
Comparing Solution Methods for the
Quadratic Bin Packing Problem

January 2025

A Thesis for the Bachelor Applied Mathematics

at the TU Delft

By

Hendrik de Mol van Otterloo

Student Number 4736796

Supervised by
Frank de Meijer

Assessed by
Wolter Groenevelt
Frank de Meijer

To be defended on
Thursday 23, January 2025 at 10:00 o’clock

Contents

1 Introduction 1
1.1 Notation . 1

2 The Quadratic Bin Packing Problem 2
2.1 The Bin Packing Problem . 2
2.2 Quadratic Bin Packing Problem . 3

2.2.1 Example QBPP . 3
2.2.2 Related Problems and Works . 5

2.3 Relaxation of the QBPP . 5
2.4 Symmetry Reduction . 5

3 Linearizing the QBPP 8
3.1 Linearization . 8

3.1.1 Method of Glover and Woolsey . 8
3.1.2 Method of Fan and Pardalos . 10
3.1.3 Abridged Method of Fan and Pardalos . 11

4 Semidefinite Problems 13
4.1 Positive Semidefinite Matrices . 13
4.2 Introduction to Semidefinite Programming . 13
4.3 Relaxing the QBPP to a SDP . 14
4.4 Strengthening the SDP Formulation . 15

4.4.1 Symmetry Reduction for the SDP Formulation . 16

5 Methods 18

6 Results 19

7 Conclusion 20

Abstract

The Bin Packing Problem is a famous NP-hard problem in the field of optimization where items need to be packed in
as few bins as possible. The problem has many applications across different fields. The Quadratic Bin Packing Problem
(QBPP) is an extension of the Bin Packing Problem where a joint cost is added when two items are packed together
and is NP-hard as well. The problem is quite unknown but has applications is for example hospital organisations or
advertisement placement. In this thesis we relax the QBPP via linear programming and semidefinite programming
and compare these relaxations by relative optimality gap and computation time. In particular the SDP relaxation has
not been done before and has been found to generally work well in relaxing quadratic problems. We find that for low
values of n the problem can best be solved as an integer quadratic program. For large values of n we find the SDP
relaxation to be optimal giving tight bounds in a reasonable amount of time. Like similar research in this field, we
also find SDP relaxations give a strong and fast bound to integer quadratic programs.

1 Introduction

The Bin Packing Problem (BPP) is a widely known and studied problem across the field of mathematics. The problem
has many applications such as in healthcare or logistics. For more examples, Munien and Ezugwu [25] have compiled
some of the many applications of the BPP. The objective of the BPP is to pack a number of items with different
weights in as few bins as possible. Every bin has a capacity and the items in a bin may not exceed the capacity of the
bin. The objective is to minimize the number of bins used to pack all items. For a general introduction to the Bin
Packing Problem, we recommend the book by Scheithauer [31].

The BPP has a quadratic extension known as the Quadratic Bin Packing Problem (QBPP). In this problem a pair
of items packed together also provide additional costs or reduction in costs. The exact problem has not been studied
much, and to the best of our knowledge the problem was first formally introduced in the thesis by Chagas [9] in 2021.
The class of general 0-1 quadratic problems, of which the QBPP is one, has been studied in, for example, this article
by Caprara [8].

An example of an application of the QBPP is to minimize the number of servers required to process a given set of
tasks under server capacity constraints as described by Aydin et al [1]. In this example the servers are the bins and
the tasks are the items that need to be handled within the capacity of the servers. In a quadratic extension certain
tasks on the same server could be more expensive.

Another example can be found in hospital planning, as inspired by an article by Laurent and Klement [22]. We
have certain classes of operations that need to be packed across hospitals without exceeding capacity, where certain
operations organised together in the same hospital save costs by using the same equipment for multiple operations.

The QBPP is NP-hard as is explained in Chapter 2, which makes finding an optimal solution hard, hence solutions
are often found using a relaxation and a branch-and-bound technique. Applying a branch-and-bound technique is
expensive which is why it is relevant to find a tight bound on the relaxation. The branch-and-bound technique is
beyond the scope of this thesis, though Chagas [9] has done some experiments with applying different branch-and-
bound techniques to the QBPP if the reader desires to learn more.

In this thesis we will compare relaxations of the QBPP: the relaxation of the linearization and the relaxation as
a semidefinite problem (SDP). In particular the SDP relaxation has not yet been applied to this problem and we
find reason to believe this method may yield strong results, as we will explain in Chapter 4. We will compare the
relaxations based on the tightness of the bound and the computation time.

This thesis is organised as follows: first, we give an introduction to the QBPP in Chapter 2. We relax the QBPP
to its linearized form in Chapter 3 and its SDP form in Chapter 4. We will describe the methods used to compare
these relaxations in Chapter 5, describe the results in Chapter 6 and conclude the thesis in Chapter 7.

1.1 Notation

We will use [n] to denote the set of integers from 1 to n. The trace inner product is a mapping Rn×m × Rn×m → R
such that C •X =

∑n
i=1

∑m
j=1 XijCij . We denote the set of n × n symmetric real matrices as Sn. We denote with

diag: Rn×n → Rn the operator that maps a matrix to a vector containing the values on the diagonal. We use Diag:
Rn → Rn×n to create a matrix with the input vector on the diagonal and 0 elsewhere. We use rank: Rn×n → N to
denote the rank of a matrix. The matrix J denotes the matrix with every element equal to 1.

1

2 The Quadratic Bin Packing Problem

In this chapter we give an introduction to the QBPP. We first describe the BPP and its related works, then extend
the BPP to the QBPP. We also give an example of a QBPP and discuss some related works.

2.1 The Bin Packing Problem

The Bin Packing Problem is a problem where a certain number of items need to be packed in as few bins as possible.
Each bin has a certain capacity, and all items a certain weight. The weight of the items packed in a bin must not
exceed the capacity. Thus, an instance of the BPP requires a finite set [n] that represents any n number of items, a
function s : [n] → R that assigns to each item a weight, and a parameter W ∈ R that determines the capacity of all
bins. The objective of the problem is to minimize the amount of bins used. We use variable xk

i ∈ {0, 1} to denote if
item i is in bin k:

xk
i =

{
1, if item i is in bin k,

0, otherwise.

We assume in the BPP that every item can be packed, or alternatively, that the weight of each item is smaller
than the capacity of a bin, otherwise there is an item that cannot be packed and the problem is infeasible. It is then
obvious to see that a feasible solution to the BPP is to pack each item in its own bin. Thus any solution to the BPP
uses at most n bins.

We use binary variable yk to denote whether there is at least one item in bin k, such that

yk =

{
1, if there is an item in bin k,

0, otherwise.

This results in the following integer linear program:

min
∑
k∈[n]

yk (1)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (2)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (3)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (4)

xk
i , yk ∈ {0, 1} ∀i, k ∈ [n]. (5)

The objective function sums over all bins that are used, which we want to minimize. Constraints (2) then force
a bin to be used if there is at least one item in it. Constraints (3) force all items to be in exactly one bin while
constraints (4) force the bins not to exceed their weight limit. Finally, constraints (5) force the decision variables xk

i

and yk to be binary.
The BPP, also referred to as the one-dimensional Cutting Stock Problem or the one-dimensional Bin Packing

Problem, has been studied extensively for many years, even as far back as 1979[5]. The problem is known to be
NP-hard[16]. Though the BPP has been widely studied, new advances are still being made. For example, a survey by
Munien and Ezugwu [25] explores recent advances made in metaheuristics for the BPP. A article by Delorme et al. [13]
reviews some of the current optimal ways of solving the BPP. For a general introduction to the Bin Backing Problem
we once more recommend the book by Scheithauer [31], who explores lower bounds, heuristics, exact approaches and
algorithms for the BPP. The book by Korte and Vygen [21] also describes the BPP while being more focused on
algorithms, heuristics and approximation schemes to the problem.

