
other boundary surfaces, convection BC is also applied albeit with a smaller value of convection coefficient describing
the heat transfer between the body and the surrounding atmosphere. Consequently, Neumann BCs are enforced on all
boundary surfaces of body V , and the function Φ(T ) appeared in Eq. (3b) is given by

Φ(T ) = h(T − T∞), (9)

where h is the temperature independent convection coefficient to be determined for surfaces and T∞ is the room
temperature.

Phase transitions are not accounted for in the semi-analytical approach, despite melting takes place when the
temperature exceeds the melting point Tm and vapourisation may occur with further temperature increase. This is be-
cause phase transitions introduce non-linearity in the governing equation and thus prohibit the use of the superposition
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Figure 3: Schematic illustration of the geometry of a Goldak double semi-ellipsoidal heat source, which consists of
the front semi-ellipsoid and the rear semi-ellipsoid. The centres of the two semi-ellipsoids are both S i.

principle. It has been shown in [20, 23, 24] that considerable accuracy can be achieved while neglecting the phase
transitions. The solid phase transformations are also neglected in the proposed model. These solid phase transforma-
tions seem to have an insignificant effect on the residual stresses for certain materials (such as mild steel) both for
welding [26] and WAAM [16]. However, for some other materials (such as medium carbon steel [26]), the solid phase
transformations might have a considerable effect on the residual stresses and distortions. Hence, the proposed model
is suitable for the materials whose residual stresses and distortions are insensitive to the solid phase transformations in
WAAM. As a result, with constant thermal properties, linear BCs and neglecting phase transformations, the thermal
histories during WAAM are governed by the linear Eq. (2). Consequently, the semi-analytical approach based on the
superposition principle is applied to the associated boundary value problem.

The decomposition of temperature T reminiscent to Fig. 1 is illustrated in Fig. 2. We consider the moving heat
source as shown in Fig. 2a, which is discretised by a finite number of instantaneous heat sources (see Fig. 1b). Heat
source I, where I = 1, 2, ...,N, is activated at the moment t(I)

0 and the subsequent heat source I + 1 is activated at the
moment t(I+1)

0 = t(I)
0 + ∆t. The time step ∆t is the duration between the activation of two consecutive sources. If the

initial position of the moving heat source is S (0)
i and the velocity of the robot arm is vi, then the position of heat source

I is S (I)
i = S (0)

i + vit
(I)
0 .

For the field T̃ , a semi-infinite space, which is bounded by the top surface ∂V (P)
top of the part is considered. The

field T̃ is then the temperature field due to all the heat sources in this semi-infinite space. For each discretised heat
source, the Goldak double semi-ellipsoidal model is used. As shown in Fig. 3, the heat source profile consists of
two semi-ellipsoids (the front semi-ellipsoid and the rear semi-ellipsoid). For any given source I, the corresponding
analytical solution T̃ (I) in a semi-infinite space reads

T̃ (xi, t)(I) =
B∆t
D(I) λ

(I)
b (x2)λ(I)

c (x3)[p(I)
r (x1) + p(I)

f (x1)], (10)

where
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B =
3
√

3PA
ρcpπ3/2 ,

D(I) =

√
(3η(I) + b2)(3η(I) + c2),

λ(I)
b (x2) = exp(−

3(S (I)
2 − x2)2

3η + b2 ),

λ(I)
c (x3) = exp(−

3(S (I)
3 − x3)2

3η + c2 ),

p(I)
r (x1) =

fr√
3η + a2

r

exp(−
3(S (I)

1 − x1)2

3η + a2
r

)(1 − erf(
ar(x1 − S (I)

1 )√
(3η + a2

r )ηρcp
)),

p(I)
f (x1) =

f f√
3η + a2

f

exp(−
3(S (I)

1 − x1)2

3η + a2
f

)(1 − erf(
a f (x1 − S (I)

1 )√
(3η + a2

f )ηρcp

)),

η(I) = 4α(t − t(I)
0 ).

(11)

The detailed derivation of Eqs. (10) and (11) can be found in [27]. In Eq. (11), P is the power of the heat source.
The non-dimensional coefficient A accounts for the absorption of the heat source energy and energy loss, such as due
to radiation and phase transitions, which is not explicitly accounted for in the model. For a constant wire feed rate
during the entire WAAM process, the parameter A can be assumed to be constant and is determined by calibrating the
simulation temperature profiles with the experimental results. The parameter η(I) is to represent the time elapsed after
the heat source I has been created. The term xi denotes the coordinates of the point of interest and S (I)

i is the centre of
the Goldak heat source with index I, as shown in Fig. 3. For the Goldak heat source that is schematically illustrated
in Fig. 3, the semi-axes parallel to the x1 axis of the front and the rear semi-ellipsoids are a f and ar, respectively. For
both the front and the rear semi-ellipsoids, the semi-axes parallel to the x2 and x3 axes are b and c, respectively. The
two factors f f and fr characterise the fractions of the heat deposited in the front and rear semi-ellipsoids, which satisfy
f f + fr = 2. It can be seen in Eqs. (10) and (11) that the temperature T̃ (xi, t)(I) is related to the effective power PA,
thermal properties k, ρ, cp, semi-axes of the Goldak heat source (ar, a f , b, c), time term η(I), and the distance from the
centre of the Goldak heat source to the point of interest, (S (I)

i − xi)2 appearing in functions λ(I)
b , λ

(I)
c , p(I)

r and p(I)
f . A

suggested way of estimating the semi-axes of the Goldak heat source (ar, a f , b, c) based on the metallographic profile
of the welding bead can be found in [9]. Finally, the analytical solution of T̃ can be obtained by the summation of
Eq. (10) using Eq. (5). The velocity v of the moving heat source is accounted for while determining the total number
of the heat sources N as

