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Abstract
Quantum computation represents a promising frontier in the domain of high-performance computing, blending quantum
information theory with practical applications to overcome the limitations of classical computation. This study investigates
the challenges of manufacturing high-fidelity and scalable quantum processors. Quantum gate set tomography (QGST) is a
critical method for characterizing quantum processors and understanding their operational capabilities and limitations. This
paper introduces Ml4Qgst as a novel approach to QGST by integrating machine learning techniques, specifically utilizing
a transformer neural network model. Adapting the transformer model for QGST addresses the computational complexity of
modeling quantum systems. Advanced training strategies, including data grouping and curriculum learning, are employed
to enhance model performance, demonstrating significant congruence with ground-truth values. We benchmark this training
pipeline on the constructed learning model, to successfully perform QGST for 2 and 3 gates on single-qubit and two-qubit
systems, with over-rotation error and depolarizing noise estimation with comparable accuracy to pyGSTi. This research marks
a pioneering step in applying deep neural networks to the complex problem of quantum gate set tomography, showcasing the
potential of machine learning to tackle nonlinear tomography challenges in quantum computing.

Keywords Gate set tomography · Transformer model · Device characterization · Machine learning

1 Introduction

Quantum computation is an emerging paradigm of computa-
tion that has captured the attention of theoretical physicists
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and computer scientists, as well as stakeholders in high-
performance computing. Quantum algorithms can solve pro-
blems in specific complexity classes that are asymptotically
intractable in all implementations of classical computation. To
demonstrate this acceleration in practice, a topical research
avenue is on maturing the quantum computing hardware in
terms of high-fidelity (decoherence, error rates of quantum
operations) and scalability (number of qubits, connectivity)
along with quantum software (Soeken et al. 2018; Sarkar
2024). Though this research endeavor has proved rather a
challenging engineering feat (Preskill 2018; Leymann and
Barzen 2020; Ezratty 2023), rapid strides were made in the
last decade with a plethora of physical technologies capable
of demonstrating controllable processing of quantum infor-
mation.

Constructing a quantum computer requires that the exper-
imental setup meets certain conditions, succinctly sum-
marized as the DiVincenzo criteria (DiVincenzo 2000). A
critical criterion is the characterization of the quantum pro-
cessor, which helps in understanding the fabrication defects
and the computing capabilities of these systems. The charac-
terization is performed by building a model of the noise on
the system and the set of quantum operations performed on
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the quantum information units. The latter typically involves
inferring the information-theoretic operation experimentally
achievedwith respect to a set of target gates in a circuit model
quantum computer. Once this operation—termed quantum
gate set tomography (QGST) (Greenbaum 2015; Rudinger
et al. 2021)—is performed, the updated experimental model
of the quantum gates can be used precisely to determine the
required sequence of quantum gates to achieve the transfor-
mation for a quantum algorithm.

Tomographic approaches build a detailed model for a sys-
tem or component in a latent space by fitting that model to
the data from numerous independent tests that reveal par-
tial information about the system. The nature of this latent
space depends on the representation of the system model.
For instance, inmedical imaging, by aggregating information
frommultiple 2D sinograms of CT scans, one can reconstruct
a full 2D/3D CT image. Reconstructing a maximally fitting
model for the experimental data is computationally expen-
sive. Quantum tomography is particularly expensive as the
space of possible observations is continuous and grows expo-
nentially with the system size.

Various machine learning techniques are used to address
the computational cost in tomography (Wang et al. 2019).
However, these techniques have not yet been utilized for
quantum gate set tomography. Our contribution presented in
this work is threefold. Firstly, we develop a first-of-its-kind
machine learning model for quantum gate set tomogra-
phy (Ml4Qgst). To this purpose, we harness the transformer
neural network model (Vaswani et al. 2017) and tune it for
the input–output settings of QGST. Generative models like
GAN have been used for quantum state tomography (Ahmed
et al. 2021). However, QGST is substantially different due
to non-linearity, multi-model regression, and worse com-
putational scaling costs, making it challenging to reuse the
models from other quantum tomography tasks. As we show
later, QGST can be framed as a language learning task,
thus prompting our choice of employing the Transformer
model. Secondly, contrary to directly estimating the full pro-
cess matrices in traditional algorithms, our approach ensures
the resulting process matrices are always completely posi-
tive and trace preserving (CPTP) and without the necessity
to perform gauge fixing. Thus, instead of fully reconstructing
the process matrices with no prior knowledge, we are inter-
ested in the pragmatic setting of inferring the model drift
between the intended theoretical process and the experimen-
tally achieved process.And, thirdly, we incorporate advanced
training techniques of data grouping, curriculum learning,
and computation of the loss function to increase the perfor-
mance of our model. Our model predicts error parameters
from the error channels and subsequently generates the cor-
responding estimated process matrices of the gate set.

The article is structured as follows: Section 2 introduces
the problem setting and necessary definitions,while also con-

trasting this research with related works on machine learning
for quantum tomography. Section3 provides a detailed
explanation of the proposed method and the transformer
architecture employed in this study. Advanced training tech-
niques and experimental settings are discussed in Section 4.
Section5 presents the results of the single-qubit experiments,
and Section 6 extends our approach to multi-qubit scenar-
ios, followed by an analysis of the corresponding two-qubit
experimental results in Section 7. Finally, Section 8 explores
the future prospects of transformer-based neural network
models for quantum tomography, and Section 9 concludes
the article.

2 Problem setting and definitions

In this section, we present some required background for
the article. Firstly, the background theory of gate set tomog-
raphy based on the super operator formalism is presented.
After that, we present how artificial neural networks can be
employed for quantum tomography, directing the discussion
towards the transformer model that is used in this research.