Common extensions to the BPP are multi-dimensional bin packing problems where the items and bins have multiple
dimensions, and the capacity constraints need to hold in all dimensions. Most common are the 2-dimensional and
3-dimensional Bin Packing Problem, with applications in for example computer storage, where files of different sizes
have to be stored [18]. The problem is more complex than the BPP, making the multi-dimensional bin packing problem
NP-hard. A survey of recent advances in the general class of multi-dimensional bin packing problems has recently
been done by Christensen et al. [11].

2

2.2 Quadratic Bin Packing Problem

The QBBP is an extension of the BPP and introduces a new function d : [n] × [n] → R representing dissimilarity.
This is an extra or reduced cost when two items are packed in the same bin. We assume dij = dji, so the function
is symmetric, thus the order in which items are packed is irrelevant. We also assume, without loss of generality,
dii = 0, ∀ i ∈ [n], so an item does not incur extra costs when packed with itself. If dii ̸= 0, then, because every item
is packed exactly once, this cost is a constant unavoidable extra cost which is trivial for a minimization problem.

The dissimilarity function changes the objective function to minimize costs, as opposed to minimizing bins, and
requires a cost for using a bin. We use parameter α to denote the cost of using a bin.

We can formulate the QBPP as an integer quadratic program as follows:

FIQP min
1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

dijx
k
i x

k
j + α

∑
k∈[n]

yk (6)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (7)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (8)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (9)

xk
i , yk ∈ {0, 1} ∀i, k ∈ [n]. (10)

We will refer to this program as the FIQP formulation.
Constraints (7) - (10) are equal to (2) - (5). The objective function (6) minimizes costs. Because we sum over all

pairs of (i, j) in the objective function, we add all dissimilarity values twice. For example, if items (2,3) are together
in the same bin, we add the dissimilarity once for the pair (2,3) and once again for pair (3,2). To correct this we
multiply the first part of our objective function by 1

2 .
The objective function contains the product of xk

i and xk
j , which is 1 if item i and j are together in bin k and 0

otherwise. We multiply this with the dissimilarity value dij to get the value of the reduced or extra cost. The objective
function also adds the cost of a bin, α, for each bin used.

Note how the solution to the problem is not unique. Because the ordering of the bins is arbitrary, we can shuffle
the numbering of the used bins and the optimal value will not change. we will expand on this in Section 2.4.

The product of the decision variables xk
i and xk

j makes the problem quadratic, giving the problem its name. If we
take dij = 0, ∀(i, j) ∈ [n] we reduce the problem to the BPP. Thus, because the QBPP adds complexity to the BPP,
which is NP-hard [16], the QBPP is NP-hard as well.

2.2.1 Example QBPP

In this Section we give an example of a QBPP. Suppose we have 5 items such that:

item 1 2 3 4 5
weight 1 6 2 4 5

The capacity of each bin is set to 10. If this were a Bin Packing Problem this problem would be easy to solve, as
it is easy to see that all items can be packed in 2 bins. For example packing item 1, 2 and 3 in a bin, and packing
item 4 and 5 together.

For the QBPP we add a cost for each bin, which we set to 6. We also add a dissimilarity matrix:

D =

0 5 −1 2 0
5 0 5 4 3
−1 5 0 2 5
2 4 2 0 −1
0 3 5 −1 0

such that dij = Dij . Note how the optimal solution is much harder to intuit than for the BPP. We get an optimum
as in Figure 1 with optimal value 16. The total cost deriving from using the 3 bins costing 18 and the dissimilarities
saving 2. It turns out packing item 1 and 3 separately is cheaper than packing them with item 2 due to the dissimilarity
costs.

3

Figure 1: Solution to the example QBPP

Figure 2: Different but optimal solutions to the example QBPP

4

2.2.2 Related Problems and Works

A problem closely related to the QBPP is the Quadratic Knapsack Problem (QKP), first introduced by Gallo et
al. [15]. It is similar to the QBPP except the objective is to maximize profits as opposed to minimize costs, where
each item carries a profit instead of a cost. There is only one bin and not all items have to be packed. Similar to the
QBPP, items packed together provide a joint cost. Pisinger [27] has studied various upper bounds of the relaxation of
this problem. There is also a study of various algorithms for solutions of the QKP by Pardalos et al. [26]. For a more
general introduction we recommend the book by Gallo et al. [15].

Another problem closely related to the QBPP is the Quadratic Multiple Knapsack Problem (QMKP). It is a
relatively new problem and was first introduced by Hiley and Julstrum [19] in 2006. It is similar to the QKP, with
multiple knapsacks of varying capacities. A lot of advances are still being made on this problem. See for example the
study by Bergman [3] on exact solution methods for solving the QMKP, or the article by Saraç and Sipahioglu [30]
who studied different algorithms for solving the QMKP.

For both of the problems stated above, an overview of recent advances in the field of knapsack problems was
recently done by Cacchiani et al. [7].

2.3 Relaxation of the QBPP

To solve the QBPP we relax the problem from a mixed integer quadratic program to a quadratic program. We then
solve this quadratic program to get a lower bound of the optimal solution and can then find a solution to the integer
quadratic problem using a branch-and-bound technique.

The specifics of the branch-and-bound technique is beyond the scope of this thesis, though if the reader desires
to read more, we recommend this book by Brusco and Stahl [6] who provide a good examination to the branch and
bound technique. Also of interest is this recent survey by Huang et al. [20] who analyse the recent advances in branch
and bound techniques using machine learning. For a reference more closely related to the QBPP, the reader can also
read this article by Sadykov and Vanderbeck [29] who apply a branch-and-price algorithm, which is similar to the
branch-and-bound method, to the Bin packing problem. We reiterate that the relevance of the branch-and-bound
method for this thesis is that it is computationally expensive to solve, thus a relaxation that can give an optimal value
close to the optimal solution of the QBPP is very much desired.

To relax the FIQP formulation of the QBPP we drop constraints (10) and bound x and y to be between 0 and 1
by adding the following constraint:

xk
i ≥ 0 ∀ i, k ∈ [n], (11)

yk ≤ 1 ∀ k ∈ [n]. (12)

Note that the above constraints with (7) bound all variables between 1 and 0. We will refer to the relaxation of
the QBPP as the FQP formulation. We will state it once more below for completeness.

FQP min
1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

dijx
k
i x

k
j + α

∑
k∈[n]

yk (13)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (14)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (15)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (16)

xk
i ≥ 0 ∀i, k ∈ [n], (17)

yk ≤ 1 ∀k ∈ [n]. (18)

2.4 Symmetry Reduction

Because the bins are all identical and their ordering is arbitrary, our current problem has multiple optimal solutions.
Let r be the number of bins our optimal solution uses, then we have exactly n!/(n − r)! combinations and optimal

5

Figure 3: The optimal solution when reduced by constraints (19) and (20)

solutions. For larger n this number increases incredibly fast. Because a problem with a single solution might be
computationally easier to solve, as is the case for many integer linear programs [24], we can add more constraints
around the index numbers of the bins to reduce the problem to a single optimal solution. One way to do this was
found by Bonami et al. [4].

We add the following constraints:

xk
i = 0 ∀i, k ∈ [n], k > i, (19)

xi
j ≤ xi

i ∀i, j ∈ [n], j > i. (20)

Constraints (19) only allow item i to be in bin i or a bin of a lower index number. Constraints (20) puts a restriction
on the bin number as follows:

bin k =

{
is empty,

contains item k.