N =
L

v∆t
, (12)

where L is the length of the deposition path of interest.
For the complementary field T̂ , Eq. (6) is employed for a domain as shown in Fig. 2c. The BCs for T̂ is expressed

as

k
∂T̂
∂xi

ni = −k
∂T̃
∂xi

ni + h(T − T∞), on ∂V (B) and ∂V (P). (13)

Recall that for the bottom surface ∂V (B)
bot of the baseplate, a greater value of convection coefficient h is assigned

compared to the other boundary surfaces to simulate the cooling system underneath the baseplate. It should be noted
that for the top surface ∂V (P)

top of the part, the gradient of T̃ along the normal direction of ∂V (P)
top , i.e. ∂T̃/∂x3, is zero,

which is a direct consequence of no flux BC on the boundary of the semi-infinite space considered for T̃ .
Because the analytical field T̃ is intrinsically related to the distance from the heat source to the point of interest

and the assumption that the semi-infinite space has homogeneous thermal properties k, ρ and cp, the superposition
principle requires the body V to have a convex shape. This means a straight line from any heat source to any point on
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the boundary ∂V should be confined within body V , i.e. the straight line should not cross through any boundary. We
refer to this as the ”convexity” requirement.

It is important to note that in [20], Yang et al. utilised this semi-analytical approach to simulate the temperature
histories of a LPBF process. A convex part was considered and the baseplate was not explicitly included in the analysis
and thereby the ”convexity” requirement was satisfied. However, in this paper, since the baseplate is included in the
analysis, the ”convexity” requirement cannot be strictly satisfied. It can be seen in Fig. 2b that for all the material
points on the boundary surfaces of the part V (P) (such as point P1 shown in Fig. 2b) and some material points on the
lateral surface ∂V (B)

lat and bottom surface ∂V (B)
bot of the baseplate, the ”convexity” requirement is satisfied. On the other

hand, for all the material points on the top surface ∂V (B)
top of the baseplate, the straight lines connecting these points

(such as the condition for point P2 shown in Fig. 2b) to the heat sources cross through ∂V (P)
lat . Therefore, directly

applying Eq. (13) to enforce the BCs in T̂ introduces some error.
For the material points on the lateral surface ∂V (B)

lat and bottom surface ∂V (B)
bot of the baseplate, the BCs as appeared

in Eq. (13) can still be employed, if the baseplate V (B) is sufficiently large compared to the part V (P). This is because T̃
and its gradients decrease rapidly away from the heat sources. Therefore, for a large baseplate the distances between
the heat sources and the points on the surfaces ∂V (B)

lat and ∂V (B)
bot are sufficiently large. Henceforth, the values of ∂T̃/∂xi

in Eq. (13) for surfaces ∂V (B)
lat and ∂V (B)

bot are very small. Therefore, even though some points on ∂V (B)
lat and ∂V (B)

bot violate
the “convexity” requirement, it can be argued that the corresponding error introduced by using Eq. (13) is negligible.

The violation of the convexity requirement associated with the top surface of the baseplate ∂V (B)
top is more notable.

However, since the T̃ field decreases away from the sources, directly using Eq. (13) would slightly underestimate the
temperature. To compensate for this underestimation and to avoid making the proposed model too complex, the term
∂T̃/∂xi in Eq. (13) is simply neglected for ∂V (B)

top . The error introduced by this operation is expected to decrease rapidly
with increasing built height, since the term ∂T̃/∂xi would rapidly decrease with the increasing distance between the
heat sources and the material points on ∂V (B)

top .
Consequently, the BCs for solving T̂ are given as

k
∂T̂
∂xi

ni = − k
∂T̃
∂xi

ni + h(T − T∞), on ∂V (P), ∂V (B)
bot and ∂V (B)

lat , (14a)

k
∂T̂
∂xi

ni = h(T − T∞), on ∂V (B)
top . (14b)

The closed form expression for ∂T̃/∂xi can be attained by taking the derivative of Eq. (10) and is given in Ap-
pendix A. At the beginning of the simulation while building the first layer, the initial temperature Tini is set to be the
room temperature. After a layer is completed, the geometry of the part V (P) is updated hence the next solid layer is
included in the problem domain. For a typical WAAM process, a cooling period succeeds the completion of each
layer so that the part cools down to a sufficiently low temperature value. Typically a certain range of interlayer tem-
perature is maintained by utilisation of a cooling system and adjusting the interlayer waiting time to avoid deleterious
microstructural precipitations or phase transformations. The cooling period is also modelled by the proposed model.
Since the influence of a point heat source on the temperature field decreases rapidly with time, the contributions of
the heat sources generated for the processing of the previous layer are neglected for the subsequent layers. This is
especially a justified assumption for the large scale part and the long cooling period. Consequently, before simulating
the next layer, the heat sources of the previous layer are deleted from the simulation. The temperature field at the end
of the cooling period is set to be the initial temperature of the system for the calculation performed for the next layer.