2.1 Quantum gate set tomography

Different from traditional quantum process tomography,
which implicitly assumes known, hence near-zero state
preparation and measurement (SPAM) errors, as shown in
Fig. 1, quantum gate set tomography relaxes this assump-
tion by directly incorporating gates as both preparation and
measurement operators or formally as preparation and mea-
surement fiducials. In a quantum computer characterization
setting, rather than probing each individual gate using tra-
ditional process tomography, gate set tomography aims to
simultaneously reconstruct the full gate set using the maxi-
mum likelihood method (Nielsen et al. 2021). By measuring
the outcomes prescribed by a list of gate sequences that acts
to amplify errors on each gate, as shown in the bottom of
Fig. 1, one can run an optimization algorithm to find out all
the parameterized process matrices within the gate set. It is
precisely due to this “all in one” tomographic method that
gate set tomography has the highest reconstruction accuracy
versus traditional state tomography and process tomography,
which are largely plagued by the problem of SPAM errors.
However, the trade-off of gate set tomography is immediately
obvious, in which way more computational resources have
to be used to solve for this “simultaneous maximum likeli-
hood” across all gate sequences. This can be understood as
maximizing the likelihood function in QGST is highly non-
convex, in stark contrast to state and process tomography,
where each observable probability is a linear function of the
parameter (Nielsen et al. 2021). Based on this observation,
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Fig. 1 The figure illustrates various quantum tomography protocols
used to characterize quantum systems and processes. Quantum state
tomography (QST): The goal is to reconstruct the quantum state ρ of
a system by applying a set of measurements M (assumed to be known)
to the system. Quantum measurement tomography (QMT): In this
case, the measurement operators M are unknown, while the quantum
state ρ is assumed to be known. By preparing known quantum states,
the measurements can be characterized. Quantum process tomogra-
phy (QPT): Here, the quantum state ρ and the measurements M are
assumed to be known, while the quantum process G is unknown and
has to be reconstructed.Quantum gate set tomography (QGST):This
approach generalizes earlier techniques by simultaneously reconstruct-
ing quantum gates G. State preparation Gρ and measurement GM are
considered to be included in the full gate set that has to be characterized.
Blue blocks indicate elements assumed to be known, while pink blocks
represent unknown components to be reconstructed

using deep learning techniques to capture complex non-linear
relationships would be a natural choice.

2.1.1 Super operator formalism

Similar to the typical Dirac notation in Hilbert space, where
a row vector is represented by a bra 〈a|, and column vec-
tor by a ket |b〉, we denote superbra as 〈〈A| and superket
as |B〉〉. In quantum tomography settings, this conveniently
maps a quantum state ρ in the form of a d × d density
matrix in the d-dimensional Hilbert space into a complex d2-
dimensional vector in Hilbert-Schmidt space, with the inner
product defined as 〈〈A|B〉〉 = Tr(A†B).

In this paper, we use the Pauli transfer matrix (PTM) as
our super-operator representation, as it is a popular choice
in quantum tomography. The PTM basis {Bi } in Hilbert-
Schmidt space has the following properties:

1. Hermiticity: Bi = B†
i

2. Orthonormality: Tr
(
Bi B j

) = δij

3. Traceless for i > 0: B0 = I/
√
d and Tr (Bi ) = 0, for

i > 0

For a single-qubit, the normalized PTM basis would be
{Bi } = {I/√d, σx/

√
2, σy/

√
2, σz/

√
2}. Due to this choice

of basis, the PTM vector and super operator are always real.
As an example,wewrite a single-qubit 2×2 densitymatrix

ρ as |ρ〉〉, represented by a real 4 × 1 column vector, where
each coefficient of |ρ〉〉 can be found by taking the inner

product Tr
(
B†
i ρ

)
.

|ρ〉〉 =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

Tr
(
B†
0ρ

)

Tr
(
B†
1ρ

)

Tr
(
B†
2ρ

)

Tr
(
B†
3ρ

)

⎤

⎥⎥⎥⎥⎥
⎥
⎦

To find the measurement probability of |ρ〉〉 projecting
onto the computational basis {|0〉 , |1〉}, we can perform the
standard dot product. First, we write the projectors as row
vectors,

|0〉〈0| �→ 〈〈E0| = (1/
√
2, 0, 0, 1/

√
2)

|1〉〈1| �→ 〈〈E1| = (1/
√
2, 0, 0, −1/

√
2)

And, then, a standard dot product (or trace) obtains the
measurement probabilities p0, p1 of getting 0 and 1,

p0 = 〈〈E0 |ρ 〉〉 = Tr (E0ρ)

p1 = 〈〈E1 |ρ 〉〉 = Tr (E1ρ)

Naturally, for any d2 quantum state vector, we have the
d2×d2 super operator that describes a (noisy) quantum chan-
nel, which is not necessarily unitary and/or orthogonal. For
any quantum operator �, the PTM satisfies

〈〈 j |R�| k〉〉 = Tr
(
σ j�(σk)

) = (R�)jk

where, applying a quantum operation/channel � to a quan-
tum state |ρ〉〉 is represented as left-multiplying a matrix to
a vector,

|�(ρ)〉〉 = R�|ρ〉〉

For instance, the PTM of a single-qubit rotational gate along
the x-axis by π/2 is given by,

RX (π /2) =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎤

⎥⎥
⎦

Corresponding to a quantum operation �(ρ) = UρU †,
U is the unitary single qubit operator.
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2.2 Tomography using deep neural networks

The goal of tomography in any general setting is to learn
a latent space z that maximally matches with the observed
data x . The nature of this latent space depends on different
scenarios. For instance, referring back to medical imaging,
the dimension of z (the reconstructed 2D/3D CT image)
is the same or higher than the observed data x (2D sino-
grams). Notably, both z and x reside in the pixel space
that requires little to no transformation when passed to
typical neural network models like convolutional neural net-
work (CNN) (Gupta et al. 2018; Clark andBadea 2019; Kang
et al. 2017) or diffusion model (Huang et al. 2022; Xia et al.
2023, 2022).