Thus every pack of items is always in the bin of the item with the lowest index number. Referring to the example
once again, we would get the single optimal solution as can be seen in Figure 3.

When we add these constraints to FQP we see that we can replace the variable yk with xk
k. Because xk

k = 1 only
if a bin is used, these variables fulfil the same function.

We can then reformulate FQP with symmetry reduction as follows:

6

F+
QP min

1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

dijx
k
i x

k
j + α

∑
k∈[n]

xk
k (21)

s.t. xk
i ≤ xk

k ∀i, k ∈ [n], (22)∑
k∈[n]

xk
i = 1 ∀i ∈ [n], (23)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (24)

xk
i = 0 ∀i, k ∈ [n], k > i, (25)

0 ≤ xk
i ≤ 1 ∀i, k ∈ [n]. (26)

We will refer to this relaxation as F+
QP .

We can also apply symmetry reduction to the FIQP method to get the F+
IQP formulation as follows:

F+
IQP min

1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

dijx
k
i x

k
j + α

∑
k∈[n]

xk
k (27)

s.t. xk
i ≤ xk

k ∀i, k ∈ [n], (28)∑
k∈[n]

xk
i = 1 ∀i ∈ [n], (29)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (30)

xk
i = 0 ∀i, k ∈ [n], k > i , (31)

xk
i ∈ {0, 1} ∀i, k ∈ [n]. (32)

We will compare both the FIQP and F+
IQP formulations with the relaxations.

Because the symmetry reducing constraints add constraints to our existing program, we can say that any relaxation
with symmetry reducing constraints is stronger than its regular counterpart. We can thus expect for a method with
symmetry reduction an optimality gap that is at most the gap of its counterpart in the results.

7

3 Linearizing the QBPP

The relaxation of the QBPP is computationally expensive to solve because of the quadratic component in the objective
function. Hence we might improve performance by linearizing the QBPP, and solving a linear program (LP). In this
chapter we reformulate the FQP and F+

QP relaxations to LPs. We will do so using three different methods:
The method by Glover and Woolsey [17] which is used for general quadratic 0-1 programs. Chagas[9] seems to find

the method by Fan and Pardalos[14] most effective for linearizing the QBPP. Lastly we will use an abridged version
of the method by Fan and Pardalos that has to the best of our knowledge not yet been applied to this problem.

3.1 Linearization

For an optimal solution of the QBPP all variables are binary. Hence a linearization must be true only when the xk
i is

binary. Thus we can linearize the quadratic objective function as if it were binary without losing the optimal solution.
When we linearize a quadratic binary function we can reduce the quadratic equation to 4 cases. Defining zkij = xk

i ·xk
j

we get:

xk
i xk

j zkij
0 0 0
0 1 0
1 0 0
1 1 1

Thus we want to add linear constraints to FQP to force zkij to take on the correct result depending on the values of

xk
i and xk

j , so that we can replace the objective function of the QBPP with the following:

min
1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

dijz
k
ij + α

∑
k∈[n]

yk. (33)

Because zkij = xk
i · xk

j = xk
j · xk

i and the ordering of j and i is arbitrary we need the above logic table to only hold for

j ≥ i. For example xk
4 · xk

2 = xk
2 · xk

4 = zk2,4, which makes the table for j ≤ i redundant.

3.1.1 Method of Glover and Woolsey

The method of Glover and Woolsey introduces the following constraints:

zkij ≤ xk
i ∀ i, j, k ∈ [n], j ≥ i, (34)

zkij ≤ xk
j ∀ i, j, k ∈ [n], j ≥ i, (35)

xk
i + xk

j − zkij ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (36)

zkij = zkji ∀i, j, k ∈ [n], j < i, (37)

0 ≤ zkij ≤ 1 ∀ i, j, k ∈ [n], j ≥ i. (38)

We can see that for every bin k ∈ [n], zkij = 1 only if xk
i = 1 and xk

j = 1 by constraints (36). If either xk
i = 0 or

xk
j = 0 then constraints (34) and (35) force zkij = 0. Finally constraints (38) bound zkij between 0 and 1 and constraints

37 force the symmetry of zkij . If we add constraints forcing xk
i to be binary then zkij must be binary as well.

We can thus add constraints (34) - (38) to FQP and F+
QP with objective function (33) and get new relaxations of

the QBPP. We will call these methods FG&W and F+
G&W , respectively.

For the FG&W method we get the following:

8

FG&W min
1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

dijz
k
ij + α

∑
k∈[n]

yk (39)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (40)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (41)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (42)

zkij ≤ xk
i , ∀ i, j, k ∈ [n], j ≥ i, (43)

zkij ≤ xk
j , ∀ i, j, k ∈ [n], j ≥ i, (44)

xk
i + xk

j − zkij , ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (45)

xk
i ≥ 0 ∀i, k ∈ [n], (46)

yk ≤ 1 ∀k ∈ [n], (47)

zkij = zkji ∀i, j, k ∈ [n], j < i, (48)

0 ≤ zkij ≤ 1, ∀ i, j, k ∈ [n], j ≥ i. (49)

And for F+
G&W we get:

F+
G&W min

1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

dijz
k
ij + α

∑
k∈[n]

xk
k (50)

s.t. xk
i ≤ xk

k ∀i, k ∈ [n], (51)∑
k∈[n]

xk
i = 1 ∀i ∈ [n], (52)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (53)

xk
i = 0 ∀i, k ∈ [n], k > i, (54)

zkij ≤ xk
i , ∀ i, j, k ∈ [n], j ≥ i, (55)

zkij ≤ xk
j , ∀ i, j, k ∈ [n], j ≥ i, (56)

xk
i + xk

j − zkij , ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (57)

zkij = zkji ∀i, j, k ∈ [n], j < i, (58)

0 ≤ xk
i ≤ 1 ∀i, k ∈ [n], (59)

0 ≤ zkij ≤ 1, ∀ i, j, k ∈ [n], j ≥ i. (60)

The disadvantage of this method is that it adds an order of n3 constraints to the problem and n3 new variables.
While the high number of constraints and variables makes the formulation relatively strong, it also increases com-
putation time. We can reduce the number of variables added by using a linearization method more adjusted to the
QBPP.

9

3.1.2 Method of Fan and Pardalos

We let zij be a binary decision variable under the following constraints:

zij + xk
i − xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (61)

zij − xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (62)

−zij + xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (63)

zij = zji ∀ i, j ∈ [n], j < i, (64)

0 ≤ zij ≤ 1, ∀ i, j ∈ [n], j ≥ i. (65)

Note that the variable zij is independent of the bin k. Thus if there is any bin that contains both item i and j,
zij = 1. More specifically, if for some k, xk

i = 1 and xk
j = 0 then constraint (61) forces zij = 0. The same holds true

for xk
i = 0 and xk

j = 1 with constraints (62). If both xk
i = 1 and xk

j = 1 then constraint (63) forces zij = 1. Suppose

for some k that xk
i = 0 and xk

j = 0 then neither item is packed in bin k. This means that there must be some other bin
which contains either item i or j or both. This means variable zij will be forced to take value 0 or 1 by the previously
mentioned cases.