2.3. Mechanical model

Once the temperature history T (xi, t) of the part is obtained, the corresponding thermal strain εth
i j can be calculated

as

εth
i j = δi j

∫ T

Tref

αth(T )dT, (15)

8



where δi j is Kroneckers delta and Tref is the reference temperature, which is taken as the room temperature. The
thermal expansion coefficient is denoted as αth, which is temperature dependent.

The total strain field εi j is expressed as

εi j = εe
i j + ε

p
i j + εth

i j , (16)

where εe
i j and εp

i j are the elastic and plastic strain, respectively.
The elasto-plastic constitutive law is employed and geometrically linear kinematics is assumed. The von Mises

yield criterion with isotropic linear hardening is used to model the plasticity, which is given by

f yield = σVM − σY (εp
e ,T ), (17)

where σVM is the von Mises stress and εp
e is the equivalent plastic strain. The yield stress is denoted as σY and the

yielding occurs at f yield = 0.
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Figure 4: Schematic illustration of the problem. (a) The WAAM part built by Ding et al. [16] and the (b) 2D illustration
of the cross-section A-A. The temperature evolution at selected points G1, G2 and G3 were measured by Ding et
al. [16] using thermocouples. The residual stresses of the material points along the red dashed line were measured by
Ding et al. [16] using neutron diffraction.

Table 1: Heat source parameters.

a f (mm) ar (mm) b (mm) c (mm) f f (-) fr (-)
2 6 2.5 3 0.6 1.4

3. Problem Description

An experiment conducted by Ding et al. [16] is examined to assess the predictions of the proposed semi-analytical
model. Therefore, our problem formulation follows this experiment. Ding et al. [16] deposited four layers of mild
steel S355 with the layer thickness of 2 mm, as illustrated in Fig. 4. The power of the heat source was 2245 W while
its speed was 8.33 mm/s. The wire feed rate was 10 m/min. The material was deposited along the centre line of the
baseplate (see Fig. 4a) for building consecutive layers. The cooling time allowed after the deposition of each layer was
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Table 2: Mechanical properties of mild steel S355 [9, 28] as a function of temperature, where E is the Young’s
modulus, ν is the Poisson’s ratio, αth is the thermal expansion coefficient, σY is the yield strength.

T (oC) E (GPa) ν αth(oC−1)
σY (εp

e = 0) (MPa)
deposited material

σY (εp
e = 0.01) (MPa)

deposited material
σY (εp

e = 0) (MPa)
baseplate

σY (εp
e = 0.01) (MPa)
baseplate

20 206 0.29 1.2×10−5 450 520 350 420
100 203 0.29 1.2×10−5 450 520 330 400
200 201 0.295 1.2×10−5 420 500 305 380
300 200 0.295 1.2×10−5 390 450 270 350
400 165 0.3 1.2×10−5 320 370 230 290
500 100 0.3 1.2×10−5 260 300 180 230
600 60 0.32 1.2×10−5 170 215 125 160
700 40 0.32 1.2×10−5 60 100 60 100
800 30 0.35 1.2×10−5 50 80 60 100
900 20 0.35 1.2×10−5 50 50 60 60

1000 10 0.39 1.5×10−5 50 50 60 60

400 s. The temperature histories of points G1, G2 and G3 (see in Fig. 4a and b) were measured using thermocouples.
The residual stress components σ11, σ22 and σ33 were measured using neutron diffraction along the red dashed line
(see Fig. 4b), located at cross-section A-A, and 2 mm below the interface between the part and the baseplate.

Ding et al. [16] also utilised a non-linear transient thermo-mechanical FE model to simulate the above described
WAAM process; see [9] for details. In this model [9, 16], Eq. (1) is used to calculate the temperature field. The
Goldak heat source with a double semi-ellipsoidal power density distribution is employed. The material deposition is
modelled using the inactive element approach. This implies the elements to be activated sequentially, following the
motion of the heat source as the material is deposited. Finite elements that are not yet activated are excluded from the
FE assembly and solution. The mechanical analysis was performed considering an elasto-plastic material as described
in Section 2.3. The temperature dependences of both thermal and mechanical properties were accounted for.