Quantum tomography is strikingly different as the z and x
do not reside in the same space. For quantum state(process)
tomography, the latent space z is the density(process) matrix
that takes the form of a square matrix, whereas the observed
data x refers to the measured counts or normalized proba-
bilities from the quantum device, conditioned on a certain
measurement and/or preparation operators.

The same mismatch between latent space and observed
space persists in gate set tomography, which prevents the
direct implementation of typical deep generative models
from image processing (Ahmed et al. 2021). Instead, an inter-
mediate function has to be used in order to map the latent
space to the observed space, namely, an analytical function
that maps the neural network output to the expected proba-
bilities under supervised learning.

The advancement of neural networkmodels and computer
hardware in the last decade have brought forth numer-
ous novel applications in the industry, such as autonomous
robotics via reinforcement learning (Gu et al. 2017), image
generation (Rombach et al. 2021) via diffusion model, and
text generation via large languagemodel (Brown et al. 2020).
Riding on this trend, the quantum physics community has
borrowed these techniques from the industry for quantum
tomography. Earlier work mainly focuses on using restricted
Boltzmann machines for simple quantum state tomogra-
phy tasks that can be represented by pure states. Later
works employ deep neural networks for more difficult tasks
such as general density matrix reconstruction (Ahmed et al.
2021) and process matrix construction (Ahmed et al. 2023).
The methods being used range from simple feed-forward
networks to more advanced models such as conditional gen-
erative adversarial networks and transformer models. For
instance, GAN demonstrated good convergence behavior
in Ahmed et al. (2021) when reconstructing a density matrix
in the quantum state tomography setting, but this is only
because the QST problem is linear in nature. It has been
shown that GAN is susceptible to mode collapse (Lala et al.
2018), which is particularly troubling when the data being
trained on are multi-modal. In QGST, the problem that has to

be solved is highly non-linear, with multi-modal data corre-
sponding tomultiple different gates that have to be estimated,
aswell as the underlying error parameters that represent those
gates.

3 ML4QGST for single-qubit systems

Contrary to most existing publications that directly use deep
neural networks to reconstruct the full density or process
matrix in quantum state or process tomography settings, we
aim to predict physical error parameters in gate set tomogra-
phy instead and then use analytical functions to reconstruct
the full processmatrices afterward, as away to ensure that the
completely positive and trace preserving (CPTP) condition
is met and remove the necessity of gauge fixing.

Furthermore, we alleviate the shortcomings of GANs by
proposing a transformer model-based deep neural network,
which excels in encoding and processing sequences (Vaswani
et al. 2017), compared to standard convolution-based meth-
ods that are fundamentally limited by kernel sizes. In addi-
tion, promising results have already been shown in quantum
state tomography setting recently using transformer-based
techniques (Cha et al. 2021; Ma et al. 2023).

In order to build up a solid foundation, we first explain
the rationale behind our Ml4Qgst implementation and
the corresponding experiments for single-qubit systems. In
Section 6, we then generalize Ml4Qgst to multi-qubit sys-
tems based on our findings for single-qubit cases.

3.1 Transformer model

Since the invention of the transformer architecture (Vaswani
et al. 2017), the world has been revolutionized by the suc-
cess and capabilities that GPT-4 (Achiam et al. 2023) and
other large languagemodels (LLM) provide. Here, we briefly
explain what a transformer is, specifically the encoder block
that we will use in this paper.

Figure 2 shows the complete transformer architecture
that is used for text generation in the original implemen-
tation, and it can be further divided into an encoder (left)
and a decoder block (left). Within each block, the main
component that empowers the transformer is the multi-head
attention layer (see orange-colored rectangle). As its name
implies, the attention layer’s goal is to “pay attention” to the
sequences, elements, or structures of the input data, similar to
what humans do. Mathematically, this is done by construct-
ing arrays (query, key, value) and performing a dot product
between query and key to obtain an attention score matrix.
Afterward, a softmax operation is applied to the attention
score matrix to obtain a new matrix corresponding to atten-
tion weights (probabilities). Finally, this attention weight
matrix is multiplied with value, yielding a new weighted
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Fig. 2 The transformer model architecture with its encoder block (left)
and decoder block (right) (Vaswani et al. 2017)

value output. The attention mechanism is most commonly
seen in LLMs to process sequences of input text or, alter-
natively, focus on the underlying structure of images in
computer vision (Dosovitskiy et al. 2020).

In our model, we only make use of the encoder block
to encode input data and subsequently use a simple feed-
forward network for regression. We skip the transformer
decoder commonly used in natural language processing, as
our goal is not to generate new sequences but to predict
error parameters. This model encodes the gate sequence
data naturally, similar to text encoding which has been
widely adopted in the industry. We make use of self/cross-
attention mechanisms, which aim to focus on the infor-
mation (process matrix) of each individual gate and the
inter-relationship between gate sequences and normalized
probabilities, respectively. By aggregating all the informa-
tion through the transformer pipeline, we estimate the error
parameters from the gate set tomography experiment.