Because zij is independent of bin k we can rewrite the objective function to

min
1

2

∑
i∈[n]

∑
j∈[n]

dijzij + α
∑
k∈[n]

yk. (66)

Thus we can add constraints (61) - (65) to FQP with objective function (66) and get a new relaxation of the QBPP.
We will call the method FF&P :

FF&P min
1

2

∑
i∈[n]

∑
j∈[n]

dijzij + α
∑
k∈[n]

yk (67)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (68)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (69)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (70)

zij + xk
i − xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (71)

zij − xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (72)

−zij + xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (73)

zij = zji ∀ i, j ∈ [n], j < i, (74)

xk
i ≥ 0 ∀i, k ∈ [n], (75)

yk ≤ 1 ∀k ∈ [n], (76)

0 ≤ zij ≤ 1, ∀ i, j ∈ [n], j ≥ i. (77)

We can also then get the F+
F&P method by applying symmetry reduction to the above formulation:

10

F+
F&P min

1

2

∑
i∈[n]

∑
j∈[n]

dijzij + α
∑
k∈[n]

xk
k (78)

s.t. xk
i ≤ xk

k ∀i, k ∈ [n], (79)∑
k∈[n]

xk
i = 1 ∀i ∈ [n], (80)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (81)

xk
i = 0 ∀i, k ∈ [n], k > i, (82)

zij + xk
i − xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (83)

zij − xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (84)

−zij + xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (85)

zij = zji ∀ i, j ∈ [n], j < i, (86)

0 ≤ xk
i ≤ 1 ∀i, k ∈ [n], (87)

0 ≤ zij ≤ 1, ∀ i, j ∈ [n], j ≥ i. (88)

This method also adds an order of n3 new constraints to the problem but does so using n2 variables. Because the
method has only one variable to indicate whether two items are in any bin together, as opposed to the n variables the
method of Glover and Woolsey has, these formulations are weaker than their Glover and Woolsey counterparts. In
the next method we will remove some of the added constraints.

3.1.3 Abridged Method of Fan and Pardalos

Constraints (62) force zij = 0 when there is a bin k with xk
i = 0 and xk

j = 1. However, because all items must be

packed in a bin, there must now also be a bin l : xl
i = 1 and xl

j = 0. But if such a bin exists then constraints (61)
force zij = 0. Thus we can remove constraints (62) while keeping the results for zij per case intact.

Thus by adding only constraints (61), (63) and (65) we still have a Linear relaxation of FQP that can still give
a good bound on the optimal value. Because we remove a constraint the new methods will be weaker than their
regular Fan and Pardalos counterpart. We will call FF&P without constraints (72) the FAF&P formulation. We will
use F+

AF&P to refer to the F+
F&P formulation without constraints (84). We state them below for completeness.

FAF&P min
1

2

∑
i∈[n]

∑
j∈[n]

dijzij + α
∑
k∈[n]

yk (89)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (90)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (91)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (92)

zij + xk
i − xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (93)

−zij + xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (94)

zij = zji ∀ i, j ∈ [n], j < i, (95)

xk
i ≥ 0 ∀i, k ∈ [n], (96)

yk ≤ 1 ∀k ∈ [n], (97)

0 ≤ zij ≤ 1, ∀ i, j ∈ [n], j ≥ i. (98)

11

F+
AF&P min

1

2

∑
i∈[n]

∑
j∈[n]

dijzij + α
∑
k∈[n]

xk
k (99)

s.t. xk
i ≤ xk

k ∀i, k ∈ [n], (100)∑
k∈[n]

xk
i = 1 ∀i ∈ [n], (101)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (102)

xk
i = 0 ∀i, k ∈ [n], k > i, (103)

zij + xk
i − xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (104)

−zij + xk
i + xk

j ≤ 1, ∀ i, j, k ∈ [n], j ≥ i, (105)

zij = zji ∀ i, j ∈ [n], j < i, (106)

0 ≤ xk
i ≤ 1 ∀i, k ∈ [n], (107)

0 ≤ zij ≤ 1, ∀ i, j ∈ [n], j ≥ i. (108)

12

4 Semidefinite Problems

In this chapter we relax the QBPP to a positive semidefinite problem (SDP). We first give a short introduction of
what a positive semidefinite matrix is and state some useful properties of positive semidefinite matrices. Finally we
formulate the SDP relaxation of the QBBP.

4.1 Positive Semidefinite Matrices

Positive semidefinite matrices are commonly used in solving quadratic problems, such as in this article by Luo et al. [23]
who use it to solve a unicast transit beamforming problem, or this article by Roupin [28] who applies SDP relaxations
to the K-CLUSTER Problem, the Quadratic Assignment Problem and the Constrained-Memory Allocation Problem.
A final example is this paper by de Meijer et al. [12] who applies semidefinite programming to relax the Quadratic
Minimum Spanning Tree Problem. As they find SDP methods provide positive results, it would seem reasonable to
apply SDP relaxations to the QBPP as well. To the best of our knowledge the method of using a SDP relaxation has
not yet been applied to the QBPP, but because the structure of a positive semidefinite matrix lends itself naturally
to quadratic problems and a positive semidefinite matrix has many useful properties we have reason to expect good
results for this method. We list some of the properties of a semidefinite matrix below.

We first start with a definition of positive semidefinite matrices. A matrix A ∈ Sn is by definition positive
semidefinite if

xTAx ≥ 0, ∀x ∈ Rn\{0},

where Sn denotes the set of n× n symmetric real matrices. We denote a matrix being positive semidefinite by A ⪰ 0,
where A ⪰ B ⇔ A−B ⪰ 0.

Out of the above definition a couple useful properties arise:

• All eigenvalues of a positive semidefinite matrix are non-negative.

• The Cholesky decomposition [10]:

if and only if A ⪰ 0, then ∃M ∈ Rn×m : A = MMT .

This means any positive semidefinite matrix must be the outer product of some vector with itself.

• If A ⪰ 0 and a value on the diagonal of A is 0, then all values in that row and column of A must be 0.

• If A ⪰ 0, then for any principal submatrix B, it holds that B ⪰ 0.

• If A ⪰ 0, then diag(A) ≥ 0.

• A consequence of the Schur complement theorem (see e.g. [34]): if b > 0, C a matrix in R1×m and D a matrix

in Rm×m then A =

[
b C
CT D

]
is positive semidefinite if and only if D − CT b−1C ⪰ 0.

We see that the outer product of xk with itself is a symmetric matrix that, due to the Cholesky decomposition,
turns out to be positive semidefinite as well, thus the structure of our problem might lend itself well to semidefinite
programming.

4.2 Introduction to Semidefinite Programming

First, SDPs use the trace inner product that is defined between two matrices:

C •X =

n∑
i=1

m∑
j=1

XijCij , X,C ∈ Rn×m.

This can be seen as the sum over the element-wise multiplication of two matrices.

13

Next, we give the standard form of a semidefinite problem:

min C •X (109)

s.t. Ai •X = bi, for all i ∈ {1, ...,m} (110)

X ⪰ 0 (111)

We can see that if we take a X = Diag(x), we reduce the problem to a LP with the vectors of the LP on the
diagonal of the matrices of the SDP. Hence we can view the SDP as a generalisation of linear optimization problems.

For a thorough introduction into Semidefinite programming, the reader can refer to the book by Wolkowicz et
al. [33]. For a more basic and recent text, we recommend the book by Skrzypczyk and Cavalcanti [32]. The book also
discusses the many applications of semidefinite programming, such as in quantum physics or quantum information
science. The modernity of these applications also shows why the field of semidefinite programming is of more recent
interest, even though the field goes as far back as 1963 [2].