For our proposed semi-analytical model recall that the Goldak heat source is also employed. The Goldak heat
source parameters that are given by Ding et al. [16], tabulated in Table 1 are used for this purpose. The inactive
element scheme is employed but in our scheme, the elements of an entire layer are simultaneously activated before the
activation of the heat source. The convection coefficient h for the bottom surface of the baseplate is set to 300 W/m2K
which accounts for the cooling system, whereas it is assigned to be h = 5.7 W/m2K for other boundaries following
Ding et al. [9, 16]. The conductivity, density and specific heat are chosen as k = 48.6 W/mK, ρcp = 3.9 MJ/m3K,
respectively. These values correspond to 200 oC. The coefficient A is determined as A = 0.78. The values of
the constant thermal properties and coefficient A are determined for model calibration based on a good agreement
attained with the experiments after running a series of numerical trials. It is found that the coefficient A mainly affects
the peak temperature values but has an insignificant effect on the cooling rates. Therefore, the numerical trials are
first performed with a fixed value of coefficient A and varying the thermal properties to reproduce the experimentally
attained cooling rates. After determining the thermal constants, the coefficient A is tuned to have the best match with
the experimentally measured temperature profiles. Determination of the values of k, ρcp and A is further elaborated in
the next section (see also Fig. 8a)

The above given thermal properties are also assigned to the baseplate. The room temperature is taken as T∞ =

25oC and the melting point of mild steel is Tmelt = 1500 oC. Temperature dependent mechanical properties tabulated
in Table 2 [28] are employed in the proposed mechanical model. In the experiment, both the part and the baseplate
were comprised of grades of mild steel and have identical elastic modulus and Poisson’s ratio. However, the part and
baseplate differ in plastic response as can be seen from Table 2.

Ding et al. [16] used a so-called “cut-off” temperature of 1000 oC to avoid difficulties in numerical convergence.
This means the upper limit of the temperature in the mechanical analysis is taken as the “cut-off” temperature and
changes in the mechanical properties above the “cut-off” temperature are hence neglected. To make a fair comparison,
in the present study a “cut-off” temperature of 1000 oC is also implemented.

First, the temporal convergence for the calculation of T̃ field is investigated. For that purpose, we consider a
moving heat source on a very large baseplate, which can be considered as a semi-infinite medium. The temperature
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Figure 5: (a) A moving heat source on a very large baseplate assumed to be a semi-infinite space. The maximum
temperatures T̃max of three selected points with distances d1, d2 and d3 to the moving heat source are investigated. (b)
The parameter φ = |T̃max − T̃ ref

max|/T̃
ref
max is plotted as a function of the time increment ∆t and the corresponding source

density ρs. The reference value T̃ ref
max is calculated for ∆t = 0.001 s. The horizontal axis is plotted in logarithmic scale.

For the ∆t = 0.12 s, the temperatures of the points with distance d1 = 1.25 mm and d2 = 2.5 mm are 1643 OC and
1198 OC, respectively.

field T can be then be directly determined by calculating T̃ . We consider a moving heat source that moves for a total
distance of 100 mm as shown in Fig. 5a. The maximum temperatures attained in this manner at three selected points,
located at distances of d1 = 1.25 mm, d2 = 2.5 mm, and d3 = 5 mm to the middle point of the heat source track, are
calculated as a function of the time increment ∆t. For the point with d1 = 1.25 mm, the distance is almost half of
the minimum semi-axis of the Goldak heat source (a f = 2 mm), while for the point with d3 = 5 mm, the distance is
close to the maximum semi-axis of the Goldak heat source (ar = 6 mm). The parameter φ = |T̃max − T̃ ref

max|/T̃
ref
max is

defined to evaluate the temporal convergence of T̃ as function of ∆t. The reference temperature T̃ ref
max is the maximum

temperature of the point of interest, obtained with a very small time increment of ∆t = 0.001 s. This time increment
corresponds to a linear source density (number of heat sources per unit length, which is defined as ρs = N/L = 1/v∆t)
of ρs = 1.2 × 105 m−1, for a velocity of 8.33 mm/s realised in the experiments conducted by Ding et al. [16].

The quantity φ at the selected points as a function of the time increment ∆t as well as the source density ρs is
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plotted in Fig. 5b. For the point with d3 = 5 mm, T̃ quickly converges at approximately ∆t = 0.24 s. For points with
d2 = 2.5 mm and d1 = 1.25 mm, a smaller value of ∆t is required. When ∆t = 0.12 s, the quantity φ for the point
with d2 = 2.5 mm is less than 0.1, which indicates an error between the temperature T̃ and the reference value to be
less than 10%. For the nearest point with d1 = 1.25 mm, this discrepancy becomes 27%. Further investigation shows
the corresponding temperature T̃ for ∆t = 0.12 s at the point with d1 = 1.25 mm is 1643 oC and T̃ calculated for
the same time increment at the point with d2 = 2.5 mm is 1198 oC. Recall that both of these values are higher than
the ”cut-off” temperature used in the proposed mechanical model. This means the use of time increment ∆t = 0.12 s
will not affect the accuracy of the mechanical analysis. Therefore, to guarantee considerable computational efficiency
without sacrificing the accuracy when calculating the residual stresses and distortions, the maximum time increment
of ∆t = 0.12 s is employed in the remainder of the paper.