The remainder of the section describes the main com-
ponents of our Ml4Qgst model implementation for single-
qubit systems. Its components consist of (1) separate embed-
ding layers for both integer-encoded gate sequences and
normalized probabilities, (2) separate positional encoding for
both gate sequences and normalized probabilities, (3) cross-
attention layer to aggregate information from two branches,
(4) transformer block to encode the aggregated information,

(5) and fully connected layer to output physical error parame-
ters. A schematic of the neural network architecture is shown
in Fig. 3.

3.2 Embedding gate sequences and normalized
probabilities

In gate set tomography, each gate sequence output measures
counts for each computational basis and can be converted
into normalized probabilities for each basis state. By aggre-
gating the information ofmultiple pairs of gate sequences and
normalized probabilities, one can extract the information of
the process matrix of each gate used. The gate sequences
are first preprocessed by integer encoding and zero padding,
where each gate is mapped to a unique integer, and the
gate sequences are zero-padded to match the longest gate
sequence in the dataset. The encoded gate sequences are then
passed to an embedding layer used in a typical transformer
setting. Besides that, the normalized probabilities are passed
to a fully connected layer and are subsequently reshaped to
emulate the effect of an embedding layer.

This way, both branches will have an extra learnable fea-
ture dimension that is ready to be processed by a transformer
block later on.

Fig. 3 A schematic overview of Ml4Qgst for single-qubit systems,
our transformed-based neural network architecture for GST
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3.3 Positional encoding

We use the standard sine and cosine positional encoding for
both embedded gate sequences and normalized probabili-
ties, that are flattened beforehand. As each individual pair
of gate sequence and normalized probabilities yields little
tomographic information, we instead group multiple pairs
together to increase the receptive field. Positional encoding
is then applied element-wise to this flattened embedded gate
sequence and normalized probabilities at each branch.

3.4 Cross-attention layer

After embedding and positional encoding at each branch,
a cross-attention layer is used to process the relation-
ship between the grouped gate sequences and normalized
probabilities. We choose cross-attention instead of simple
concatenation to avoid the vast data shapemismatch between
gate sequences and normalized probabilities that can possi-
bly drown out the training signal.

3.5 Transformer encoder block

A standard multi-layer transformer encoder block is used to
process the aggregated information. It includes typical com-
ponents such as a multi-head attention layer, add and norm
layer, and feed-forward layer.

3.6 Fully connected layers

Finally, fully connected layers are used for regression after
the transformer block, outputting predicted physical error
parameters.

4 Single-qubit experiments

We evaluate Ml4Qgst for single-qubit scenarios using the
open-source Python package pyGSTi (Nielsen et al. 2020),
with the capability of (1) customizing the process matrix of
each individual gate within a gate set, (2) selecting appro-
priate fiducials for the customized gate set, (3) generating
appropriate gate sequences for the GST experiment, and (4)
simulating measured counts for the gate sequences.

4.1 pyGSTi simulation settings

The pyGSTi Python package uses Pauli transfer matrices
(PTM) as the default process matrix throughout the QGST
implementation. Here, we replaced the built-in single-qubit
XYI model with our custom PTM, specifically the X and Y
rotational gates. These custom gates are parametrized with
physical error parameters and in our case, the over-rotational

angles and depolarizing errors. We then use the custom X
and Y rotational gates, together with the built-in function,
to find suitable fiducials, that is, a handful of short gate
sequences that are used repeatedly and combinatorially to
generate QGST experiments. After that, we run the built-
in single-qubit XYI QGST experiment function to generate
gate sequences and simulated measured counts. The number
of shots is set to 10k, and the maximum sequence length to
32, and the sampling error to binomial. Figure4 shows the
overall data pipeline from input to loss computation.

4.2 Training details

4.2.1 Data grouping

As mentioned briefly in 3.2, the gate sequences generated by
pyGSTi are converted from strings to unique integers and,
subsequently, zero-padded to match the maximum length
of a sequence in the dataset, whereas simulated measured
counts are normalized into probabilities. After that, both
gate sequences and probabilities datasets are divided into

Fig. 4 Overall data pipeline of Ml4Qgst from input to output and
MSE loss computation for single-qubit systems
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groups, specified by a hyperparameter “group_size.” In order
to ensure all groups have the same number of elements, we
choose to repeat the elements inside the last group instead of
zero padding to preserve overall data quality.

4.2.2 Curriculum learning

Drawing inspiration from the way humans learn, curricu-
lum learning aims to achieve better performance and faster
convergence by starting with simpler or more fundamental
examples and progressively introducing more complex ones
(Bengio et al. 2009), we conveniently call it stage training
here, starting from easier to more difficult stages. In the fol-
lowing, we make use of curriculum learning to further divide
the whole dataset into parts, again specified by a hyperpa-
rameter “part_size.” The dataset is sorted in ascending order
based on the non-zero length of the gate sequences. This
ensures that the model learns global features from shorter
gate sequences in the beginning and then progressively fine-
tunes predictions in later stages when it sees longer gate
sequences. This learning methodology is similar to the algo-
rithm implemented in the QGST paper (Nielsen et al. 2021),
in which the authors iteratively add longer sequences, includ-
ing the previously seen sequences in an accumulative way
during optimization. We instead opt for a non-accumulative
approach as in standard curriculum learning and saving com-
putational resources required.

4.2.3 Analytical PTM reconstruction

Based on the predicted physical error parameters, namely
the over-rotational angles and depolarizing errors, we ana-
lytically reconstruct PTMs corresponding to the gates within
the gate set.

4.2.4 Computing loss

As each grouped data outputs one set of physical error param-
eters prediction, it also has its own set of reconstructed
PTMs. We compute probabilities analytically for all the gate
sequenceswithin a group, using the same set of reconstructed
PTMs. This procedure is performed iteratively group by
group within a particular stage set by curriculum learning.
Finally, we compute the mean squared error loss between
the ground-truth probabilities and the reconstructed proba-
bilities.