4.3 Relaxing the QBPP to a SDP

In this section we will reformulate the QBPP to a different program, that we can then relax to a SDP. Recall the
QBPP in its FIQP formulation, where xk

i indicates whether item i is in bin k. The binary matrix Xk = xk
i (x

k
j)

T then
denotes whether item i and j are together in bin k. Using this matrix, we can reformulate the QBPP as follows:

min
1

2

∑
k∈[n]

(Xk • C) + α
∑
k∈[n]

yk (112)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (113)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (114)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (115)

diag(Xk) = xk ∀k ∈ [n], (116)

yk ∈ {0, 1} ∀k ∈ [n], (117)

Xk ⪰ 0 ∀k ∈ [n], (118)

Xk = xk(xk)T ∀k ∈ [n]. (119)

Most constraints are written the same as for the FIQP for clarity’s sake, but can trivially be rewritten using strictly
the trace inner product. The objective function, previously containing 1

2

∑
i∈[n]

∑
j∈[n]

∑
k∈[n] dijx

k
i x

k
j , is now more

easily defined by the trace inner product. We have also replaced the binary constraints with constraints (116) and
(118). We will show that constraints (116), (119) and (118) reduce to the binary constraints for xk

i .
Because xk = diag(Xk), we have that xk

i = Xk
i,i ∀ i, k ∈ [n]. Then, because Xk = xk(xk)T we know that

Xk
i,i = (xk

i)
2 ∀ i, k ∈ [n]. Combining these two statements we get

xk
i = (xk

i)
2 → xk

i = 1 ∨ xk
i = 0 ∀ i, k ∈ [n].

Which is equivalent to the binary constraints.
The above problem is not a SDP because of constraints (119) and (117), which cannot be rewritten in standard

form. We can replace constraints (119) by the following:

Xk − xk(xk)T ⪰ 0 ∀ k ∈ [n], (120)

rank(Xk) = 1 ∀ k ∈ [n]. (121)

If constraints (120) and (118) hold, then by the Schur complement theorem this is equivalent to:[
1 (xk)T

xk Xk

]
⪰ 0 ∀ k ∈ [n]. (122)

14

Thus we can replace constraints (120) and (118) with constraints (122).
Finally, for the relaxation to a SDP we drop the non-convex constraints (121) and bound constraints (117) to end

up with the following SDP:

min
1

2

∑
k∈[n]

(Xk • C) + α
∑
k∈[n]

yk (123)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (124)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (125)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (126)

0 ≤ yk ≤ 1 ∀k ∈ [n], (127)

diag(Xk) = xk ∀k ∈ [n], (128)[
1 (xk)T

xk Xk

]
⪰ 0 ∀ k ∈ [n]. (129)

4.4 Strengthening the SDP Formulation

There are some constraints we can add to the above SDP formulation to make our formulation stronger. We list these
below as theorems with proof.

Theorem 4.1 The Constraints
Xk ≥ 0, ∀ k ∈ [n]

are valid for the program (112) - (119).

Proof Xk ⪰ 0 → diag(Xk) ≥ 0, then because diag(Xk) = xk, we find that xk ≥ 0. Then finally because Xk =
xk(xk)T we see that Xk is the outer product of two nonnegative vectors, thus Xk must be nonnegative as well. □

Theorem 4.2 The Constraints
Xk ≤ J, ∀ k ∈ [n]

are valid for the program (112) - (119).

Proof Because Xk = xk(xk)T and xk ≤ yk ≤ 1, we have that any element of Xk ≤ 1. Thus Xk ≤ J . □

Theorem 4.3 The Constraint

n ≤

(
n∑

k=1

Xk

)
• J ≤ n2

is valid for the program (112) - (119).

Proof For the lower bound, (
∑n

k=1 X
k) • J =

∑n
k=1

∑n
j=1

∑n
i=1 X

k
i,j . Because all elements of Xk are non-negative

and we sum over all elements of the matrix we also sum over at least the diagonal of Xk. Thus we know that∑n
k=1

∑n
j=1

∑n
i=1 X

k
i,j ≥

∑n
i=1

∑n
k=1 diag(X

k)i which, because of constraints (116) is equal to
∑n

i=1

∑n
k=1 x

k
i =∑n

i=1 1 = n.
For the upper bound, first we rewrite

∑n
k=1

∑n
j=1

∑n
i=1 X

k
i,j to

∑n
k=1

∑n
j=1

∑n
i=1 x

k
i x

k
j . Then because xk

j ≤ 1, we
have that

n∑
k=1

n∑
j=1

n∑
i=1

xk
i x

k
j ≤

n∑
k=1

n∑
j=1

n∑
i=1

xk
i =

n∑
k=1

n∑
j=1

1 = n2. □

Theorem 4.4 The Constraints
wwT •Xk ≤ W 2yk ∀k ∈ [n]

are valid for the program (112) - (119).

15

Proof First we rewrite wwT •Xk to wwT •xk(xk)T which is equal to
∑n

j=1

∑n
i=1 wjwix

K
i xk

j =
∑n

i=1 wix
k
i

∑n
j=1 wjx

k
j .

Using constraints (115) we see that this is less than or equal to WykWyk. Then because yk is a binary variable this
is equal to W 2yk. □

When adding constraints (4.1) - (4.4) we get the following program:

FSDP min
1

2

∑
k∈[n]

(Xk • C) + α
∑
k∈[n]

yk (130)

s.t. xk
i ≤ yk ∀i, k ∈ [n], (131)∑

k∈[n]

xk
i = 1 ∀i ∈ [n], (132)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (133)

diag(Xk) = xk ∀ k ∈ [n], (134)[
1 (xk)T

xk Xk

]
⪰ 0 ∀ k ∈ [n], (135)

0 ≤ yk ≤ 1 ∀k ∈ [n], (136)

Xk ≥ 0 ∀ k ∈ [n], (137)

Xx ≤ J ∀ k ∈ [n], (138)

n ≤ (

n∑
k=1

Xk) • J ≤ n2, (139)

wwT •Xk ≤ W 2yk ∀ k ∈ [n]. (140)

We will call this formulation the FSDP formulation.

Theorem 4.5 The FSDP formulation is stronger than the FG&W formulation

proof To prove the theorem we need to show that any feasible solution of FSDP is also feasible for FG&W . Constraints
(40) - (42) and (47) are equal so it trivial to show that the solution of FSDP is feasible. Let Xk be a feasible solution
of FSDP . 0 ≤ Xk ≤ J and diag(Xk) = xk thus 0 ≤ xk

i ≤ 1∀ i, k ∈ [n], which satisfies constraints (46).
Next we let zkij = xk

i x
k
j . Then because both xk

i and xk
j have values between 0 and 1, it is easy to see that constraints

(43), (44) and (49) hold. Finally for constraints (45) we see that:

xk
i + xk

j − zkij ≤ 1 ⇔ xk
i + xk

j − xk
i x

k
j ≤ 1 ⇔ xk

i (1− xk
j) ≤ 1− xk

j .

If xk
j = 1 then the statement is true. Otherwise we divide by 1 − xk

j and find that xk
i ≤ 1 which we also know is

true. □

4.4.1 Symmetry Reduction for the SDP Formulation

Similar to the LPs of Chapter 3 we can also apply symmetry reduction to the FSDP formulation. This results in the
F+
SDP formulation.

16

F+
SDP min

1

2

∑
k∈[n]

(Xk • C) + α
∑
k∈[n]

xk
k (141)

s.t. xk
i ≤ xk

k ∀i, k ∈ [n], (142)∑
k∈[n]

xk
i = 1 ∀i ∈ [n], (143)

∑
i∈[n]

wix
k
i ≤ Wyk ∀k ∈ [n], (144)

xk
i = 0 ∀k ∈ [n], k > i, (145)

diag(Xk) = xk ∀ k ∈ [n], (146)[
1 (xk)T

xk Xk

]
⪰ 0 ∀ k ∈ [n], (147)

Xk ≥ 0 ∀ k ∈ [n], (148)

Xx ≤ J ∀ k ∈ [n], (149)

n ≤ (

n∑
k=1

Xk) • J ≤ n2, (150)

wwT •Xk ≤ W 2yk ∀ k ∈ [n]. (151)

Similar to theorem 4.5 we can state that F+
SDP is a stronger relaxation than F+

G&W .