The proposed model is implemented using the commercial FE software ABAQUS. For the thermal model, linear
heat transfer brick elements with 8 nodes (DC3D8 in ABAQUS) are chosen while for the thermo-mechanical model,
the element type is the coupled displacement-temperature 8 nodded brick (C3D8RT in ABAQUS). The analytical
field T̃ is calculated using the user subroutine umatht and the thermal BCs are applied using the subroutine d f lux
to solve the complementary field T̂ . An automatic time-stepping scheme is used with a maximum time increment of
∆t = 0.12 s to maintain a convergent source discretisation for T̃ calculation. During the cooling period, since the
temperature values decay smoothly and no heat source is being created, a larger time increment ∆t can be selected.
After a series of numerical trials, it is found that convergence at ∆t = 10 s is still reached. Hence, during the cooling
period, the maximum time increment is set to be ∆t = 10 s. The standard coupled temp-displacement step in ABAQUS
is employed to conduct the one-way coupled thermo-mechanical calculation.

A thermal model with only half of the geometry by exploiting the symmetry in the problem is constructed, as
shown in Fig. 6a. The deposited material has initially meshed with the mesh size of 5 mm × 0.3125 mm × 2 mm. The
mesh size for the baseplate is 5 mm × 5 mm × 2 mm. We also use another coarser mesh for the deposited material,
as shown in Fig. 6b. This is realised by increasing the mesh size of the part in the x2 direction from 0.3125 mm to
1.25 mm. The results that are presented in the next section demonstrate that the temperature field obtained by this
coarser mesh (Fig. 6b) is almost identical to that predicted by the fine mesh shown in Fig. 6a. This implies that the
mesh density in the mesh shown in Fig. 6b is sufficient.

Finally, using the mesh shown in Fig. 6b, a thermo-mechanical model with half of the geometry is constructed,
as shown in Fig. 6c. In the experiment performed by Ding et al. [16], the baseplate was fixed on a backing plate by
clamps on the four corners and the middle points of the edges along the x1 axis of the baseplate. Hence, corresponding
nodes are fixed as shown in Fig. 6c. The backing plate is included in the model as a stationary rigid body. Hard
contact is enforced between the contact surfaces of the backing plate and the baseplate. The backing plate prevents
the movement of the baseplate in the negative x3 direction but does not constrain its movement in the positive x3
direction.

4. Results and Discussions

4.1. Thermal analysis
The temperature histories of points G1, G2 and G3 (see Fig. 4) are shown in Fig. 7. The blue dashed lines

represent the experimental results. The red lines are the simulation results obtained from the semi-analytical thermal
model with the fine mesh shown in Fig. 6a, whereas the black lines are the results obtained with the coarse mesh
depicted in Fig. 6b. Good agreements with the experimental measurements are observed for both mesh densities. The
predicted temperature for point G1 is slightly higher than the thermocouple measurement of Ding et al [16]. This
discrepancy is expected to be mainly because points G1 and G2 are on the top surface of the baseplate, where the
convexity is violated, and point G3 which is at the bottom surface of the baseplate, and the convexity is satisfied. The
influence of non-convexity and the associated error for point G1 is more pronounced since the distance between point
G1 and the moving heat source is smaller than that for point G2. For point G2, the influence of the non-convexity
seems to be negligible, and the corresponding temperature prediction matches very well with the experimental data.
Perfect agreement between the semi-analytical predictions and thermocouple measurements is observed for point G3
in Fig. 7c.

Fig. 8a shows how the coefficient A and thermal properties k and cp influence the predicted temperature histories.
The temperature history at point G2 while building the first layer is plotted in Fig. 8a for selected values of A, k and
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Figure 6: Finite element mesh depicted for half of the WAAM geometry with the (a) fine and (b) coarse mesh for the
part. The baseplate is placed on a “backing plate”, which is modelled as a stationary rigid body. Moreover, nodes on
the baseplate are clamped.
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Figure 7: Temperature histories of points (a) G1, (b) G2 and (c) G3 that are shown in Fig. 4a. The blue dashed lines
denote the experimental measurements reported by Ding et al. [16]. The red and black lines are the simulation results
obtained with the fine (see Fig. 6a) and coarse (see Fig. 6b) meshes , respectively.
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Figure 8: (a) Temperature history of point G2 while building the first layer for selected values of coefficient A and
thermal properties at 200 oC and 700 oC. The blue dots are the experimental measurements reported by Ding et
al. [16]. (b) The non-dimensional parameter ξ which indicates the intensity of heat flux at the top surface of the
baseplate for points G1 and G2 as a function of time.

cp. When the thermal properties corresponding to 700 oC are chosen, the cooling rate has a significant discrepancy
with the experiment whereas the cooling rate observed for the temperature prediction using the thermal properties
corresponding to 200 oC agrees well with the experiment. Note that the predicted peak temperature using the thermal
properties at 700 oC is also not synchronised with the experimentally measured peak. When the thermal properties
corresponding to 200 oC are chosen, it can be observed that both the temperature values and the heating and cooling
rates perfectly match with the experiment upon choosing A = 0.78.