5 Single-qubit results

In the following,wewill explain the choice of loss function in
our experiment, analyze convergence behavior during neural

network training, and compare benchmarking results from
different commonly used metrics.

5.1 Choice of loss function

The QGST paper (Nielsen et al. 2021) uses two loss func-
tions for long-sequenceQGSToptimization, themultinomial
log-likelihood function log (L) for a ms outcomes Bernoulli
scheme, and the χ2 estimator.

log (L) =
∑

s

log (Ls) =
∑

s,βs

Ns fs,βs log
(
ps,βs

)

χ2 =
∑

s,βs

Ns
(
ps,βs − fs,βs

)2

ps,βs

where s denotes the index of a circuit, and letms be the num-
ber of outcomes of s, Ns the total number of times circuit
s was repeated, Ns,βs the number of times outcome βs was
observed, ps,βs the probability predicted by themodel of get-
ting outcome βs from circuit s, and fs,βs = Ns,βs/Ns is the
corresponding observed frequency.
The authors used theχ2 estimator as a proxy of log(L)during
optimization except for the last phase, as it is more compu-
tationally efficient. Then, log(L) is used in the final phase to
steer the estimate to comply with the true statistical deriva-
tion. Here, we further simplify the χ2 estimator to mean
squared error (MSE) loss, which has also been used in sim-
pler linear QGST settings. Alternatively, MSE loss can be
seen from the perspective of reducing the likelihood func-
tion to a normal distribution by invoking the central limit
theorem (Greenbaum 2015).

loss =
∑

s,βs

(
ps,βs − fs,βs

)2

σ 2
s,βs

where σ 2
s,βs

= ps,βs (1 − ps,βs )/Ns is the sampling variance
in the measurement.

5.2 Convergence analysis

In the following, we will explain the training trajectories of
predicted error parameters by delving a little bit deeper into
the technical implementation.

Figures 5 and 6 show the convergence behavior plots for
depolarizing error and Figs. 7 and 8 for over rotational angle.
Both types of plots contain the X -gate andY -gate training tra-
jectories; the x-axis always represents the number of training
epochs, and the y-axis indicates the depolarization amplitude
and over rotational angle in radian respectively. For both, the
predicted depolarizing errors and the over-rotational angles,
the predicted values exhibit oscillatory behavior at the begin-
ning of each stage of curriculum learning, where an entirely
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Fig. 5 Training trajectory of the predicted X -gate depolarizing error
with curriculum learning, tanh activation function is used at the final
output layer to allow a large gradient near zero, and a subsequent abso-
lute value function is added to ensure the predicted value is between 0
and 1

new set of data was fed into the neural network for further
training. This is indicated at epochs 90, 190, and 263, corre-
sponding to the start of stages 2, 3, and 4.

Because we use the tanh activation function at the neural
network output layer and subsequently take absolute values
in the custom training loop, the plots for depolarizing errors
shown below will generally have the predicted values jump-
ing between positive and negative. This is intended, as we
want the predicted depolarizing error values to be close to
and centered at zero, where the tanh activation function is
the prime candidate.

Additionally,we showed thatwithout curriculum learning,
the model fails to converge within the normalized number of

Fig. 6 Training trajectory of the predicted Y -gate depolarizing error
with curriculum learning, tanh activation function is used at the final
output layer to allow a large gradient near zero, and a subsequent abso-
lute value function is added to ensure the predicted value is between 0
and 1

Fig. 7 Training trajectory of the predicted X -gate over-rotational error
with curriculum learning, tanh activation function is used at the final
output layer to ensure the output value is between −1 and +1 (radian)

epochs, which is equal to the number of epochs for each stage
in the curriculum learning. Figures9, 10, 11 and 12 show the
convergence trajectories without curriculum learning. The
empirical evidence here shows that curriculum learning, like
the iterative optimization approach from the QGST paper, is
indeed required for proper convergence.

5.3 Benchmarking

To show that our predicted values are in good agreement
with the ground-truth values from the simulation, we choose
KL-divergence, χ2 estimator, and full log (L) function as a
benchmark. We compare the benchmark results among three
cases: ground-truth values, predicted values with curricu-
lum learning (CL), and predicted values without curriculum

Fig. 8 Training trajectory of the predicted Y -gate over-rotational error
with curriculum learning, tanh activation function is used at the final
output layer to ensure the output value is between −1 and +1 (radian)
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Fig. 9 Training trajectory of the predicted X -gate depolarizing error
without curriculum learning, tanh activation function is used at the final
output layer to allow a large gradient near zero, and a subsequent abso-
lute value function is added to ensure the predicted value is between 0
and 1

learning, as shown in Table 1. The zero reference point for
percentage error is set to ground truth in the table.

We first look at MSE, KL divergence, and χ2 estima-
tor, which all are the functions that measure the distance
between probability distributions. It is no surprise that MSE
has the lowest percentage error, as it was used as the loss
function during training. We can also see a consistent trend
among the three benchmarks, where the results without CL
aremuchworse than the oneswithCL, verifying the necessity
of CL during training. Besides looking at just the percentage
error, the error ratio between the known bad (without CL) and
good (with CL) fit can roughly tell us how large the training

Fig. 10 Training trajectory of the predicted Y -gate depolarizing error
without curriculum learning, tanh activation function is used at the final
output layer to allow a large gradient near zero, and a subsequent abso-
lute value function is added to ensure predicted values are between 0
and 1

Fig. 11 Training trajectory of the predictedX-gate over-rotational error
without curriculum learning, the tanh activation function is used at the
final output layer to ensure the output value is between −1 and +1
(radian)

signal would be, whereas a bigger ratio usually refers to a
larger training signal. It can be seen that MSE and −log (L)

functions have large error ratios; meanwhile, KL divergence
and χ2 estimator yield small ratios, suggesting MSE and
−log (L) functions are more versatile for training purpose.