17

5 Methods

We will compare 2 formulations and 10 different relaxations of the QBPP in terms of the tightness of their bounds
and the time it takes to compute. The QBPP programs we use to compare with the relaxations are the FIQP and
F+
IQP formulations. The relaxations we compare are the FQP and F+

QP formulations as in Chapter 2,the FG&W , FF&P ,

FAF&P , F
+
G&W , F+

F&P and F+
AF&P as formulated in Chapter 3, and the FSDP and F+

SDP methods from Chapter 4.
We use a AMD Ryzen 5 3600 processor with 16GB of RAM. The programs were implemented in python using

cvxpy 1.6 as the modelling package with a single core used. The SDP relaxations are solved using the Mosek 10.2.13
solver, the rest with the Gurobi 12.0.0 solver.

An instance of the QBPP is dependent on 5 variables, namely n,w,D,W and a, with D the dissimilarity matrix
containing the values of dij . Because the dissimilarity values are what make the problem quadratic and more complex
than the BPP, we will experiment with variations of D. We will vary D based on the sign of its values and sparsity.
We will also slightly vary values of n to see how the different solvers compare when the size of the problem increases.
To keep the number of experiments manageable in terms of time we will keep W and a the same across all experiments
and use the same random distribution for w across all experiments.

For every experiment we set W = 15 and a = 6. The weights w will be uniformly randomly generated integers in
[2,7]. This will result in an average weight of 4.5, which means on average roughly 3 items can be packed in a bin,
resulting in enough space for the solution to pack multiple items in the same bin.

For our first experiment we will use n = 15. We will vary D based on sign in 3 scenarios.

• Dij > 0 ∀i, j ∈ [n], so items packed together will incur an extra cost. The values of D are uniformly randomly
generated integers in [1, 6].

• Dij < 0 ∀i, j ∈ [n], so items packed together will save costs, encouraging items to be packed together. The values
of D are uniformly randomly generated integers in [−6,−1].

• D is mixed, containing both positive and negative values. The values of D are uniformly randomly generated
integers in [−6,−1] ∪ [1, 6].

We will also vary D based on sparsity across 4 different values, where D is either 0%, 25%, 50% or 75% sparse,
which means a certain percentage of the values of D will be set to 0. We can view this as a measure of how quadratic
an instance is, with a low sparsity making the problem more quadratic. We will run an extra case where D is 100%
sparse, which means D is the 0-matrix, which reduces the problem to the Bin Packing Problem. This results in a total
of 13 cases.

For each case we will run 10 instances, where for each instance we will get the optimal solution and computation
time per program. Because the FIQP and F+

IQP method find a solution to the QBPP, as opposed to a solution to a
relaxation, we can express the optimality gap as a percentage difference to the optimal solution, giving the relative
optimality gap. The relative optimality gap is thus calculated as a percentage using optimal−bound

optimal · 100% which means
a low optimal value makes the percentages higher than with a higher optimal value, which can skew the results when

we have different optimal values. For example (200−100)
100 · 100% and 2−1

1 · 100% both indicate a gap of 100%, even
though one method has an absolute gap of 100 and the other of 1. Because the optimal values can change significantly
per method, we should be careful in drawing conclusions form the relative optimality gap in a vertical comparison.
We can, however, compare these gaps perfectly fair horizontally, across the different formulations.

Because the relative optimality gap divides by the optimal solution of the QBPP, we need to make sure the optimal
value is not 0. Thus we set Dii = 12∀ i ∈ [n], to make sure our optimal solution has an unavoidable cost of 12n. We
did this for all cases except where D is 100% sparse.

The second experiment is the same as the first except with n = 20.
For the third and final experiment we will compare the best performing programs by how much we can increase n

and still get an optimal result in a reasonable amount of time. We will compare them on the mixed dissimilarity set
with 25% sparcity for a relatively average dataset. We will take 5 instances and again average the relative optimality
gap percentage and computation time.

18

6 Results

In Tables 1 and 2 in the appendix we show the results for the first two experiments. Table 1 for n = 15 and Table 2
for n = 20. The columns indicate the method used. For each case we have two rows, where the top row indicates the
relative optimality gap as a percentage and the bottom row indicates the computation time in seconds. The top case
has a sparsity of 100%, and then we drop in sparsity per case, making the problem gradually more quadratic. The P
in the left column indicates that D contains only positive values, the N indicates negative values and the M indicates
mixed values as described in Chapter 5.

We see that across all methods the differences in sparsity and D have little effect on the result. The computation
time across the different cases is very similar. Only for a D with negative values and low sparsity does the relative
optimality gap increase significantly, especially for the FSDP formulation (but still the lowest bound of all formulations).
Because all the values of D are negative, packing as many different items in a bin is very advantageous, which is very
easy if parts of an item can be packed like for all relaxations. This holds especially true for all LPs without symmetry
constraint, who can pack potentially a part of every item uniformly into every bin. We should also note that the
relative optimality gap may be higher because the optimal solution is lower due to the cost saving dissimilarities.

The FIQP and F+
IQP method perform very well. Of course they have a relative optimality gap of 0, as the solution

they give is that of the QBPP. Surprisingly, the computation times compared to the other methods are very low, but
both have some outliers where they take a very long time to compile, for example the (N, 25%) and (N, 0%) points
for n = 20. This might be because the Gurobi solver cannot handle some cases of symmetry well, which the F+

IQP

method greatly reduces, which is why F+
IQP performs more reliable than FIQP in the extreme cases. Depending on

the instance, symmetry reduction does not remove all duplicate optimal solutions, however, which could explain why
the F+

IQP method still has outliers. Thus even though the F+
IQP method is structurally slightly slower than the FIQP

method, it is more reliable.
In terms of the relative optimality gap, we see that FQP and F+

QP perform the worst which is to be expected, as
they add no additional constraints for the quadratic component. The biggest advantage of these methods is that they
are very fast to compute, but their high relative optimality gap makes a branch-and-bound very expensive.

Compared to FQP , the stronger linearized formulations FG&W , FF&P and FAF&P perform better as expected,
surprisingly all giving the same relative optimality gap. Thus it appears the stronger formulations of FG&W and
FF&P over FAF&P have no effect on the optimal solution. These methods are not faster than their symmetry reduced
counterparts and give a worse bound, making them inferior. The F+

G&W does give a better bound than the F+
F&P

method as expected, which also gives a slightly better bound than the F+
AF&P method. The F+

AF&P is significantly
faster than the other symmetry reduced LP methods, making it in our view the superior method.

The SDP formulations give a very tight bound for all instances, the F+
SDP method in particular gives the tightest

bound of all methods. The F+
SDP program is only slightly slower while providing a significantly better bound than

the FSDP method. Unfortunately, the computation time is still higher than the F+
IQP method, though both have no

outliers, making them more reliable.
Overall we see that methods with symmetry reduction perform better than their counterparts. This could be

because we make the solution space a lot smaller without eliminating an optimal solution, thus the computation time
remains roughly the same. Because the solution space becomes smaller, however, we do get a tighter bound than
without symmetry reduction.

We did the the first two experiments for different values of n and see very little pattern emerge, aside from all
methods taking longer to compute. We can, however, use these experiments to estimate which methods can reasonably
handle higher values of n.

The results for the third experiment can be found in Table 7. We increased n to higher values as is indicated
in the first column. The FIQP method started taking exponentially more time, while the FSDP method increases in
computation time a lot slower. We can also still see that the optimality gap for the F+

SDP method remains tolerable,
making this the superior method for higher values of n. Data had to be collected slowly for the final table, as it
appeared the F+

IQP method was slightly prone to taking too much time, probably similar to the high values we found
in the first two experiments. For n = 35 the FIQP method could not give an optimal solution anymore in a reasonable
amount of time while the FSPD worked fine.