Recall that we neglect the term ∂T̃/∂xi when enforcing the BCs on the top surface of the baseplate, ∂V (B)
top , c.f.

Eq. (14b). In order to quantify the degree of error associated with this assumption for the material points on the top
surface ∂V (B)

top of the baseplate, we define a dimensionless quantity ξ as

ξ =
k

h(Tm − T∞)
∂T̃
∂x3

, (18)

where h = 5.7 W/m2K. In Fig. 8b, ξ is plotted as a function of time, for point G1 and point G2 . Since the only
non-vanishing component of the unit surface normal is n3 for ∂V (B)

top , ξ does not depend on the x1 and x2 components
of ∇T . It can be seen from Fig. 8b that distinct peaks of ξ are present for every layer of deposition. The ξ value peaks
when the moving heat source is at x1 = 250 mm, i.e. when it is the closest to the points of interest: G1 and G2. It can
also be observed from Fig. 8b that the peak value for G1 is higher than that of G2 because G1 is closer to the track of
the heat source. As time proceeds and the successive layers are deposited, the peak value of ξ decreases both for point
G1 and point G2. This confirms the reasoning explained in Section 2.2 for the thermal BCs in Eq. (14b), regarding the
diminishing influence of the gradient of T̃ with increasing part height. It is seen in Fig. 8b that even after four layers
of deposition considered in the present study, high accuracy is anticipated (see Fig. 7) for the proposed model.

The temperature field T̃ , i.e. the temperature due to the Goldak heat sources in a semi-infinite space, and the total
temperature field T = T̃ + T̂ with actual BCs, are depicted in Fig. 9a and b, respectively. Fig. 9 is a snapshot during
the deposition of the third layer. The temperature contour levels above the melting point are shown in white while the
grey contour levels denote temperature values below 50oC. Next, the time evolution of T̃ and T of point G1 and point
G2 are plotted in Fig. 10a and b, respectively. It can be observed both from Fig. 9 and Fig. 10 that consideration of the
BCs is significant. The T is reasonably higher than T̃ , and the cooling rate of T̃ is higher than that of T (see Fig. 10).
Moreover, it can also be seen in Fig. 10a and b that the peak temperature of T̃ for building each layer decreases rapidly
to a temperature close to the initial temperature 25 oC after about 150 s. This indicates that it is valid to assume the
contributions of the heat sources generated for the processing of the previous layer can be neglected for the subsequent
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Figure 9: Snapshots of the (a) temperature field T̃ and (b) the total temperature field T at a time instant during the
deposition of the third layer.
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Figure 10: The temperature field T̃ and the total temperature T of points (a) G1 and (b) G2 as a function of time.

4.2. Mechanical analysis
It remains to predict the residual stresses and the deformations based on the semi-analytical thermal predictions.

Thermal evolution of the body is used as an input to calculate the thermally induced displacement and stress fields.
Recall that the temperature evolution is virtually identical for the two mesh sizes considered. Therefore, the coarse
mesh shown in Fig. 6b is used for the thermo-mechanical calculations in the remainder of the paper. The temperature
histories, mechanical BCs, elasto-plastic constitutive law and thermal expansion coefficient are factors that dictate the
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Figure 11: Residual stress components σ11, σ22 and σ33 along the red dashed line indicated in Fig. 4b after building
(a) a single layer, (b) two layers, and (c) three layers. The clamps are removed in both the experiments and simulations.
The dashed lines are the results from the non-linear model developed by Ding et al. [16].

mechanical response of the body during WAAM. The accuracy of the proposed model will be evaluated by comparing
model predictions with the experiments as well as the findings of the non-linear thermo-mechanical model reported by
Ding et al. [16]. The experimentally measured residual stresses along the red dashed line which is 2 mm beneath the
top surface of the baseplate (see Fig. 4b) after building various numbers of layers are compared with the corresponding
simulation results in Fig. 11. The stress measurements were done upon removing the backing plate from the baseplate.
To capture this in the simulations, the clamps on the three designated points (see Fig. 6c) are removed and the elements
of the rigid stationary backing plate are deactivated. The results reported by Ding et al. [16] based on the non-linear
thermo-mechanical model are also included in Fig. 11.

Table 3: The σ11 (MPa) at x2 = 0 (see Fig. 11) for different layers.

The proposed model Ding’s model [16] Experiments [16]
Layer 1 389.7 336 448.6
Layer 2 334.2 298.9 330.6
Layer 3 313.6 256.9 285.7

Since the material is deposited along the x1 axis, the part is mostly constrained against deforming along the x1
direction. This is also evident from the experimental and simulation results given in Fig. 11. The normal stress along
x1 direction, i.e. σ11, is more prominent than the normal stress components along the x2 and x3 directions. This is
also in line with the typical stress profile observed in a long welding process [29]. Along the x2 direction, between
x2 = −2.5 and x2 = 2.5 mm, which corresponds to the width of the part, the stresses remain more or less constant.
Beyond x2 = 2.5 mm, the σ11 decreases rapidly. This can be rationalised by the decreasing temperature gradient along
the x2 direction away from the heat source located at x2 = 0.