Finally, we show the process matrix distance heatmaps
in Fig. 13, as a standard practice to visualize the estimated
results, commonly used in quantum tomography. To show
that the model is indeed estimating the error parameters/ pro-
cess matrices sensibly, the PTM distance heatmaps between
(QC - Ideal) and (Ml4Qgst - QC) are compared, where
ideal refers to operations with no depolarizing error and
over rotation, QC means ground-truth quantum computer
(QC) operations, andMl4Qgst refers to ourmodel predicted

Fig. 12 Training trajectory of the predicted Y-gate over-rotational error
without curriculum learning, the tanh activation function is used at the
final output layer to ensure the output value is between −1 and +1
(radian)

123



   10 Page 10 of 16 Quantum Machine Intelligence             (2025) 7:10 

Table 1 Benchmarking for different loss functions: MSE, KL divergence, χ2 estimator, −log L , with and without curriculum learning

Loss function With CL Without CL Ground truth % error ratio (W.O CL/CL)

MSE (training) 1.9668e−05 (−0.08%) 2.1339e−05 (−8.41%) 1.9683e−05 (0%) 105.1

KL divergence 5.2119e−05 (−2.35%) 5.6215e−05 (−10.39%) 5.0923e−05 (0%) 4.4

χ2 estimator 0.003118 (−2.06%) 0.003380 (−10.64%) 0.003055 (0%) 5.2

−log (L) 16.11541 (−1.86e−5%) 16.11554 (−9.93e−4%) 16.11538 (0%) 53.4

operations. Figure13 a and b tells us how badly the quan-
tum computer behaves with respect to the ideal operations
that we actually want, while Fig. 13 c and d informs us
how well our Ml4Qgst estimates the ground-truth quan-
tum computer operations. Comparing the X and Y gate
distance heatmaps in Fig. 13 c and d, we can roughly see
the over-rotation angle and depolarizing error estimation
slightly overshoot, with the exception of Y gate undershoot-
ing the estimation of over-rotation angle. The percentage
differences between the ground truth and the estimated val-
ues are 3.6558% (0.5321%) for X(Y ) depolarizing error and
0.2615% (−0.2850%) for X(Y ) over-rotational angle. This
is largely comparable to pyGSTi’s long gate sequence QGST
results: −0.0341% (0.2670%) and 0.5659% (−0.3705%).

6 Generalizing tomulti-qubit systems

Building upon the framework established for single-qubit
systems, we further extend Ml4Qgst to handle multi-qubit
scenarios, which are essential for scaling quantum proces-
sors and performing more complex quantum computations.
Multi-qubit systems introduce significant additional chal-
lenges, including entanglement, cross-talk between qubits,
and a combinatorial increase in the number of gate sequences
required for comprehensive tomography. These complexi-
ties necessitate modifications to our original model to ensure
accurate and efficient parameter estimation for a higher
number of qubits. In the following, we will introduce a
revamped neural network architecture that is generalizable

Fig. 13 a, b X and Y gate PTM distance heatmaps between the ground-truth quantum computer (QC) and the Ideal operations. c, d X and Y gate
PTM distance heatmaps between the ground-truth quantum computer (QC) and the Ml4Qgst predicted operations
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to multi-qubit systems. We then demonstrate this new model
based on 2-qubit QGST data.

6.1 Modifications for multi-qubit systems

We summarize the key modifications introduced in moving
from a single-qubit model to a scalable multi-qubit model as
follows:

1. The architecture changes from a standard 1D transformer
to a vision transformer, enabling efficient processing of
multi-dimensional input data.

2. The data grouping technique is extendedby incorporating
2D sinusoidal positional encoding, which is better suited
for representing spatial relationships in multi-qubit sys-
tems.

3. The single time cross-attention layer used in the previ-
ous model is replaced by adaptive layer normalization
(adaLN) with zero modulation, applied at each trans-
former block. This change enhances the model’s ability
to capture fine-grained interactions in the data.

4. The loss function is changed from mean squared error
(MSE) to Kullback–Leibler (KL) divergence loss, im-
proving themodel’s performance in tasks involving prob-
abilistic distributions.

Figure14 illustrates the revamped neural network archi-
tecture, which is specifically designed to be scalable for
multi-qubit quantum gate set tomography (QGST) tasks.

6.1.1 Vision transformer

The most important modification of the model is migrating
from a typical 1D sequence transformer architecture to a
vision transformer (Dosovitskiy 2020). To recall, the x and y
axes from the tokenized circuits represent gate sequences in
time and qubit index, respectively.When increasing the qubit
number, the dimension along in y axis increases, effectively
forming a 2D array.We can therefore treat any 2D array using
the vision transformer. In contrary to standard transformer
that can only handle 1D sequence data, vision transformer
utilizes patch embedding to handle 2D arrays like natural
images. During patch embedding, 2D arrays that have height
H and width W are patchified into H/p × W/p patches,
denoted by p× p patch size. These patches are then flattened
and embedded to higher dimensional space and subsequently
fed into a standard transformer block. Due to this architecture
of vision transformer, it can be easily generalized to multi-
qubit cases by simply altering the patch size. In our 2-qubit
QGST experiment, we set p = 2. Intuitively, setting p equal
to the number of qubits can preserve the global relationship

Fig. 14 A schematic overview of our revamped neural network model
formulti-qubitQGST, replacing 1D transformerwith vision transformer
and cross-attention with adaLN-zero modulation

along the qubit index axis, while setting p smaller than the
number of qubits could possibly introduce local bias. As for
square patches, p = 2 is the only possible option for the two-
qubit case.We leave the tuning of hyperparameter p in larger
qubit cases for future work.