Finally while the FAF&P method works fast the gap does become very large, so it is unlikely it would be more
useful in finding a solution for the QBPP than the F+

SDP method.

19

7 Conclusion

In this thesis we described the QBPP and formulated different relaxations of the problem. We relaxed the QBPP
to different LPs and SDPs and compared their strenghts mathematically. We then compared the computation time
and bound of these methods in a simulation and found that the strengths we found indeed held up. Across all LP
formulations we found that symmetry reduction had a positive impact on the optimality gap without significantly
increasing computation time, which is as expected.

We explained why we believed the SDP relaxation showed promise and indeed we found the F+
IQP method works

good for smaller n while the F+
SDP method works better for larger values of n. This is the main conclusion of this

thesis.
There are some points that give room for further research. For example, our methods didn’t include variations

in W , a or w. This assured that there were always a certain number of items that could be packed together, but
potentially with real data W could be relatively small, such that items rarely fit together, or W could be relatively
big with a high a, strongly encouraging items to be packed together.

Because the SDP relaxations were strong we could have also included the FSDP method in our comparison. It could
be possible for different formulations of SDP relaxations give different bounds and computation times. An example
would be removing the constraint on yk, which was done in a simulation once by accident and gave a surprisingly
strong bound.

We also didn’t manage to increase n to levels that were to us satisfying. Unfortunately the Gurobi solver couldn’t
reliably solve the instances above a certain n, so further research could be done for bigger instances with the SDP
relaxation. An obvious extension is then to also extend the SDP method with a brand-and-bound or similar method.
as previously stated, Chagas [9]has done something similar with the linearisations, but because the F+

SDP method
currently turns out to be stronger than the linearisations we expect even stronger results with a branch-and-bound
method.

A possible extension would be a problem where the capacity and cost of the problem are not uniform, adding
complexity but more in line with real applications, where uniform cost and capacity of a bin is rare. Because the
QBPP is relatively unknown research into heuristics could be interesting to develop a strong upper bound on an
optimal solution.

Finally we hope that this thesis sparked interest among the readers for the QBPP. A simple extension to the BPP
with surprising depth for its optimal solution.

20

References

[1] N. Aydın, İ. Muter, and Ş. Birbil. Multi-objective temporal bin packing problem: An application in cloud
computing. Computers & Operations Research, 121, 2020.

[2] R. Bellman and K. Fan. On systems of linear inequalities in hermitian matrix variables. In vol. 7 of Proceedings
of Symposia in Pure Mathematics, 1963.

[3] D. Bergman. An exact algorithm for the quadratic multiknapsack problem with an application to event seating.
INFORMS Journal on Computing, 31(3):477 – 492, 2019.

[4] P. Bonami, V. Nguyen, M. Klein, and M. Minoux. On the solution of a graph partitioning problem under capacity
constraints. In Combinatorial Optimization, 2012.

[5] D. Brown. A lower bound for on-line one-dimensional bin packing algorithms. Technical report, Coordinated
Science Laboratory University of Illinois, 1979.

[6] M. Brusco and S. Stahl. Branch-and-Bound Applications in Combinatorial Data Analysis. Springer New York,
NY, 2005.

[7] V. Cacchiani, M. Iori, A. Locatelli, and S. Martello. Knapsack problems — an overview of recent advances. part
II: Multiple, multidimensional, and quadratic knapsack problems. Computers & Operations Research, 143, 2022.

[8] A. Caprara. Constrained 0–1 quadratic programming: Basic approaches and extensions. European Journal of
Operational Research, 187(3):1494–1503, 2008.

[9] V. Chagas. Exact algorithms for the quadratic bin packing problem. Master’s thesis, Universidade Estadual de
Campinas, 2021.

[10] A. Cholesky. Note sur une méthode de résolution des équations normales provenant de l’application de la méthode
des moindres carrés a un système d’équations linéaires en nombre inférieur a celui des inconnues. — application
de la méthode a la résolution d’un système defini d’équations linéaires. Bulletin géodésique, 2:66–77, 1924.

[11] H. Christensen, A. Khan, S. Pokutta, and P. Tetali. Approximation and online algorithms for multidimensional
bin packing: A survey. Computer Science Review, 24:63–79, 2017.

[12] F. de Meijer, M. Siebenhofer, R. Sotirov, and A. Wiegele. Spanning and splitting: Integer semidefinite program-
ming for the quadratic minimum spanning tree problem, 2024.

[13] M. Delorme, M. Iori, and S. Martello. Bin packing and cutting stock problems: Mathematical models and exact
algorithms. European Journal of Operational Research, 255(1):1–20, 2016.

[14] N. Fan and P. Pardalos. Linear and quadratic programming approaches for the general graph partitioning problem.
Journal of Global Optimization, 48:57 – 71, 2010.

[15] G. Gallo, P. Hammer, and B. Simeone. Combinatorial Optimization, chapter Quadratic knapsack problems, pages
132–149. Springer Berlin Heidelberg, Berlin, Heidelberg, 1980.

[16] M. R. Garey and D. S. Johnson. Computers and intractability. W.H.Freeman & Co Ltd, 1979.

[17] F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem to a 0-1 linear program. Oper-
ations Research, 22(1):180–182, 1974.

[18] B. Han, G. Diehr, and J. Cook. Multiple-type, two-dimensional bin packing problems: Applications and algo-
rithms. Annals of Operations Research, 50:239–261, 1994.

[19] A. Hiley and B. Julstrom. The quadratic multiple knapsack problem and three heuristic approaches to it. In
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, page 547–552,
New York, NY, USA, 2006. Association for Computing Machinery.

21

[20] L. Huang, X. Chen, W. Huo, J. Wang, F. Zhang, B. Bai, and L. Shi. Branch and bound in mixed integer linear
programming problems: A survey of techniques and trends. CoRR, 2021.

[21] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, pages 449–465. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[22] A. Laurent and N. Klement. Bin packing problem with priorities and incompatibilities using pso: application in
a health care community. IFAC-PapersOnLine, 52(13):2596–2601, 2019.

[23] Z. Luo, T. Chang, D. Palomar, and Y. Eldar. Convex Optimization in Signal Processing and Communications,
chapter SDP relaxation of homogeneous quadratic optimization: approximation bounds and applications, pages
117 – 165. Cambridge Univ. Press Cambridge, UK, 2010.

[24] F. Margot. 50 Years of Integer Programming 1958-2008, chapter Symmetry in Integer Linear Programming.
Springer, Berlin, Heidelberg, 2010.

[25] C. Munien and A. Ezugwu. Metaheuristic algorithms for one-dimensional bin-packing problems: A survey of
recent advances and applications. Journal of Intelligent Systems, 30(1):636–663, 2021.

[26] P. Pardalos, Y. Ye, and C. Han. Algorithms for the solution of quadratic knapsack problems. Linear Algebra and
its Applications, 152:69–91, 1991.

[27] D. Pisinger. The quadratic knapsack problem—a survey. Discrete Applied Mathematics, 155(5):623–648, 2007.

[28] F. Roupin. From linear to semidefinite programming: An algorithm to obtain semidefinite relaxations for bivalent
quadratic problems. Journal of Combinatorial Optimization, 8:469–493, 2004.

[29] R. Sadykov and F. Vanderbeck. Bin packing with conflicts: A generic branch-and-price algorithm. INFORMS
Journal on Computing, 25(2):244 – 255, 2012.

[30] T. Saraç and A. Sipahioglu. Generalized quadratic multiple knapsack problem and two solution approaches.
Computers & Operations Research, 43:78–89, 2014.