The stress evolution for a single layer of deposition is shown in Fig. 11a, and the predicted σ11 by the proposed
semi-analytical model agrees well with the experiments. For stress components σ22 and σ33, the peak values at x2 = 0
obtained by the proposed model are lower than the experimentally measured values but agree well with the results
from the model of Ding et al. [16]. In Fig. 11b and c, stress profiles in response to the deposition of the second and
third layer are depicted, respectively. The simulation results by the proposed model agree very well with both the
experiments and the simulation results obtained by Ding et al. [16]. As the height of the part increases the predictions
become more in line with experimental measurements reminiscent of the trend seen for the thermal results given in
Section 4.1. The peak values of σ11 at x2 = 0 for different layers obtained by the proposed model, Ding’s model [16]
and the experiments are compared in Table 3. It can be calculated that the error between the predicted peak values
by the proposed model and the experiment for the first layer is approximately 13%, and the same error for the second
and third layers are both smaller than 10%.
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The six stress components along the red dashed line (Fig. 4b) after building the fourth layer are shown in Fig. 12.
The results are obtained by removing the clamps and the backingplate (see Fig. 6). It can be seen that compared to
the normal stress components σ11 and σ22, the shear stress components are found to be insignificant since the thermal
expansions and contractions generate only normal strains, c.f. Eq. (15).

Fig. 13 shows the σ11 distribution after completing the deposition of the fourth layer and subsequently removing
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Figure 13: The distribution of σ11 after building the fourth layer and removing the clamps. The deformed shape of
the WAAM sample, obtained by the (a) proposed model and (b) Ding’s model et al. [9] (reproduced from [9] with
permission). The stress distribution at the cross-section A-A (see Fig. 4) of the WAAM sample perpendicular to
x1 axis, obtained by (c) the proposed model and (d) Ding’s model [9] (reproduced from [9] with permission). The
displacements are amplified by a factor of five in (a) and (b) to improve visibility.
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Figure 14: (a) The distribution of σ11 after building (a) a single layer, (b) two layers, (c) three layers and (d) four
layers with the clamps in place. The backing plate is not shown to improve visibility.

the backing plate. Fig. 13a and c are the results obtained by the proposed model, and Fig. 13b and d are the simulation
results from Ding [9]. In Fig. 13c and d, σ11 distribution for the cross-section A-A is illustrated. Similar stress
distributions are attained with these two models. Consequently, the agreement of both models depicted in Fig. 11
along a line in the baseplate can be generalised for the whole domain of calculation. For the part, the stress σ11
decreases in the x3 direction towards the top surface (see Fig. 13c and d). This is due to the stress relaxation facilitated
by bending of the part as shown in Fig. 13a and b, upon detaching the baseplate from the rigid backing plate.

Snapshots of the stress distribution σ11 at different stages of the WAAM process, while the baseplate is still
clamped to the backing plate, are shown from Fig. 14a to d. The part and the baseplate are shown as a cut through the
cross-section A-A (see Fig. 4), i.e. only half of the length is shown. The location of the maximum σ11 is near the top
surface of the part. For instance, after building the second layer, the maximum stress σ11 is observed in the first layer.
This state of stress is partially relieved when the third layer is deposited. Similarly, after building the fourth layer
the maximum σ11 is obtained at the location of the third layer. This is consistent with the simulation results reported
in [30].

The evolution of σ11 and the magnitude of plastic strain ε̄ =
√

2εp
i jε

p
i j/3 as a function of time is plotted in Fig. 15a,

for point G4 on the baseplate. Point G4 is located on the cross-section A-A, and its location is illustrated in Fig. 15a
as an inset. In Fig. 15a, one can observe the successive heating and cooling steps and the associated stress response.
Once the heating of the first layer starts, point G4 endures a compressive σ11 since the thermal expansion due to
temperature increase is constraint by the surrounding cooler regions, and thereby compressive stress is generated.
Recall that as the temperature increases, yield strength decreases and plastic hardening is less pronounced. Therefore,
this compressive stress induces significant plastic strain (see Fig. 15a). As the heat source moves away from point G4,
local cooling at point G4 generates unloading and σ11 turns into tensile from compressive. Plastic strain magnitude
decreases but the level of tensile stress fails to induce significant plastic strain at room temperature. During the rest of
the cooling step, plastic strain magnitude remains constant and tensile σ11 slightly increases due to complete cooling
of the part. Once the heating resumes, this time for the second layer, the same heating-cooling cycle creates the same
stress cycle. However, as the number of layers increases the distance between the heat source and point G4 also

18



increases, and this leads to compressive σ11 not being able to induce plastic strain at point G4. Fig. 15b shows the
contour levels of plastic strain magnitude ε̄ distribution after completing the deposition of four layers. The first layer
has the highest ε̄ as it experiences the largest number of thermal cycles, indicating the first layer might be susceptible
to plastic damage. The relatively larger ε̄ at the corners of the baseplate is due to the clamps.
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Figure 15: (a) The evolution of stress σ11 and plastic strain amplitude ε̄ with time for point G4 on the baseplate. The
location of the point G4 is illustrated in the inset with the coordinates (250, 0, 0) mm. (b) The distribution of plastic
strain amplitude ε̄ after building the four layers.