6.1.2 Data grouping and 2D positional encoding

We reuse the same data grouping technique as described in
Section 4.2.1, while introducing new 2D sinusoidal posi-
tional encoding to accommodate 2D arrays. We stack gate
sequences within a group along the qubit index axis as
before. By incorporating 2Dpositional encoding,we can now
explicitly capture the positional relationship of different gate
sequences in a group.

6.1.3 AdaLN-zero conditioning modulation

Our previous single-qubit model only utilizes cross-attention
conditioning between the normalized probabilities and gate
sequences before transformer blocks. This limits how thenor-
malized probabilities affect the overall gradient flow during
training. In our newmodel, instead of cross-attention, we use
adaLN-zero modulation to inject normalized probabilities
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conditioning at every transformer block. We observe supe-
rior training stability and convergence behavior versus simple
cross-attention.

6.1.4 KL divergence loss

Previously, the mean squared error (MSE) loss function
was utilized due to its simplicity. In this study, we adopt
the Kullback–Leibler (KL) divergence as the loss function
to explore its effectiveness, as two-qubit QGST typically
requires approximately ten times more circuits compared to
the single-qubit case. To conserve computational resources,
we reduce the number of shots per circuit from 10,000 to
1000. Remarkably, we do not notice a significant drop in
precision.

7 Two-qubit experiment

In this section, we demonstrate our new model using
two-qubit QGST data, using the standard model pack
smq2QXYICPHASE in pyGSTi (Nielsen et al. 2020) to
obtain fiducials, germs, and a full QGST experiment. We
then numerically simulate the full QGST experiment by
employing a custom error model. Similar to the single-qubit
case, our custom error parameters are depolarizing error
and over-rotational error for three gates {X, Y, CPHASE
(Controlled-Phase)}. We set the maximum depth of the cir-
cuit to 16 and 1000 shots per sequence. In the following,
we show the effectiveness of our model with two sets of
two-qubit QGST training data, with different strengths in
overrotational errors. At the end of this section, we will also
illustrate the idea of transfer learning: fine-tuning an already

Fig. 15 Two-qubit QGSTwith large rotational errors (dataset 1): Train-
ing trajectory of the predicted {X, Y, CPHASE} gates in over-rotational
errors with curriculum learning. Tanh activation function is used at out-
put layer

Fig. 16 Two-qubit QGSTwith large rotational errors (dataset 1): Train-
ing trajectory of the predicted {X, Y, CPHASE} gates in depolarizing
errors with curriculum learning. Sigmoid activation is used at output
layer

trained model with a new set of training data to save compu-
tational resources.

7.1 Two-qubit convergence analysis

In the following, we show the training trajectories for the
two-qubitQGSTexperiment.We start focusing on the dataset
with large rotational errors, denoted as dataset 1. Figure15
represents the training trajectory of the predicted {X, Y,
CPHASE} gates in over-rotational errors with curriculum
learning. We divided the two-qubit QGST dataset into three
parts in ascending order of circuit depth for curriculum learn-
ing, and manually set training epochs to 60, 60, and 100
for these three parts. Compared to the one-qubit model, our

Fig. 17 Two-qubitQGSTwith small rotational errors (dataset 2): Train-
ing trajectory of the predicted {X, Y, CPHASE} gates in over-rotational
errors with curriculum learning. Tanh activation function is used at out-
put layer

123



Quantum Machine Intelligence             (2025) 7:10 Page 13 of 16    10 

Fig. 18 Two-qubitQGSTwith small rotational errors (dataset 2): Train-
ing trajectory of the predicted {X, Y, CPHASE} gates in depolarizing
errors with curriculum learning. Sigmoid activation function is used at
output layer

two-qubit model shows superior training stability and con-
vergence quickly. We still use the tanh activation function
as the output layer for over-rotational error predictions, but
without an extra absolute value function to restrict the output
to be positive as for the one-qubit model. Nonetheless, all the
predicted values lie on the positive range without going into
negative in later training stages. We attribute this superior
training stability to adaLN-zero layer injection at each trans-
former block,where conditional normalized probabilities can
guide the gradient flowmuch more efficiently. Figure16 also
shows similar stable training trajectories for depolarizing
errors. It can be observed that the convergence of depo-
larizing errors is slower than that of over-rotational errors,
indicated by larger fluctuations before epoch 60 (end of part
1), which is expected as it requires longer circuits to accumu-
late large enough error signals. The predicted (ground-truth)
over-rotational error values for {X,Y,CPHASE} are 0.09963
(0.1), 0.1505 (0.15), 0.09938 (0.1), respectively, and for
depolarizing errors, the values are 0.009967 (0.01), 0.009977
(0.01), 0.01019 (0.01), respectively.

Next, we demonstrate training trajectories for the dataset
with small rotational errors, an order of magnitude smaller
than the previous one, denoted as dataset 2. Figures17 and 18
show the training trajectories for over-rotational and depo-

larizing errors respectively, both indicate stable and smooth
convergence behavior, just as the dataset with large over-
rotational errors. The predicted (ground-truth) over-rotational
error values for {X,Y,CPHASE}are 0.01010 (0.01), 0.01996
(0.02), 0.009837 (0.01), respectively, and for depolariz-
ing errors, the values are 0.01001 (0.01), 0.009939 (0.01),
0.009938 (0.01), respectively. Tables 2 and 3 summarize all
the predicted values versus ground truth and include percent-
age errors for comparison. Most of the predictions have a
high accuracy of<1% error, showing the model can perform
accurate QGST analysis.