[31] G. Scheithauer. Introduction to Cutting and Packing Optimization: Problems, Modeling Approaches, Solution
Methods. Springer International Publishing, 2018.

[32] P. Skrzypczyk and D. Cavalcanti. Semidefinite Programming in Quantum Information Science. IOP Publishing,
2023.

[33] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite Programming. Springer New York, NY,
2000.

[34] F. Zhang. The Schur complement and its applications. Springer New York, NY, 2006.

22

Appendix

Table 1: Results for n=15
FIQP F+

IQP FQP F+
QP FG&W F+

G&W FF&P F+
F&P FAF&P F+

AF&P FSDP F+
SDP

(100%) 0 0 30 44 8 8 8 8 8 8 8 8
0.1 0.21 0.12 0.16 7.04 6.97 3.77 3.59 2.46 2.5 3.69 3.92

(P, 75%) 0 0 165 137 87 81 87 87 87 87 1 1
0.11 0.25 0.09 0.19 7.01 6.98 3.68 3.76 2.55 2.43 3.75 3.85

(P, 50%) 0 0 215 177 88 82 88 88 88 88 1 1
0.16 0.19 0.1 0.16 6.95 6.91 3.78 3.64 2.44 2.48 3.72 3.78

(P, 25%) 0 0 243 199 88 82 88 88 88 88 2 2
0.25 0.2 0.09 0.19 7.02 6.94 3.8 3.59 2.51 2.46 3.77 3.74

(P, 0%) 0 0 276 223 88 81 88 87 88 87 6 5
0.85 0.22 0.1 0.16 7.02 6.96 3.7 3.8 2.46 2.51 3.77 3.83

(N, 75%) 0 0 165 137 87 81 87 87 87 87 1 1
0.11 0.2 0.1 0.18 6.77 6.79 3.61 3.63 2.41 2.43 3.57 3.79

(N, 50%) 0 0 234 192 138 108 138 131 138 132 29 17
0.52 0.22 0.1 0.18 6.88 6.68 3.62 3.65 2.45 2.36 3.62 3.87

(N, 25%) 0 0 272 225 208 146 208 190 208 192 84 49
1.95 0.36 0.09 0.18 6.89 6.73 3.62 3.66 2.48 2.37 3.63 3.93

(N, 0%) 0 0 285 234 272 178 272 240 272 244 143 85
12.18 0.43 0.1 0.19 7.05 6.86 3.71 3.73 2.49 2.4 3.66 3.9

(M, 75%) 0 0 165 137 87 81 87 87 87 87 1 1
0.11 0.21 0.09 0.18 7.06 6.94 3.8 3.61 2.5 2.48 3.71 3.79

(M, 50%) 0 0 221 179 110 95 110 107 110 108 9 6
0.4 0.19 0.09 0.19 7 6.97 3.57 3.74 2.5 2.51 3.71 3.8

(M, 25%) 0 0 252 206 139 109 139 132 139 132 15 11
0.64 0.22 0.09 0.16 6.9 7.25 3.52 3.47 2.43 2.45 3.61 3.83

(M, 0%) 0 0 286 233 173 127 173 160 173 162 22 15
1.22 0.31 0.09 0.19 6.97 6.9 3.75 3.78 2.49 2.6 3.7 3.86

Table 2: Results for n=20
FIQP F+

IQP FQP F+
QP FG&W F+

G&W FF&P F+
F&P FAF&P F+

AF&P FSDP F+
SDP

(100%) 0 0 30 46 5 5 5 5 5 5 5 5
0.28 0.76 0.17 0.3 22.29 22.3 9.28 9.51 6.15 6.12 10.55 11.37

(P, 75%) 0 0 168 143 87 83 87 87 87 87 1 1
0.18 0.51 0.16 0.27 22.86 22.81 9.63 10.01 6.24 6.22 10.55 11.38

(P, 50%) 0 0 226 189 87 82 87 87 87 87 1 1
0.29 0.45 0.16 0.28 22.47 22.51 9.48 9.76 6.14 6.11 10.69 11.45

(P, 25%) 0 0 277 231 87 83 87 87 87 87 1 1
0.61 0.62 0.17 0.28 22.72 22.89 9.51 9.77 6.19 6.1 10.77 11.38

(P, 0%) 0 0 325 269 87 83 87 87 87 87 4 4
2.75 0.4 0.17 0.28 23.72 23.75 9.78 10.11 6.36 6.3 10.82 11.55

(N, 75%) 0 0 167 142 87 83 87 87 87 87 1 1
0.22 0.75 0.18 0.3 23.19 22.77 9.44 9.61 6.17 6.28 10.54 11.25

(N, 50%) 0 0 264 221 166 122 166 155 166 157 51 28
3.74 0.7 0.19 0.31 23.17 22.81 9.47 9.65 6.18 6.29 10.55 11.41

(N, 25%) 0 0 291 244 252 165 252 226 252 230 126 73
95.02 2.73 0.21 0.32 23.33 23.43 9.94 10 6.31 6.4 10.65 11.77

(N, 0%) 0 0 329 279 369 239 369 325 369 332 224 137
1225.25 10.52 0.21 0.33 24.63 24.59 10.23 10.38 6.42 6.6 10.73 12.07

(M, 75%) 0 0 167 141 87 82 87 87 87 87 1 1
0.22 0.58 0.16 0.28 22.73 22.73 9.53 9.88 6.2 6.15 10.57 11.48

(M, 50%) 0 0 239 200 115 100 115 113 115 114 10 8
0.87 0.48 0.16 0.28 22.62 22.7 9.48 9.8 6.13 6.11 10.85 11.43

(M, 25%) 0 0 275 228 153 115 153 143 153 145 20 13
3.88 0.57 0.17 0.28 23.01 23.1 9.59 9.95 6.24 6.23 10.92 11.59

(M, 0%) 0 0 314 261 199 138 199 182 199 184 26 17
38.76 0.84 0.17 0.28 23.95 23.97 9.93 10.3 6.38 6.36 10.96 11.5

Table 3: Results for higher values of n
n F+

IQP gap F+
IQP time F+

AF&P gap F+
AF&P time F+

SDP gap F+
SDP time

20 0 0.51 175.7 6.18 20.8 11.3
21 0 1.08 191.2 7.67 21.7 14.1
22 0 1.42 192.4 9.21 20.2 16.9
23 0 1.00 205.3 9.67 24.3 20.1
24 0 2.30 212.3 12.2 20.6 23.2
25 0 7.88 221.8 14.1 23.3 27.7
26 0 7.55 228.3 15.4 26.6 32.8
27 0 4.35 211.9 18.5 25.1 38.2
28 0 7.25 233.7 21.0 26.1 42.9
29 0 16.8 230.3 23.3 28.6 49.4
30 0 13.2 236.3 27.1 28.3 57.4
31 0 33.0 252.4 29.8 28.9 67.1
32 0 59.9 268.9 35.4 32.7 76.7
33 0 74.7 273.7 40.9 37.5 85.3
34 0 237.2 280.6 49.0 35.9 97.4

	Introduction
	Notation

	The Quadratic Bin Packing Problem
	The Bin Packing Problem
	Quadratic Bin Packing Problem
	Example QBPP
	Related Problems and Works

	Relaxation of the QBPP
	Symmetry Reduction

	Linearizing the QBPP
	Linearization
	Method of Glover and Woolsey
	Method of Fan and Pardalos
	Abridged Method of Fan and Pardalos

	Semidefinite Problems
	Positive Semidefinite Matrices
	Introduction to Semidefinite Programming
	Relaxing the QBPP to a SDP
	Strengthening the SDP Formulation
	Symmetry Reduction for the SDP Formulation

	Methods
	Results
	Conclusion