The distribution of stress σ11 on the cross-section A-A, along the x3 axis after completing the fourth layer is
plotted in Fig. 16a. The results obtained with and without detaching the baseplate from the backing plate are both
included in Fig. 16a. The results calculated by Ding [16] are also included. In Fig. 16a, x3 = 0 indicates the interface
between the part and the baseplate. It can be seen that the proposed model and the model by Ding [16] predict similar
trends. There is a significant drop in stress σ11 after removing the baseplate from the backing plate due to the stress
relaxation through bending. The stress jump at the interface between the part and the baseplate is the evidence of
plastic deformation and the different plastic material models that are governing the part and the baseplate.

Fig. 16b shows the x3 component of displacement u3 along the length direction (x1 direction) of the bottom surface
of the baseplate. The simulation results obtained by the proposed model (the red solid line in Fig. 16b) agree perfectly
well with the experimental measurements. It is also found that the predicted displacement profile is very sensitive to
the BCs of the mechanical boundary value problem. When the bottom surface of the baseplate is fully constrained
(ui = 0) instead of modelling the backing plate which only constraints the movement of the baseplate in the negative
x3 direction, the corresponding bending indicated by the red dashed line in Fig. 16b is less.

4.3. Computational cost

The proposed model is implemented in ABAQUS for a single CPU with a processor speed of 2.80 GHz and with
a memory of 16 GB RAM. The computational time of the proposed thermo-mechanical calculation described above
is 3 hours and 15 minutes. The relatively low computational time required for the proposed model is mainly due to
the coarse mesh size that can be used without loss of accuracy because the Goldak heat sources are accounted for
analytically. This is attributed to the utilisation of the analytical field. Besides, at the start of adding a new layer, a
very short duration of time (t = 10−9 s in the present study) is allowed before simulating the real deposition process.
This modification seems to be beneficial for the convergence of the mechanical boundary value problem. It is found
that without this modification, the computational time increases to 8 hours.
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Figure 16: (a) The distribution of σ11 along the red dashed line illustrated in the inset. The x3 = 0 denotes the
interface between the part and the baseplate. (b) The x3 component of displacement after building the fourth layer and
removing the clamps.

5. Conclusions

A computationally efficient thermo-mechanical model for WAAM, based on the semi-analytical thermal approach
is proposed. The accuracy of the proposed model is extensively examined by comparing the predicted thermal and
mechanical results with the experimental measurements as well as the simulation results in the literature. It is found
that considerable accuracy can be achieved by the proposed model in predicting the temperature history and stress
evolution thereby predicting residual stresses and distortions.

For the studied modelling case, the simulation results show that the normal stress along the heat source motion
is the dominating stress component, and the shear stresses are negligible. The maximum normal stress occurs near
the top of the deposited layer. The distortions are very sensitive to the BCs, and more constraints of the baseplate
may lead to smaller overall distortions. The proposed model is shown to be computationally inexpensive. This is
primarily because the Goldak heat sources are accounted for by the analytical field T̃ and thereby the mesh size
becomes independent of the heat source geometry. Furthermore, the proposed model is not necessarily limited to a
long heat source moving path, for which a steady thermal state is reached. Instead, an arbitrary moving path of the
heat source can be conveniently imported into the proposed model.

It should be noted that the non-linearity during the thermal simulation is not taken into account, and thus the value
of thermal properties needs to be carefully determined by matching the predictions with experiments. Moreover, the
proposed model is suitable only for materials whose residual stresses and distortions due to WAAM are not sensitive
to the phase transitions and solid phase transformations.
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Appendix A.

The partial derivative of T̃ (I) with respect to x1, x2 and x3 are expressed as
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∂T̃ (I)

∂x1
=

B∆t
D(I) λ

(I)
b (x2)λ(I)

c (x3)[p′(I)
r (x1) + p′(I)

f (x1)],

∂T̃ (I)

∂x2
= −

6(x2 − S (I)
2 )

3η(I) + b2 T̃ (I),

∂T̃ (I)

∂x3
= −

6(x3 − S (I)
3 )

3η(I) + c2 T̃ (I),

(A.1)

where

p′(I)
r (x1) =

fr√
3η(I) + a2

r

[−g(I)
r (x1)M′(I)

r (x1) − (1 − M(I)
r (x1)g′(I)

r (x1)],

p′(I)
f (x1) =

f f√
3η(I) + a2

f

[−g(I)
f (x1)M′(I)

f (x1) − (1 − M(I)
f (x1)g′(I)

f (x1)].
(A.2)

The gr(x1),Mr(x1), g f (x1),M f (x1) and the corresponding derivative g′r(x1),M′r(x1), g′f (x1),M′f (x1) with respect to x1
in Eq. (A.2) are directly computed as
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(A.3)

Then the partial derivative of T̃ is given by

∂T̃
∂xi

=

N∑
I=1

∂T̃ (I)

∂xi
. (A.4)
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