7.2 Transfer learning

In addition to the main two-qubit QGST experiment with
two different datasets, we show that the model can be fine-
tuned to predict new error parameters, given a new set of data
via transfer learning with a reduced number of training itera-
tions, denoted as dataset 3. In themain experiment, we set the
training epochs to 60, 60, and 120. Here, in transfer learning,
we set all the epochs to half of the original values to 30, 30,
and 60, so as to demonstrate this idea. We use a pre-trained
model trained with dataset 2 and then fine-tune it using a
new dataset with new error parameters. Figures19 and 20
show the training trajectories for over-rotational and depo-
larizing error respectively, which conforms well with the
general trend in the main experiment. The predicted(ground-
truth) over-rotational errors values for {X, Y, CPHASE} are
0.01998 (0.02), 0.009931 (0.01), and 0.02012 (0.02), respec-
tively, and for depolarizing errors, the values are 0.01504
(0.015), 0.007937 (0.008), and 0.01277 (0.013), respectively.
Table 4 shows that again most of the predicted values have
an accuracy of <1% error.

8 Outlook

In this section, we discuss possible use cases for Ml4Qgst,
focusing on bootstrapping errors and scalable tomographic
reconstruction in multi-qubit systems.

The most immediate and universal use case for a trained
deep neural network model would be bootstrapping exist-
ing tomographic approaches, where an end user queries the

Table 2 Summary for the
predicted (ground-truth) error
values of gates, including
percentage errors in dataset 1
(large over-rotational errors)

Gates Dataset 1: over-rotational error Dataset 1: depolarizing error Percentage error

X 0.09963 (0.1) 0.009967 (0.01) −0.3748, −0.3292

Y 0.1505 (0.15) 0.009977 (0.01) 0.3547, −0.2327

CPHASE 0.09938 (0.1) 0.01019 (0.01) −0.6242, 1.9403
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Table 3 Summary for the
predicted (ground-truth) error
values of gates, including
percentage errors in dataset 2
(small over-rotational errors)

Gates Dataset 2: over-rotational error Dataset 2: depolarizing error Percentage error

X 0.01010 (0.01) 0.01001 (0.01) 0.9595, 0.1367

Y 0.01996 (0.02) 0.009939 (0.01) −0.2130, −0.6097

CPHASE 0.009837 (0.01) 0.009938 (0.01) −1.6343, −0.6241

trained model to obtain a list of fairly accurate predictions
and subsequently uses this as an initial guess input to another
mathematically rigorous traditional analytical or numerical
model, vastly reduces the computation resource and time
required from traditional approaches, while still retaining the
superior prediction accuracy, compared to using deep neural
network alone.

The next use casewould be scaling up gate set tomography
tomulti-qubit systems. Although not explicitly demonstrated
in this proof-of-concept paper, the transformer has been
proven for capturing long-range relationships in natural lan-
guage processing, which, in turn, should work well when
processing multi-qubit long sequence quantum circuits. To
draw a parallel, in terms of encoding quantum circuits for
specific use cases, the transformer will be a natural extension
and improvement to existing CNN-based quantum circuit
optimization (Fösel et al. 2021). In addition, the vision
transformer has already been widely used to process high-
resolution natural images, often with a size larger than 1024
× 1024. Hence, there is empirical evidence that, even for
a large amount of qubits, using a group of tokenized cir-
cuit with size: [(number of qubits × group size), circuit
length], the vision transformer can still efficiently handle the
data. In essence, we welcome future research in the quantum

Fig. 19 Two-qubit QGST with transfer learning (dataset 3): Training
trajectory of the predicted {X, Y, CPHASE} gates in over-rotational
errors with curriculum learning. Tanh activation function is used at
output layer

community to make use of transformer models to process
quantum circuit-related applications.

9 Conclusion

In this article, we presented Ml4Qgst, a transformer-based
neural network model for quantum gate set tomography.
Specifically, we employ a 1D transformer architecture with
simple cross-attention conditioning for a single-qubit model
and a vision transformer enhanced with adaLN-zero modu-
lation for a multi-qubit model. By incorporating curriculum
learning, the proposed neural networks demonstrate stable
convergence, and the final estimation results agree with the
ground truth values. Our results are a proof of concept that
demonstrates that deep neural network models can also be
used in tackling difficult highly non-linear tomography prob-
lems like gate set tomography.Wewish to further improve the
efficiency and accuracy of the model for gate set tomography
in the future by exploring different neural network architec-
tures and via model fine-tuning. In particular, we believe
that leveraging the success of first compressing data in latent
space via an auto-encoder that was recently used in diffusion

Fig. 20 Two-qubit QGST with transfer learning (dataset 3): Training
trajectory of the predicted {X, Y, CPHASE} gates in depolarizing errors
with curriculum learning. Sigmoid activation function is used at output
layer
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Table 4 Summary for the
predicted (ground-truth) error
values of gates, including
percentage errors in dataset 3
(transfer learning)

Gates Dataset 3: over-rotational error Dataset 3: depolarizing error Percentage error

X 0.01998 (0.02) 0.01504 (0.015) −0.1010, 0.2675

Y 0.009931 (0.01) 0.007937 (0.008) −0.6926, −0.7927

CPHASE 0.02012 (0.02) 0.01277 (0.013) 0.6005, 3.8513

model (Rombach et al. 2021) would greatly reduce the com-
putational footprint for QGST.
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